1
|
King E, Struck R, Piskareva O. The triad in current neuroblastoma challenges: Targeting antigens, enhancing effective cytotoxicity and accurate 3D in vitro modelling. Transl Oncol 2025; 51:102176. [PMID: 39489087 PMCID: PMC11565549 DOI: 10.1016/j.tranon.2024.102176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/05/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024] Open
Abstract
Neuroblastoma is an embryonic tumour originating from neural crest cells and accounts for nearly 15 % of all childhood cancer deaths. Despite the implementation of intense multimodal therapy for neuroblastoma, half of the high-risk cohort will relapse with metastatic foci resistant to conventional therapies. There is an urgent need for novel precision medicine approaches to improve patient survival and ensure healthy post-treatment lives for these children. Immunotherapy holds promise for such therapeutics; however, developing effective options has been disappointing despite decades of research. The immunosuppressive tumour-immune microenvironment presents a significant challenge amplified with low mutational burden in neuroblastoma, even with the new discovered tumour antigens. Innovative, practical, and comprehensive approaches are crucial for designing and testing immunotherapies capable of passing clinical trials. Replacing animal models with physiologically relevant in vitro systems will expedite this process and provide new insights into exploitable tumour-immune cell interactions. This review examines this three-pronged approach in neuroblastoma immunotherapy: tumour antigen discovery, immunomodulation, and 3D in vitro tumour models, and discusses current and emerging insights into these strategies to address neuroblastoma immunotherapy challenges.
Collapse
Affiliation(s)
- Ellen King
- Cancer Bioengineering Group & Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Ronja Struck
- Cancer Bioengineering Group & Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Olga Piskareva
- Cancer Bioengineering Group & Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI University of Medicine and Health Sciences and Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Deng M, Tan X, Peng X, Zheng W, Fu R, Tao S. HDAC6 promotes inflammation in lupus nephritis mice by regulating transcription factors MAFF and KLF5 in renal fibrosis. Ren Fail 2024; 46:2415517. [PMID: 39412062 PMCID: PMC11485742 DOI: 10.1080/0886022x.2024.2415517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
AIM This study explored the effect and mechanism of MAFF and HDAC6 on renal fibrosis and inflammation in lupus nephritis (LN). METHODS IL-33 treated renal epithelial cells and MRL/lpr mice were respectively used for in vitro and in vivo experiments. The expressions of HDAC6, MAFF, and KLF5 were measured in cells and renal tissues. Before and after cell transfection, the morphological changes in renal tissues were observed using Hematoxylin and eosin (H&E) and Masson staining. The proteinuria, serum creatinine (SCr), blood urea nitrogen (BUN), and double-stranded DNA (dsDNA) levels were detected by biochemical analysis. The expressions of fibrosis and inflammation related proteins (including α-SMA, Vimentin, IL-1β, IL-6, and TNF-α), p65, and iNOS were also detected. The relationship among MAFF, HDAC6, and KLF5 was determined by chromatin immunoprecipitation and dual luciferase reporter gene assay. RESULTS Renal tissues and cell models had elevated expressions of HDAC6 and KLF5, and decreased MAFF expression. HDAC6 suppression or MAFF overexpression led to suppression of proteinuria, SCr, BUN, and dsDNA levels, as well as attenuation of inflammatory infiltration and collagen deposition. HDAC6 can suppress MAFF expression via deacetylation to abolish its suppression of KLF5 expression, thus increasing KLF5 expression. In vivo and in vitro experiments showed the suppressive effect of HDAC6 suppression on renal fibrosis and inflammation can be abolished by KLF5 overexpression. CONCLUSION HDAC6 suppresses MAFF expression via deacetylation to elevate KLF5 expression, which consequently enhances fibrosis and inflammatory response in LN.
Collapse
Affiliation(s)
- Meihui Deng
- Department of Nephrology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, P.R. China
| | - Xiao Tan
- Department of Hematology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, P.R. China
| | - Xiaojie Peng
- Department of Nephrology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, P.R. China
| | - Weimin Zheng
- Department of Nephrology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, P.R. China
| | - Rui Fu
- Department of Nephrology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, P.R. China
| | - Shanshan Tao
- Department of Nephrology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, P.R. China
| |
Collapse
|
3
|
Lin M, Zhou W, Wang Y, Ye J, Jiang T, Han S, Zhu F, Ye M, Fang Z. HDAC5 deacetylates c-Myc and facilitates cell cycle progression in hepatocellular carcinoma cells. Cell Signal 2024; 124:111386. [PMID: 39243916 DOI: 10.1016/j.cellsig.2024.111386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/09/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Histone deacetylase 5 (HDAC5) is an enzyme that deacetylates lysine residues on the N-terminal of histones and other proteins. It has been reported that HDAC5 deacetylates p53, the critical factor regulating cell cycle, in response to cellular stress, but the transcriptional products haven't been identified. Herein, we used p53 signaling pathway qPCR-chip to determine how HDAC5-mediated deacetylation of p53 affects cell cycle. However, validation using immunoblotting analysis revealed that acetylation of p53 at K120 impacted little to the expression of the genes identified using the qPCR-chip, indicating HDAC5 might deacetylate some other proteins to facilitate cell cycle via transactivating the differentially expressed genes determined by the qPCR-chip. The subsequent assays demonstrated that HDAC5 deacetylated c-Myc at K143 and K157 to facilitate the transactivation of CDK1, CDK4, and CDC25C, promoting cell cycle progression of hepatocellular carcinoma (HCC). This study shows that HDAC5 plays important roles in modulating deacetylation of c-Myc and regulating cell cycle progression, and it proves that LMK-235, the inhibitor targeting HDAC5 potentially serves as a drug for combating HCC via promoting acetylation of c-Myc at K143 and K157.
Collapse
Affiliation(s)
- Min Lin
- Central Laboratory, Sanmen People's Hospital, Sanmen 317100, China.
| | - Weihua Zhou
- Department of Pathology, Sanmen People's Hospital, Sanmen 317100, China.
| | - Yizhang Wang
- Central Laboratory, Sanmen People's Hospital, Sanmen 317100, China.
| | - Jiangwei Ye
- Department of General Surgery, Sanmen People's Hospital, No. 15 Taihe Road, Hairun Street, Sanmen 317100, China.
| | - TingJia Jiang
- Department of Pathology, Sanmen People's Hospital, Sanmen 317100, China.
| | - Shanshan Han
- Central Laboratory, Sanmen People's Hospital, Sanmen 317100, China.
| | - Fengjiao Zhu
- Central Laboratory, Sanmen People's Hospital, Sanmen 317100, China.
| | - Ming Ye
- Department of General Surgery, Sanmen People's Hospital, No. 15 Taihe Road, Hairun Street, Sanmen 317100, China.
| | - Zejun Fang
- Central Laboratory, Sanmen People's Hospital, Sanmen 317100, China.
| |
Collapse
|
4
|
Choi J, Gang S, Ramalingam M, Hwang J, Jeong H, Yoo J, Cho HH, Kim BC, Jang G, Jeong HS, Jang S. BML-281 promotes neuronal differentiation by modulating Wnt/Ca 2+ and Wnt/PCP signaling pathway. Mol Cell Biochem 2024; 479:2391-2403. [PMID: 37768498 DOI: 10.1007/s11010-023-04857-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023]
Abstract
Histone deacetylase (HDAC) inhibitors promote differentiation through post-translational modifications of histones. BML-281, an HDAC6 inhibitor, has been known to prevent tumors, acute dextran sodium sulfate-associated colitis, and lung injury. However, the neurogenic differentiation effect of BML-281 is poorly understood. In this study, we investigated the effect of BML-281 on neuroblastoma SH-SY5Y cell differentiation into mature neurons by immunocytochemistry (ICC), reverse transcriptase PCR (RT-PCR), quantitative PCR (qPCR), and western blotting analysis. We found that the cells treated with BML-281 showed neurite outgrowth and morphological changes into mature neurons under a microscope. It was confirmed that the gene expression of neuronal markers (NEFL, MAP2, Tuj1, NEFH, and NEFM) was increased with certain concentrations of BML-281. Similarly, the protein expression of neuronal markers (NeuN, Synaptophysin, Tuj1, and NFH) was upregulated with BML-281 compared to untreated cells. Following treatment with BML-281, the expression of Wnt5α increased, and downstream pathways were activated. Interestingly, both Wnt/Ca2+ and Wnt/PCP pathways activated and regulated PKC, Cdc42, RhoA, Rac1/2/3, and p-JNK. Therefore, BML-281 induces the differentiation of SH-SY5Y cells into mature neurons by activating the non-canonical Wnt signaling pathway. From these results, we concluded that BML-281 might be a novel drug to differentiation into neuronal cells through the regulation of Wnt signaling pathway to reduce the neuronal cell death.
Collapse
Affiliation(s)
- Jiyun Choi
- Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
| | - Seoyeon Gang
- Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
- Department of Pre-Medical Science, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
| | - Mahesh Ramalingam
- Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
| | - Jinsu Hwang
- Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
| | - Haewon Jeong
- Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
| | - Jin Yoo
- Department of Physiological Education, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyong-Ho Cho
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Geupil Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea.
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea.
| |
Collapse
|
5
|
Du B, Zhang Y, Zhang P, Zhang M, Yu Z, Li L, Hou L, Wang Q, Zhang X, Zhang W. Joint metabolomics and transcriptomics analysis systematically reveal the impact of MYCN in neuroblastoma. Sci Rep 2024; 14:20155. [PMID: 39215128 PMCID: PMC11364762 DOI: 10.1038/s41598-024-71211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
The limited understanding of the molecular mechanism underlying MYCN-amplified (MNA) neuroblastoma (NB) has hindered the identification of effective therapeutic targets for MNA NB, contributing to its higher mortality rate compared to MYCN non-amplified (non-MNA) NB. Therefore, a comprehensive analysis integrating metabolomics and transcriptomics was conducted to systematically investigate the MNA NB. Metabolomics analysis utilized plasma samples from 28 MNA NB patients and 68 non-MNA NB patients, while transcriptomics analysis employed tissue samples from 15 MNA NB patients and 37 non-MNA NB patients. Notably, joint metabolomics and transcriptomics analysis was performed. A total of 46 metabolites exhibited alterations, with 21 displaying elevated levels and 25 demonstrating reduced levels in MNA NB. In addition, 884 mRNAs in MNA NB showed significant changes, among which 766 mRNAs were higher and 118 mRNAs were lower. Joint-pathway analysis revealed three aberrant pathways involving glycerolipid metabolism, purine metabolism, and lysine degradation. This study highlights the substantial differences in metabolomics and transcriptomics between MNA NB and non-MNA NB, identifying three abnormal metabolic pathways that may serve as potential targets for understanding the molecular mechanisms underlying MNA NB.
Collapse
Affiliation(s)
- Bang Du
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Yingyu Zhang
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, Luoyang, 471003, China
| | - Pin Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Mengxin Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Zhidan Yu
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Lifeng Li
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Ligong Hou
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Qionglin Wang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China.
| | - Xianwei Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China.
| | - Wancun Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China.
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China.
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China.
| |
Collapse
|
6
|
Lisek M, Tomczak J, Swiatek J, Kaluza A, Boczek T. Histone Deacetylases in Retinoblastoma. Int J Mol Sci 2024; 25:6910. [PMID: 39000021 PMCID: PMC11241206 DOI: 10.3390/ijms25136910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Retinoblastoma, a pediatric ocular malignancy, presents significant challenges in comprehending its molecular underpinnings and targeted therapeutic approaches. The dysregulated activity of histone deacetylases (HDACs) has been associated with retinoblastoma pathogenesis, influencing critical cellular processes like cell cycle regulation or retinal ganglion cell apoptosis. Through their deacetylase activity, HDACs exert control over key tumor suppressors and oncogenes, influencing the delicate equilibrium between proliferation and cell death. Furthermore, the interplay between HDACs and the retinoblastoma protein pathway, a pivotal aspect of retinoblastoma etiology, reveals a complex network of interactions influencing the tumor microenvironment. The examination of HDAC inhibitors, encompassing both established and novel compounds, offers insights into potential approaches to restore acetylation balance and impede retinoblastoma progression. Moreover, the identification of specific HDAC isoforms exhibiting varying expression in retinoblastoma provides avenues for personalized therapeutic strategies, allowing for interventions tailored to individual patient profiles. This review focuses on the intricate interrelationship between HDACs and retinoblastoma, shedding light on epigenetic mechanisms that control tumor development and progression. The exploration of HDAC-targeted therapies underscores the potential for innovative treatment modalities in the pursuit of more efficacious and personalized management strategies for this disease.
Collapse
Affiliation(s)
- Malwina Lisek
- Department of Molecular Neurochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (J.T.); (J.S.); (A.K.)
| | | | | | | | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (J.T.); (J.S.); (A.K.)
| |
Collapse
|
7
|
Gerges A, Canning U. Neuroblastoma and its Target Therapies: A Medicinal Chemistry Review. ChemMedChem 2024; 19:e202300535. [PMID: 38340043 DOI: 10.1002/cmdc.202300535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Neuroblastoma (NB) is a childhood malignant tumour belonging to a group of embryonic tumours originating from progenitor cells of the sympathoadrenal lineage. The heterogeneity of NB is reflected in the survival rates of those with low and intermediate risk diseases who have survival rates ranging from 85 to 90 %. However, for those identified with high-risk Stage 4 NB, the treatment options are much more limited. For this group, current treatment consists of immunotherapy (monoclonal antibodies) in combination with anti-cancer drugs and has a 40 to 50 % survival rate. The purpose of this review is to summarise NB research from a medicinal chemistry perspective and to highlight advances in targeted drug therapy in the field. The review examines the medicinal chemistry of a number of drugs tested in research, some of which are currently under clinical trial. It concludes by proposing that future medicinal chemistry research into NB should consider other possible target therapies and adopt a multi-target drug approach rather than a one-drug-one-target approach for improved efficacy and less drug-drug interaction for the treatment of NB Stage 4 (NBS4) patients.
Collapse
Affiliation(s)
- A Gerges
- Bioscience Department, London Metropolitan University, 166-220 Holloway Road, London, N7 8DB, England, United Kingdom
| | - U Canning
- Bioscience Department, London Metropolitan University, 166-220 Holloway Road, London, N7 8DB, England, United Kingdom
| |
Collapse
|
8
|
Xie S, Leng J, Zhao S, Zhu L, Zhang M, Ning M, Zhao B, Kong L, Yin Y. Design and biological evaluation of dual tubulin/HDAC inhibitors based on millepachine for treatment of prostate cancer. Eur J Med Chem 2024; 268:116301. [PMID: 38452727 DOI: 10.1016/j.ejmech.2024.116301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
In this work, a novel of dual tubulin/HDAC inhibitors were designed and synthesized based on the structure of natural product millepachine, which has been identified as a tubulin polymerization inhibitor. Biological evaluation revealed that compound 9n exhibited an impressive potency against PC-3 cells with the IC50 value of 16 nM and effectively inhibited both microtubule polymerization and HDAC activity. Furthermore, compound 9n not only induced cell cycle arrest at G2/M phase, but also induced PC- 3 cells apoptosis. Further study revealed that the induction of cell apoptosis by 9n was accompanied by a decrease in mitochondrial membrane potential and an elevation in reactive oxygen species levels in PC-3 cells. Additionally, 9n exhibited inhibitory effects on tumor cell migration and angiogenesis. In PC-3 xenograft model, 9n achieved a remarkable tumor inhibition rate of 90.07%@20 mg/kg, significantly surpassing to that of CA-4 (55.62%@20 mg/kg). Meanwhile, 9n exhibited the favorable drug metabolism characteristics in vivo. All the results indicate that 9n is a promising dual tubulin/HDAC inhibitor for chemotherapy of prostate cancer, deserving the further investigation.
Collapse
Affiliation(s)
- Shanshan Xie
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Jiafu Leng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Shifang Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Liqiao Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Mengyu Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Mengdan Ning
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Bo Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Yong Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
9
|
Veschi V, Durinck K, Thiele CJ, Speleman F. Neuroblastoma Epigenetic Landscape: Drugging Opportunities. PEDIATRIC ONCOLOGY 2024:71-95. [DOI: 10.1007/978-3-031-51292-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Amin SA, Khatun S, Gayen S, Das S, Jha T. Are inhibitors of histone deacetylase 8 (HDAC8) effective in hematological cancers especially acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL)? Eur J Med Chem 2023; 258:115594. [PMID: 37429084 DOI: 10.1016/j.ejmech.2023.115594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
Histone deacetylase 8 (HDAC8) aberrantly deacetylates histone and non-histone proteins. These include structural maintenance of chromosome 3 (SMC3) cohesin protein, retinoic acid induced 1 (RAI1), p53, etc and thus, regulating diverse processes such as leukemic stem cell (LSC) transformation and maintenance. HDAC8, one of the crucial HDACs, affects the gene silencing process in solid and hematological cancer progressions especially on acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). A specific HDAC8 inhibitor PCI-34051 showed promising results against both T-cell lymphoma and AML. Here, we summarize the role of HDAC8 in hematological malignancies, especially in AML and ALL. This article also introduces the structure/function of HDAC8 and a special attention has been paid to address the HDAC8 enzyme selectivity issue in hematological cancer especially against AML and ALL.
Collapse
Affiliation(s)
- Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India; Department of Pharmaceutical Technology, JIS University, 81, Nilgunj Road, Agarpara, Kolkata, West Bengal, India.
| | - Samima Khatun
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Sanjib Das
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
11
|
Ahmed S, Alam W, Aschner M, Filosa R, Cheang WS, Jeandet P, Saso L, Khan H. Marine Cyanobacterial Peptides in Neuroblastoma: Search for Better Therapeutic Options. Cancers (Basel) 2023; 15:cancers15092515. [PMID: 37173981 PMCID: PMC10177606 DOI: 10.3390/cancers15092515] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/03/2023] [Accepted: 03/12/2023] [Indexed: 05/15/2023] Open
Abstract
Neuroblastoma is the most prevalent extracranial solid tumor in pediatric patients, originating from sympathetic nervous system cells. Metastasis can be observed in approximately 70% of individuals after diagnosis, and the prognosis is poor. The current care methods used, which include surgical removal as well as radio and chemotherapy, are largely unsuccessful, with high mortality and relapse rates. Therefore, attempts have been made to incorporate natural compounds as new alternative treatments. Marine cyanobacteria are a key source of physiologically active metabolites, which have recently received attention owing to their anticancer potential. This review addresses cyanobacterial peptides' anticancer efficacy against neuroblastoma. Numerous prospective studies have been carried out with marine peptides for pharmaceutical development including in research for anticancer potential. Marine peptides possess several advantages over proteins or antibodies, including small size, simple manufacturing, cell membrane crossing capabilities, minimal drug-drug interactions, minimal changes in blood-brain barrier (BBB) integrity, selective targeting, chemical and biological diversities, and effects on liver and kidney functions. We discussed the significance of cyanobacterial peptides in generating cytotoxic effects and their potential to prevent cancer cell proliferation via apoptosis, the activation of caspases, cell cycle arrest, sodium channel blocking, autophagy, and anti-metastasis behavior.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine Forchheimer, 209 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Rosanna Filosa
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Philippe Jeandet
- Faculty of Sciences, RIBP-USC INRAe 1488, University of Reims, 51100 Reims, France
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, 00185 Rome, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
12
|
Cheng Y, Zhong C, Yan S, Chen C, Gao X. Structure modification: a successful tool for prodrug design. Future Med Chem 2023; 15:379-393. [PMID: 36946236 DOI: 10.4155/fmc-2022-0309] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Prodrug strategy is critical for innovative drug development. Structural modification is the most straightforward and effective method to develop prodrugs. Improving drug defects and optimizing the physical and chemical properties of a drug, such as lipophilicity and water solubility, changing the way of administration can be achieved through specific structural modification. Designing prodrugs by linking microenvironment-responsive groups to the prototype drugs is of great help in enhancing drug targeting. In the meantime, making connections between prodrugs and suitable drug delivery systems could realize drug loading increases, greater stability, bioavailability and drug release control. In this paper, lipidic, water-soluble, pH-responsive, redox-sensitive and enzyme-activatable prodrugs are reviewed on the basis of structural modification.
Collapse
Affiliation(s)
- Yuexuan Cheng
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Chunhong Zhong
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Shujing Yan
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Chunli Chen
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
- Engineering Research Center of Xinjiang & Central Asian Medicine Resources, Ministry of Education, Urumqi, Xinjiang, 830011, China
| | - Xiaoli Gao
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
- Engineering Research Center of Xinjiang & Central Asian Medicine Resources, Ministry of Education, Urumqi, Xinjiang, 830011, China
| |
Collapse
|
13
|
Hastings JF, Latham SL, Kamili A, Wheatley MS, Han JZ, Wong-Erasmus M, Phimmachanh M, Nobis M, Pantarelli C, Cadell AL, O’Donnell YE, Leong KH, Lynn S, Geng FS, Cui L, Yan S, Achinger-Kawecka J, Stirzaker C, Norris MD, Haber M, Trahair TN, Speleman F, De Preter K, Cowley MJ, Bogdanovic O, Timpson P, Cox TR, Kolch W, Fletcher JI, Fey D, Croucher DR. Memory of stochastic single-cell apoptotic signaling promotes chemoresistance in neuroblastoma. SCIENCE ADVANCES 2023; 9:eabp8314. [PMID: 36867694 PMCID: PMC9984174 DOI: 10.1126/sciadv.abp8314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Gene expression noise is known to promote stochastic drug resistance through the elevated expression of individual genes in rare cancer cells. However, we now demonstrate that chemoresistant neuroblastoma cells emerge at a much higher frequency when the influence of noise is integrated across multiple components of an apoptotic signaling network. Using a JNK activity biosensor with longitudinal high-content and in vivo intravital imaging, we identify a population of stochastic, JNK-impaired, chemoresistant cells that exist because of noise within this signaling network. Furthermore, we reveal that the memory of this initially random state is retained following chemotherapy treatment across a series of in vitro, in vivo, and patient models. Using matched PDX models established at diagnosis and relapse from individual patients, we show that HDAC inhibitor priming cannot erase the memory of this resistant state within relapsed neuroblastomas but improves response in the first-line setting by restoring drug-induced JNK activity within the chemoresistant population of treatment-naïve tumors.
Collapse
Affiliation(s)
- Jordan F. Hastings
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Sharissa L. Latham
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Alvin Kamili
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Madeleine S. Wheatley
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Jeremy Z. R. Han
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Marie Wong-Erasmus
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Monica Phimmachanh
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Max Nobis
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Chiara Pantarelli
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Antonia L. Cadell
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Yolande E. I. O’Donnell
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - King Ho Leong
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Sophie Lynn
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Fan-Suo Geng
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Lujing Cui
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Sabrina Yan
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Joanna Achinger-Kawecka
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Clare Stirzaker
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Murray D. Norris
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Michelle Haber
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Toby N. Trahair
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW 2031, Australia
| | - Frank Speleman
- Center for Medical Genetics, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Katleen De Preter
- Center for Medical Genetics, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Mark J. Cowley
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Ozren Bogdanovic
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Paul Timpson
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Thomas R. Cox
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jamie I. Fletcher
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Dirk Fey
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - David R. Croucher
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
14
|
Darwish S, Heimburg T, Ridinger J, Herp D, Schmidt M, Romier C, Jung M, Oehme I, Sippl W. Synthesis, Biochemical, and Cellular Evaluation of HDAC6 Targeting Proteolysis Targeting Chimeras. Methods Mol Biol 2023; 2589:179-193. [PMID: 36255625 DOI: 10.1007/978-1-0716-2788-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Histone deacetylases are considered promising epigenetic targets for chemical protein degradation due to their diverse roles in physiological cellular functions and in the diseased state. Proteolysis-targeting chimeras (PROTACs) are bifunctional molecules that hijack the cell's ubiquitin-proteasome system (UPS). One of the promising targets for this approach is histone deacetylase 6 (HDAC6), which is highly expressed in several types of cancers and is linked to the aggressiveness of tumors. In the present work, we describe the synthesis of HDAC6 targeting PROTACs based on previously synthesized benzohydroxamates selectively inhibiting HDAC6 and how to assess their activities in different biochemical in vitro assays and in cellular assays. HDAC inhibition was determined using fluorometric assays, while the degradation ability of the PROTACs was assessed using western blot analysis.
Collapse
Affiliation(s)
- Salma Darwish
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Halle/Saale, Germany
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Tino Heimburg
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Halle/Saale, Germany
| | - Johannes Ridinger
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Daniel Herp
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Matthias Schmidt
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Halle/Saale, Germany
| | - Christophe Romier
- Département de Biologie Structurale Intégrative, Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch Cedex, France
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Ina Oehme
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Halle/Saale, Germany.
| |
Collapse
|
15
|
Cornel AM, Dunnebach E, Hofman DA, Das S, Sengupta S, van den Ham F, Wienke J, Strijker JGM, van den Beemt DAMH, Essing AHW, Koopmans B, Engels SAG, Lo Presti V, Szanto CS, George RE, Molenaar JJ, van Heesch S, Dierselhuis MP, Nierkens S. Epigenetic modulation of neuroblastoma enhances T cell and NK cell immunogenicity by inducing a tumor-cell lineage switch. J Immunother Cancer 2022; 10:jitc-2022-005002. [PMID: 36521927 PMCID: PMC9756225 DOI: 10.1136/jitc-2022-005002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Immunotherapy in high-risk neuroblastoma (HR-NBL) does not live up to its full potential due to inadequate (adaptive) immune engagement caused by the extensive immunomodulatory capacity of HR-NBL. We aimed to tackle one of the most notable immunomodulatory processes in neuroblastoma (NBL), absence of major histocompatibility complex class I (MHC-I) surface expression, a process greatly limiting cytotoxic T cell engagement. We and others have previously shown that MHC-I expression can be induced by cytokine-driven immune modulation. Here, we aimed to identify tolerable pharmacological repurposing strategies to upregulate MHC-I expression and therewith enhance T cell immunogenicity in NBL. METHODS Drug repurposing libraries were screened to identify compounds enhancing MHC-I surface expression in NBL cells using high-throughput flow cytometry analyses optimized for adherent cells. The effect of positive hits was confirmed in a panel of NBL cell lines and patient-derived organoids. Compound-treated NBL cell lines and organoids were cocultured with preferentially expressed antigen of melanoma (PRAME)-reactive tumor-specific T cells and healthy-donor natural killer (NK) cells to determine the in vitro effect on T cell and NK cell cytotoxicity. Additional immunomodulatory effects of histone deacetylase inhibitors (HDACi) were identified by transcriptome and translatome analysis of treated organoids. RESULTS Drug library screening revealed MHC-I upregulation by inhibitor of apoptosis inhibitor (IAPi)- and HDACi drug classes. The effect of IAPi was limited due to repression of nuclear factor kappa B (NFκB) pathway activity in NBL, while the MHC-I-modulating effect of HDACi was widely translatable to a panel of NBL cell lines and patient-derived organoids. Pretreatment of NBL cells with the HDACi entinostat enhanced the cytotoxic capacity of tumor-specific T cells against NBL in vitro, which coincided with increased expression of additional players regulating T cell cytotoxicity (eg, TAP1/2 and immunoproteasome subunits). Moreover, MICA and MICB, important in NK cell cytotoxicity, were also increased by entinostat exposure. Intriguingly, this increase in immunogenicity was accompanied by a shift toward a more mesenchymal NBL cell lineage. CONCLUSIONS This study indicates the potential of combining (immuno)therapy with HDACi to enhance both T cell-driven and NKcell-driven immune responses in patients with HR-NBL.
Collapse
Affiliation(s)
- Annelisa M Cornel
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands,Center for Translational Immunology, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Ester Dunnebach
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands,Center for Translational Immunology, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Damon A Hofman
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | - Sanjukta Das
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA,School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Satyaki Sengupta
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Femke van den Ham
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | - Judith Wienke
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | | | - Denise A M H van den Beemt
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands,Center for Translational Immunology, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Anke H W Essing
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | - Bianca Koopmans
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | - Sem A G Engels
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | - Vania Lo Presti
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands,Center for Translational Immunology, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Celina S Szanto
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | - Rani E George
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jan J Molenaar
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | | | | | - S Nierkens
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands,Center for Translational Immunology, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| |
Collapse
|
16
|
Hauguel C, Ducellier S, Provot O, Ibrahim N, Lamaa D, Balcerowiak C, Letribot B, Nascimento M, Blanchard V, Askenatzis L, Levaique H, Bignon J, Baschieri F, Bauvais C, Bollot G, Renko D, Deroussent A, Prost B, Laisne MC, Michallet S, Lafanechère L, Papot S, Montagnac G, Tran C, Alami M, Apcher S, Hamze A. Design, synthesis and biological evaluation of quinoline-2-carbonitrile-based hydroxamic acids as dual tubulin polymerization and histone deacetylases inhibitors. Eur J Med Chem 2022; 240:114573. [DOI: 10.1016/j.ejmech.2022.114573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/04/2022]
|
17
|
Bartolucci D, Montemurro L, Raieli S, Lampis S, Pession A, Hrelia P, Tonelli R. MYCN Impact on High-Risk Neuroblastoma: From Diagnosis and Prognosis to Targeted Treatment. Cancers (Basel) 2022; 14:4421. [PMID: 36139583 PMCID: PMC9496712 DOI: 10.3390/cancers14184421] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Among childhood cancers, neuroblastoma is the most diffuse solid tumor and the deadliest in children. While to date, the pathology has become progressively manageable with a significant increase in 5-year survival for its less aggressive form, high-risk neuroblastoma (HR-NB) remains a major issue with poor outcome and little survivability of patients. The staging system has also been improved to better fit patient needs and to administer therapies in a more focused manner in consideration of pathology features. New and improved therapies have been developed; nevertheless, low efficacy and high toxicity remain a staple feature of current high-risk neuroblastoma treatment. For this reason, more specific procedures are required, and new therapeutic targets are also needed for a precise medicine approach. In this scenario, MYCN is certainly one of the most interesting targets. Indeed, MYCN is one of the most relevant hallmarks of HR-NB, and many studies has been carried out in recent years to discover potent and specific inhibitors to block its activities and any related oncogenic function. N-Myc protein has been considered an undruggable target for a long time. Thus, many new indirect and direct approaches have been discovered and preclinically evaluated for the interaction with MYCN and its pathways; a few of the most promising approaches are nearing clinical application for the investigation in HR-NB.
Collapse
Affiliation(s)
| | - Luca Montemurro
- Pediatric Oncology and Hematology Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | | | | | - Andrea Pession
- Pediatric Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Roberto Tonelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
18
|
Dev A, Sardoiwala MN, Sharma A, MohanBhai SJ, Karmakar S, Choudhury SR. Nanoacetylated N-(4-Hydroxyphenyl) Retinamide Modulates Histone Acetylation–Methylation Epigenetic Disparity to Restrict Epithelial–Mesenchymal Transition in Neuroblastoma. ACS Med Chem Lett 2022; 13:1109-1117. [DOI: 10.1021/acsmedchemlett.2c00135] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Atul Dev
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Mohammed Nadim Sardoiwala
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Angela Sharma
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Soni Jignesh MohanBhai
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Surajit Karmakar
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Subhasree Roy Choudhury
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| |
Collapse
|
19
|
Sullivan J, Feng Z, Fahey P, Agho K, Hurley S, Lim D. Histone deacetylase inhibitor use as a radiosensitizer in solid organ malignancies: a systematic review protocol. JBI Evid Synth 2022; 20:2378-2386. [DOI: 10.11124/jbies-21-00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
20
|
Upregulation of p75NTR by Histone Deacetylase Inhibitors Sensitizes Human Neuroblastoma Cells to Targeted Immunotoxin-Induced Apoptosis. Int J Mol Sci 2022; 23:ijms23073849. [PMID: 35409209 PMCID: PMC8998832 DOI: 10.3390/ijms23073849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 12/22/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors are novel chemotherapy agents with potential utility in the treatment of neuroblastoma, the most frequent solid tumor of childhood. Previous studies have shown that the exposure of human neuroblastoma cells to some HDAC inhibitors enhanced the expression of the common neurotrophin receptor p75NTR. In the present study we investigated whether the upregulation of p75NTR could be exploited to render neuroblastoma cells susceptible to the cytotoxic action of an anti-p75NTR antibody conjugated to the toxin saporin-S6 (p75IgG-Sap). We found that two well-characterized HDAC inhibitors, valproic acid (VPA) and entinostat, were able to induce a strong expression of p75NTR in different human neuroblastoma cell lines but not in other cells, with entinostat, displaying a greater efficacy than VPA. Cell pretreatment with entinostat enhanced p75NTR internalization and intracellular saporin-S6 delivery following p75IgG-Sap exposure. The addition of p75IgG-Sap had no effect on vehicle-pretreated cells but potentiated the apoptotic cell death that was induced by entinostat. In three-dimensional neuroblastoma cell cultures, the subsequent treatment with p75IgG-Sap enhanced the inhibition of spheroid growth and the impairment of cell viability that was produced by entinostat. In athymic mice bearing neuroblastoma xenografts, chronic treatment with entinostat increased the expression of p75NTR in tumors but not in liver, kidney, heart, and cerebellum. The administration of p75IgG-Sap induced apoptosis only in tumors of mice that were pretreated with entinostat. These findings define a novel experimental strategy to selectively eliminate neuroblastoma cells based on the sequential treatment with entinostat and a toxin-conjugated anti-p75NTR antibody.
Collapse
|
21
|
Chilamakuri R, Agarwal S. Dual Targeting of PI3K and HDAC by CUDC-907 Inhibits Pediatric Neuroblastoma Growth. Cancers (Basel) 2022; 14:cancers14041067. [PMID: 35205815 PMCID: PMC8870466 DOI: 10.3390/cancers14041067] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary High-risk neuroblastoma (NB) is an aggressive cancer of very young children and accounts for almost 15% of all pediatric cancer deaths. Current therapies include high-dose chemotherapy and radiation, which have long-term toxic side effects. Despite these intensive therapies, the overall 5-year survival rate of NB is less than 50%. Therefore, developing novel therapeutic approaches targeting the molecular mechanisms that drive NB progression is very important. In the present study, we repurpose CUDC-907, a dual inhibitor of PI3K and histone deacetylases. These regulators are known to regulate MYCN expression, a key prognostic marker of NB. CUDC-907 potently inhibits NB growth and 3D spheroid tumor growth by inhibiting PI3K, HDAC, and MYCN. Overall, our pre-clinical data demonstrate that repurposing CUDC-907 as a single drug is a novel and effective therapeutic approach for NB. Abstract The dysregulation of PI3K, HDACs, and MYCN are well known for promoting multiple cancer types, including neuroblastoma (NB). Targeting the upstream regulators of MYCN, including HDACs and PI3K, was shown to suppress cancer growth. In the present study, we analyze different NB patient datasets to reveal that high PI3K and HDAC expression is correlated with overall poor NB patient survival. High PI3K level is also found to be associated with high MYCN level and NB stage progression. We repurpose a dual inhibitor CUDC-907 as a single agent to directly target both PI3K and HDAC in NB. We use in vitro methodologies to determine the efficacy and selectivity of CUDC-907 using six NB and three control fibroblast cell lines. Our results show that CUDC-907 significantly inhibits NB proliferation and colony growth, induces apoptosis, blocks cell cycle progression, inhibits MYCN, and enhances H3K9Ac levels by inhibiting the PI3K/AKT signaling pathway and HDAC function. Furthermore, CUDC-907 significantly inhibits NB tumor growth in a 3D spheroid tumor model that recapitulates the in vivo tumor growth. Overall, our findings highlight that the dual inhibition of PI3K and HDAC by CUDC-907 is an effective therapeutic strategy for NB and other MYC-dependent cancers.
Collapse
|
22
|
Xiong Y, Donovan KA, Eleuteri NA, Kirmani N, Yue H, Razov A, Krupnick NM, Nowak RP, Fischer ES. Chemo-proteomics exploration of HDAC degradability by small molecule degraders. Cell Chem Biol 2021; 28:1514-1527.e4. [PMID: 34314730 PMCID: PMC9339248 DOI: 10.1016/j.chembiol.2021.07.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/01/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022]
Abstract
Targeted protein degradation refers to the use of small molecules that recruit a ubiquitin ligase to a target protein for ubiquitination and subsequent proteasome-dependent degradation. While degraders have been developed for many targets, key questions regarding degrader development and the consequences of acute pharmacological degradation remain, specifically for targets that exist in obligate multi-protein complexes. Here, we synthesize a pan-histone deacetylase (HDAC) degrader library for the chemo-proteomic exploration of acute degradation of a key class of chromatin-modifying enzymes. Using chemo-proteomics, we not only map the degradability of the zinc-dependent HDAC family identifying leads for targeting HDACs 1-8 and 10 but also explore important aspects of degrading epigenetic enzymes. We discover cell line-driven target specificity and that HDAC degradation often results in collateral loss of HDAC-containing repressive complexes. These findings potentially offer a new mechanism toward controlling chromatin structure, and our resource will facilitate accelerated degrader design and development for HDACs.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas A Eleuteri
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nadia Kirmani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Hong Yue
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Anthony Razov
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Noah M Krupnick
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Radosław P Nowak
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Shim J, Goldsmith KC. A New Player in Neuroblastoma: YAP and Its Role in the Neuroblastoma Microenvironment. Cancers (Basel) 2021; 13:cancers13184650. [PMID: 34572875 PMCID: PMC8472533 DOI: 10.3390/cancers13184650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroblastoma is the most common extra-cranial pediatric solid tumor that accounts for more than 15% of childhood cancer-related deaths. High risk neuroblastomas that recur during or after intense multimodal therapy have a <5% chance at a second sustained remission or cure. The solid tumor microenvironment (TME) has been increasingly recognized to play a critical role in cancer progression and resistance to therapy, including in neuroblastoma. The Yes-Associated Protein (YAP) in the Hippo pathway can regulate cancer proliferation, tumor initiation, and therapy response in many cancer types and as such, its role in the TME has gained interest. In this review, we focus on YAP and its role in neuroblastoma and further describe its demonstrated and potential effects on the neuroblastoma TME. We also discuss the therapeutic strategies for inhibiting YAP in neuroblastoma.
Collapse
Affiliation(s)
- Jenny Shim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Kelly C. Goldsmith
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Correspondence: ; Tel.: +1-404-727-2655
| |
Collapse
|
24
|
Pezeshki PS, Moeinafshar A, Ghaemdoust F, Razi S, Keshavarz-Fathi M, Rezaei N. Advances in pharmacotherapy for neuroblastoma. Expert Opin Pharmacother 2021; 22:2383-2404. [PMID: 34254549 DOI: 10.1080/14656566.2021.1953470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Neuroblastoma is the most prevalent cancer type diagnosed within the first year after birth and accounts for 15% of deaths from pediatric cancer. Despite the improvements in survival rates of patients with neuroblastoma, the incidence of the disease has increased over the last decade. Neuroblastoma tumor cells harbor a vast range of variable and heterogeneous histochemical and genetic alterations which calls for the need to administer individualized and targeted therapies to induce tumor regression in each patient. AREAS COVERED This paper provides reviews the recent clinical trials which used chemotherapeutic and/or targeted agents as either monotherapies or in combination to improve the response rate in patients with neuroblastoma, and especially high-risk neuroblastoma. It also reviews some of the prominent preclinical studies which can provide the rationale for future clinical trials. EXPERT OPINION Although some distinguished advances in pharmacotherapy have been made to improve the survival rate and reduce adverse events in patients with neuroblastoma, a more comprehensive understanding of the mechanisms of tumorigenesis, resistance to therapies or relapse, identifying biomarkers of response to each specific drug, and developing predictive preclinical models of the tumor can lead to further breakthroughs in the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Parmida Sadat Pezeshki
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aysan Moeinafshar
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Ghaemdoust
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| |
Collapse
|
25
|
Dedoni S, Marras L, Olianas MC, Ingianni A, Onali P. The Neurotrophin Receptor TrkC as a Novel Molecular Target of the Antineuroblastoma Action of Valproic Acid. Int J Mol Sci 2021; 22:ijms22157790. [PMID: 34360553 PMCID: PMC8346142 DOI: 10.3390/ijms22157790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
Neurotrophins and their receptors are relevant factors in controlling neuroblastoma growth and progression. The histone deacetylase (HDAC) inhibitor valproic acid (VPA) has been shown to downregulate TrkB and upregulate the p75NTR/sortilin receptor complex. In the present study, we investigated the VPA effect on the expression of the neurotrophin-3 (NT-3) receptor TrkC, a favorable prognostic marker of neuroblastoma. We found that VPA induced the expression of both full-length and truncated (TrkC-T1) isoforms of TrkC in human neuroblastoma cell lines without (SH-SY5Y) and with (Kelly, BE(2)-C and IMR 32) MYCN amplification. VPA enhanced cell surface expression of the receptor and increased Akt and ERK1/2 activation by NT-3. The HDAC inhibitors entinostat, romidepsin and vorinostat also increased TrkC in SH-SY5Y, Kelly and BE(2)-C but not IMR 32 cells. TrkC upregulation by VPA involved induction of RUNX3, stimulation of ERK1/2 and JNK, and ERK1/2-mediated Egr1 expression. In SH-SY5Y cell monolayers and spheroids the exposure to NT-3 enhanced the apoptotic cascade triggered by VPA. Gene silencing of both TrkC-T1 and p75NTR prevented the NT-3 proapoptotic effect. Moreover, NT-3 enhanced p75NTR/TrkC-T1 co-immunoprecipitation. The results indicate that VPA upregulates TrkC by activating epigenetic mechanisms and signaling pathways, and sensitizes neuroblastoma cells to NT-3-induced apoptosis.
Collapse
Affiliation(s)
- Simona Dedoni
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, University of Cagliari, 09042 Monserrato, Italy; (S.D.); (M.C.O.)
| | - Luisa Marras
- Section of Microbiology, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (L.M.); (A.I.)
| | - Maria C. Olianas
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, University of Cagliari, 09042 Monserrato, Italy; (S.D.); (M.C.O.)
| | - Angela Ingianni
- Section of Microbiology, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (L.M.); (A.I.)
| | - Pierluigi Onali
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, University of Cagliari, 09042 Monserrato, Italy; (S.D.); (M.C.O.)
- Correspondence:
| |
Collapse
|
26
|
Stevenson AW, Deng Z, Allahham A, Prêle CM, Wood FM, Fear MW. The epigenetics of keloids. Exp Dermatol 2021; 30:1099-1114. [PMID: 34152651 DOI: 10.1111/exd.14414] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022]
Abstract
Keloid scarring is a fibroproliferative disorder of the skin with unknown pathophysiology, characterised by fibrotic tissue that extends beyond the boundaries of the original wound. Therapeutic options are few and commonly ineffective, with keloids very commonly recurring even after surgery and adjunct treatments. Epigenetics, defined as alterations to the DNA not involving the base-pair sequence, is a key regulator of cell functions, and aberrant epigenetic modifications have been found to contribute to many pathologies. Multiple studies have examined many different epigenetic modifications in keloids, including DNA methylation, histone modification, microRNAs and long non-coding RNAs. These studies have established that epigenetic dysregulation exists in keloid scars, and successful future treatment of keloids may involve reverting these aberrant modifications back to those found in normal skin. Here we summarise the clinical and experimental studies available on the epigenetics of keloids, discuss the major open questions and future perspectives on the treatment of this disease.
Collapse
Affiliation(s)
- Andrew W Stevenson
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Zhenjun Deng
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Amira Allahham
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Cecilia M Prêle
- Ear Science Centre, Medical School, The University of Western Australia, Perth, WA, Australia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia.,Burns Service of Western Australia, Princess Margaret Hospital for Children and Fiona Stanley Hospital, Perth, WA, Australia
| | - Mark W Fear
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia.,Institute for Respiratory Health, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
27
|
Shuai W, Wang G, Zhang Y, Bu F, Zhang S, Miller DD, Li W, Ouyang L, Wang Y. Recent Progress on Tubulin Inhibitors with Dual Targeting Capabilities for Cancer Therapy. J Med Chem 2021; 64:7963-7990. [PMID: 34101463 DOI: 10.1021/acs.jmedchem.1c00100] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Microtubules play a crucial role in multiple cellular functions including mitosis, cell signaling, and organelle trafficking, which makes the microtubule an important target for cancer therapy. Despite the great successes of microtubule-targeting agents in the clinic, the development of drug resistance and dose-limiting toxicity restrict their clinical efficacy. In recent years, multitarget therapy has been considered an effective strategy to achieve higher therapeutic efficacy, in particular dual-target drugs. In terms of the synergetic effect of tubulin and other antitumor agents such as receptor tyrosine kinases inhibitors, histone deacetylases inhibitors, DNA-damaging agents, and topoisomerase inhibitors in combination therapy, designing dual-target tubulin inhibitors is regarded as a promising approach to overcome these limitations and improve therapeutic efficacy. In this Perspective, we discussed rational target combinations, design strategies, structure-activity relationships, and future directions of dual-target tubulin inhibitors.
Collapse
Affiliation(s)
- Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yiwen Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Faqian Bu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Sicheng Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuxi Wang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
28
|
Han JZR, Hastings JF, Phimmachanh M, Fey D, Kolch W, Croucher DR. Personalized Medicine for Neuroblastoma: Moving from Static Genotypes to Dynamic Simulations of Drug Response. J Pers Med 2021; 11:395. [PMID: 34064704 PMCID: PMC8151552 DOI: 10.3390/jpm11050395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/30/2021] [Indexed: 12/21/2022] Open
Abstract
High-risk neuroblastoma is an aggressive childhood cancer that is characterized by high rates of chemoresistance and frequent metastatic relapse. A number of studies have characterized the genetic and epigenetic landscape of neuroblastoma, but due to a generally low mutational burden and paucity of actionable mutations, there are few options for applying a comprehensive personalized medicine approach through the use of targeted therapies. Therefore, the use of multi-agent chemotherapy remains the current standard of care for neuroblastoma, which also conceptually limits the opportunities for developing an effective and widely applicable personalized medicine approach for this disease. However, in this review we outline potential approaches for tailoring the use of chemotherapy agents to the specific molecular characteristics of individual tumours by performing patient-specific simulations of drug-induced apoptotic signalling. By incorporating multiple layers of information about tumour-specific aberrations, including expression as well as mutation data, these models have the potential to rationalize the selection of chemotherapeutics contained within multi-agent treatment regimens and ensure the optimum response is achieved for each individual patient.
Collapse
Affiliation(s)
- Jeremy Z. R. Han
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (J.Z.R.H.); (J.F.H.); (M.P.)
| | - Jordan F. Hastings
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (J.Z.R.H.); (J.F.H.); (M.P.)
| | - Monica Phimmachanh
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (J.Z.R.H.); (J.F.H.); (M.P.)
| | - Dirk Fey
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; (D.F.); (W.K.)
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; (D.F.); (W.K.)
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - David R. Croucher
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (J.Z.R.H.); (J.F.H.); (M.P.)
- St Vincent’s Hospital Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
29
|
What Are the Potential Roles of Nuclear Perlecan and Other Heparan Sulphate Proteoglycans in the Normal and Malignant Phenotype. Int J Mol Sci 2021; 22:ijms22094415. [PMID: 33922532 PMCID: PMC8122901 DOI: 10.3390/ijms22094415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/27/2022] Open
Abstract
The recent discovery of nuclear and perinuclear perlecan in annulus fibrosus and nucleus pulposus cells and its known matrix stabilizing properties in tissues introduces the possibility that perlecan may also have intracellular stabilizing or regulatory roles through interactions with nuclear envelope or cytoskeletal proteins or roles in nucleosomal-chromatin organization that may regulate transcriptional factors and modulate gene expression. The nucleus is a mechano-sensor organelle, and sophisticated dynamic mechanoresponsive cytoskeletal and nuclear envelope components support and protect the nucleus, allowing it to perceive and respond to mechano-stimulation. This review speculates on the potential roles of perlecan in the nucleus based on what is already known about nuclear heparan sulphate proteoglycans. Perlecan is frequently found in the nuclei of tumour cells; however, its specific role in these diseased tissues is largely unknown. The aim of this review is to highlight probable roles for this intriguing interactive regulatory proteoglycan in the nucleus of normal and malignant cell types.
Collapse
|
30
|
Krstic A, Konietzny A, Halasz M, Cain P, Oppermann U, Kolch W, Duffy DJ. A Chemo-Genomic Approach Identifies Diverse Epigenetic Therapeutic Vulnerabilities in MYCN-Amplified Neuroblastoma. Front Cell Dev Biol 2021; 9:612518. [PMID: 33968920 PMCID: PMC8097097 DOI: 10.3389/fcell.2021.612518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
Although a rare disease, neuroblastoma accounts for the highest proportion of childhood cancer deaths. There is a lack of recurrent somatic mutations in neuroblastoma embryonal tumours, suggesting a possible role for epigenetic alterations in driving this cancer. While an increasing number of reports suggest an association of MYCN with epigenetic machinery, the mechanisms of these interactions are poorly understood in the neuroblastoma setting. Utilising chemo-genomic approaches we revealed global MYCN-epigenetic interactions and identified numerous epigenetic proteins as MYCN targets. The epigenetic regulators HDAC2, CBX8 and CBP (CREBBP) were all MYCN target genes and also putative MYCN interactors. MYCN-related epigenetic genes included SMARCs, HDACs, SMYDs, BRDs and CREBBP. Expression levels of the majority of MYCN-related epigenetic genes showed predictive ability for neuroblastoma patient outcome. Furthermore, a compound library screen targeting epigenetic proteins revealed broad susceptibility of neuroblastoma cells to all classes of epigenetic regulators, belonging to families of bromodomains, HDACs, HATs, histone methyltransferases, DNA methyltransferases and lysin demethylases. Ninety-six percent of the compounds reduced MYCN-amplified neuroblastoma cell viability. We show that the C646 (CBP-bromodomain targeting compound) exhibits switch-like temporal and dose response behaviour and is effective at reducing neuroblastoma viability. Responsiveness correlates with MYCN expression, with MYCN-amplified cells being more susceptible to C646 treatment. Thus, exploiting the broad vulnerability of neuroblastoma cells to epigenetic targeting compounds represents an exciting strategy in neuroblastoma treatment, particularly for high-risk MYCN-amplified tumours.
Collapse
Affiliation(s)
- Aleksandar Krstic
- Systems Biology Ireland and Precision Oncology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Anja Konietzny
- Systems Biology Ireland and Precision Oncology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,Centre for Molecular Neurobiology Hamburg (ZMNH), Emmy-Noether Group "Neuronal Protein Transport", University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Melinda Halasz
- Systems Biology Ireland and Precision Oncology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Peter Cain
- Botnar Research Centre, NIHR Oxford Biomedical Research Unit, Institute of Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.,Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Udo Oppermann
- Botnar Research Centre, NIHR Oxford Biomedical Research Unit, Institute of Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.,Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Walter Kolch
- Systems Biology Ireland and Precision Oncology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - David J Duffy
- Systems Biology Ireland and Precision Oncology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, United States.,Department of Biology, University of Florida, Gainesville, FL, United States
| |
Collapse
|