1
|
Singh R, Panganiban K, Au E, Ravikumar R, Pereira S, Prevot TD, Mueller DJ, Remington G, Agarwal SM, Verdu EF, Bercik P, De Palma G, Hahn MK. Human-fecal microbiota transplantation in relation to gut microbiome signatures in animal models for schizophrenia: A scoping review. Asian J Psychiatr 2024; 102:104285. [PMID: 39486191 DOI: 10.1016/j.ajp.2024.104285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
More recently, attention has turned to the putative role of gut microbiome (GMB) in pathogenesis, symptomatology, treatment response and/or resistance in schizophrenia (SCZ). It is foreseeable that fecal microbiota transplantation (FMT) from SCZ patients (SCZ-FMT) to germ-free mice could represent a suitable experimental framework for a better understanding of the relationship between GMB and SCZ. Thus, we set out to identify literature (i) characterizing the GMB in animal models of SCZ, and (ii) employing SCZ-FMT into rodents to model SCZ in relation to behavioral and molecular phenotypes. Five studies examining animal models of SCZ suggest distinct GMB composition compared to respective control groups, which was correlated with SCZ-like behavioral phenotypes. Four additional studies investigated SCZ-FMT into rodents in relation to behavioral phenotypes, including spontaneous hyperlocomotion, social deficits, exaggerated startle response, and cognitive impairments, resembling those observed in SCZ patients. Mice receiving SCZ-FMT showed altered neurochemical and metabolic pathways in the brain. Animal models of SCZ have shown altered GMB composition, whereas reported behavioral and neurochemical alterations following FMT from patients into rodents suggest early face and construct validity for SCZ-FMT animal models. However, the predictive validity of these models remains to be validated.
Collapse
Affiliation(s)
- Raghunath Singh
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Kristoffer Panganiban
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Emily Au
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Rekha Ravikumar
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sandra Pereira
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Thomas D Prevot
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada
| | - Daniel J Mueller
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada
| | - Gary Remington
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Sri Mahavir Agarwal
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting and Best Diabetes Centre (BBDC), Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Premysl Bercik
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Giada De Palma
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Margaret K Hahn
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting and Best Diabetes Centre (BBDC), Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Qu S, Yu Z, Zhou Y, Wang S, Jia M, Chen T, Zhang X. Gut microbiota modulates neurotransmitter and gut-brain signaling. Microbiol Res 2024; 287:127858. [PMID: 39106786 DOI: 10.1016/j.micres.2024.127858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/16/2024] [Accepted: 07/22/2024] [Indexed: 08/09/2024]
Abstract
Neurotransmitters, including 5-hydroxytryptamine (5-HT), dopamine (DA), gamma-aminobutyric acid (GABA), and glutamate, are essential transductors in the Gut-Brain Axis (GBA), playing critical roles both peripherally and centrally. Accumulating evidence suggests that the gut microbiota modulates intestinal neurotransmitter metabolism and gut-to-brain signaling, shedding light on the crucial role of the gut microbiota in brain function and the pathogenesis of various neuropsychiatric diseases, such as major depression disorder (MDD), anxiety, addiction and Parkinson's disease (PD). Despite the exciting findings, the mechanisms underlying the modulation of neurotransmitter metabolism and function by the gut microbiota are still being elucidated. In this review, we aim to provide a comprehensive overview of the existing knowledge about the role of the gut microbiota in neurotransmitter metabolism and function in animal and clinical experiments. Moreover, we will discuss the potential mechanisms through which gut microbiota-derived neurotransmitters contribute to the pathogenesis of neuropsychiatric diseases, thus highlighting a novel therapeutic target for these conditions.
Collapse
Affiliation(s)
- Shiyan Qu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Zijin Yu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Yaxuan Zhou
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Shiyi Wang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Minqi Jia
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Ti Chen
- Clinical Laboratory, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Xiaojie Zhang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China.
| |
Collapse
|
3
|
Zhou K, Baranova A, Cao H, Sun J, Zhang F. Gut microbiome and schizophrenia: insights from two-sample Mendelian randomization. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:75. [PMID: 39223235 PMCID: PMC11369294 DOI: 10.1038/s41537-024-00497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Growing evidence suggests a potential link between the gut microbiome and schizophrenia. However, it is unclear whether the gut microbiome is causally associated with schizophrenia. We performed two-sample bidirectional Mendelian randomization to detect bidirectional causal relationships between gut microbiome and schizophrenia. Summary genome-wide association study (GWAS) datasets of the gut microbiome from the MiBioGen consortium (n = 18,340) and schizophrenia (n = 130,644) were utilized in our study. Then a cohort of sensitive analyses was followed to validate the robustness of MR results. We identified nine taxa that exerted positive causal effects on schizophrenia (OR: 1.08-1.16) and six taxa that conferred negative causal effects on schizophrenia (OR: 0.88-0.94). On the other hand, the reverse MR analysis showed that schizophrenia may increase the abundance of nine taxa (OR: 1.03-1.08) and reduce the abundance of two taxa (OR: 0.94). Our study unveiled mutual causal relationships between gut microbiome and schizophrenia. The findings may provide evidence for the treatment potential of gut microbiomes in schizophrenia.
Collapse
Affiliation(s)
- Keer Zhou
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Manassas, VA, USA
- Research Centre for Medical Genetics, Moscow, Russia
| | - Hongbao Cao
- School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Jing Sun
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Lin D, Fu Z, Liu J, Perrone-Bizzozero N, Hutchison KE, Bustillo J, Du Y, Pearlson G, Calhoun VD. Association between the oral microbiome and brain resting state connectivity in schizophrenia. Schizophr Res 2024; 270:392-402. [PMID: 38986386 DOI: 10.1016/j.schres.2024.06.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/03/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
Recent microbiome-brain axis findings have shown evidence of the modulation of microbiome community as an environmental mediator in brain function and psychiatric illness. This work is focused on the role of the microbiome in understanding a rarely investigated environmental involvement in schizophrenia (SZ), especially in relation to brain circuit dysfunction. We leveraged high throughput microbial 16s rRNA sequencing and functional neuroimaging techniques to enable the delineation of microbiome-brain network links in SZ. N = 213 SZ and healthy control subjects were assessed for the oral microbiome. Among them, 139 subjects were scanned by resting-state functional magnetic resonance imaging (rsfMRI) to derive brain functional connectivity. We found a significant microbiome compositional shift in SZ beta diversity (weighted UniFrac distance, p = 6 × 10-3; Bray-Curtis distance p = 0.021). Fourteen microbial species involving pro-inflammatory and neurotransmitter signaling and H2S production, showed significant abundance alterations in SZ. Multivariate analysis revealed one pair of microbial and functional connectivity components showing a significant correlation of 0.46. Thirty five percent of microbial species and 87.8 % of brain functional network connectivity from each component also showed significant differences between SZ and healthy controls with strong performance in classifying SZ from healthy controls, with an area under curve (AUC) = 0.84 and 0.87, respectively. The results suggest a potential link between oral microbiome dysbiosis and brain functional connectivity alteration in relation to SZ, possibly through immunological and neurotransmitter signaling pathways and the hypothalamic-pituitary-adrenal axis, supporting for future work in characterizing the role of oral microbiome in mediating effects on SZ brain functional activity.
Collapse
Affiliation(s)
- Dongdong Lin
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia, Tech, Emory, Atlanta, GA 30303, United States of America.
| | - Zening Fu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia, Tech, Emory, Atlanta, GA 30303, United States of America
| | - Jingyu Liu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia, Tech, Emory, Atlanta, GA 30303, United States of America
| | - Nora Perrone-Bizzozero
- Department of neuroscience, University of New Mexico, Albuquerque, NM, 87109, United States of America
| | - Kent E Hutchison
- Department of psychology and neuroscience, University of Colorado Boulder, Boulder, CO 80309, United States of America
| | - Juan Bustillo
- Department of psychiatry, University of New Mexico, Albuquerque, NM 87109, United States of America
| | - Yuhui Du
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia, Tech, Emory, Atlanta, GA 30303, United States of America
| | - Godfrey Pearlson
- Olin Research Center, Institute of Living Hartford, CT 06102, United States of America; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, United States of America; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06511, United States of America
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia, Tech, Emory, Atlanta, GA 30303, United States of America
| |
Collapse
|
5
|
Arraes GC, Barreto FS, Vasconcelos GS, Lima CNDC, da Silva FER, Ribeiro WLC, de Sousa FCF, Furtado CLM, Macêdo DS. Long-term Environmental Enrichment Normalizes Schizophrenia-like Abnormalities and Promotes Hippocampal Slc6a4 Promoter Demethylation in Mice Submitted to a Two-hit Model. Neuroscience 2024; 551:205-216. [PMID: 38843988 DOI: 10.1016/j.neuroscience.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024]
Abstract
Here, we explored the impact of prolonged environmental enrichment (EE) on behavioral, neurochemical, and epigenetic changes in the serotonin transporter gene in mice subjected to a two-hit schizophrenia model. The methodology involved administering the viral mimetic PolyI:C to neonatal Swiss mice as a first hit during postnatal days (PND) 5-7, or a sterile saline solution as a control. At PND21, mice were randomly assigned either to standard environment (SE) or EE housing conditions. Between PND35-44, the PolyI:C-treated group was submitted to various unpredictable stressors, constituting the second hit. Behavioral assessments were conducted on PND70, immediately after the final EE exposure. Following the completion of behavioral assessments, we evaluated the expression of proteins in the hippocampus that are indicative of microglial activation, such as Iba-1, as well as related to neurogenesis, including doublecortin (Dcx). We also performed methylation analysis on the serotonin transporter gene (Slc6a4) to investigate alterations in serotonin signaling. The findings revealed that EE for 50 days mitigated sensorimotor gating deficits and working memory impairments in two-hit mice and enhanced their locomotor and exploratory behaviors. EE also normalized the overexpression of hippocampal Iba-1 and increased the expression of hippocampal Dcx. Additionally, we observed hippocampal demethylation of the Slc6a4 gene in the EE-exposed two-hit group, indicating epigenetic reprogramming. These results contribute to the growing body of evidence supporting the protective effects of long-term EE in counteracting behavioral disruptions caused by the two-hit schizophrenia model, pointing to enhanced neurogenesis, diminished microglial activation, and epigenetic modifications of serotonergic pathways as underlying mechanisms.
Collapse
Affiliation(s)
- Greicy Coelho Arraes
- Neuropsychopharmacology and Translational Psychiatry Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Christus University Center (Unichristus-CE), Fortaleza, CE, Brazil
| | - Francisco Stefânio Barreto
- Neuropsychopharmacology and Translational Psychiatry Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Laboratory of Experimental Oncology, Postgraduate Program in Translational Medicine, Drug Research and Development Center, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | - Germana Silva Vasconcelos
- Neuropsychopharmacology and Translational Psychiatry Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Camila Nayane de Carvalho Lima
- Neuropsychopharmacology and Translational Psychiatry Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA.
| | - Francisco Eliclécio Rodrigues da Silva
- Neuropsychopharmacology and Translational Psychiatry Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Francisca Cléa Florenço de Sousa
- Neuropsychopharmacology and Translational Psychiatry Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| | - Cristiana Libardi Miranda Furtado
- Laboratory of Experimental Oncology, Postgraduate Program in Translational Medicine, Drug Research and Development Center, Federal University of Ceara, Fortaleza, Ceará, Brazil; Graduate Program in Medical Sciences, Experimental Biology Center - NUBEX, University of Fortaleza, UNIFOR, Fortaleza, Ceará, Brazil
| | - Danielle S Macêdo
- Neuropsychopharmacology and Translational Psychiatry Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; National Institute for Translational Medicine (INCT-TM. CNPq), Brazil.
| |
Collapse
|
6
|
Guo C, Bai Y, Li P, He K. The emerging roles of microbiota-derived extracellular vesicles in psychiatric disorders. Front Microbiol 2024; 15:1383199. [PMID: 38650872 PMCID: PMC11033316 DOI: 10.3389/fmicb.2024.1383199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
Major depressive disorder, schizophrenia, and bipolar disorder are three major psychiatric disorders that significantly impact the well-being and overall health of patients. Some researches indicate that abnormalities in the gut microbiota can trigger certain psychiatric diseases. Microbiota-derived extracellular vesicles have the ability to transfer bioactive compounds into host cells, altering signaling and biological processes, ultimately influencing the mental health and illness of the host. This review aims to investigate the emerging roles of microbiota-derived extracellular vesicles in these three major psychiatric disorders and discusses their roles as diagnostic biomarkers and therapies for these psychiatric disorders.
Collapse
Affiliation(s)
- Chuang Guo
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
| | - Yulong Bai
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
| | - Pengfei Li
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Kuanjun He
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
| |
Collapse
|
7
|
Chen Y, Li Y, Fan Y, Chen S, Chen L, Chen Y, Chen Y. Gut microbiota-driven metabolic alterations reveal gut-brain communication in Alzheimer's disease model mice. Gut Microbes 2024; 16:2302310. [PMID: 38261437 PMCID: PMC10807476 DOI: 10.1080/19490976.2024.2302310] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024] Open
Abstract
The gut microbiota (GM) and its metabolites affect the host nervous system and are involved in the pathogeneses of various neurological diseases. However, the specific GM alterations under pathogenetic pressure and their contributions to the "microbiota - metabolite - brain axis" in Alzheimer's disease (AD) remain unclear. Here, we investigated the GM and the fecal, serum, cortical metabolomes in APP/PS1 and wild-type (WT) mice, revealing distinct hub bacteria in AD mice within scale-free GM networks shared by both groups. Moreover, we identified diverse peripheral - central metabolic landscapes between AD and WT mice that featured bile acids (e.g. deoxycholic and isodeoxycholic acid) and unsaturated fatty acids (e.g. 11Z-eicosenoic and palmitoleic acid). Machine-learning models revealed the relationships between the differential/hub bacteria and these metabolic signatures from the periphery to the brain. Notably, AD-enriched Dubosiella affected AD occurrence via cortical palmitoleic acid and vice versa. Considering the transgenic background of the AD mice, we propose that Dubosiella enrichment impedes AD progression via the synthesis of palmitoleic acid, which has protective properties against inflammation and metabolic disorders. We identified another association involving fecal deoxycholic acid-mediated interactions between the AD hub bacteria Erysipelatoclostridium and AD occurrence, which was corroborated by the correlation between deoxycholate levels and cognitive scores in humans. Overall, this study elucidated the GM network alterations, contributions of the GM to peripheral - central metabolic landscapes, and mediatory roles of metabolites between the GM and AD occurrence, thus revealing the critical roles of bacteria in AD pathogenesis and gut - brain communications under pathogenetic pressure.
Collapse
Affiliation(s)
- Yijing Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science–Shenzhen Fundamental Research Institutions, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Yinhu Li
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science–Shenzhen Fundamental Research Institutions, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Yingying Fan
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science–Shenzhen Fundamental Research Institutions, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Shuai Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science–Shenzhen Fundamental Research Institutions, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Li Chen
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Yuewen Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science–Shenzhen Fundamental Research Institutions, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Yu Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science–Shenzhen Fundamental Research Institutions, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
8
|
Yang JC, Troutman R, Buri H, Gutta A, Situ J, Aja E, Jacobs JP. Ileal Dysbiosis Is Associated with Increased Acoustic Startle in the 22q11.2 Microdeletion Mouse Model of Schizophrenia. Nutrients 2023; 15:3631. [PMID: 37630824 PMCID: PMC10458577 DOI: 10.3390/nu15163631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Recent studies involving transplantation of feces from schizophrenia (SCZ) patients and their healthy controls into germ-free mice have demonstrated that the gut microbiome plays a critical role in mediating SCZ-linked physiology and behavior. To date, only one animal model (a metabotropic glutamate receptor 5 knockout) of SCZ has been reported to recapitulate SCZ-linked gut dysbiosis. Since human 22q11.2 microdeletion syndrome is associated with increased risk of SCZ, we investigated whether the 22q11.2 microdeletion ("Q22") mouse model of SCZ exhibits both SCZ-linked behaviors and intestinal dysbiosis. We demonstrated that Q22 mice display increased acoustic startle response and ileal (but not colonic) dysbiosis, which may be due to the role of the ileum as an intestinal region with high immune and neuroimmune activity. We additionally identified a negative correlation between the abundance of a Streptococcus species in the ilea of Q22 mice and their acoustic startle response, providing early evidence of a gut-brain relationship in these mice. Given the translational relevance of this mouse model, our work suggests that Q22 mice could have considerable utility in preclinical research probing the relationship between gut dysbiosis and the gut-brain axis in the pathogenesis of SCZ.
Collapse
Affiliation(s)
- Julianne Ching Yang
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.C.Y.); (R.T.); (H.B.); (A.G.); (J.S.); (E.A.)
| | - Ryan Troutman
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.C.Y.); (R.T.); (H.B.); (A.G.); (J.S.); (E.A.)
| | - Heidi Buri
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.C.Y.); (R.T.); (H.B.); (A.G.); (J.S.); (E.A.)
| | - Arjun Gutta
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.C.Y.); (R.T.); (H.B.); (A.G.); (J.S.); (E.A.)
| | - Jamilla Situ
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.C.Y.); (R.T.); (H.B.); (A.G.); (J.S.); (E.A.)
| | - Ezinne Aja
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.C.Y.); (R.T.); (H.B.); (A.G.); (J.S.); (E.A.)
- Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jonathan Patrick Jacobs
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.C.Y.); (R.T.); (H.B.); (A.G.); (J.S.); (E.A.)
- Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| |
Collapse
|
9
|
Liu J, Liu C, Gao Z, Zhou L, Gao J, Luo Y, Liu T, Fan X. GW4064 Alters Gut Microbiota Composition and Counteracts Autism-Associated Behaviors in BTBR T+tf/J Mice. Front Cell Infect Microbiol 2022; 12:911259. [PMID: 35811667 PMCID: PMC9257030 DOI: 10.3389/fcimb.2022.911259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is considered a heterogeneous neurodevelopmental disorder characterized by significant social, communication, and behavioral impairments. The gut microbiota is increasingly considered a promising therapeutic target in ASD. Farnesoid X receptor (FXR) has recently been shown to modulate the gut microbiota. We hypothesized that FXR agonist GW4064 could ameliorate behavioral deficits in an animal model for autism: BTBR T+Itpr3tf/J (BTBR) mouse. As expected, administration of GW4064 rescued the sociability of BTBR mice in the three-chamber sociability test and male-female social reciprocal interaction test, while no effects were observed in C57BL/6J mice. We also found that GW4064 administration increased fecal microbial abundance and counteracted the common ASD phenotype of a high Firmicutes to Bacteroidetes ratio in BTBR mice. In addition, GW4064 administration reversed elevated Lactobacillus and decreased Allobaculum content in the fecal matter of BTBR animals. Our findings show that GW4064 administration alleviates social deficits in BTBR mice and modulates selective aspects of the composition of the gut microbiota, suggesting that GW4064 supplementation might prove a potential strategy for improving ASD symptoms.
Collapse
Affiliation(s)
- Jiayin Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chuanqi Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhanyuan Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lianyu Zhou
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yi Luo
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tianyao Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Tianyao Liu, ; Xiaotang Fan,
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Tianyao Liu, ; Xiaotang Fan,
| |
Collapse
|
10
|
Xiang M, Zheng L, Pu D, Lin F, Ma X, Ye H, Pu D, Zhang Y, Wang D, Wang X, Zou K, Chen L, Zhang Y, Sun Z, Zhang T, Wu G. Intestinal Microbes in Patients With Schizophrenia Undergoing Short-Term Treatment: Core Species Identification Based on Co-Occurrence Networks and Regression Analysis. Front Microbiol 2022; 13:909729. [PMID: 35783418 PMCID: PMC9247572 DOI: 10.3389/fmicb.2022.909729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/12/2022] [Indexed: 01/12/2023] Open
Abstract
Schizophrenia, a common mental disorder, has a tremendous impact on the health and economy of people worldwide. Evidence suggests that the microbial-gut-brain axis is an important pathway for the interaction between the gut microbiome and the development of schizophrenia. What is not clear is how changes in the gut microbiota composition and structure during antipsychotic treatment improve the symptoms of schizophrenia. In this study, 25 patients with schizophrenia were recruited. Their fecal samples were collected before and after hospital treatment for 14–19 days. The composition and structure of the intestinal microbiota were evaluated by 16S rRNA sequencing analysis, and the results showed significant differences in fecal microbiota before and after treatment. Firmicutes (relative abundances of 82.60 and 86.64%) and Gemminger (relative abundances of 14.17 and 13.57%) were the first dominant species at the phylum and genus levels, respectively. The random forest algorithm and co-occurrence network analysis demonstrated that intestinal flora (especially the core species ASV57) could be used as biomarkers to distinguish different clinical states and match treatment regimens accordingly. In addition, after fecal microbiota transplantation, antibiotic-treated recipient mice showed multiple behavioral improvements. These included decreased psychomotor hyperactivity, increased social interaction, and memory. In conclusion, this study suggests that differences in the composition and structure of gut microbiota after treatment are associated with the development and severity of schizophrenia. Results may provide a potential target for the treatment of this disorder.
Collapse
Affiliation(s)
- Min Xiang
- Medical Laboratory, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Liqin Zheng
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Daoshen Pu
- The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Feng Lin
- Medical Laboratory, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Xiaodong Ma
- Medical Laboratory, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Huiqian Ye
- Medical Laboratory, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Daoqiong Pu
- Medical Laboratory, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Ying Zhang
- Medical Laboratory, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Dong Wang
- Psychiatry Department, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Xiaoli Wang
- Internal Medicine, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Kaiqing Zou
- The Outpatient Department, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Linqi Chen
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Yong Zhang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhanjiang Sun
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Zhang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
- Tao Zhang
| | - Guolin Wu
- Medical Laboratory, The Fourth People's Hospital of Ya'an, Ya'an, China
- *Correspondence: Guolin Wu
| |
Collapse
|
11
|
Ahn SY, Sung DK, Chang YS, Park WS. Intratracheal Transplantation of Mesenchymal Stem Cells Attenuates Hyperoxia-Induced Microbial Dysbiosis in the Lungs, Brain, and Gut in Newborn Rats. Int J Mol Sci 2022; 23:ijms23126601. [PMID: 35743045 PMCID: PMC9223745 DOI: 10.3390/ijms23126601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/02/2022] [Accepted: 06/11/2022] [Indexed: 01/25/2023] Open
Abstract
We attempted to determine whether intratracheal (IT) transplantation of mesenchymal stem cells (MSCs) could simultaneously attenuate hyperoxia-induced lung injuries and microbial dysbiosis of the lungs, brain, and gut in newborn rats. Newborn rats were exposed to hyperoxia (90% oxygen) for 14 days. Human umbilical cord blood-derived MSCs (5 × 105) were transplanted via the IT route on postnatal day (P) five. At P14, the lungs were harvested for histological, biochemical, and microbiome analyses. Bacterial 16S ribosomal RNA genes from the lungs, brain, and large intestine were amplified, pyrosequenced, and analyzed. IT transplantation of MSCs simultaneously attenuated hyperoxia-induced lung inflammation and the ensuing injuries, as well as the dysbiosis of the lungs, brain, and gut. In correlation analyses, lung interleukin-6 (IL-6) levels were significantly positively correlated with the abundance of Proteobacteria in the lungs, brain, and gut, and it was significantly inversely correlated with the abundance of Firmicutes in the gut and lungs and that of Bacteroidetes in the lungs. In conclusion, microbial dysbiosis in the lungs, brain, and gut does not cause but is caused by hyperoxic lung inflammation and ensuing injuries, and IT transplantation of MSCs attenuates dysbiosis in the lungs, brain, and gut, primarily by their anti-oxidative and anti-inflammatory effects.
Collapse
Affiliation(s)
- So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul 06351, Korea; (S.Y.A.); (Y.S.C.)
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Korea;
| | - Dong Kyung Sung
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Korea;
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul 06351, Korea; (S.Y.A.); (Y.S.C.)
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Korea;
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul 06351, Korea; (S.Y.A.); (Y.S.C.)
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Korea;
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology SAIHST, Sungkyunkwan University, Seoul 06351, Korea
- Correspondence: ; Tel.: +82-2-3410-3523; Fax: +82-2-3410-0049
| |
Collapse
|
12
|
Dash S, Syed YA, Khan MR. Understanding the Role of the Gut Microbiome in Brain Development and Its Association With Neurodevelopmental Psychiatric Disorders. Front Cell Dev Biol 2022; 10:880544. [PMID: 35493075 PMCID: PMC9048050 DOI: 10.3389/fcell.2022.880544] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome has a tremendous influence on human physiology, including the nervous system. During fetal development, the initial colonization of the microbiome coincides with the development of the nervous system in a timely, coordinated manner. Emerging studies suggest an active involvement of the microbiome and its metabolic by-products in regulating early brain development. However, any disruption during this early developmental process can negatively impact brain functionality, leading to a range of neurodevelopment and neuropsychiatric disorders (NPD). In this review, we summarize recent evidence as to how the gut microbiome can influence the process of early human brain development and its association with major neurodevelopmental psychiatric disorders such as autism spectrum disorders, attention-deficit hyperactivity disorder, and schizophrenia. Further, we discuss how gut microbiome alterations can also play a role in inducing drug resistance in the affected individuals. We propose a model that establishes a direct link of microbiome dysbiosis with the exacerbated inflammatory state, leading to functional brain deficits associated with NPD. Based on the existing research, we discuss a framework whereby early diet intervention can boost mental wellness in the affected subjects and call for further research for a better understanding of mechanisms that govern the gut-brain axis may lead to novel approaches to the study of the pathophysiology and treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Somarani Dash
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Yasir Ahmed Syed
- School of Biosciences and Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Cardiff, United Kingdom
| | - Mojibur R. Khan
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
- *Correspondence: Mojibur R. Khan,
| |
Collapse
|
13
|
Santos RPM, Ribeiro R, Ferreira-Vieira TH, Aires RD, de Souza JM, Oliveira BS, Lima ALD, de Oliveira ACP, Reis HJ, de Miranda AS, Vieira EML, Ribeiro FM, Vieira LB. Metabotropic glutamate receptor 5 knockout rescues obesity phenotype in a mouse model of Huntington's disease. Sci Rep 2022; 12:5621. [PMID: 35379852 PMCID: PMC8980063 DOI: 10.1038/s41598-022-08924-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity represents a global health problem and is characterized by metabolic dysfunctions and a low-grade chronic inflammatory state, which can increase the risk of comorbidities, such as atherosclerosis, diabetes and insulin resistance. Here we tested the hypothesis that the genetic deletion of metabotropic glutamate receptor 5 (mGluR5) may rescue metabolic and inflammatory features present in BACHD mice, a mouse model of Huntington's disease (HD) with an obese phenotype. For that, we crossed BACHD and mGluR5 knockout mice (mGluR5-/-) in order to obtain the following groups: Wild type (WT), mGluR5-/-, BACHD and BACHD/mGluR5-/- (double mutant mice). Our results showed that the double mutant mice present decreased body weight as compared to BACHD mice in all tested ages and reduced visceral adiposity as compared to BACHD at 6 months of age. Additionally, 12-month-old double mutant mice present increased adipose tissue levels of adiponectin, decreased leptin levels, and increased IL-10/TNF ratio as compared to BACHD mice. Taken together, our preliminary data propose that the absence of mGluR5 reduce weight gain and visceral adiposity in BACHD mice, along with a decrease in the inflammatory state in the visceral adipose tissue (VAT), which may indicate that mGluR5 may play a role in adiposity modulation.
Collapse
Affiliation(s)
- Rebeca P M Santos
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Roberta Ribeiro
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Talita H Ferreira-Vieira
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
- Faculdade Sete Lagoas, Sete Lagoas, Brazil
| | - Rosaria D Aires
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
- Faculdade Sete Lagoas, Sete Lagoas, Brazil
| | - Jessica M de Souza
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| | - Bruna S Oliveira
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anna Luiza D Lima
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Antônio Carlos P de Oliveira
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Helton J Reis
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Aline S de Miranda
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Erica M L Vieira
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Fabiola M Ribeiro
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil.
| | - Luciene B Vieira
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP 31270-901, Brazil.
| |
Collapse
|
14
|
Caffeine consumption and schizophrenia: A highlight on adenosine receptor-independent mechanisms. Curr Opin Pharmacol 2021; 61:106-113. [PMID: 34688994 DOI: 10.1016/j.coph.2021.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
Schizophrenia is a common psychiatric disorder which affects approximately 1% of the population worldwide. However, the complexity of etiology, treatment resistance and side effects induced by current antipsychotics, relapse prevention, and psychosocial rehabilitation are still to be uncovered. Caffeine, as the world's most widely consumed psychoactive drug, plays a crucial role in daily life. Plenty of preclinical and clinical evidence has illustrated that caffeine consumption could have a beneficial effect on schizophrenia. In this review, we firstly summarize the factors associated with the caffeine-induced beneficial effect. Then, a variety of mechanism of actions independent of adenosine receptor signaling will be discussed with an emphasis on the potential contribution of the microbiome-gut-brain axis to provide more possibilities for future therapeutic, prognosis, and social rehabilitation strategy.
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Accumulating evidence indicates that there are bidirectional interactions between the gut microbiota and functioning of the central nervous system. Consequently, it has been proposed that gut microbiota alterations might play an important role in the pathophysiology of schizophrenia. Therefore, in this article, we aimed to perform a narrative review of studies addressing gut microbiota alterations in patients with schizophrenia that were published in the years 2019-2020. RECENT FINDINGS Several studies have shown a number of gut microbiota alterations at various stages of schizophrenia. Some of them can be associated with neurostructural abnormalities, psychopathological symptoms, subclinical inflammation and cardiovascular risk. Experimental studies clearly show that transplantation of gut microbiota from unmedicated patients with schizophrenia to germ-free mice results in a number of behavioural impairments accompanied by altered neurotransmission. However, findings from clinical trials do not support the use of probiotics as add-on treatments in schizophrenia. SUMMARY Gut microbiota alterations are widely observed in patients with schizophrenia and might account for various biological alterations involved in the cause of psychosis. However, longitudinal studies are still needed to conclude regarding causal associations. Well designed clinical trials are needed to investigate safety and efficacy of probiotics and prebiotics in schizophrenia.
Collapse
Affiliation(s)
| | - Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
16
|
The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol Res 2021; 172:105840. [PMID: 34450312 DOI: 10.1016/j.phrs.2021.105840] [Citation(s) in RCA: 309] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
Emerging evidence indicates that the gut microbiota play a crucial role in the bidirectional communication between the gut and the brain suggesting that the gut microbes may shape neural development, modulate neurotransmission and affect behavior, and thereby contribute to the pathogenesis and/or progression of many neurodevelopmental, neuropsychiatric, and neurological conditions. This review summarizes recent data on the role of microbiota-gut-brain axis in the pathophysiology of neuropsychiatric and neurological disorders including depression, anxiety, schizophrenia, autism spectrum disorders, Parkinson's disease, migraine, and epilepsy. Also, the involvement of microbiota in gut disorders co-existing with neuropsychiatric conditions is highlighted. We discuss data from both in vivo preclinical experiments and clinical reports including: (1) studies in germ-free animals, (2) studies exploring the gut microbiota composition in animal models of diseases or in humans, (3) studies evaluating the effects of probiotic, prebiotic or antibiotic treatment as well as (4) the effects of fecal microbiota transplantation.
Collapse
|
17
|
Gallucci A, Patel DC, Thai K, Trinh J, Gude R, Shukla D, Campbell SL. Gut metabolite S-equol ameliorates hyperexcitability in entorhinal cortex neurons following Theiler murine encephalomyelitis virus-induced acute seizures. Epilepsia 2021; 62:1829-1841. [PMID: 34212377 PMCID: PMC9291536 DOI: 10.1111/epi.16979] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/28/2022]
Abstract
Objective A growing body of evidence indicates a potential role for the gut–brain axis as a novel therapeutic target in treating seizures. The present study sought to characterize the gut microbiome in Theiler murine encephalomyelitis virus (TMEV)‐induced seizures, and to evaluate the effect of microbial metabolite S‐equol on neuronal physiology as well as TMEV‐induced neuronal hyperexcitability ex vivo. Methods We infected C57BL/6J mice with TMEV and monitored the development of acute behavioral seizures 0–7 days postinfection (dpi). Fecal samples were collected at 5–7 dpi and processed for 16S sequencing, and bioinformatics were performed with QIIME2. Finally, we conducted whole‐cell patch‐clamp recordings in cortical neurons to investigate the effect of exogenous S‐equol on cell intrinsic properties and neuronal hyperexcitability. Results We demonstrated that gut microbiota diversity is significantly altered in TMEV‐infected mice at 5–7 dpi, exhibiting separation in beta diversity in TMEV‐infected mice dependent on seizure phenotype, and lower abundance of genus Allobaculum in TMEV‐infected mice regardless of seizure phenotype. In contrast, we identified specific loss of S‐equol‐producing genus Adlercreutzia as a microbial hallmark of seizure phenotype following TMEV infection. Electrophysiological recordings indicated that exogenous S‐equol alters cortical neuronal physiology. We found that entorhinal cortex neurons are hyperexcitable in TMEV‐infected mice, and exogenous application of microbial‐derived S‐equol ameliorated this TMEV‐induced hyperexcitability. Significance Our study presents the first evidence of microbial‐derived metabolite S‐equol as a potential mechanism for alteration of TMEV‐induced neuronal excitability. These findings provide new insight for the novel role of S‐equol and the gut–brain axis in epilepsy treatment.
Collapse
Affiliation(s)
- Allison Gallucci
- Graduate Program in Translational Biology Medicine and Health, Virginia Tech, Roanoke, Virginia, USA.,Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Dipan C Patel
- Fralin Biomedical Research Institute, Virginia Polytechnic Institute and State University, Roanoke, Virginia, USA
| | - K'Ehleyr Thai
- Graduate Program in Translational Biology Medicine and Health, Virginia Tech, Roanoke, Virginia, USA.,Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Jonathan Trinh
- University of South Alabama College of Medicine, Mobile, Alabama, USA
| | - Rosalie Gude
- Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Devika Shukla
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Susan L Campbell
- Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.,School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
18
|
Sharma VK, Singh TG, Garg N, Dhiman S, Gupta S, Rahman MH, Najda A, Walasek-Janusz M, Kamel M, Albadrani GM, Akhtar MF, Saleem A, Altyar AE, Abdel-Daim MM. Dysbiosis and Alzheimer's Disease: A Role for Chronic Stress? Biomolecules 2021; 11:biom11050678. [PMID: 33946488 PMCID: PMC8147174 DOI: 10.3390/biom11050678] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is an incurable, neuropsychiatric, pathological condition that deteriorates the worth of geriatric lives. AD is characterized by aggregated senile amyloid plaques, neurofibrillary tangles, neuronal loss, gliosis, oxidative stress, neurotransmitter dysfunction, and bioenergetic deficits. The changes in GIT composition and harmony have been recognized as a decisive and interesting player in neuronal pathologies including AD. Microbiota control and influence the oxidoreductase status, inflammation, immune system, and the endocrine system through which it may have an impact on the cognitive domain. The altered and malfunctioned state of microbiota is associated with minor infections to complicated illnesses that include psychosis and neurodegeneration, and several studies show that microbiota regulates neuronal plasticity and neuronal development. The altered state of microbiota (dysbiosis) may affect behavior, stress response, and cognitive functions. Chronic stress-mediated pathological progression also has a well-defined role that intermingles at various physiological levels and directly impacts the pathological advancement of AD. Chronic stress-modulated alterations affect the well-established pathological markers of AD but also affect the gut–brain axis through the mediation of various downstream signaling mechanisms that modulate the microbial commensals of GIT. The extensive literature reports that chronic stressors affect the composition, metabolic activities, and physiological role of microbiota in various capacities. The present manuscript aims to elucidate mechanistic pathways through which stress induces dysbiosis, which in turn escalates the neuropathological cascade of AD. The stress–dysbiosis axis appears a feasible zone of work in the direction of treatment of AD.
Collapse
Affiliation(s)
- Vivek Kumar Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (V.K.S.); (N.G.); (S.D.); (S.G.)
- Goverment College of Pharmacy, District Shimla, Rohru 171207, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (V.K.S.); (N.G.); (S.D.); (S.G.)
- Correspondence: or (T.G.S.); (M.M.A.-D.); Tel.: +91-98-1595-1171 (T.G.S.); +20-96-65-8019-2142 (M.M.A.-D.)
| | - Nikhil Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (V.K.S.); (N.G.); (S.D.); (S.G.)
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (V.K.S.); (N.G.); (S.D.); (S.G.)
| | - Saurabh Gupta
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (V.K.S.); (N.G.); (S.D.); (S.G.)
| | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh;
| | - Agnieszka Najda
- Laboratory of Quality of Vegetables and Medicinal Plants, Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland; (A.N.); (M.W.-J.)
| | - Magdalena Walasek-Janusz
- Laboratory of Quality of Vegetables and Medicinal Plants, Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland; (A.N.); (M.W.-J.)
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia;
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore 54950, Pakistan;
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: or (T.G.S.); (M.M.A.-D.); Tel.: +91-98-1595-1171 (T.G.S.); +20-96-65-8019-2142 (M.M.A.-D.)
| |
Collapse
|
19
|
Taniguchi K, Ikeda Y, Nagase N, Tsuji A, Kitagishi Y, Matsuda S. Implications of Gut-Brain axis in the pathogenesis of Psychiatric disorders. AIMS BIOENGINEERING 2021. [DOI: 10.3934/bioeng.2021021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
<abstract>
<p>Psychiatric disorders may extremely impair the quality of life with patients and are important reasons of social disability. Several data have shown that psychiatric disorders are associated with an altered composition of gut microbiota. Dietary intake could determine the microbiota, which contribute to produce various metabolites of fermentation such as short chain fatty acids. Some of the metabolites could result in epigenetic alterations leading to the disease susceptibility. Epigenetic dysfunction is in fact implicated in various psychiatric and neurologic disorders. For example, it has been shown that neuroepigenetic dysregulation occurs in psychiatric disorders including schizophrenia. Several studies have demonstrated that the intestinal microbiome may influence the function of central nervous system. Furthermore, it has been proved that the alterations in the gut microbiota-composition might affect in the bidirectional communication between gut and brain. Similarly, evidences demonstrating the association between psychiatric disorders and the gut microbiota have come from preclinical studies. It is clear that an intricate symbiotic relationship might exist between host and microbe, although the practical significance of the gut microbiota has not yet to be determined. In this review, we have summarized the function of gut microbiota in main psychiatric disorders with respect to the mental health. In addition, we would like to discuss the potential mechanisms of the disorders for the practical diagnosis and future treatment by using bioengineering of microbiota and their metabolites.</p>
</abstract>
Collapse
|
20
|
Li C, Shi Z, Ji J, Niu G, Liu Z. Associations of C-Reactive Protein, Free Triiodothyronine, Thyroid Stimulating Hormone and Creatinine Levels with Agitation in Patients with Schizophrenia: A Comparative Cross-Sectional Study. Neuropsychiatr Dis Treat 2021; 17:2575-2585. [PMID: 34408419 PMCID: PMC8364367 DOI: 10.2147/ndt.s322005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/01/2021] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Agitation is prevalent among inpatients with schizophrenia. The aim of this study was to investigate whether biochemical parameters are associated with agitation in schizophrenia. PATIENTS AND METHODS Agitation was evaluated by the Positive and Negative Syndrome Scale-Excited Component questionnaire (PANSS-EC). Fasting serum levels of C-reactive protein (CRP), free triiodothyronine (FT3), free thyroxine (FT4), thyroid-stimulating hormone (TSH), uric acid (UA), creatinine, glucose and lipids were measured. RESULTS The analysis included 154 inpatients with schizophrenia (71 with agitation, 83 without agitation) and 75 healthy control subjects. Patients with schizophrenia and agitation had higher serum levels of CRP, FT3, FT4 and UA as well as lower levels of serum TSH and creatinine than patients without agitation (all P < 0.05). Multivariate logistic regression analysis indicated that serum CRP (odds ratio [OR] = 1.470, P = 0.001), FT3 (OR = 13.026, P < 0.001), TSH (OR = 0.758, P = 0.033) and creatinine (OR = 0.965, P = 0.004) were significantly associated with agitation in schizophrenia. CRP, FT3, TSH and creatinine achieved an area under the ROC curve of 0.626, 0.728, 0.620 and 0.663 respectively in discriminating schizophrenia with or without agitation. CONCLUSION Increased serum CRP and FT3 levels and decreased serum TSH and creatinine levels are independent risk factors for agitation in hospitalized patients with schizophrenia. Inflammation, thyroid hormones and renal function may be involved in the pathogenesis of agitation in schizophrenia.
Collapse
Affiliation(s)
- Chao Li
- Department of Psychiatry, Jining Medical University, Jining, 272067, People's Republic of China
| | - Zhenchun Shi
- Department of Psychiatry, Shandong Mental Health Center, Jinan, 250014, People's Republic of China
| | - Jiacui Ji
- Department of Psychiatry, Shandong Mental Health Center, Jinan, 250014, People's Republic of China
| | - Gengyun Niu
- Department of Psychiatry, Jining Medical University, Jining, 272067, People's Republic of China
| | - Zengxun Liu
- Department of Psychiatry, Shandong Mental Health Center, Jinan, 250014, People's Republic of China
| |
Collapse
|