1
|
Hu Y, Huang Y, Jiang Y, Weng L, Cai Z, He B. The Different Shades of Thermogenic Adipose Tissue. Curr Obes Rep 2024; 13:440-460. [PMID: 38607478 DOI: 10.1007/s13679-024-00559-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 04/13/2024]
Abstract
PURPOSE OF REVIEW By providing a concise overview of adipose tissue types, elucidating the regulation of adipose thermogenic capacity in both physiological contexts and chronic wasting diseases (a protracted hypermetabolic state that precipitates sustained catabolism and consequent progressive corporeal atrophy), and most importantly, delving into the ongoing discourse regarding the role of adipose tissue thermogenic activation in chronic wasting diseases, this review aims to provide researchers with a comprehensive understanding of the field. RECENT FINDINGS Adipose tissue, traditionally classified as white, brown, and beige (brite) based on its thermogenic activity and potential, is intricately regulated by complex mechanisms in response to exercise or cold exposure. This regulation is adipose depot-specific and dependent on the duration of exposure. Excessive thermogenic activation of adipose tissue has been observed in chronic wasting diseases and has been considered a pathological factor that accelerates disease progression. However, this conclusion may be confounded by the detrimental effects of excessive lipolysis. Recent research also suggests that such activation may play a beneficial role in the early stages of chronic wasting disease and provide potential therapeutic effects. A more comprehensive understanding of the changes in adipose tissue thermogenesis under physiological and pathological conditions, as well as the underlying regulatory mechanisms, is essential for the development of novel interventions to improve health and prevent disease.
Collapse
Affiliation(s)
- Yunwen Hu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yijie Huang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yangjing Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Lvkan Weng
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Zhaohua Cai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
2
|
Reyes-Barrera J, Antonio-Villa NE, Posadas-Sánchez R, Vargas-Alarcón G, Medina-Urrutia AX. The dysfunctional adiposity index is a clinical surrogate of pericardial fat in adults without premature CVD: A sub-analysis of the GEA Mexican study control group. Nutr Metab Cardiovasc Dis 2024; 34:2002-2011. [PMID: 38664129 DOI: 10.1016/j.numecd.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/02/2024] [Accepted: 03/15/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND AND AIM The Dysfunctional Adiposity Index (DAI) is a clinical surrogate for evaluating adipose tissue functionality and cardiometabolic health. However, its association with Pericardial Fat Volume (PFV) has not been tested. The aim of this study was to evaluate DAI- PFV association, stratified by type 2 diabetes (T2D) status, and identify DAI thresholds for detecting increased PFV among patients without premature CVD. METHODS AND RESULTS Participants from the GEA-Mexican study underwent a computed tomography scan to measure PFV. Adjusted logistic regression analyses tested the association between DAI and PFV. AUROC curves evaluated DAI's ability to identify elevated PFV (≥57.57 cm³), and the Youden method determined DAI thresholds, along with diagnostic metrics. The study analyzed 997 participants (women: 55%; mean age: 54 ± 9 years; median PFV: 42 cm³ [IQR: 29-58]), with a 13% prevalence of T2D. DAI was positively associated with elevated PFV (OR: 1.33, 95% CI: 1.07-1.70), which was more pronounced among subjects with T2D (OR: 3.01, 95% CI: 1.41-6.40). DAI thresholds were established for all participants (>1.176), individuals without T2D (>1.003), and with T2D (>1.936), yielding sensitivities of 71%, 81%, and 57%, and specificities of 48%, 38%, and 75%, respectively. The adjusted logistic regression tied DAI thresholds to a 1.68-fold elevation in PFV for all, 2.06-fold for those without T2D, and 6.81-fold for those with T2D. CONCLUSION DAI was positively associated with increased PFV, particularly among participants with T2D. Established DAI thresholds demonstrated good diagnostic values for detecting increased PFV. DAI could serve as an accessible marker to identify PF in clinical settings.
Collapse
Affiliation(s)
- Juan Reyes-Barrera
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, Mexico; Department of Endocrinology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | | | | | - Gilberto Vargas-Alarcón
- Department of Molecular Biology and Research Direction, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Aida X Medina-Urrutia
- Department of Endocrinology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico.
| |
Collapse
|
3
|
Bieerkehazhi S, Barayan D, Khalaf F, de Brito Monteiro L, Aijaz A, Volk C, Matveev A, Saldanha S, Faour S, Jeschke MG. BURNS INDUCE ALTERATIONS IN THE ACYL PROTEOME OF MICE AND HUMANS. Shock 2024; 61:877-884. [PMID: 38661185 DOI: 10.1097/shk.0000000000002355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
ABSTRACT Hypermetabolic reprogramming triggered by thermal injury causes substantial morbidity and mortality. Despite the therapeutic potential of targeting this response, the underlying mechanisms remain poorly understood. Interestingly, protein S-acylation is a reversible posttranslational modification induced by metabolic alterations via DHHC acyltransferases. While this modification aids in the regulation of cellular functions, deregulated S-acylation contributes to various diseases by altering protein structure, stability, and localization. However, whether and how S-acylation may impact morbidity and mortality during postburn hypermetabolism is unknown. In this study, we discovered that alterations in the acyl proteome play a key role in mediating adverse outcomes that occur after burn injury. Using a murine model, we show that burn injury induces profound changes in the expression of various DHHC isoforms in metabolic organs central to regulating postburn hypermetabolism, the adipose tissue, and liver. This was accompanied by increased levels of S-acylated proteins in several pathways involved in mediating the adverse hypermetabolic response, including ER stress, lipolysis, and browning. In fact, similar results were also observed in adipose tissue from severely burned patients, as reflected by increased S-acylation of ERK1/2, eIF2a, ATGL, FGF21, and UCP1 relative to nonburn controls. Importantly, pharmacologically targeting this posttranslational modification using a nonselective DHHC inhibitor effectively attenuated burn-induced ER stress, lipolysis, and browning induction in an ex vivo explant model. Together, these findings suggest that S-acylation may facilitate the protein activation profile that drives burn-induced hypermetabolism and that targeting it could potentially be an effective strategy to restore metabolic function and improve outcomes after injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sara Faour
- David Braley Research Institute, Hamilton, Ontario, Canada
| | | |
Collapse
|
4
|
Zhang X, Wang Q, Wang Y, Ma C, Zhao Q, Yin H, Li L, Wang D, Huang Y, Zhao Y, Shi X, Li X, Huang C. Interleukin-6 promotes visceral adipose tissue accumulation during aging via inhibiting fat lipolysis. Int Immunopharmacol 2024; 132:111906. [PMID: 38593501 DOI: 10.1016/j.intimp.2024.111906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Age-related visceral obesity could contribute to the development of cardiometabolic complications. The pathogenesis of visceral fat mass accumulation during the aging process remains complex and largely unknown. Interleukin-6 (IL-6) has emerged as one of the prominent inflammaging markers which are elevated in circulation during aging. However, the precise role of IL-6 in regulating age-related visceral adipose tissue accumulation remains uncertain. RESULTS A cross-sectional study including 77 older adults (≥65 years of age) was initially conducted. There was a significant positive association between serum IL-6 levels and visceral fat mass. We subsequently validated a modest but significant elevation in serum IL-6 levels in aged mice. Furthermore, we demonstrated that compared to wildtype control, IL-6 deficiency (IL-6 KO) significantly attenuated the accumulation of visceral adipose tissue during aging. Further metabolic characterization suggested that IL-6 deficiency resulted in improved lipid metabolism parameters and energy expenditure in aged mice. Moreover, histological examinations of adipose depots revealed that the absence of IL-6 ameliorated adipocyte hypertrophy in visceral adipose tissue of aged mice. Mechanically, the ablation of IL-6 could promote the PKA-mediated lipolysis and consequently mitigate lipid accumulation in adipose tissue in aged mice. CONCLUSION Our findings identify a detrimental role of IL-6 during the aging process by promoting visceral adipose tissue accumulation through inhibition of lipolysis. Therefore, strategies aimed at preventing or reducing IL-6 levels may potentially ameliorate age-related obesity and improve metabolism during aging.
Collapse
Affiliation(s)
- Xiaofang Zhang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Qingxuan Wang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Yaru Wang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Chen Ma
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Qing Zhao
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Hongyan Yin
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Long Li
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China; Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Dongmei Wang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China; Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China
| | - Yinxiang Huang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Yan Zhao
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Xiulin Shi
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Xuejun Li
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China.
| | - Caoxin Huang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China.
| |
Collapse
|
5
|
Salma N, Wang-Evers M, Karasik D, Yerevanian A, Downs H, Luo T, Doyle AE, Tannous Z, Cacicedo JM, Manstein D. Large area fractional laser treatment of mouse skin increases energy expenditure. iScience 2024; 27:108677. [PMID: 38213618 PMCID: PMC10783634 DOI: 10.1016/j.isci.2023.108677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/26/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024] Open
Abstract
Fractional laser (FL) treatment is a common dermatologic procedure that generates arrays of microscopic treatment zones separated by intact tissue, promoting fast wound healing. Using a mouse model, we introduced a large area fractional laser treatment (LAFLT) method to study metabolic effects. Using two laser modalities, ablative FL (AFL) and non-ablative FL (NAFL), and exposing different percentages of mice's total body surface area (TBSA), we followed changes in metabolic parameters in real time using metabolic cages. Additionally, body composition, markers of inflammation, neurohormonal signaling, and browning of adipocytes were investigated. LAFLT, especially in high TBSA groups, had specific metabolic effects such as significantly increased average daily energy expenditure, increased fat mass loss, systemic browning of adipocytes, and inflammatory states, without compromising other organs. The ability of LAFLT to stimulate metabolism in a controlled way could develop into a promising therapeutic treatment to induce positive metabolic changes that replace or augment systemic drugs.
Collapse
Affiliation(s)
- Nunciada Salma
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Michael Wang-Evers
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Daniel Karasik
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02129, USA
- Technion - Israel Institute of Technology, Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
| | - Armen Yerevanian
- Department of Medicine, Diabetes Unit, Endocrine Division, and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Heather Downs
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Tuanlian Luo
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Abigail E. Doyle
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Zeina Tannous
- Department of Dermatology, School of Medicine, Lebanese American University, Beirut, Lebanon
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jose M. Cacicedo
- Department of Research and Development ALPCO Diagnostics, Salem, NH, USA
| | - Dieter Manstein
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02129, USA
| |
Collapse
|
6
|
Efejuku TA, Obanigba G, Johnson D, Obi A, Hallman T, Song J, El Ayadi A, Raji M, Wolf SE. Impact of pre-burn statin use on metabolic and cardiovascular disorders. Am J Surg 2023; 226:485-491. [PMID: 37330384 DOI: 10.1016/j.amjsurg.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/08/2023] [Accepted: 06/01/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Statins are among the most widely prescribed medications with proven effectiveness in patients with hyperlipidemia and atherosclerotic cardiovascular diseases. We investigated the relationship between statin use, metabolic and cardiovascular outcomes after burn. METHODS We utilized data from the TriNetX electronic health database. Burn patients with prior statin use were compared to patients without prior use and analyzed the occurrence of metabolic and cardiovascular disorders. RESULTS Prior statin use burn patients were 1.33 times as likely to develop hyperglycemia, 1.20 times for cardiac arrhythmia, 1.70 times for coronary artery disease (CAD), 1.10 times for sepsis, and 0.80 times for death. High percent TBSA burn, male sex, and lipophilic statin use were associated with higher odds of outcome development. CONCLUSION Prior statin use in severely burned patients is associated with an increased risk of developing hyperglycemia, arrhythmias, and CAD, with higher odds in males, higher TBSA burn, and lipophilic statin users.
Collapse
Affiliation(s)
- Tsola A Efejuku
- School of Medicine, University of Texas Medical Branch, Galveston, TX, USA.
| | - Grace Obanigba
- School of Medicine, University of Texas Medical Branch, Galveston, TX, USA.
| | - Dominique Johnson
- School of Medicine, University of Texas Medical Branch, Galveston, TX, USA.
| | - Ann Obi
- School of Medicine, University of Texas Medical Branch, Galveston, TX, USA.
| | - Taylor Hallman
- School of Medicine, University of Texas Medical Branch, Galveston, TX, USA.
| | - Juquan Song
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA.
| | - Amina El Ayadi
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA.
| | - Mukaila Raji
- Division of Geriatric & Palliative Medicine, University of Texas Medical Branch, Galveston, TX, USA.
| | - Steven E Wolf
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
7
|
Abstract
Rather than serving as a mere onlooker, adipose tissue is a complex endocrine organ and active participant in disease initiation and progression. Disruptions of biological processes operating within adipose can disturb healthy systemic physiology, the sequelae of which include metabolic disorders such as obesity and type 2 diabetes. A burgeoning interest in the field of adipose research has allowed for the elucidation of regulatory networks underlying both adipose tissue function and dysfunction. Despite this progress, few diseases are treated by targeting maladaptation in the adipose, an oft-overlooked organ. In this review, we elaborate on the distinct subtypes of adipocytes, their developmental origins and secretory roles, and the dynamic interplay at work within the tissue itself. Central to this discussion is the relationship between adipose and disease states, including obesity, cachexia, and infectious diseases, as we aim to leverage our wealth of knowledge for the development of novel and targeted therapeutics.
Collapse
Affiliation(s)
- Christopher Auger
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA;
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; .,Howard Hughes Medical Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
8
|
Abe I, Oguri Y, Verkerke ARP, Monteiro LB, Knuth CM, Auger C, Qiu Y, Westcott GP, Cinti S, Shinoda K, Jeschke MG, Kajimura S. Lipolysis-derived linoleic acid drives beige fat progenitor cell proliferation. Dev Cell 2022; 57:2623-2637.e8. [PMID: 36473459 PMCID: PMC9875052 DOI: 10.1016/j.devcel.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/21/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022]
Abstract
De novo beige adipocyte biogenesis involves the proliferation of progenitor cells in white adipose tissue (WAT); however, what regulates this process remains unclear. Here, we report that in mouse models but also in human tissues, WAT lipolysis-derived linoleic acid triggers beige progenitor cell proliferation following cold acclimation, β3-adrenoceptor activation, and burn injury. A subset of adipocyte progenitors, as marked by cell surface markers PDGFRα or Sca1 and CD81, harbored cristae-rich mitochondria and actively imported linoleic acid via a fatty acid transporter CD36. Linoleic acid not only was oxidized as fuel in the mitochondria but also was utilized for the synthesis of arachidonic acid-derived signaling entities such as prostaglandin D2. Oral supplementation of linoleic acid was sufficient to stimulate beige progenitor cell proliferation, even under thermoneutral conditions, in a CD36-dependent manner. Together, this study provides mechanistic insights into how diverse pathophysiological stimuli, such as cold and burn injury, promote de novo beige fat biogenesis.
Collapse
Affiliation(s)
- Ichitaro Abe
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; Department of Cardiology and Clinical Examination, Oita University Faculty of Medicine, Oita, Japan
| | - Yasuo Oguri
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Anthony R P Verkerke
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Lauar B Monteiro
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Carly M Knuth
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Christopher Auger
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Yunping Qiu
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gregory P Westcott
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Saverio Cinti
- Center of Obesity, Marche Polytechnic University, Ancona, Italy
| | - Kosaku Shinoda
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Division of Endocrinology & Diabetes, Albert Einstein College of Medicine, Bronx, NY, USA; Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism, Bronx, NY, USA
| | - Marc G Jeschke
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Ross Tilley Burn Centre, Sunnybrook Hospital, Toronto, ON, Canada; Department of Surgery, Division of Plastic Surgery, and Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
9
|
Datta PK, Roy Chowdhury S, Aravindan A, Saha S, Rapaka S. Medical and Surgical Care of Critical Burn Patients: A Comprehensive Review of Current Evidence and Practice. Cureus 2022; 14:e31550. [PMID: 36540501 PMCID: PMC9754771 DOI: 10.7759/cureus.31550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2022] [Indexed: 11/16/2022] Open
Abstract
Critically ill burn patients pose several unique challenges to care providers. The concepts of fluid resuscitation, nutritional management, organ support and wound care are rapidly evolving. There is a pressing need to review emerging evidence and incorporate these into practice for the effective management of burn patients. We have searched the PubMed and Google Scholar databases to review the current evidence on the acute care management of adult as well as paediatric burn patients. The rationales for current practices have been integrated into the review. The management of critically ill burn patients requires an in-depth knowledge of the pathophysiology of burn injury, a tailored approach for timely resuscitation, timely diagnosis of organ specific problems, and comprehensive wound care. This review will help the doctors and healthcare providers involved in the management of critical burn patients in their day-to-day practice.
Collapse
Affiliation(s)
- Priyankar K Datta
- Anaesthesiology, Pain Medicine and Critical Care, All India Institute of Medical Sciences, New Delhi, New Delhi, IND
| | - Sumit Roy Chowdhury
- Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, New Delhi, IND
| | - Ajisha Aravindan
- Anaesthesiology, Pain Medicine and Critical Care, All India Institute of Medical Sciences, New Delhi, New Delhi, IND
| | - Shivangi Saha
- Plastic and Reconstructive Surgery, All India Institute of Medical Sciences, New Delhi, New Delhi, IND
| | - Sriharsha Rapaka
- Critical Care Medicine, All India Institute of Medical Sciences, New Delhi, New Delhi, IND
| |
Collapse
|
10
|
Shibl NG, Fikry EM, Mansour HA, Alsemeh AE, Abdel-Ghany RH, El-Sayed SS. Ameliorative effect of bone marrow-derived mesenchymal stem cells on burn-induced hepatic and metabolic derangements in rats. Life Sci 2022; 307:120891. [PMID: 36007609 DOI: 10.1016/j.lfs.2022.120891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022]
Abstract
AIMS The current study aims to investigate the therapeutic potential of bone marrow-derived mesenchymal stem cells (MSCs) as a solo therapy in ameliorating both skin lesions and liver injury induced by cutaneous severe burn injury (SBI) in rats. MAIN METHODS In anesthetized male adult Wistar albino rats, 30 % total burn surface area and established hepatic injury was achieved via direct contact of each experimental animal's dorsum with heated metal rod (100 °C) for 10 s. On the next day following burn, human MSCs or mouse MSCs was administered locally around the burn site and intraperitonially (0.5 × 106 cells/rat for each route) and outcomes were investigated at 4 and 14 days following burn induction. KEY FINDINGS Both types of MSCs significantly improved skin and liver histology, decreased liver enzymes, and ameliorated oxidative stress in hepatocytes of SBI-rats. Further, SBI-induced rises in hepatic apoptotic marker (caspase-3, Bax) and serum inflammatory markers (TNF-α, IL-1β, and IL-6) were reduced following either human or mouse MSC administration. In addition, MSCs augmented insulin receptor substrate-1, phosphorylated protein kinase-B (phospho-Akt), while alleviating serum glucose levels in SBI-rats. These previous effects persisted even at the 14-day time point. SIGNIFICANCE Following single administration, bone marrow-derived MSCs is capable of counteracting SBI-induced skin lesions as well as related hepatic complications, specifically via mitigating postburn hyperglycemia and hyperinflammation.
Collapse
Affiliation(s)
- Nourhan G Shibl
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Ebtehal Mohammad Fikry
- Department of Pharmacology, Egyptian Drug Authority (EDA), formerly National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Hanaa A Mansour
- Department of Pharmacology, Egyptian Drug Authority (EDA), formerly National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Amira Ebrahim Alsemeh
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rasha H Abdel-Ghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Shaimaa S El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
11
|
Differences by age in the obesity paradox in severe burns. Burns 2022; 48:547-554. [PMID: 35183389 DOI: 10.1016/j.burns.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/26/2022] [Accepted: 02/03/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Many studies show a "obesity paradox", which seems to protect against death. Whether an obesity paradox space is present in severe burn patients remains a matter of great debate. Most research on the obesity paradox of burn injuries is classified by body mass index (BMI) rather than by age. OBJECTIVE To investigate whether the obesity paradox exists in severe burn patients stratified by age. METHODS Retrospective analysis was performed on 490 patients with severe burns who were ≥ 18 years of age and were admitted to Fujian Medical University Union Hospital from January 2005 to December 2020. Demographic and clinical characteristics were collected, including age, BMI, total body surface area (TBSA), presence of inhalation injury, abbreviated burn severity index (ABSI) score, diabetes comorbidities, hypertension comorbidities, and in-hospital mortality. The patients were divided into the younger group (18 ≤ age<65 years) and the older group (age ≥ 65 years). The important variables of the two groups were compared. The predictive value of BMI stratified by age on in-hospital mortality was evaluated by binary logistic regression analysis and the Cochran's and Mantel-Haenszel statistics. RESULTS A total of 490 patients were selected for this study, and were divided into the younger group (413) and the elderly group (77) according to their ages. In the younger group, logistic regression analyses indicated that high BMI remained significantly and independently associated with decreased in-hospital mortality (P = 0.021). That is, in-hospital mortality decreased by 17.8% when BMI increased by 1 kg/m2. In the older group, BMI was not associated with in-hospital mortality (P = 0.808). In the younger group, the results of Pearson's chi-square test was less than 0.05, indicating a correlation between BMI and prognosis. In the older group, the conclusion was contrary with, no correlation between BMI and prognosis. If the confounding factors of age were not considered, this results in no correlation between BMI and prognosis. In the younger group, the survival/death ratio of patients with overweight and obesity was 2.078 times that of patients with normal weight. CONCLUSION In this study of patients with severe burns, overweight and obesity had protective effect on burn injury in the younger group (18 ≤ age<65 years), but not in the older group (age ≥ 65 years). Investigating the obesity paradox in burn patients needs to consider age differences. However, multicentre clinical trials are needed to verify the results.
Collapse
|
12
|
Wrba L, Halbgebauer R, Roos J, Huber-Lang M, Fischer-Posovszky P. Adipose tissue: a neglected organ in the response to severe trauma? Cell Mol Life Sci 2022; 79:207. [PMID: 35338424 PMCID: PMC8956559 DOI: 10.1007/s00018-022-04234-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 01/01/2023]
Abstract
Despite the manifold recent efforts to improve patient outcomes, trauma still is a clinical and socioeconomical issue of major relevance especially in younger people. The systemic immune reaction after severe injury is characterized by a strong pro- and anti-inflammatory response. Besides its functions as energy storage depot and organ-protective cushion, adipose tissue regulates vital processes via its secretion products. However, there is little awareness of the important role of adipose tissue in regulating the posttraumatic inflammatory response. In this review, we delineate the local and systemic role of adipose tissue in trauma and outline different aspects of adipose tissue as an immunologically active modifier of inflammation and as an immune target of injured remote organs after severe trauma.
Collapse
Affiliation(s)
- Lisa Wrba
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
- Department of Trauma, Orthopedic, Plastic and Hand Surgery, University Hospital of Augsburg, Augsburg, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Julian Roos
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Eythstr. 24, 89075, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Pamela Fischer-Posovszky
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Eythstr. 24, 89075, Ulm, Germany.
| |
Collapse
|
13
|
Suriagandhi V, Nachiappan V. Protective Effects of Melatonin against Obesity-Induced by Leptin Resistance. Behav Brain Res 2022; 417:113598. [PMID: 34563600 DOI: 10.1016/j.bbr.2021.113598] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/01/2021] [Accepted: 09/21/2021] [Indexed: 12/20/2022]
Abstract
Consumption of an exceedingly high-fat diet with irregular eating and sleeping habits is typical in the current sedentary lifestyle, leading to chronic diseases like obesity and diabetes mellitus. Leptin is a primary appetite-regulating hormone that binds to its receptors in the hypothalamic cell membrane and regulates downstream appetite-regulating neurons NPY/AgRp and POMC in the hypothalamus. Based on the fat content of the adipose tissue, leptin is secreted, and excess accumulation of fat in adipose tissue stimulates the abnormal secretion of leptin. The secreted leptin circulating in the bloodstream uses its transporters to cross the blood-brain barrier (BBB) and reach the CSF. There is a saturation limit for leptin bound to its transporters to cross the BBB, and increased leptin secretion in adipose tissue has a defect in its transport across the BBB. Leptin resistance is due to excess leptin, a saturation of its transporters, and deficiency in either the receptor level or signalling in the hypothalamus. Leptin resistance leads to obesity due to excess food intake and less energy expenditure. Normal leptin secretion follows a rhythm, and alteration in the lifestyle leads to hormonal imbalances and increases ROS generation leading to oxidative stress. The sleep disturbance causes obesity with increased lipid accumulation in adipose tissue. Melatonin is the master regulator of the sleep-wake cycle secreted by the pineal gland during the night. It is a potent antioxidant with anti-inflammatory properties. Melatonin is secreted in a pattern called the circadian rhythm in humans as well. Research indicates that melatonin plays a vital role in hormonal regulation and energy metabolism, including leptin signalling and secretion. Studying the role of melatonin in leptin regulation will help us combat the pathologies of obesity caused by leptin resistance.
Collapse
Affiliation(s)
- Vennila Suriagandhi
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| | - Vasanthi Nachiappan
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India.
| |
Collapse
|
14
|
Medeiros CS, de Sousa Neto IV, Silva KKS, Cantuária APC, Rezende TMB, Franco OL, de Cassia Marqueti R, Freitas-Lima LC, Araujo RC, Yildirim A, Mackenzie R, Alves Almeida J. The Effects of High-Protein Diet and Resistance Training on Glucose Control and Inflammatory Profile of Visceral Adipose Tissue in Rats. Nutrients 2021; 13:1969. [PMID: 34201185 PMCID: PMC8227719 DOI: 10.3390/nu13061969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/26/2022] Open
Abstract
High-protein diets (HPDs) are widely accepted as a way to stimulate muscle protein synthesis when combined with resistance training (RT). However, the effects of HPDs on adipose tissue plasticity and local inflammation are yet to be determined. This study investigated the impact of HPDs on glucose control, adipocyte size, and epididymal adipose inflammatory biomarkers in resistance-trained rats. Eighteen Wistar rats were randomly assigned to four groups: normal-protein (NPD; 17% protein total dietary intake) and HPD (26.1% protein) without RT and NPD and HPD with RT. Trained groups received RT for 12 weeks with weights secured to their tails. Glucose and insulin tolerance tests, adipocyte size, and an array of cytokines were determined. While HPD without RT induced glucose intolerance, enlarged adipocytes, and increased TNF-α, MCP-1, and IL1-β levels in epididymal adipose tissue (p < 0.05), RT diminished these deleterious effects, with the HPD + RT group displaying improved blood glucose control without inflammatory cytokine increases in epididymal adipose tissue (p < 0.05). Furthermore, RT increased glutathione expression independent of diet (p < 0.05). RT may offer protection against adipocyte hypertrophy, pro-inflammatory states, and glucose intolerance during HPDs. The results highlight the potential protective effects of RT to mitigate the maladaptive effects of HPDs.
Collapse
Affiliation(s)
- Claudia Stela Medeiros
- Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Ivo Vieira de Sousa Neto
- Laboratório de Análises Moleculares, Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Distrito Federal 72220-275, Brazil; (I.V.d.S.N.); (R.d.C.M.)
| | - Keemilyn Karla Santos Silva
- Research in Exercise and Nutrition in Health and Sports Performance—PENSARE, Graduate Program in Movement Sciences, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Ana Paula Castro Cantuária
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Distrito Federal 70790-160, Brazil; (A.P.C.C.); (T.M.B.R.); (O.L.F.)
- Programa de Pós-Graduação em Ciências da Saúde, Universidade de Brasília, Distrito Federal 70910-900, Brazil
| | - Taia Maria Berto Rezende
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Distrito Federal 70790-160, Brazil; (A.P.C.C.); (T.M.B.R.); (O.L.F.)
- Programa de Pós-Graduação em Ciências da Saúde, Universidade de Brasília, Distrito Federal 70910-900, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Distrito Federal 70790-160, Brazil; (A.P.C.C.); (T.M.B.R.); (O.L.F.)
- S-Inova Biotech, Porgrama de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil
| | - Rita de Cassia Marqueti
- Laboratório de Análises Moleculares, Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Distrito Federal 72220-275, Brazil; (I.V.d.S.N.); (R.d.C.M.)
| | - Leandro Ceotto Freitas-Lima
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil; (L.C.F.-L.); (R.C.A.)
| | - Ronaldo Carvalho Araujo
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil; (L.C.F.-L.); (R.C.A.)
| | - Azize Yildirim
- Department of Life Science, Whitelands College, University of Roehampton, London SW15 4DJ, UK; (A.Y.); (R.M.)
| | - Richard Mackenzie
- Department of Life Science, Whitelands College, University of Roehampton, London SW15 4DJ, UK; (A.Y.); (R.M.)
| | - Jeeser Alves Almeida
- Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
- Research in Exercise and Nutrition in Health and Sports Performance—PENSARE, Graduate Program in Movement Sciences, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| |
Collapse
|