1
|
Chen G, Li W, Liu Y, Li T, Zhu W, Liu Y, Jin X, Mei Q, Ye L. Design, Synthesis, Anticancer Evaluation and In Silico Studies of Imidazole Pyrazine Compounds. Chem Biodivers 2025; 22:e202401553. [PMID: 39513628 DOI: 10.1002/cbdv.202401553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/23/2024] [Indexed: 11/15/2024]
Abstract
The present study focused on design and synthesis novel imidazolopyrazine derivatives, investigate the effect of them on the proliferation and migration of several human cancer cell lines by CCK-8 method, and interactions with the JAKs by reverse molecular docking. It was found that most of the synthesized imidazolopyrazin derivatives exhibited excellent inhibitory effects towards three tested tutor cells in vitro. Among them, three compounds have IC50 values much lower than Fluorouracil while show low toxicity to normal cells L-02. The migration ability assay have proved that A6 and A9 effectively inhibit the migration of tumor cells. Reverse molecular docking studies indicated that the potent targets of these derivatives are JAKs as they well docked into kinases with low energy. These finding suggest that imidazo[1,5-a]pyrazin derivatives may be lead compounds for developing potent JAK targeted anticancer candidates.
Collapse
Affiliation(s)
- Gong Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Weiwei Li
- Department of Laboratory Medicine, Guiyang Maternity and Child Health Hospital, Guiyang, 550003, People's Republic of China
| | - Yuanhui Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Tong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Wenrun Zhu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Ying Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Xiaobao Jin
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Qinghua Mei
- Guangdong Second Provincial General Hospital, Guangzhou, 510317, People's Republic of China
| | - Lianbao Ye
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
2
|
Jalilivand S, Nabigol M, Bakhtiyaridovvombaygi M, Gharehbaghian A. Bone marrow mesenchymal stem cell exosomes suppress JAK/STAT signaling pathway in acute myeloid leukemia in vitro. Blood Res 2024; 59:43. [PMID: 39704857 DOI: 10.1007/s44313-024-00051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
INTRODUCTION Despite advances in the treatment of acute myeloid leukemia (AML), refractory forms of this malignancy and relapse remain common. Therefore, development of novel, synergistic targeted therapies are needed urgently. Recently, mesenchymal stem cells (MSCs) have been shown to be effective in treating various diseases, with most of their therapeutic outcomes attributed to their exosomes. In the current study, we investigated the effects of bone marrow mesenchymal stem cell (BM-MSC) exosomes on the expression of the Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling genes involved in AML pathogenesis. MATERIAL AND METHODS Exosomes were isolated from BM-MSCs and confirmed using transmission electron microscopy, dynamic light scattering, and flow cytometry. Subsequently, the exosome concentration was estimated using the bicinchoninic acid assay, and HL-60 cells were cocultured with 100 µg/mL of BM-MSC exosomes. Finally, the JAK2, STAT3, and STAT5 expression levels were analyzed using qRT-PCR. RESULTS The exosome characterization results confirmed that most isolated nanoparticles exhibited a round morphology, expressed CD9, CD63, and CD81, which are specific protein markers for exosome identification, and ranged between 80 and 100 nm in diameter. Furthermore, qRT-PCR analysis revealed a significant downregulation of JAK2, STAT3, and STAT5 in HL-60 cells treated with 100 μg/mL of BM-MSC exosomes. CONCLUSION Since JAK/STAT signaling contributes to AML survival, our findings suggest that the downregulation of JAK/STAT genes by BM-MSC exosomes in leukemic cells may aid in designing a potent therapeutic strategy for AML treatment.
Collapse
Affiliation(s)
- Sahar Jalilivand
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Nabigol
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Bakhtiyaridovvombaygi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Gharehbaghian
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Ji P, Wang P, Li Q, Gao L, Xu Y, Pan H, Zhang C, Li J, Yao J, An Q. Use of Transcriptomics to Identify Candidate Genes for Hematopoietic Differences Between Wujin and Duroc Pigs. Animals (Basel) 2024; 14:3507. [PMID: 39682471 DOI: 10.3390/ani14233507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Hematopoiesis is a complex physiological process that ensures renewal of blood cells to maintain normal blood circulation and immune function. Wujin pigs exhibit distinct characteristics such as tender meat, high fat storage, strong resistance to roughage, robust disease resistance, and oxidation resistance. Therefore, using Wujin pigs as models may offer valuable insights for hematopoietic-related studies. In this study, twelve healthy 35-day-old piglets, including six Wujin and six Duroc piglets of similar weight, were selected from each of the Wujin and Duroc pig groups and housed in single cages. After 30 days of feeding, blood and bone marrow samples were collected. Routine blood indices and hematopoietic-related serum biochemical indexes of Wujin and Duroc pigs were determined, and bone marrow gene expression levels were analyzed using transcriptomics. (1) Hemoglobin (Hb) and Mean Corpuscular Hemoglobin Concentration (MCHC) levels in Wujin pigs were significantly higher than in Duroc pigs (p < 0.05), and platelet counts and serum Hb levels in Wujin pigs were significantly lower than in Duroc pigs (p < 0.05). (2) A total of 312 significantly differentially expressed genes were identified between the pigs. Their functions were mainly related to blood systems, inflammation, and oxidation. Six differentially expressed genes may be related to hematopoietic function. (3) By combining the differential genes screened through sequencing with Weighted Gene Co-expression Network Analysis results, 16 hematopoietic function differential genes were obtained, mainly focusing on immunity, inflammation, and induction of apoptosis functions. Differences were present in the immune and inflammatory responses between Wujin pigs and Duroc pigs, suggesting that differences in hematopoietic function between the two breeds were related to antioxidant capacity and disease resistance.
Collapse
Affiliation(s)
- Peng Ji
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Ping Wang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Qihua Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Lin Gao
- Yunnan Tropical and Subtropical Animal Virus Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Yan Xu
- Yunnan East Hunter Agriculture and Forestry Development Co., Ltd., Shuifu 657803, China
| | - Hongbin Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Chunyong Zhang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jintao Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Yao
- Yunnan Tropical and Subtropical Animal Virus Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Qingcong An
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
4
|
Fasouli ES, Katsantoni E. Age-associated myeloid malignancies - the role of STAT3 and STAT5 in myelodysplastic syndrome and acute myeloid leukemia. FEBS Lett 2024; 598:2809-2828. [PMID: 39048534 PMCID: PMC11586607 DOI: 10.1002/1873-3468.14985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
In the last few decades, the increasing human life expectancy has led to the inflation of the elderly population and consequently the escalation of age-related disorders. Biological aging has been associated with the accumulation of somatic mutations in the Hematopoietic Stem Cell (HSC) compartment, providing a fitness advantage to the HSCs leading to clonal hematopoiesis, that includes non-malignant and malignant conditions (i.e. Clonal Hematopoiesis of Indeterminate Potential, Myelodysplastic Syndrome and Acute Myeloid Leukemia). The Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway is a key player in both normal and malignant hematopoiesis. STATs, particularly STAT3 and STAT5, are greatly implicated in normal hematopoiesis, immunity, inflammation, leukemia, and aging. Here, the pleiotropic functions of JAK-STAT pathway in age-associated hematopoietic defects and of STAT3 and STAT5 in normal hematopoiesis, leukemia, and inflammaging are reviewed. Even though great progress has been made in deciphering the role of STATs, further research is required to provide a deeper understanding of the molecular mechanisms of leukemogenesis, as well as novel biomarkers and therapeutic targets for improved management of age-related disorders.
Collapse
Affiliation(s)
- Eirini Sofia Fasouli
- Biomedical Research FoundationAcademy of Athens, Basic Research CenterAthensGreece
| | - Eleni Katsantoni
- Biomedical Research FoundationAcademy of Athens, Basic Research CenterAthensGreece
| |
Collapse
|
5
|
Nabigol M, Hajipirloo LK, Kuhestani-Dehaghi B, Farsani MA. Effect of AML-exosomes on the cellular and molecular properties of bone marrow mesenchymal stromal cells: Expression of JAK/STAT signaling genes. Curr Res Transl Med 2024; 73:103474. [PMID: 39366080 DOI: 10.1016/j.retram.2024.103474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 07/23/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024]
Abstract
PURPOSE OF STUDY Despite the various therapeutic options introduced for AML treatment, therapy resistance and relapse are still the main obstacles. It is well known that alterations in the bone marrow microenvironment (BMM) play a crucial role in leukemia growth and the treatment failure of AML. Evidence shows that exosomes alter the components of BMM in a way that support leukemia survival, leading to chemoresistance. In this study, we evaluated the effect of AML exosomes on the biological functions of human bone marrow mesenchymal stromal cells (h BM-MSCs), especially alteration in the expression of the JAK/STAT signaling genes, as a leukemia-favoring pathway. METHOD Exosomes were isolated from the HL-60 cell line and characterized using flow cytometry, Transmission Electron Microscopy (TEM), and Dynamic Light Scattering (DLS) technique. The exosome protein content was assessed using a bicinchoninic acid (BCA) protein assay kit in order to determine the concentration of exosomes. Subsequently, MSCs were treated with varying concentrations of AML exosomes, and data was obtained using MTT, cell cycle, apoptosis, and ki67 assays. Additionally, gene expression analysis was conducted through qRT-PCR. RESULT AML exosomes regulated the viability and survival of MSCs in a concentration-dependent manner. The qRT-PCR data revealed that treatment with AML exosomes at a concentration of 50 μg/mL led to a significant upregulation of JAK2, STAT3, and STAT5 genes in MSCs. CONCLUSION Because the JAK/STAT signaling pathway has been shown to play a role in the proliferation and survival of leukemic cells, our results suggest that AML exosomes stimulate MSCs to activate this pathway. This activation may impede AML cell apoptosis, potentially leading to chemoresistance and relapse.
Collapse
Affiliation(s)
- Maryam Nabigol
- Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Laya Khodayi Hajipirloo
- Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bentolhoda Kuhestani-Dehaghi
- Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Allahbakhshian Farsani
- Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Gu K, May HA, Kang MH. Targeting Molecular Signaling Pathways and Cytokine Responses to Modulate c-MYC in Acute Myeloid Leukemia. Front Biosci (Schol Ed) 2024; 16:15. [PMID: 39344393 DOI: 10.31083/j.fbs1603015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/07/2024] [Accepted: 08/18/2024] [Indexed: 10/01/2024]
Abstract
Overexpression of the MYC oncogene, encoding c-MYC protein, contributes to the pathogenesis and drug resistance of acute myeloid leukemia (AML) and many other hematopoietic malignancies. Although standard chemotherapy has predominated in AML therapy over the past five decades, the clinical outcomes and patient response to treatment remain suboptimal. Deeper insight into the molecular basis of this disease should facilitate the development of novel therapeutics targeting specific molecules and pathways that are dysregulated in AML, including fms-like tyrosine kinase 3 (FLT3) gene mutation and cluster of differentiation 33 (CD33) protein expression. Elevated expression of c-MYC is one of the molecular features of AML that determines the clinical prognosis in patients. Increased expression of c-MYC is also one of the cytogenetic characteristics of drug resistance in AML. However, direct targeting of c-MYC has been challenging due to its lack of binding sites for small molecules. In this review, we focused on the mechanisms involving the bromodomain and extra-terminal (BET) and cyclin-dependent kinase 9 (CDK9) proteins, phosphoinositide-Akt-mammalian target of rapamycin (PI3K/AKT/mTOR) and Janus kinase-signal transduction and activation of transcription (JAK/STAT) pathways, as well as various inflammatory cytokines, as an indirect means of regulating MYC overexpression in AML. Furthermore, we highlight Food and Drug Administration (FDA)-approved drugs for AML, and the results of preclinical and clinical studies on novel agents that have been or are currently being tested for efficacy and tolerability in AML therapy. Overall, this review summarizes our current knowledge of the molecular processes that promote leukemogenesis, as well as the various agents that intervene in specific pathways and directly or indirectly modulate c-MYC to disrupt AML pathogenesis and drug resistance.
Collapse
Affiliation(s)
- Kyle Gu
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Harry A May
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Min H Kang
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
7
|
Huang M, Ye A, Zhang H, Chen J, Yang T, Wei X, Gao Y, Ma Z. Ferulic Acid Alleviates Radiation-Induced Immune Damage by Acting on JAK/STAT Signaling Pathway. Pharmaceuticals (Basel) 2024; 17:1175. [PMID: 39338337 PMCID: PMC11434775 DOI: 10.3390/ph17091175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
The disruption of hematopoietic and immune functions is a significant consequence of the long-term effects of radiation exposure. This study investigated the potential mechanisms by which ferulic acid (FA) acts as a radioprotective agent in mitigating radiation-induced immune damage. C57BL/6J mice were exposed to a dose of 6.0 Gy of 60Co γ irradiation. FA was administered at doses of 25, 50, and 100 mg/kg/d for 7 days before and 30 days following irradiation. We evaluated changes in peripheral blood cells, T and B lymphocytes, natural killer cells in the spleen, and hematopoietic stem/progenitor cells in the bone marrow (BM). Whole-genome transcriptome sequencing of BM was performed to explore potential mechanisms. FA administration resulted in a significant reduction in malonaldehyde levels (p < 0.0001), an increase in catalase and beta-nicotinamide adenine dinucleotide levels in serum (p < 0.05), and enhanced multipotent progenitors (p < 0.01) and common lymphoid progenitors (p < 0.05) in the BM. Additionally, there was an elevation in white blood cell levels, red blood cell levels, and hemoglobin levels in peripheral blood (p < 0.01). Transcriptome analysis indicated that FA reversed the radiation-induced expression of genes related to immunity and inflammation. Enzyme-linked immunosorbent assay experiments further demonstrated that FA reduced interleukin-6 levels in the BM and decreased JAK1, JAK2, and STAT3 protein content (p < 0.01). In conclusion, FA might mitigate hematopoietic and immune damage by modulating the JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Mingyue Huang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Anping Ye
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- Department of Pharmaceutical Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| | - Haoyu Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Junru Chen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tingyu Yang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Xue Wei
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zengchun Ma
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
8
|
Wang Z, Jin X, Zeng J, Xiong Z, Chen X. The application of JAK inhibitors in the peri-transplantation period of hematopoietic stem cell transplantation for myelofibrosis. Ann Hematol 2024; 103:3293-3301. [PMID: 38494551 PMCID: PMC11358344 DOI: 10.1007/s00277-024-05703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Myelofibrosis (MF) is a myeloproliferative neoplasm (MPN) with a poor prognosis, and allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only treatment with curative potential. Ruxolitinib, a JAK1/2 inhibitor, has shown promising results in improving patients' symptoms, overall survival, and quality of life, and can be used as a bridging therapy to HSCT that increases the proportion of transplantable patients. However, the effect of this and similar drugs on HSCT outcomes is unknown, and the reports on their efficacy and safety in the peri-transplantation period vary widely in the published literature. This paper reviews clinical data related to the use of JAK inhibitors in the peri-implantation phase of hematopoietic stem cell transplantation for primary myelofibrosis and discusses their efficacy and safety.
Collapse
Affiliation(s)
- Zerong Wang
- West China Hospital, Sichuan University, Chendu, Sichuan, China
| | - Xuelian Jin
- West China Hospital, Sichuan University, Chendu, Sichuan, China
| | - Jiajia Zeng
- West China Hospital, Sichuan University, Chendu, Sichuan, China
| | - Zilin Xiong
- West China Hospital, Sichuan University, Chendu, Sichuan, China
| | - Xinchuan Chen
- West China Hospital, Sichuan University, Chendu, Sichuan, China.
| |
Collapse
|
9
|
Lv Y, Qi J, Babon JJ, Cao L, Fan G, Lang J, Zhang J, Mi P, Kobe B, Wang F. The JAK-STAT pathway: from structural biology to cytokine engineering. Signal Transduct Target Ther 2024; 9:221. [PMID: 39169031 PMCID: PMC11339341 DOI: 10.1038/s41392-024-01934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway serves as a paradigm for signal transduction from the extracellular environment to the nucleus. It plays a pivotal role in physiological functions, such as hematopoiesis, immune balance, tissue homeostasis, and surveillance against tumors. Dysregulation of this pathway may lead to various disease conditions such as immune deficiencies, autoimmune diseases, hematologic disorders, and cancer. Due to its critical role in maintaining human health and involvement in disease, extensive studies have been conducted on this pathway, ranging from basic research to medical applications. Advances in the structural biology of this pathway have enabled us to gain insights into how the signaling cascade operates at the molecular level, laying the groundwork for therapeutic development targeting this pathway. Various strategies have been developed to restore its normal function, with promising therapeutic potential. Enhanced comprehension of these molecular mechanisms, combined with advances in protein engineering methodologies, has allowed us to engineer cytokines with tailored properties for targeted therapeutic applications, thereby enhancing their efficiency and safety. In this review, we outline the structural basis that governs key nodes in this pathway, offering a comprehensive overview of the signal transduction process. Furthermore, we explore recent advances in cytokine engineering for therapeutic development in this pathway.
Collapse
Affiliation(s)
- You Lv
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Longxing Cao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Guohuang Fan
- Immunophage Biotech Co., Ltd, No. 10 Lv Zhou Huan Road, Shanghai, 201112, China
| | - Jiajia Lang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jin Zhang
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Pengbing Mi
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Faming Wang
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
10
|
Xu X, Huang Z, Ding C, Deng S, Ou J, Cai Z, Zhou Y, Liang H, Chen J, Wang Z, Liu X, Xuan L, Liu Q, Zheng Z, Li Z, Zhou H. STAT5 phosphorylation plus minimal residual disease defines a novel risk classification in adult B-cell acute lymphoblastic leukaemia. Br J Haematol 2024; 205:517-528. [PMID: 38639167 DOI: 10.1111/bjh.19467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
The dysregulation of the Janus family tyrosine kinase-signal transducer and activator of transcription (JAK-STAT) is closely related to acute lymphoblastic leukaemia (ALL), whereas the clinical value of phosphorylated STAT5 (pSTAT5) remains elusive. Herein we performed a prospective study on clinical significance of flow cytometry-based pSTAT5 in adult B-ALL patients. A total of 184 patients were enrolled in the Precision-Classification-Directed-Target-Total-Therapy (PDT)-ALL-2016 cohort between January 2018 and December 2021, and STAT5 phosphorylation was detected by flow cytometry at diagnosis. Based on flow-pSTAT5, the population was classified into pSTAT5low (113/184, 61.1%) and pSTAT5high (71/184, 38.9%). Overall survival (OS) and event-free survival (EFS) were inferior in pSTAT5high patients than in those with pSTAT5low (OS, 44.8% vs. 65.2%, p = 0.004; EFS, 23.5% vs. 52.1%, p < 0.001), which was further confirmed in an external validation cohort. Furthermore, pSTAT5 plus flow-based minimal residual disease (MRD) postinduction defines a novel risk classification as being high risk (HR, pSTAT5high + MRD+), standard risk (SR, pSTAT5low + MRD-) and others as moderate-risk group. Three identified patient subgroups are distinguishable with disparate survival curves (3-year OS rates, 36.5%, 56.7% and 76.3%, p < 0.001), which was confirmed on multivariate analysis (hazard ratio 3.53, p = 0.003). Collectively, our study proposed a novel, simple and flow-based risk classification by integrating pSTAT5 and MRD in favour of risk-guided treatment for B-ALL.
Collapse
Affiliation(s)
- Xiuli Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Hematology, Ganzhou People's Hospital (Nanfang Hospital Ganzhou Hospital), Ganzhou, China
| | - Zicong Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chenhao Ding
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shiyu Deng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiawang Ou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zihong Cai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haimei Liang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junjie Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - ZhiXiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Hematology, Ganzhou People's Hospital (Nanfang Hospital Ganzhou Hospital), Ganzhou, China
| | - Xiaoli Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Hematology, Ganzhou People's Hospital (Nanfang Hospital Ganzhou Hospital), Ganzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research, Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research, Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Zhongxin Zheng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhen Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongsheng Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Hematology, Ganzhou People's Hospital (Nanfang Hospital Ganzhou Hospital), Ganzhou, China
- Clinical Medical Research, Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| |
Collapse
|
11
|
Algarni A. Genetic Insights Into Leukemia Susceptibility in the Arab Population: A Scoping Review. Cureus 2024; 16:e67421. [PMID: 39310620 PMCID: PMC11415027 DOI: 10.7759/cureus.67421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
As per the Global Cancer Observatory, the WHO Eastern Mediterranean region (which includes the Arabic countries) ranks highest for age-standardized mortality rate at 4 per 100,000, thus indicating a probable role of genetic associations. Identifying the genes associated with leukemia in the Arab population is crucial for effective preventive and treatment strategies. This scoping review aimed to determine the nature and extent of research available on the genes associated with the major types of leukemia among the Arab population. As per the scoping review guidelines, a comprehensive search was conducted in PUBMED and Google Scholar for articles published before 01/10/2023 and focused on leukemia-related genes among the Arab population. In total 119 studies, focusing on genes associated with leukemia met the inclusion criteria. On reviewing these studies, 27 genes were found to be associated with ALL, 33 genes with AML, seven genes with CLL, and 14 genes with CML. The majority of these genes were associated with an increased risk for the disease. Notably, the 119 studies covered only nine out of the 22 Arab countries, with 56 studies carried out in Egypt, exhibiting an imbalance in the regional distribution of the research landscape. Thus, indicating the inadequacy of research on leukemia genetics in the Arab region in comparison to the Western studies. This finding highlights the need for extensive research in the Middle Eastern region to gain geographically heterogeneous genetic information about the Arab population. In conclusion, this scoping study highlights the genes associated with the major types of leukemia among the Arab population and also indicates the need for comprehensive and regionally balanced research on leukemia genetics in Middle Eastern countries. Addressing this gap is essential to provide robust genetic data that can be used for targeted interventions to improve leukemia outcomes in the Middle East. Increased research efforts in all Middle Eastern countries will contribute to a greater understanding of genetic predisposition and help develop effective prevention strategies and treatments tailored to this population.
Collapse
Affiliation(s)
- Abdulrahman Algarni
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, SAU
| |
Collapse
|
12
|
Dawalibi A, Alosaimi AA, Mohammad KS. Balancing the Scales: The Dual Role of Interleukins in Bone Metastatic Microenvironments. Int J Mol Sci 2024; 25:8163. [PMID: 39125732 PMCID: PMC11311339 DOI: 10.3390/ijms25158163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Bone metastases, a common and debilitating consequence of advanced cancers, involve a complex interplay between malignant cells and the bone microenvironment. Central to this interaction are interleukins (ILs), a group of cytokines with critical roles in immune modulation and inflammation. This review explores the dualistic nature of pro-inflammatory and anti-inflammatory interleukins in bone metastases, emphasizing their molecular mechanisms, pathological impacts, and therapeutic potential. Pro-inflammatory interleukins, such as IL-1, IL-6, and IL-8, have been identified as key drivers in promoting osteoclastogenesis, tumor proliferation, and angiogenesis. These cytokines create a favorable environment for cancer cell survival and bone degradation, contributing to the progression of metastatic lesions. Conversely, anti-inflammatory interleukins, including IL-4, IL-10, and IL-13, exhibit protective roles by modulating immune responses and inhibiting osteoclast activity. Understanding these opposing effects is crucial for developing targeted therapies aimed at disrupting the pathological processes in bone metastases. Key signaling pathways, including NF-κB, JAK/STAT, and MAPK, mediate the actions of these interleukins, influencing tumor cell survival, immune cell recruitment, and bone remodeling. Targeting these pathways presents promising therapeutic avenues. Current treatment strategies, such as the use of denosumab, tocilizumab, and emerging agents like bimekizumab and ANV419, highlight the potential of interleukin-targeted therapies in mitigating bone metastases. However, challenges such as therapeutic resistance, side effects, and long-term efficacy remain significant hurdles. This review also addresses the potential of interleukins as diagnostic and prognostic biomarkers, offering insights into patient stratification and personalized treatment approaches. Interleukins have multifaceted roles that depend on the context, including the environment, cell types, and cellular interactions. Despite substantial progress, gaps in research persist, particularly regarding the precise mechanisms by which interleukins influence the bone metastatic niche and their broader clinical implications. While not exhaustive, this overview underscores the critical roles of interleukins in bone metastases and highlights the need for continued research to fully elucidate their complex interactions and therapeutic potential. Addressing these gaps will be essential for advancing our understanding and treatment of bone metastases in cancer patients.
Collapse
Affiliation(s)
- Ahmad Dawalibi
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Amal Ahmed Alosaimi
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| |
Collapse
|
13
|
Elahimanesh M, Shokri N, Shabani R, Rahimi M, Najafi M. Exploring the potential of predicted miRNAs on the genes involved in the expansion of hematopoietic stem cells. Sci Rep 2024; 14:15551. [PMID: 38969714 PMCID: PMC11226654 DOI: 10.1038/s41598-024-66614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024] Open
Abstract
A major challenge in therapeutic approaches applying hematopoietic stem cells (HSCs) is the cell quantity. The primary objective of this study was to predict the miRNAs and anti-miRNAs using bioinformatics tools and investigate their effects on the expression levels of key genes predicted in the improvement of proliferation, and the inhibition of differentiation in HSCs isolated from Human umbilical cord blood (HUCB). A network including genes related to the differentiation and proliferation stages of HSCs was constructed by enriching data of text (PubMed) and StemChecker server with KEGG signaling pathways, and was improved using GEO datasets. Bioinformatics tools predicted a profile from miRNAs containing miR-20a-5p, miR-423-5p, and chimeric anti-miRNA constructed from 5'-miR-340/3'-miR-524 for the high-score genes (RB1, SMAD4, STAT1, CALML4, GNG13, and CDKN1A/CDKN1B genes) in the network. The miRNAs and anti-miRNA were transferred into HSCs using polyethylenimine (PEI). The gene expression levels were estimated using the RT-qPCR technique in the PEI + (miRNA/anti-miRNA)-contained cell groups (n = 6). Furthermore, CD markers (90, 16, and 45) were evaluated using flow cytometry. Strong relationships were found between the high-score genes, miRNAs, and chimeric anti-miRNA. The RB1, SMAD4, and STAT1 gene expression levels were decreased by miR-20a-5p (P < 0.05). Additionally, the anti-miRNA increased the gene expression level of GNG13 (P < 0.05), whereas the miR-423-5p decreased the CDKN1A gene expression level (P < 0.01). The cellular count also increased significantly (P < 0.05) but the CD45 differentiation marker did not change in the cell groups. The study revealed the predicted miRNA/anti-miRNA profile expands HSCs isolated from HUCB. While miR-20a-5p suppressed the RB1, SMAD4, and STAT1 genes involved in cellular differentiation, the anti-miRNA promoted the GNG13 gene related to the proliferation process. Notably, the mixed miRNA/anti-miRNA group exhibited the highest cellular expansion. This approach could hold promise for enhancing the cell quantity in HSC therapy.
Collapse
Affiliation(s)
- Mohammad Elahimanesh
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Shokri
- Clinical Biochemistry Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Anatomy Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Rahimi
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
- Clinical Biochemistry Department, Faculty of Medical Sciences, Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Sun Y, Tong H, Chu X, Li Y, Zhang J, Ding Y, Zhang S, Gui X, Chen C, Xu M, Li Z, Gardiner EE, Andrews RK, Zeng L, Xu K, Qiao J. Notch1 regulates hepatic thrombopoietin production. Blood 2024; 143:2778-2790. [PMID: 38603632 DOI: 10.1182/blood.2023023559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
ABSTRACT Notch signaling regulates cell-fate decisions in several developmental processes and cell functions. However, the role of Notch in hepatic thrombopoietin (TPO) production remains unclear. We noted thrombocytopenia in mice with hepatic Notch1 deficiency and so investigated TPO production and other features of platelets in these mice. We found that the liver ultrastructure and hepatocyte function were comparable between control and Notch1-deficient mice. However, the Notch1-deficient mice had significantly lower plasma TPO and hepatic TPO messenger RNA levels, concomitant with lower numbers of platelets and impaired megakaryocyte differentiation and maturation, which were rescued by addition of exogenous TPO. Additionally, JAK2/STAT3 phosphorylation was significantly inhibited in Notch1-deficient hepatocytes, consistent with the RNA-sequencing analysis. JAK2/STAT3 phosphorylation and TPO production was also impaired in cultured Notch1-deficient hepatocytes after treatment with desialylated platelets. Consistently, hepatocyte-specific Notch1 deletion inhibited JAK2/STAT3 phosphorylation and hepatic TPO production induced by administration of desialylated platelets in vivo. Interestingly, Notch1 deficiency downregulated the expression of HES5 but not HES1. Moreover, desialylated platelets promoted the binding of HES5 to JAK2/STAT3, leading to JAK2/STAT3 phosphorylation and pathway activation in hepatocytes. Hepatocyte Ashwell-Morell receptor (AMR), a heterodimer of asialoglycoprotein receptor 1 [ASGR1] and ASGR2, physically associates with Notch1, and inhibition of AMR impaired Notch1 signaling activation and hepatic TPO production. Furthermore, blockage of Delta-like 4 on desialylated platelets inhibited hepatocyte Notch1 activation and HES5 expression, JAK2/STAT3 phosphorylation, and subsequent TPO production. In conclusion, our study identifies a novel regulatory role of Notch1 in hepatic TPO production, indicating that it might be a target for modulating TPO level.
Collapse
Affiliation(s)
- Yueyue Sun
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Huan Tong
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Xiang Chu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Yingying Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Jie Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Yangyang Ding
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Sixuan Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Xiang Gui
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Chong Chen
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Mengdi Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Elizabeth E Gardiner
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Robert K Andrews
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| |
Collapse
|
15
|
Barth D, Van R, Cardwell J, Han MV. Supervised learning of enhancer-promoter specificity based on genome-wide perturbation studies highlights areas for improvement in learning. Bioinformatics 2024; 40:btae367. [PMID: 38870532 PMCID: PMC11211214 DOI: 10.1093/bioinformatics/btae367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
MOTIVATION Understanding the rules that govern enhancer-driven transcription remains a central unsolved problem in genomics. Now with multiple massively parallel enhancer perturbation assays published, there are enough data that we can utilize to learn to predict enhancer-promoter (EP) relationships in a data-driven manner. RESULTS We applied machine learning to one of the largest enhancer perturbation studies integrated with transcription factor (TF) and histone modification ChIP-seq. The results uncovered a discrepancy in the prediction of genome-wide data compared to data from targeted experiments. Relative strength of contact was important for prediction, confirming the basic principle of EP regulation. Novel features such as the density of the enhancers/promoters in the genomic region was found to be important, highlighting our lack of understanding on how other elements in the region contribute to the regulation. Several TF peaks were identified that improved the prediction by identifying the negatives and reducing False Positives. In summary, integrating genomic assays with enhancer perturbation studies increased the accuracy of the model, and provided novel insights into the understanding of enhancer-driven transcription. AVAILABILITY AND IMPLEMENTATION The trained models, data, and the source code are available at http://doi.org/10.5281/zenodo.11290386 and https://github.com/HanLabUNLV/sleps.
Collapse
Affiliation(s)
- Dylan Barth
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, United States
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV 89154, United States
| | - Richard Van
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, United States
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV 89154, United States
| | - Jonathan Cardwell
- Department of Medicine, University of Colorado School of Medicine, Denver, CO 80045, United States
| | - Mira V Han
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, United States
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV 89154, United States
| |
Collapse
|
16
|
Kuttikrishnan S, Prabhu KS, Khan AQ, Uddin S. Signaling networks guiding erythropoiesis. Curr Opin Hematol 2024; 31:89-95. [PMID: 38335037 DOI: 10.1097/moh.0000000000000808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
PURPOSE OF REVIEW Cytokine-mediated signaling pathways, including JAK/STAT, PI3K/AKT, and Ras/MAPK pathways, play an important role in the process of erythropoiesis. These pathways are involved in the survival, proliferation, and differentiation function of erythropoiesis. RECENT FINDINGS The JAK/STAT pathway controls erythroid progenitor differentiation, proliferation, and survival. The PI3K/AKT signaling cascade facilitates erythroid progenitor survival, proliferation, and final differentiation. During erythroid maturation, MAPK, triggered by EPO, suppresses myeloid genes, while PI3K is essential for differentiation. Pro-inflammatory cytokines activate signaling pathways that can alter erythropoiesis like EPOR-triggered signaling, including survival, differentiation, and proliferation. SUMMARY A comprehensive understanding of signaling networks is crucial for the formulation of treatment approaches for hematologic disorders. Further investigation is required to fully understand the mechanisms and interactions of these signaling pathways in erythropoiesis.
Collapse
Affiliation(s)
| | | | | | - Shahab Uddin
- Translational Research Institute
- Dermatology Institute, Academic Health System, Hamad Medical Corporation
- Laboratory of Animal Center, Qatar University, Doha, Qatar
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
17
|
Bhuria V, Franz T, Baldauf C, Böttcher M, Chatain N, Koschmieder S, Brümmendorf TH, Mougiakakos D, Schraven B, Kahlfuß S, Fischer T. Activating mutations in JAK2 and CALR differentially affect intracellular calcium flux in store operated calcium entry. Cell Commun Signal 2024; 22:186. [PMID: 38509561 PMCID: PMC10956330 DOI: 10.1186/s12964-024-01530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Calcium (Ca2+) signaling regulates various vital cellular functions, including integrin activation and cell migration. Store-operated calcium entry (SOCE) via calcium release-activated calcium (CRAC) channels represents a major pathway for Ca2+ influx from the extracellular space in multiple cell types. The impact of JAK2-V617F and CALR mutations which are disease initiating in myeloproliferative neoplasms (MPN) on SOCE, calcium flux from the endoplasmic reticulum (ER) to the cytosol, and related key signaling pathways in the presence or absence of erythropoietin (EPO) or thrombopoietin (TPO) is poorly understood. Thus, this study aimed to elucidate the effects of these mutations on the aforementioned calcium dynamics, in cellular models of MPN. METHODS Intracellular Ca2+ levels were measured over a time frame of 0-1080 s in Fura-2 AM labeled myeloid progenitor 32D cells expressing various mutations (JAK2-WT/EpoR, JAK2-V617F/EpoR; CALR-WT/MPL, CALR-ins5/MPL, and del52/MPL). Basal Ca2+ concentrations were assessed from 0-108 s. Subsequently, cells were stimulated with EPO/TPO in Ca2+-free Ringer solution, measuring Ca2+ levels from 109-594 s (store depletion). Then, 2 mM of Ca2+ buffer resembling physiological concentrations was added to induce SOCE, and Ca2+ levels were measured from 595-1080 s. Fura-2 AM emission ratios (F340/380) were used to quantify the integrated Ca2+ signal. Statistical significance was assessed by unpaired Student's t-test or Mann-Whitney-U-test, one-way or two-way ANOVA followed by Tukey's multiple comparison test. RESULTS Following EPO stimulation, the area under the curve (AUC) representing SOCE significantly increased in 32D-JAK2-V617F cells compared to JAK2-WT cells. In TPO-stimulated CALR cells, we observed elevated Ca2+ levels during store depletion and SOCE in CALR-WT cells compared to CALR-ins5 and del52 cells. Notably, upon stimulation, key components of the Ca2+ signaling pathways, including PLCγ-1 and IP3R, were differentially affected in these cell lines. Hyper-activated PLCγ-1 and IP3R were observed in JAK2-V617F but not in CALR mutated cells. Inhibition of calcium regulatory mechanisms suppressed cellular growth and induced apoptosis in JAK2-V617F cells. CONCLUSIONS This report highlights the impact of JAK2 and CALR mutations on Ca2+ flux (store depletion and SOCE) in response to stimulation with EPO and TPO. The study shows that the JAK2-V617F mutation strongly alters the regulatory mechanism of EpoR/JAK2-dependent intracellular calcium balance, affecting baseline calcium levels, EPO-induced calcium entry, and PLCγ-1 signaling pathways. Our results reveal an important role of calcium flux in the homeostasis of JAK2-V617F positive cells.
Collapse
Affiliation(s)
- Vikas Bhuria
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.
- Health-Campus Immunology, Infectiology, and Inflammation (GC-I3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany.
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany.
| | - Tobias Franz
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Conny Baldauf
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Martin Böttcher
- Health-Campus Immunology, Infectiology, and Inflammation (GC-I3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
- Department of Hematology and Oncology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center of Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center of Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center of Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Dimitrios Mougiakakos
- Health-Campus Immunology, Infectiology, and Inflammation (GC-I3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
- Department of Hematology and Oncology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Burkhart Schraven
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Health-Campus Immunology, Infectiology, and Inflammation (GC-I3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany
| | - Sascha Kahlfuß
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Health-Campus Immunology, Infectiology, and Inflammation (GC-I3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Thomas Fischer
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.
- Health-Campus Immunology, Infectiology, and Inflammation (GC-I3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany.
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
18
|
Zhang S, Yan J, He L, Jiang Z, Jiang H. STAT5a and SH2B3 novel mutations display malignancy roles in a triple-negative primary myelofibrosis patient. Cancer Gene Ther 2024; 31:484-494. [PMID: 38135698 DOI: 10.1038/s41417-023-00719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/02/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Primary myelofibrosis (PMF) patients frequently have JAK2 (V617F), CALR (exon 9), or MPL (W515 or exon 10) strong driver gene mutation, which triggers abnormal activation of the JAK2-STATs signaling pathway that plays a complex role in the occurrence of PMF. However, about 10-15% of PMF patients have no above typical mutations in these strong driver genes, known as being "triple-negative", which are associated with poor prognosis. In this paper, we reported a unique secondary acute myeloid leukemia (sAML) case transformed from triple-negative PMF combined with lung cancer and erythroderma occurrence at the same time, which has not been reported so far. Through whole blood exome sequencing, four novel noncanonical mutations were detected in key regulatory genes SH2B3 (Q748 and S710) and STAT5a (C350 and K354). Meanwhile, STAT5a-S710 and SH2B3-K354 noncanonical mutations gained strong malignant biofunction on promoting cell growth and tumorigenesis by accelerating the G1/S transition. In the mechanistic study, these pernicious phenotypes driven by noncanonical mutations might be initial PMF by activating p-STAT5a/c-Myc/CyclinD1 and p-STAT3/p-AKT/p-ERK1/2 signaling axes. Therefore, our study explored the deleterious roles of novel noncanonical mutations in STAT5a and SH2B3, which may serve as susceptibility genes and display the oncogenic biofunction in the progression of PMF to acute myeloid leukemia-M2a (AML-M2a).
Collapse
Affiliation(s)
- Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, 410013, Changsha, Hunan, P. R. China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, 410013, Changsha, Hunan, P. R. China
| | - Jinhua Yan
- Department of Cell Biology, School of Life Sciences, Central South University, 410013, Changsha, Hunan, P. R. China
| | - Lan He
- School of Biomedical Science, Hunan University, 410013, Changsha, Hunan, P. R. China
| | - Zhiping Jiang
- Department of Hematology, Central South University, Xiangya Hospital, 410013, Changsha, Hunan, P. R. China.
- Xiangya Hospital, Central South University, National Clinical Research Center for Geriatric Disorders, 410013, Changsha, Hunan, P. R. China.
- Hunan Hematology Oncology Clinical Medical Research Center, 410013, Changsha, Hunan, P. R. China.
| | - Hao Jiang
- Department of Biomedical Informatics, School of Life Sciences, Central South University, 410013, Changsha, Hunan, P. R. China.
| |
Collapse
|
19
|
Azizidoost S, Nasrolahi A, Sheykhi-Sabzehpoush M, Anbiyaiee A, Khoshnam SE, Farzaneh M, Uddin S. Signaling pathways governing the behaviors of leukemia stem cells. Genes Dis 2024; 11:830-846. [PMID: 37692500 PMCID: PMC10491880 DOI: 10.1016/j.gendis.2023.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 01/02/2023] [Indexed: 08/28/2023] Open
Abstract
Leukemia is a malignancy in the blood that develops from the lymphatic system and bone marrow. Although various treatment options have been used for different types of leukemia, understanding the molecular pathways involved in the development and progression of leukemia is necessary. Recent studies showed that leukemia stem cells (LSCs) play essential roles in the pathogenesis of leukemia by targeting several signaling pathways, including Notch, Wnt, Hedgehog, and STAT3. LSCs are highly proliferative cells that stimulate tumor initiation, migration, EMT, and drug resistance. This review summarizes cellular pathways that stimulate and prevent LSCs' self-renewal, metastasis, and tumorigenesis.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Mohadeseh Sheykhi-Sabzehpoush
- Department of Laboratory, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 2193672411, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
20
|
Almalki WH, Almujri SS. The dual roles of circRNAs in Wnt/β-Catenin signaling and cancer progression. Pathol Res Pract 2024; 255:155132. [PMID: 38335783 DOI: 10.1016/j.prp.2024.155132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
Cancer, a complex pathophysiological condition, arises from the abnormal proliferation and survival of cells due to genetic mutations. Dysregulation of cell cycle control, apoptosis, and genomic stability contribute to uncontrolled growth and metastasis. Tumor heterogeneity, microenvironmental influences, and immune evasion further complicate cancer dynamics. The intricate interplay between circular RNAs (circRNAs) and the Wnt/β-Catenin signalling pathway has emerged as a pivotal axis in the landscape of cancer biology. The Wnt/β-Catenin pathway, a critical regulator of cell fate and proliferation, is frequently dysregulated in various cancers. CircRNAs, a class of non-coding RNAs with closed-loop structures, have garnered increasing attention for their diverse regulatory functions. This review systematically explores the intricate crosstalk between circRNAs and the Wnt/β-Catenin pathway, shedding light on their collective impact on cancer initiation and progression. The review explores the diverse mechanisms through which circRNAs modulate the Wnt/β-Catenin pathway, including sponging microRNAs, interacting with RNA-binding proteins, and influencing the expression of key components in the pathway. Furthermore, the review highlights specific circRNAs implicated in various cancer types, elucidating their roles as either oncogenic or tumour-suppressive players in the context of Wnt/β-Catenin signaling. The intricate regulatory networks formed by circRNAs in conjunction with the Wnt/β-Catenin pathway are discussed, providing insights into potential therapeutic targets and diagnostic biomarkers. This comprehensive review delves into the multifaceted roles of circRNAs in orchestrating tumorigenesis through their regulatory influence on the Wnt/β-Catenin pathway.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Aseer, Saudi Arabia
| |
Collapse
|
21
|
Salcin H, Goker Bagca B, Alcitepe I, Biray Avci C, Aslan R, Annette Akgur S, Tezcanli Kaymaz B. Investigating the Effects of a Synthetic Cannabinoid on the Pathogenesis of Leukemia and Leukemic Stem Cells: A New Therapeutic Approach. Cannabis Cannabinoid Res 2024; 9:212-222. [PMID: 35834597 DOI: 10.1089/can.2021.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The popularity and usage of synthetic cannabinoids (SCs) are increasing due to their easy accessibility and psychoactive effects worldwide. Studies on cannabinoids on leukemic stem cells (LSC) and hematopoietic stem cells (HSCs), which are the precursors of leukemia cells, generally depend on the natural cannabinoid delta-9-THC. As there is only a limited number of studies focusing on the results of SC applications, the reflections upon LSCs have to be clarified. In this study, biological responses and antileukemic effects of JWH-018-one of the first produced and widely used SCs-were evaluated upon leukemia cells. Whether JWH-018 exhibited a preventive effect on both leukemic and HSCs was evaluated by presenting a therapeutic approach for the first time in the literature. Cells were analyzed in case of cell proliferation, apoptosis, and transcriptional expression profiling of some significant JAK/STAT and AKT/mTOR pathways, apoptotic, cell cycle regulation, and epigenetic chromatin remodeling-related genes following JWH-018 treatment. In conclusion, however, further studies are still needed upon both HSCs and LSCs to illuminate the effects of SCs on leukemogenesis on chronic myeloid leukemia (CML) more clearly; we consider that the JWH-018 can provide a therapeutic effect on the pathogenesis of leukemia and particularly upon LSCs and SCs might have therapeutic potential in addition to current therapy.
Collapse
Affiliation(s)
- Hilal Salcin
- Basic Oncology Department, Ege University Health Science Institute, Izmir, Turkey
- Medical Biology Department, Ege University Medical School, Izmir, Turkey
| | - Bakiye Goker Bagca
- Medical Biology Department, Aydin Adnan Menderes University Medical School, Aydin, Turkey
| | - Ilayda Alcitepe
- Medical Biology Department, Ege University Medical School, Izmir, Turkey
| | - Cigir Biray Avci
- Medical Biology Department, Ege University Medical School, Izmir, Turkey
| | - Rukiye Aslan
- Addiction Toxicology Department, Ege University Institute of Substance Abuse, Toxicology and Pharmaceutical Sciences, Izmir, Turkey
| | - Serap Annette Akgur
- Addiction Toxicology Department, Ege University Institute of Substance Abuse, Toxicology and Pharmaceutical Sciences, Izmir, Turkey
| | | |
Collapse
|
22
|
Sun S, Rodriguez G, Zhao G, Sanchez JE, Guo W, Du D, Rodriguez Moncivais OJ, Hu D, Liu J, Kirken RA, Li L. A novel approach to study multi-domain motions in JAK1's activation mechanism based on energy landscape. Brief Bioinform 2024; 25:bbae079. [PMID: 38446738 PMCID: PMC10939344 DOI: 10.1093/bib/bbae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/17/2024] [Accepted: 02/12/2024] [Indexed: 03/08/2024] Open
Abstract
The family of Janus Kinases (JAKs) associated with the JAK-signal transducers and activators of transcription signaling pathway plays a vital role in the regulation of various cellular processes. The conformational change of JAKs is the fundamental steps for activation, affecting multiple intracellular signaling pathways. However, the transitional process from inactive to active kinase is still a mystery. This study is aimed at investigating the electrostatic properties and transitional states of JAK1 to a fully activation to a catalytically active enzyme. To achieve this goal, structures of the inhibited/activated full-length JAK1 were modelled and the energies of JAK1 with Tyrosine Kinase (TK) domain at different positions were calculated, and Dijkstra's method was applied to find the energetically smoothest path. Through a comparison of the energetically smoothest paths of kinase inactivating P733L and S703I mutations, an evaluation of the reasons why these mutations lead to negative or positive regulation of JAK1 are provided. Our energy analysis suggests that activation of JAK1 is thermodynamically spontaneous, with the inhibition resulting from an energy barrier at the initial steps of activation, specifically the release of the TK domain from the inhibited Four-point-one, Ezrin, Radixin, Moesin-PK cavity. Overall, this work provides insights into the potential pathway for TK translocation and the activation mechanism of JAK1.
Collapse
Affiliation(s)
- Shengjie Sun
- Department of Biomedical Informatic, School of Life Sciences, Central South University, Changsha 410083, China
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave, TX 79968, USA
| | - Georgialina Rodriguez
- Department of Biological Sciences, The University of Texas at El Paso, 500 W University Ave, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W University Ave, TX, 79968, USA
| | - Gaoshu Zhao
- Google LLC, 1600 Amphitheatre Parkway Mountain View, CA 94043, USA
| | - Jason E Sanchez
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave, TX 79968, USA
| | - Wenhan Guo
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave, TX 79968, USA
| | - Dan Du
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave, TX 79968, USA
| | - Omar J Rodriguez Moncivais
- Department of Biological Sciences, The University of Texas at El Paso, 500 W University Ave, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W University Ave, TX, 79968, USA
| | - Dehua Hu
- Department of Biomedical Informatic, School of Life Sciences, Central South University, Changsha 410083, China
| | - Jing Liu
- Department of Hematology, The Second Xiangya Hospital of Central South University; Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410083, China
| | - Robert Arthur Kirken
- Department of Biological Sciences, The University of Texas at El Paso, 500 W University Ave, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W University Ave, TX, 79968, USA
| | - Lin Li
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave, TX 79968, USA
- Google LLC, 1600 Amphitheatre Parkway Mountain View, CA 94043, USA
- Department of Physics, The University of Texas at El Paso, 500 W University Ave, TX 79968, USA
| |
Collapse
|
23
|
Dong H, Chang CD, Gao F, Zhang N, Yan XJ, Wu X, Wang YH. The anti-leukemia activity and mechanisms of shikonin: a mini review. Front Pharmacol 2023; 14:1271252. [PMID: 38026987 PMCID: PMC10651754 DOI: 10.3389/fphar.2023.1271252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Leukemia encompasses a group of highly heterogeneous diseases that pose a serious threat to human health. The long-term outcome of patients with leukemia still needs to be improved and new effective therapeutic strategies continue to be an unmet clinical need. Shikonin (SHK) is a naphthoquinone derivative that shows multiple biological function includes anti-tumor, anti-inflammatory, and anti-allergic effects. Numerous studies have reported the anti-leukemia activity of SHK during the last 3 decades and there are studies showing that SHK is particularly effective towards various leukemia cells compared to solid tumors. In this review, we will discuss the anti-leukemia effect of SHK and summarize the underlying mechanisms. Therefore, SHK may be a promising agent to be developed as an anti-leukemia drug.
Collapse
Affiliation(s)
- Han Dong
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Chun-Di Chang
- Department of Neurology, Jilin Province People’s Hospital, Changchun, China
| | - Fei Gao
- Endocrine Department, Qian Wei Hospital of Jilin Province, Changchun, China
| | - Na Zhang
- Electrodiagnosis Department, Jilin Province FAW General Hospital, Changchun, China
| | - Xing-Jian Yan
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Xue Wu
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yue-Hui Wang
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
24
|
Park H, Lee S, Lee J, Moon H, Ro SW. Exploring the JAK/STAT Signaling Pathway in Hepatocellular Carcinoma: Unraveling Signaling Complexity and Therapeutic Implications. Int J Mol Sci 2023; 24:13764. [PMID: 37762066 PMCID: PMC10531214 DOI: 10.3390/ijms241813764] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular Carcinoma (HCC) continues to pose a substantial global health challenge due to its high incidence and limited therapeutic options. In recent years, the Janus Kinase (JAK) and Signal Transducer and Activator of Transcription (STAT) pathway has emerged as a critical signaling cascade in HCC pathogenesis. The review commences with an overview of the JAK/STAT pathway, delving into the dynamic interplay between the JAK/STAT pathway and its numerous upstream activators, such as cytokines and growth factors enriched in pathogenic livers afflicted with chronic inflammation and cirrhosis. This paper also elucidates how the persistent activation of JAK/STAT signaling leads to diverse oncogenic processes during hepatocarcinogenesis, including uncontrolled cell proliferation, evasion of apoptosis, and immune escape. In the context of therapeutic implications, this review summarizes recent advancements in targeting the JAK/STAT pathway for HCC treatment. Preclinical and clinical studies investigating inhibitors and modulators of JAK/STAT signaling are discussed, highlighting their potential in suppressing the deadly disease. The insights presented herein underscore the necessity for continued research into targeting the JAK/STAT signaling pathway as a promising avenue for HCC therapy.
Collapse
Affiliation(s)
| | | | | | | | - Simon Weonsang Ro
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Republic of Korea; (H.P.); (S.L.); (J.L.); (H.M.)
| |
Collapse
|
25
|
Marrero RJ, Lamba JK. Current Landscape of Genome-Wide Association Studies in Acute Myeloid Leukemia: A Review. Cancers (Basel) 2023; 15:3583. [PMID: 37509244 PMCID: PMC10377605 DOI: 10.3390/cancers15143583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Acute myeloid leukemia (AML) is a clonal hematopoietic disease that arises from chromosomal and genetic aberrations in myeloid precursor cells. AML is one of the most common types of acute leukemia in adults; however, it is relatively rare overall, comprising about 1% of all cancers. In the last decade or so, numerous genome-wide association studies (GWAS) have been conducted to screen between hundreds of thousands and millions of variants across many human genomes to discover genetic polymorphisms associated with a particular disease or phenotype. In oncology, GWAS has been performed in almost every commonly occurring cancer. Despite the increasing number of studies published regarding other malignancies, there is a paucity of GWAS studies for AML. In this review article, we will summarize the current status of GWAS in AML.
Collapse
Affiliation(s)
- Richard J. Marrero
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Jatinder K. Lamba
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- University of Florida Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
- Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
26
|
Sun S, Rodriguez G, Xie Y, Guo W, Hernandez AEL, Sanchez JE, Kirken RA, Li L. Phosphorylation of Tyrosine 841 Plays a Significant Role in JAK3 Activation. Life (Basel) 2023; 13:981. [PMID: 37109511 PMCID: PMC10141632 DOI: 10.3390/life13040981] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Janus Kinase 3 (JAK3) plays a key role in the development, proliferation, and differentiation of various immune cells. It regulates gene expression by phosphorylation of Signal Transducers and Activators of Transcriptions (STATs) via the JAK/STAT pathway. Recently, we found a new JAK3 phosphorylation site, tyrosine 841 (Y841). The results showed that pY841 helps the kinase domain flip around the pseudo kinase domain, which may cause JAK3 conformational changes. It also reduces the size of the cleft between the N-lobe and the C-lobe of the JAK3 kinase domain. However, pY841 was found to enlarge the cleft when ATP/ADP was bound to the kinase. The increase in the cleft size suggested that pY841 enhanced the elasticity of the kinase domain. For unphosphorylated JAK3 (JAK3-Y841), the binding forces between the kinase domain and ATP or ADP were similar. After phosphorylation of Y841, JAK3-pY841 exhibited more salt bridges and hydrogen bonds between ATP and the kinase than between ADP and the kinase. Consequently, the electrostatic binding force between ATP and the kinase was higher than that between ADP and the kinase. The result was that compared to ADP, ATP was more attractive to JAK3 when Y841 was phosphorylated. Therefore, JAK3-pY841 tended to bind ATP rather than ADP. This work provides new insights into the role of phosphorylation in kinase activation and ATP hydrolysis and sheds light on the importance of understanding the molecular mechanisms that regulate the kinase function.
Collapse
Affiliation(s)
- Shengjie Sun
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| | - Georgialina Rodriguez
- Department of Biological Sciences, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| | - Yixin Xie
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
- Department of Information Technology, College of Computing and Software Engineering, Kennesaw State University, 1100 South Marietta Pkwy SE, Marietta, GA 30060, USA
| | - Wenhan Guo
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| | - Alan E. Lopez Hernandez
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| | - Jason E. Sanchez
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| | - Robert Arthur Kirken
- Department of Biological Sciences, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| | - Lin Li
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
- Department of Physics, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| |
Collapse
|
27
|
Yuksel TN, Halici Z, Cadirci E, Toktay E, Ozdemir B, Bozkurt A. Effect of trimetazidine against ovarian ischemia/reperfusion injury in rat model: A new pathway: JAK2/STAT3. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:1370-1379. [PMID: 37886007 PMCID: PMC10598820 DOI: 10.22038/ijbms.2023.72544.15776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/18/2023] [Indexed: 10/28/2023]
Abstract
Objectives Ovarian ischemia/reperfusion (I/R) is an extremely complex pathological problem that begins with oxygen deprivation, progresses to excessive free radical production, and intensifies inflammation. The JAK2/STAT3 signaling pathway is a multipurpose signaling transcript channel that plays a role in several biological functions. Trimetazidine (TMZ) is a cellular anti-ischemic agent. This study aims to investigate the effects of TMZ on ovarian I/R injury in rats. Materials and Methods sixty four rats were divided into 8 groups at random: healthy(group1); healthy+TMZ20(group2); ischemia (I) (group 3); I+TMZ10(group4); I+ TMZ20(group5); I/R(group6); I/R+TMZ10(group7); I/R+TMZ20(group8). Vascular clamps were placed just beneath the ovaries and over the uterine horns for 3 hr to induce ischemia. The clamps were removed for the reperfusion groups, and the rats were reperfused with care to ensure that the blood flowed into the ovaries, subjecting them to reperfusion for 3 hr. TMZ was administered orally by gavage 6 and 1 hr before operations. At the end of the experiment, ovarian tissues were removed for biochemical, molecular, and histopathological investigation. Results TMZ administration ameliorated ischemia/reperfusion-induced disturbances in GSH and MDA levels. TMZ treatment inhibited I/R-induced JAK2/STAT3 signaling pathway activation in ovarian tissues. TMZ administration also improved the increase in the mRNA expressions of IL-1β, TNF-α, and NF-κB caused by ischemia/reperfusion injury. Moreover, TMZ treatment improved histopathologic injury in ovarian tissues caused by ischemia/reperfusion. Conclusion TMZ treatment protected rats against ovarian ischemia/reperfusion injury by alleviating oxidative stress and inflammatory cascades. These findings may provide a mechanistic basis for using TMZ to treat ovarian ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Tugba Nurcan Yuksel
- Department of Pharmacology, Faculty of Medicine, Tekirdag Namık Kemal University, Tekirdag, Türki̇ye
| | - Zekai Halici
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Türki̇ye
- Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Türki̇ye
| | - Elif Cadirci
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Türki̇ye
- Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Türki̇ye
| | - Erdem Toktay
- Department of Histology and Embryology, Faculty of Medicine, Kafkas University, Kars, Türki̇ye
| | - Bengül Ozdemir
- Department of Histology and Embryology, Faculty of Medicine, Kafkas University, Kars, Türki̇ye
| | - Ayşe Bozkurt
- Department of Pharmacology, Faculty of Pharmacy, Van Yuzuncu Yıl University, Van, Türki̇ye
| |
Collapse
|
28
|
Dong G, Xu X, Li Y, Ouyang W, Zhao W, Gu Y, Li J, Liu T, Zeng X, Zou H, Wang S, Chen Y, Liu S, Sun H, Liu C. Stemness-related genes revealed by single-cell profiling of naïve and stimulated human CD34 + cells from CB and mPB. Clin Transl Med 2023; 13:e1175. [PMID: 36683248 PMCID: PMC9868212 DOI: 10.1002/ctm2.1175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Hematopoietic stem cells (HSCs) from different sources show varied repopulating capacity, and HSCs lose their stemness after long-time ex vivo culture. A deep understanding of these phenomena may provide helpful insights for HSCs. METHODS Here, we applied single-cell RNA-seq (scRNA-seq) to analyse the naïve and stimulated human CD34+ cells from cord blood (CB) and mobilised peripheral blood (mPB). RESULTS We collected over 16 000 high-quality single-cell data to construct a comprehensive inference map and characterised the HSCs under a quiescent state on the hierarchy top. Then, we compared HSCs in CB with those in mPB and HSCs of naïve samples to those of cultured samples, and identified stemness-related genes (SRGs) associated with cell source (CS-SRGs) and culture time (CT-SRGs), respectively. Interestingly, CS-SRGs and CT-SRGs share genes enriched in the signalling pathways such as mRNA catabolic process, translational initiation, ribonucleoprotein complex biogenesis and cotranslational protein targeting to membrane, suggesting dynamic protein translation and processing may be a common requirement for stemness maintenance. Meanwhile, CT-SRGs are enriched in pathways involved in glucocorticoid and corticosteroid response that affect HSCs homing and engraftment. In contrast, CS-SRGs specifically contain genes related to purine and ATP metabolic process, which is crucial for HSC homeostasis in the stress settings. Particularly, when CT-SRGs are used as reference genes for the construction of the development trajectory of CD34+ cells, lymphoid and myeloid lineages are clearly separated after HSCs/MPPs. Finally, we presented an application through a small-scale drug screening using Connectivity Map (CMap) against CT-SRGs. A small molecule, cucurbitacin I, was found to efficiently expand HSCs ex vivo while maintaining its stemness. CONCLUSIONS Our findings provide new perspectives for understanding HSCs, and the strategy to identify candidate molecules through SRGs may be applicable to study other stem cells.
Collapse
Affiliation(s)
- Guoyi Dong
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- China National GeneBankBGI‐ShenzhenShenzhen518120China
- BGI‐ShenzhenShenzhen518083China
| | - Xiaojing Xu
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- China National GeneBankBGI‐ShenzhenShenzhen518120China
- BGI‐ShenzhenShenzhen518083China
| | - Yue Li
- Department of Hematology and OncologyShenzhen Children's HospitalShenzhenChina
| | - Wenjie Ouyang
- China National GeneBankBGI‐ShenzhenShenzhen518120China
- BGI‐ShenzhenShenzhen518083China
| | - Weihua Zhao
- Shenzhen Second People's HospitalFirst Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Ying Gu
- China National GeneBankBGI‐ShenzhenShenzhen518120China
- BGI‐ShenzhenShenzhen518083China
| | - Jie Li
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- China National GeneBankBGI‐ShenzhenShenzhen518120China
- BGI‐ShenzhenShenzhen518083China
| | - Tianbin Liu
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- China National GeneBankBGI‐ShenzhenShenzhen518120China
- BGI‐ShenzhenShenzhen518083China
| | - Xinru Zeng
- China National GeneBankBGI‐ShenzhenShenzhen518120China
| | - Huilin Zou
- China National GeneBankBGI‐ShenzhenShenzhen518120China
| | - Shuguang Wang
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yue Chen
- China National GeneBankBGI‐ShenzhenShenzhen518120China
- BGI‐ShenzhenShenzhen518083China
| | - Sixi Liu
- Department of Hematology and OncologyShenzhen Children's HospitalShenzhenChina
| | - Hai‐Xi Sun
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- China National GeneBankBGI‐ShenzhenShenzhen518120China
- BGI‐BeijingBeijing102601China
| | - Chao Liu
- China National GeneBankBGI‐ShenzhenShenzhen518120China
- BGI‐ShenzhenShenzhen518083China
| |
Collapse
|
29
|
Agashe RP, Lippman SM, Kurzrock R. JAK: Not Just Another Kinase. Mol Cancer Ther 2022; 21:1757-1764. [PMID: 36252553 PMCID: PMC10441554 DOI: 10.1158/1535-7163.mct-22-0323] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/07/2022] [Accepted: 10/07/2022] [Indexed: 01/12/2023]
Abstract
The JAK/STAT axis is implicated in cancer, inflammation, and immunity. Numerous cytokines/growth factors affect JAK/STAT signaling. JAKs (JAK1, JAK2, JAK3, and TYK2) noncovalently associate with cytokine receptors, mediate receptor tyrosine phosphorylation, and recruit ≥1 STAT proteins (STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b, and STAT6). Tyrosine-phosphorylated STATs dimerize and are then transported into the nucleus to function as transcription factors. Signaling is attenuated by specific suppressor of cytokine signaling proteins, creating a negative feedback loop. Both germline mutations and polymorphisms of JAK family members correlate with specific diseases: Systemic lupus erythematosus (TYK2 polymorphisms); severe combined immunodeficiency (JAK3 mutations); pediatric acute lymphoblastic leukemia (TYK2 mutations); and hereditary thrombocytosis (JAK2 mutations). Somatic gain-of-function JAK mutations mainly occur in hematologic malignancies, with the activating JAK2 V617F being a myeloproliferative disorder hallmark; it is also seen in clonal hematopoiesis of indeterminate potential. Several T-cell malignancies, as well as B-cell acute lymphoblastic leukemia, and acute megakaryoblastic leukemia also harbor JAK family somatic alterations. On the other hand, JAK2 copy-number loss is associated with immune checkpoint inhibitor resistance. JAK inhibitors (jakinibs) have been deployed in many conditions with JAK activation; they are approved in myeloproliferative disorders, rheumatoid and psoriatic arthritis, atopic dermatitis, ulcerative colitis, graft-versus-host disease, alopecia areata, ankylosing spondylitis, and in patients hospitalized for COVID-19. Clinical trials are investigating jakinibs in multiple other autoimmune/inflammatory conditions. Furthermore, dermatologic and neurologic improvements have been observed in children with Aicardi-Goutieres syndrome (a genetic interferonopathy) treated with JAK inhibitors.
Collapse
Affiliation(s)
| | | | - Razelle Kurzrock
- Medical College of Wisconsin, Milwaukee, Wisconsin
- Win Consortium, Paris, France
| |
Collapse
|
30
|
Alcitepe İ, Salcin H, Karatekin İ, Kaymaz BT. HDAC inhibitor Vorinostat and BET inhibitor Plx51107 epigenetic agents' combined treatments exert a therapeutic approach upon acute myeloid leukemia cell model. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:257. [PMID: 36224430 DOI: 10.1007/s12032-022-01858-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
Abstract
The process of cancer initiation and development is regulated via the transcriptional expression of cells going under genomic and epigenetic changes. Targeting epigenetic "readers", i.e., bromodomains (BRD) and post-translational modifications of nucleosomal histone proteins regulate gene expression in both cancerous and healthy cells. In this study, the new epigenetic agent BRD inhibitor PLX51107 and histone deacetylase (HDAC) inhibitor SAHA' s (Vorinostat) single/combined applications' reflections were analyzed in case of cell proliferation, cytotoxicity, apoptosis, cell cycle arrest, and finally target gene expression regulation upon both AML and healthy B-lymphocyte cells; HL60 and NCIBL2171, respectively; in vitro. Since mono treatments of either Vorinostat or Plx51107 regulated cellular responses such as growth, proliferation, apoptosis, and cell cycle arrest of tumor cells; their combination treatments exerted accelerated results. We detected that combined treatment of Plx51107 and Vorinostat strengthened effects detected upon leukemic cells for gaining more sensitization to the agents, decreasing cell proliferation, dramatically inducing apoptosis, and cell cycle arrest; thus regulating target gene expressions. We have shown for the first time that the newly analyzed BRD inhibitor Plx51107 could be a promising therapeutic approach for hematological malignancies and its mono or combined usage might support a rapid transition to clinical trials.
Collapse
Affiliation(s)
- İlayda Alcitepe
- Medical Biology Department, Ege University Medical School, Izmir, Turkey
| | - Hilal Salcin
- Basic Oncology Department, Ege University Health Science Institute, Izmir, Turkey
| | - İlknur Karatekin
- Medical Biology Department, Ege University Medical School, Izmir, Turkey
| | | |
Collapse
|
31
|
Al-Rawashde FA, Al-wajeeh AS, Vishkaei MN, Saad HKM, Johan MF, Taib WRW, Ismail I, Al-Jamal HAN. Thymoquinone Inhibits JAK/STAT and PI3K/Akt/ mTOR Signaling Pathways in MV4-11 and K562 Myeloid Leukemia Cells. Pharmaceuticals (Basel) 2022; 15:ph15091123. [PMID: 36145344 PMCID: PMC9504933 DOI: 10.3390/ph15091123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Constitutive activation of Janus tyrosine kinase-signal transducer and activator of transcription (JAK/STAT) and Phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathways plays a crucial role in the development of acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). Thymoquinone (TQ), one of the main constituents of Nigella sativa, has shown anti-cancer activities in several cancers. However, the inhibitory effect mechanism of TQ on leukemia has not been fully understood. Therefore, this study aimed to investigate the effect of TQ on JAK/STAT and PI3K/Akt/mTOR pathways in MV4-11 AML cells and K562 CML cells. FLT3-ITD positive MV4-11 cells and BCR-ABL positive K562 cells were treated with TQ. Cytotoxicity assay was assessed using WSTs-8 kit. The expression of the target genes was evaluated using RT-qPCR. The phosphorylation status and the levels of proteins involved in JAK/STAT and PI3K/Akt/mTOR pathways were investigated using Jess western analysis. TQ induced a dose and time dependent inhibition of K562 cells proliferation. TQ significantly downregulated PI3K, Akt, and mTOR and upregulated PTEN expression with a significant inhibition of JAK/STAT and PI3K/Akt/mTOR signaling. In conclusion, TQ reduces the expression of PI3K, Akt, and mTOR genes and enhances the expression of PTEN gene at the mRNA and protein levels. TQ also inhibits JAK/STAT and PI3K/Akt/mTOR pathways, and consequently inhibits proliferation of myeloid leukemia cells, suggesting that TQ has potential anti-leukemic effects on both AML and CML cells.
Collapse
Affiliation(s)
- Futoon Abedrabbu Al-Rawashde
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Terengganu 21300, Malaysia
- Department of Anatomy and Histology, Faculty of Medicine, Mutah University, Al-Karak 61710, Jordan
| | | | | | - Hanan Kamel M. Saad
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Terengganu 21300, Malaysia
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Wan Rohani Wan Taib
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Terengganu 21300, Malaysia
| | - Imilia Ismail
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Terengganu 21300, Malaysia
| | - Hamid Ali Nagi Al-Jamal
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Terengganu 21300, Malaysia
- Correspondence: ; Tel.: +60-174729012
| |
Collapse
|
32
|
Li J, Kalev-Zylinska ML. Advances in molecular characterization of myeloid proliferations associated with Down syndrome. Front Genet 2022; 13:891214. [PMID: 36035173 PMCID: PMC9399805 DOI: 10.3389/fgene.2022.891214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Myeloid leukemia associated with Down syndrome (ML-DS) has a unique molecular landscape that differs from other subtypes of acute myeloid leukemia. ML-DS is often preceded by a myeloproliferative neoplastic condition called transient abnormal myelopoiesis (TAM) that disrupts megakaryocytic and erythroid differentiation. Over the last two decades, many genetic and epigenetic changes in TAM and ML-DS have been elucidated. These include overexpression of molecules and micro-RNAs located on chromosome 21, GATA1 mutations, and a range of other somatic mutations and chromosomal alterations. In this review, we summarize molecular changes reported in TAM and ML-DS and provide a comprehensive discussion of these findings. Recent advances in the development of CRISPR/Cas9-modified induced pluripotent stem cell-based disease models are also highlighted. However, despite significant progress in this area, we still do not fully understand the pathogenesis of ML-DS, and there are no targeted therapies. Initial diagnosis of ML-DS has a favorable prognosis, but refractory and relapsed disease can be difficult to treat; therapeutic options are limited in Down syndrome children by their stronger sensitivity to the toxic effects of chemotherapy. Because of the rarity of TAM and ML-DS, large-scale multi-center studies would be helpful to advance molecular characterization of these diseases at different stages of development and progression.
Collapse
Affiliation(s)
- Jixia Li
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, China
- *Correspondence: Jixia Li, ; Maggie L. Kalev-Zylinska,
| | - Maggie L. Kalev-Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Haematology Laboratory, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
- *Correspondence: Jixia Li, ; Maggie L. Kalev-Zylinska,
| |
Collapse
|
33
|
A Journey Into the Unknown: PhD Students in a European Training Network on Age-related Changes in Hematopoiesis Conduct Their Project During a Global Pandemic. Hemasphere 2022; 6:e763. [PMID: 35928544 PMCID: PMC9345638 DOI: 10.1097/hs9.0000000000000763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
34
|
Downes CEJ, McClure BJ, McDougal DP, Heatley SL, Bruning JB, Thomas D, Yeung DT, White DL. JAK2 Alterations in Acute Lymphoblastic Leukemia: Molecular Insights for Superior Precision Medicine Strategies. Front Cell Dev Biol 2022; 10:942053. [PMID: 35903543 PMCID: PMC9315936 DOI: 10.3389/fcell.2022.942053] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer, arising from immature lymphocytes that show uncontrolled proliferation and arrested differentiation. Genomic alterations affecting Janus kinase 2 (JAK2) correlate with some of the poorest outcomes within the Philadelphia-like subtype of ALL. Given the success of kinase inhibitors in the treatment of chronic myeloid leukemia, the discovery of activating JAK2 point mutations and JAK2 fusion genes in ALL, was a breakthrough for potential targeted therapies. However, the molecular mechanisms by which these alterations activate JAK2 and promote downstream signaling is poorly understood. Furthermore, as clinical data regarding the limitations of approved JAK inhibitors in myeloproliferative disorders matures, there is a growing awareness of the need for alternative precision medicine approaches for specific JAK2 lesions. This review focuses on the molecular mechanisms behind ALL-associated JAK2 mutations and JAK2 fusion genes, known and potential causes of JAK-inhibitor resistance, and how JAK2 alterations could be targeted using alternative and novel rationally designed therapies to guide precision medicine approaches for these high-risk subtypes of ALL.
Collapse
Affiliation(s)
- Charlotte EJ. Downes
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Barbara J. McClure
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Daniel P. McDougal
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Susan L. Heatley
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Australian and New Zealand Children’s Oncology Group (ANZCHOG), Clayton, VIC, Australia
| | - John B. Bruning
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Daniel Thomas
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - David T. Yeung
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, SA, Australia
| | - Deborah L. White
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Australian and New Zealand Children’s Oncology Group (ANZCHOG), Clayton, VIC, Australia
| |
Collapse
|
35
|
Pabon CM, Abbas HA, Konopleva M. Acute myeloid leukemia: therapeutic targeting of stem cells. Expert Opin Ther Targets 2022; 26:547-556. [DOI: 10.1080/14728222.2022.2083957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Cindy M. Pabon
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hussein A. Abbas
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marina Konopleva
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
36
|
Wang S, Yu A, Han M, Chen X, Li Z, Ke M, Cai X, Ai M, Xing Y. Pathological Changes and Expression of JAK-STAT Signaling Pathway Hallmark Proteins in Rat Retinas at Different Time Points After Retinal Ischemia Reperfusion Injury. Pathol Oncol Res 2022; 28:1610385. [PMID: 35515015 PMCID: PMC9061953 DOI: 10.3389/pore.2022.1610385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/30/2022] [Indexed: 11/25/2022]
Abstract
Retinal ischemia reperfusion injury (RIRI) is a conventional pathological process in various retinal vascular diseases. Many studies select only one specific time point to apply drugs and then assess the therapeutic effect of drugs; however, the baselines are not the same at different time points, which may cause variation in the judgement. Therefore, further investigation is needed. Accordingly, this study aimed to investigate the pathological changes of retinal structure, expression of JAK-STAT signaling pathway hallmark proteins, and apoptosis at different time points after retinal ischemia reperfusion injury in rats. Sixty-six male SPF Sprague-Dawley rats were randomly divided into six groups: control group, RIRI 0, 6-, 24-, 72-, and 144-h groups. RIRI models were induced by perfusing equilibrium solution into the right eye anterior chamber to increase intraocular pressure to 110 mmHg for 60 min. Rats were sacrificed at different time points after reperfusion. Then hematoxylin-eosin staining, transmission electron microscope, immunohistochemistry, western blot, and TUNEL were used. Hematoxylin-eosin showed the pathological changes while transmission electron microscope revealed the ultra-structure changes of retina after RIRI. Immunohistochemistry showed that JAK2, STAT3, p-JAK2, p-STAT3, Bax, and Bcl-2 proteins mainly located in ganglion cell layer and inner nuclear layer, the relative expression of former five proteins had significant differences vs. control group (p < 0.05), while Bcl-2 had no significant difference. In western blot, the protein expressing of JAK2, STAT3, p-JAK2, p-STAT3, p-Akt, and Bax had significant differences vs. control group (p < 0.05), while Akt and Bcl-2 had no significant differences. TUNEL staining showed the number of apoptosis positive cells rose initially but declined later, with a peak value at RIRI 24 h group. The dynamic changes of hallmark proteins at different time points after RIRI indicate that JAK-STAT signaling pathway activates rapidly but weakens later and plays a vital role in RIRI, and apoptosis is involved in RIRI with a peak value at 24 h in the process, suggesting a potential therapeutic direction and time window for treating RIRI.
Collapse
Affiliation(s)
- Shun Wang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Aihua Yu
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengyao Han
- Retinal and Vitreous Diseases Department, Wuhan Aier Eye Hospital of Wuhan University, Wuhan, China
| | - Xiaomin Chen
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhi Li
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Min Ke
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaojun Cai
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ming Ai
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiqiao Xing
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
37
|
Fan CL, Liang S, Ye MN, Cai WJ, Chen M, Hou YL, Guo J, Dai Y. Periplocymarin alleviates pathological cardiac hypertrophy via inhibiting the JAK2/STAT3 signalling pathway. J Cell Mol Med 2022; 26:2607-2619. [PMID: 35365949 PMCID: PMC9077305 DOI: 10.1111/jcmm.17267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/17/2022] [Accepted: 03/08/2022] [Indexed: 11/29/2022] Open
Abstract
Pathological cardiac hypertrophy is the most important risk factor for developing chronic heart failure. Therefore, the discovery of novel agents for treating pathological cardiac hypertrophy remains urgent. In the present study, we examined the therapeutic effect and mechanism of periplocymarin (PM)‐mediated protection against pathological cardiac hypertrophy using angiotensinII (AngII)‐stimulated cardiac hypertrophy in H9c2 cells and transverse aortic constriction (TAC)‐induced cardiac hypertrophy in mice. In vitro, PM treatment significantly reduced the surface area of H9c2 cells and expressions of hypertrophy‐related proteins. Meanwhile, PM markedly down‐regulated AngII‐induced translocation of p‐STAT3 into the nuclei and enhanced the phosphorylation levels of JAK2 and STAT3 proteins. The STAT3 specific inhibitor S3I‐201 or siRNA‐mediated depleted expression could alleviate AngII‐induced cardiac hypertrophy in H9c2 cells following PM treatment; however, PM failed to reduce the expressions of hypertrophy‐related proteins and phosphorylated STAT3 in STAT3‐overexpressing cells, indicating that PM protected against AngII‐induced cardiac hypertrophy by modulating STAT3 signalling. In vivo, PM reversed TAC‐induced cardiac hypertrophy, as determined by down‐regulating ratios of heart weight to body weight (HW/BW), heart weight to tibial length (HW/TL) and expressions of hypertrophy‐related proteins accompanied by the inhibition of the JAK2/STAT3 pathway. These results revealed that PM could effectively protect the cardiac structure and function in experimental models of pathological cardiac hypertrophy by inhibiting the JAK2/STAT3 signalling pathway. PM is expected to be a potential lead compound of the novel agents for treating pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Cai-Lian Fan
- Department of Cardiology, Jinan University First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Sui Liang
- Department of Cardiology, Jinan University First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Meng-Nan Ye
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Wan-Jun Cai
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Miao Chen
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yun-Long Hou
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
| | - Jun Guo
- Department of Cardiology, Jinan University First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yi Dai
- College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
38
|
Naz F, Shi M, Sajid S, Yang Z, Yu C. Cancer stem cells: a major culprit of intra-tumor heterogeneity. Am J Cancer Res 2021; 11:5782-5811. [PMID: 35018226 PMCID: PMC8727794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/25/2021] [Indexed: 06/14/2023] Open
Abstract
Cancer is recognized as a preeminent factor of the world's mortality. Although various modalities have been designed to cure this life-threatening ailment, a significant impediment in the effective output of cancer treatment is heterogeneity. Cancer is characterized as a heterogeneous health disorder that comprises a distinct group of transformed cells to assist anomalous proliferation of affected cells. Cancer stem cells (CSCs) are a leading cause of cancer heterogeneity that is continually transformed by cellular extrinsic and intrinsic factors. They intensify neoplastic cells aggressiveness by strengthening their dissemination, relapse and therapy resistance. Considering this viewpoint, in this review article we have discussed some intrinsic (transcription factors, cell signaling pathways, genetic alterations, epigenetic modifications, non-coding RNAs (ncRNAs) and epitranscriptomics) and extrinsic factors (tumor microenvironment (TME)) that contribute to CSC heterogeneity and plasticity, which may help scientists to meddle these processes and eventually improve cancer research and management. Besides, the potential role of CSCs heterogeneity in establishing metastasis and therapy resistance has been articulated which signifies the importance of developing novel anticancer therapies to target CSCs along with targeting bulk tumor mass to achieve an effective output.
Collapse
Affiliation(s)
- Faiza Naz
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| | - Mengran Shi
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| | - Salvia Sajid
- Department of Biotechnology, Jinnah University for WomenKarachi 74600, Pakistan
| | - Zhao Yang
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
- College of Life Science, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim UniversityAlar 843300, Xinjiang, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| |
Collapse
|
39
|
Fujii T, Maehara K, Fujita M, Ohkawa Y. Discriminative feature of cells characterizes cell populations of interest by a small subset of genes. PLoS Comput Biol 2021; 17:e1009579. [PMID: 34797848 PMCID: PMC8641884 DOI: 10.1371/journal.pcbi.1009579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/03/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Organisms are composed of various cell types with specific states. To obtain a comprehensive understanding of the functions of organs and tissues, cell types have been classified and defined by identifying specific marker genes. Statistical tests are critical for identifying marker genes, which often involve evaluating differences in the mean expression levels of genes. Differentially expressed gene (DEG)-based analysis has been the most frequently used method of this kind. However, in association with increases in sample size such as in single-cell analysis, DEG-based analysis has faced difficulties associated with the inflation of P-values. Here, we propose the concept of discriminative feature of cells (DFC), an alternative to using DEG-based approaches. We implemented DFC using logistic regression with an adaptive LASSO penalty to perform binary classification for discriminating a population of interest and variable selection to obtain a small subset of defining genes. We demonstrated that DFC prioritized gene pairs with non-independent expression using artificial data and that DFC enabled characterization of the muscle satellite/progenitor cell population. The results revealed that DFC well captured cell-type-specific markers, specific gene expression patterns, and subcategories of this cell population. DFC may complement DEG-based methods for interpreting large data sets. DEG-based analysis uses lists of genes with differences in expression between groups, while DFC, which can be termed a discriminative approach, has potential applications in the task of cell characterization. Upon recent advances in the high-throughput analysis of single cells, methods of cell characterization such as scRNA-seq can be effectively subjected to the discriminative methods. Statistical methods for detecting differences in individual gene expression are indispensable for understanding cell types. However, conventional statistical methods, such as differentially expressed gene (DEG)-based analysis, have faced difficulties associated with the inflation of P-values because of both the large sample size and selection bias introduced by exploratory data analysis such as single-cell transcriptomics. Here, we propose the concept of discriminative feature of cells (DFC), an alternative to using DEG-based approaches. We implemented DFC using logistic regression with an adaptive LASSO penalty to perform binary classification for the discrimination of a population of interest and variable selection to obtain a small subset of defining genes. We demonstrated that DFC prioritized gene pairs with non-independent expression using artificial data, and that it enabled characterization of the muscle satellite/progenitor cell population. The results revealed that DFC well captured cell-type-specific markers, specific gene expression patterns, and subcategories of this cell population. DFC may complement differentially expressed gene-based methods for interpreting large data sets.
Collapse
Affiliation(s)
- Takeru Fujii
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazumitsu Maehara
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- * E-mail: (KM); (YO)
| | - Masatoshi Fujita
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- * E-mail: (KM); (YO)
| |
Collapse
|
40
|
Reactive Oxygen Species in Acute Lymphoblastic Leukaemia: Reducing Radicals to Refine Responses. Antioxidants (Basel) 2021; 10:antiox10101616. [PMID: 34679751 PMCID: PMC8533157 DOI: 10.3390/antiox10101616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/27/2022] Open
Abstract
Acute lymphoblastic leukaemia (ALL) is the most common cancer diagnosed in children and adolescents. Approximately 70% of patients survive >5-years following diagnosis, however, for those that fail upfront therapies, survival is poor. Reactive oxygen species (ROS) are elevated in a range of cancers and are emerging as significant contributors to the leukaemogenesis of ALL. ROS modulate the function of signalling proteins through oxidation of cysteine residues, as well as promote genomic instability by damaging DNA, to promote chemotherapy resistance. Current therapeutic approaches exploit the pro-oxidant intracellular environment of malignant B and T lymphoblasts to cause irreversible DNA damage and cell death, however these strategies impact normal haematopoiesis and lead to long lasting side-effects. Therapies suppressing ROS production, especially those targeting ROS producing enzymes such as the NADPH oxidases (NOXs), are emerging alternatives to treat cancers and may be exploited to improve the ALL treatment. Here, we discuss the roles that ROS play in normal haematopoiesis and in ALL. We explore the molecular mechanisms underpinning overproduction of ROS in ALL, and their roles in disease progression and drug resistance. Finally, we examine strategies to target ROS production, with a specific focus on the NOX enzymes, to improve the treatment of ALL.
Collapse
|
41
|
Moser B, Edtmayer S, Witalisz-Siepracka A, Stoiber D. The Ups and Downs of STAT Inhibition in Acute Myeloid Leukemia. Biomedicines 2021; 9:1051. [PMID: 34440253 PMCID: PMC8392322 DOI: 10.3390/biomedicines9081051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 01/03/2023] Open
Abstract
Aberrant Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling is implicated in the pathogenesis of acute myeloid leukemia (AML), a highly heterogeneous hematopoietic malignancy. The management of AML is complex and despite impressive efforts into better understanding its underlying molecular mechanisms, survival rates in the elderly have not shown a substantial improvement over the past decades. This is particularly due to the heterogeneity of AML and the need for personalized approaches. Due to the crucial role of the deregulated JAK-STAT signaling in AML, selective targeting of the JAK-STAT pathway, particularly constitutively activated STAT3 and STAT5 and their associated upstream JAKs, is of great interest. This strategy has shown promising results in vitro and in vivo with several compounds having reached clinical trials. Here, we summarize recent FDA approvals and current potential clinically relevant inhibitors for AML patients targeting JAK and STAT proteins. This review underlines the need for detailed cytogenetic analysis and additional assessment of JAK-STAT pathway activation. It highlights the ongoing development of new JAK-STAT inhibitors with better disease specificity, which opens up new avenues for improved disease management.
Collapse
Affiliation(s)
| | | | | | - Dagmar Stoiber
- Department of Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria; (B.M.); (S.E.); (A.W.-S.)
| |
Collapse
|