1
|
Zhang Q, Halle JL, Counts BR, Pi M, Carson JA. mTORC1 and BMP-Smad1/5 regulation of serum-stimulated myotube hypertrophy: a role for autophagy. Am J Physiol Cell Physiol 2024; 327:C124-C139. [PMID: 38766767 PMCID: PMC11371323 DOI: 10.1152/ajpcell.00237.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Protein synthesis regulation is critical for skeletal muscle hypertrophy, yet other established cellular processes are necessary for growth-related cellular remodeling. Autophagy has a well-acknowledged role in muscle quality control, but evidence for its role in myofiber hypertrophy remains equivocal. Both mammalian target of rapamycin complex I (mTORC1) and bone morphogenetic protein (BMP)-Smad1/5 (Sma and Mad proteins from Caenorhabditis elegans and Drosophila, respectively) signaling are reported regulators of myofiber hypertrophy; however, gaps remain in our understanding of how this regulation is integrated with growth processes and autophagy regulation. Therefore, we investigated the mTORC1 and Smad1/5 regulation of protein synthesis and autophagy flux during serum-stimulated myotube growth. Chronic serum stimulation experiments were performed on day 5 differentiated C2C12 myotubes incubated in differentiation medium [2% horse serum (HS)] or growth medium [5% fetal bovine serum (FBS)] for 48 h. Rapamycin or LDN193189 was dosed for 48 h to inhibit mTORC1 and BMP-Smad1/5 signaling, respectively. Acute serum stimulation was examined in day 7 differentiated myotubes. Protein synthesis was measured by puromycin incorporation. Bafilomycin A1 and immunoblotting for LC3B were used to assess autophagy flux. Chronic serum stimulation increased myotube diameter 22%, total protein 21%, total RNA 100%, and Smad1/5 phosphorylation 404% and suppressed autophagy flux. Rapamycin, but not LDN193189, blocked serum-induced myotube hypertrophy and the increase in total RNA. Acute serum stimulation increased protein synthesis 111%, Smad1/5 phosphorylation 559%, and rpS6 phosphorylation 117% and suppressed autophagy flux. Rapamycin increased autophagy flux during acute serum stimulation. These results provide evidence for mTORC1, but not BMP-Smad1/5, signaling being required for serum-induced myotube hypertrophy and autophagy flux by measuring LC3BII/I expression. Further investigation is warranted to examine the role of autophagy flux in myotube hypertrophy.NEW & NOTEWORTHY The present study demonstrates that myotube hypertrophy caused by chronic serum stimulation requires mammalian target of rapamycin complex 1 (mTORC1) signaling but not bone morphogenetic protein (BMP)-Smad1/5 signaling. The suppression of autophagy flux was associated with serum-induced myotube hypertrophy and mTORC1 regulation of autophagy flux by measuring LC3BII/I expression. Rapamycin is widely investigated for beneficial effects in aging skeletal muscle and sarcopenia; our results provide evidence that rapamycin can regulate autophagy-related signaling during myotube growth, which could benefit skeletal muscle functional and metabolic health.
Collapse
Affiliation(s)
- Quan Zhang
- Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health ProfessionsUniversity of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Jessica L Halle
- Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health ProfessionsUniversity of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Brittany R Counts
- Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health ProfessionsUniversity of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Min Pi
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - James A Carson
- Huffines Institute for Sports Medicine & Human Performance, Department of Kinesiology & Sports Management , Texas A&M University, College Station, Texas, United States
| |
Collapse
|
2
|
Kamal KY, Othman MA, Kim JH, Lawler JM. Bioreactor development for skeletal muscle hypertrophy and atrophy by manipulating uniaxial cyclic strain: proof of concept. NPJ Microgravity 2024; 10:62. [PMID: 38862543 PMCID: PMC11167039 DOI: 10.1038/s41526-023-00320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 08/15/2023] [Indexed: 06/13/2024] Open
Abstract
Skeletal muscles overcome terrestrial, gravitational loading by producing tensile forces that produce movement through joint rotation. Conversely, the microgravity of spaceflight reduces tensile loads in working skeletal muscles, causing an adaptive muscle atrophy. Unfortunately, the design of stable, physiological bioreactors to model skeletal muscle tensile loading during spaceflight experiments remains challenging. Here, we tested a bioreactor that uses initiation and cessation of cyclic, tensile strain to induce hypertrophy and atrophy, respectively, in murine lineage (C2C12) skeletal muscle myotubes. Uniaxial cyclic stretch of myotubes was conducted using a StrexCell® (STB-1400) stepper motor system (0.75 Hz, 12% strain, 60 min day^-1). Myotube groups were assigned as follows: (a) quiescent over 2- or (b) 5-day (no stretch), (c) experienced 2-days (2dHY) or (d) 5-days (5dHY) of cyclic stretch, or (e) 2-days of cyclic stretch followed by a 3-day cessation of stretch (3dAT). Using ß-sarcoglycan as a sarcolemmal marker, mean myotube diameter increased significantly following 2dAT (51%) and 5dAT (94%) vs. matched controls. The hypertrophic, anabolic markers talin and Akt phosphorylation (Thr308) were elevated with 2dHY but not in 3dAT myotubes. Inflammatory, catabolic markers IL-1ß, IL6, and NF-kappaB p65 subunit were significantly higher in the 3dAT group vs. all other groups. The ratio of phosphorylated FoxO3a/total FoxO3a was significantly lower in 3dAT than in the 2dHY group, consistent with elevated catabolic signaling during unloading. In summary, we demonstrated proof-of-concept for a spaceflight research bioreactor, using uniaxial cyclic stretch to produce myotube hypertrophy with increased tensile loading, and myotube atrophy with subsequent cessation of stretch.
Collapse
Affiliation(s)
- Khaled Y Kamal
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA.
| | - Mariam Atef Othman
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| | - Joo-Hyun Kim
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| | - John M Lawler
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| |
Collapse
|
3
|
Tamura Y, Kouzaki K, Kotani T, Nakazato K. Coculture with Colon-26 cancer cells decreases the protein synthesis rate and shifts energy metabolism toward glycolysis dominance in C2C12 myotubes. Am J Physiol Cell Physiol 2024; 326:C1520-C1542. [PMID: 38557354 DOI: 10.1152/ajpcell.00179.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Cancer cachexia is the result of complex interorgan interactions initiated by cancer cells and changes in patient behavior such as decreased physical activity and energy intake. Therefore, it is crucial to distinguish between the direct and indirect effects of cancer cells on muscle mass regulation and bioenergetics to identify novel therapeutic targets. In this study, we investigated the direct effects of Colon-26 cancer cells on the molecular regulating machinery of muscle mass and its bioenergetics using a coculture system with C2C12 myotubes. Our results demonstrated that coculture with Colon-26 cells induced myotube atrophy and reduced skeletal muscle protein synthesis and its regulating mechanistic target of rapamycin complex 1 signal transduction. However, we did not observe any activating effects on protein degradation pathways including ubiquitin-proteasome and autophagy-lysosome systems. From a bioenergetic perspective, coculture with Colon-26 cells decreased the complex I-driven, but not complex II-driven, mitochondrial ATP production capacity, while increasing glycolytic enzyme activity and glycolytic metabolites, suggesting a shift in energy metabolism toward glycolysis dominance. Gene expression profiling by RNA sequencing showed that the increased activity of glycolytic enzymes was consistent with changes in gene expression. However, the decreased ATP production capacity of mitochondria was not in line with the gene expression. The potential direct interaction between cancer cells and skeletal muscle cells revealed in this study may contribute to a better fundamental understanding of the complex pathophysiology of cancer cachexia.NEW & NOTEWORTHY We explored the potential direct interplay between colon cancer cells (Colon-26) and skeletal muscle cells (C2C12 myotubes) employing a noncontact coculture experimental model. Our findings reveal that coculturing with Colon-26 cells substantially impairs the protein synthesis rate, concurrently instigating a metabolic shift toward glycolytic dominance in C2C12 myotubes. This research unveils critical insights into the intricate cellular cross talk underpinning the complex pathophysiology of cancer cachexia.
Collapse
Affiliation(s)
- Yuki Tamura
- Faculty of Sport Science, Nippon Sport Science University, Tokyo, Japan
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
- High Performance Center, Nippon Sport Science University, Tokyo, Japan
- Sport Training Center, Nippon Sport Science University, Tokyo, Japan
- Center for Coaching Excellence, Nippon Sport Science University, Tokyo, Japan
| | - Karina Kouzaki
- Faculty of Medical Science, Nippon Sport Science University, Tokyo, Japan
- Graduate School of Medical and Health Science, Nippon Sport Science University, Tokyo, Japan
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Takaya Kotani
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
- Department of Sports Sciences, The University of Tokyo, Tokyo, Japan
| | - Koichi Nakazato
- Faculty of Medical Science, Nippon Sport Science University, Tokyo, Japan
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
- Graduate School of Medical and Health Science, Nippon Sport Science University, Tokyo, Japan
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
| |
Collapse
|
4
|
Halle JL, Counts BR, Paez HG, Baumfalk DR, Zhang Q, Mohamed JS, Glazer ES, Puppa MJ, Smuder AJ, Alway SE, Carson JA. Recovery from FOLFOX chemotherapy-induced systemic and skeletal muscle metabolic dysfunction in mice. Am J Physiol Endocrinol Metab 2023; 325:E132-E151. [PMID: 37378624 PMCID: PMC10393342 DOI: 10.1152/ajpendo.00096.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/22/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
FOLFOX (5-fluorouracil, leucovorin, oxaliplatin) chemotherapy is used to treat colorectal cancer and can acutely induce metabolic dysfunction. However, the lasting effects on systemic and skeletal muscle metabolism after treatment cessation are poorly understood. Therefore, we investigated the acute and lasting effects of FOLFOX chemotherapy on systemic and skeletal muscle metabolism in mice. Direct effects of FOLFOX in cultured myotubes were also investigated. Male C57BL/6J mice completed four cycles (acute) of FOLFOX or PBS. Subsets were allowed to recover for 4 wk or 10 wk. Comprehensive Laboratory Animal Monitoring System (CLAMS) metabolic measurements were performed for 5 days before study endpoint. C2C12 myotubes were treated with FOLFOX for 24 hr. Acute FOLFOX attenuated body mass and body fat accretion independent of food intake or cage activity. Acute FOLFOX decreased blood glucose, oxygen consumption (V̇o2), carbon dioxide production (V̇co2), energy expenditure, and carbohydrate (CHO) oxidation. Deficits in V̇o2 and energy expenditure remained at 10 wk. CHO oxidation remained disrupted at 4 wk but returned to control levels after 10 wk. Acute FOLFOX reduced muscle COXIV enzyme activity, AMPK(T172), ULK1(S555), and LC3BII protein expression. Muscle LC3BII/I ratio was associated with altered CHO oxidation (r = 0.75, P = 0.03). In vitro, FOLFOX suppressed myotube AMPK(T172), ULK1(S555), and autophagy flux. Recovery for 4 wk normalized skeletal muscle AMPK and ULK1 phosphorylation. Our results provide evidence that FOLFOX disrupts systemic metabolism, which is not readily recoverable after treatment cessation. FOLFOX effects on skeletal muscle metabolic signaling did recover. Further investigations are warranted to prevent and treat FOLFOX-induced metabolic toxicities that negatively impact survival and life quality of patients with cancer.NEW & NOTEWORTHY The present study demonstrates that FOLFOX chemotherapy induces long-lasting deficits in systemic metabolism. Interestingly, FOLFOX modestly suppressed skeletal muscle AMPK and autophagy signaling in vivo and in vitro. The FOLFOX-induced suppression of muscle metabolic signaling recovered after treatment cessation, independent of systemic metabolic dysfunction. Future research should investigate if activating AMPK during treatment can prevent long-term toxicities to improve health and quality of life of patients with cancer and survivors.
Collapse
Affiliation(s)
- Jessica L Halle
- Integrative Muscle Biology Laboratory, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Brittany R Counts
- Integrative Muscle Biology Laboratory, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Hector G Paez
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Dryden R Baumfalk
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Quan Zhang
- Integrative Muscle Biology Laboratory, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Junaith S Mohamed
- Laboratory of Muscle and Nerve, Department of Diagnostic and Health Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Evan S Glazer
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Melissa J Puppa
- College of Health Sciences, The University of Memphis, Memphis, Tennessee, United States
| | - Ashley J Smuder
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Stephen E Alway
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - James A Carson
- Integrative Muscle Biology Laboratory, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| |
Collapse
|
5
|
Di Credico A, Gaggi G, Izzicupo P, Vitucci D, Buono P, Di Baldassarre A, Ghinassi B. Betaine Treatment Prevents TNF-α-Mediated Muscle Atrophy by Restoring Total Protein Synthesis Rate and Morphology in Cultured Myotubes. J Histochem Cytochem 2023; 71:199-209. [PMID: 37013268 PMCID: PMC10149894 DOI: 10.1369/00221554231165326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 04/05/2023] Open
Abstract
Skeletal muscle atrophy is represented by a dramatic decrease in muscle mass, and it is related to a lower life expectancy. Among the different causes, chronic inflammation and cancer promote protein loss through the effect of inflammatory cytokines, leading to muscle shrinkage. Thus, the availability of safe methods to counteract inflammation-derived atrophy is of high interest. Betaine is a methyl derivate of glycine and it is an important methyl group donor in transmethylation. Recently, some studies found that betaine could promote muscle growth, and it is also involved in anti-inflammatory mechanisms. Our hypothesis was that betaine would be able to prevent tumor necrosis factor-α (TNF-α)-mediated muscle atrophy in vitro. We treated differentiated C2C12 myotubes for 72 hr with either TNF-α, betaine, or a combination of them. After the treatment, we analyzed total protein synthesis, gene expression, and myotube morphology. Betaine treatment blunted the decrease in muscle protein synthesis rate exerted by TNF-α, and upregulated Mhy1 gene expression in both control and myotube treated with TNF-α. In addition, morphological analysis revealed that myotubes treated with both betaine and TNF-α did not show morphological features of TNF-α-mediated atrophy. We demonstrated that in vitro betaine supplementation counteracts the muscle atrophy led by inflammatory cytokines.
Collapse
Affiliation(s)
- Andrea Di Credico
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology, Chieti, Italy
| | - Giulia Gaggi
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology, Chieti, Italy
| | - Pascal Izzicupo
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Daniela Vitucci
- Department of Movement Sciences and Wellness, University Parthenope, Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Napoli, Italy
| | - Pasqualina Buono
- Department of Movement Sciences and Wellness, University Parthenope, Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Napoli, Italy
| | - Angela Di Baldassarre
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology, Chieti, Italy
| | - Barbara Ghinassi
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology, Chieti, Italy
| |
Collapse
|
6
|
Cheng QQ, Mao SL, Yang LN, Chen L, Zhu JZ, Liu X, Hou AJ, Zhang RR. Fuzheng Xiaoai Decoction 1 ameliorated cancer cachexia-induced muscle atrophy via Akt-mTOR pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115944. [PMID: 36410574 DOI: 10.1016/j.jep.2022.115944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fuzheng Xiaoai Decoction 1 (FZXAD1) is a clinical experience prescription for the treatment of cancer patients at an advanced stage. FZXAD1 has been used for more than 10 years in the clinic and can effectively improve the deficiency syndrome of cancer patients. However, its mechanisms need further clarification. AIM OF THE STUDY To check the effects of FZXAD1 in colon 26 (C26) cancer cachexia mice and try to clarify the mechanisms of FZXAD1 in ameliorating cancer cachexia symptoms. MATERIALS AND METHODS An animal model of cancer cachexia was constructed with male BALB/c mice bearing C26 tumor cells. Food intake, body weight and tumor size were measured daily during the animal experiment. Tissue samples in different groups including tumor and gastrocnemius muscle, were dissected and weighed at the end of the assay. Serum biochemical indicators such as total protein (TP), glucose (GLU) and alkaline phosphatase (ALP) were also detected. Network pharmacology-based analysis predicted the possible targets and signaling pathways involved in the effects of FZXAD1 on cancer cachexia therapy. Western blotting assays of the gastrocnemius muscle tissues from C26 tumor-bearing mice were then used to confirm the predicted possible targets of FZXAD1. RESULTS The results of animal experiments showed that FZXAD1 could ameliorate cancer cachexia by alleviating the muscle wasting as well as kidney atrophy and increasing the body weight of cancer cachexia mice. AKT1, MTOR, MAPK3, HIF1A and MAPK1 were predicted as the core targets of FZXAD1. Western blotting confirmed the prediction that FZXAD1 increased the expression levels of phosphorylated Akt and mTOR in the muscle tissues. In addition, FZXAD1 treatment obviously ameliorated the increased levels of HIF-1α and phosphorylated Erk1/2 in C26 tumor-bearing mice. CONCLUSION FZXAD1 effectively ameliorated cancer cachexia in an animal model of mice, which is consistent with its efficacy in the treatment of cancer patients. The mechanisms of FZXAD1 might be mainly based on its alleviating effects on muscle atrophy by activating the Akt-mTOR pathway and thus helping to maintain body weight.
Collapse
Affiliation(s)
- Qiao-Qiao Cheng
- Department of Pharmacy, Shanghai Xuhui Central Hospital, No. 966 Huaihai Middle Road, Xuhui District, Shanghai, 200031, China.
| | - Shi-Long Mao
- Department of Pharmacy, Shanghai Xuhui Central Hospital, No. 966 Huaihai Middle Road, Xuhui District, Shanghai, 200031, China.
| | - Li-Na Yang
- Department of Pharmacy, Shanghai Xuhui Central Hospital, No. 966 Huaihai Middle Road, Xuhui District, Shanghai, 200031, China.
| | - Li Chen
- Department of Pharmacy, Shanghai Xuhui Central Hospital, No. 966 Huaihai Middle Road, Xuhui District, Shanghai, 200031, China.
| | - Jin-Zhi Zhu
- Department of Pharmacy, Shanghai Xuhui Central Hospital, No. 966 Huaihai Middle Road, Xuhui District, Shanghai, 200031, China.
| | - Xuan Liu
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - An-Ji Hou
- Department of Pharmacy, Shanghai Xuhui Central Hospital, No. 966 Huaihai Middle Road, Xuhui District, Shanghai, 200031, China.
| | - Rong-Rong Zhang
- Department of Pharmacy, Shanghai Xuhui Central Hospital, No. 966 Huaihai Middle Road, Xuhui District, Shanghai, 200031, China.
| |
Collapse
|
7
|
The Contribution of Tumor Derived Exosomes to Cancer Cachexia. Cells 2023; 12:cells12020292. [PMID: 36672227 PMCID: PMC9856599 DOI: 10.3390/cells12020292] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Cancer cachexia is defined as unintentional weight loss secondary to neoplasia and is associated with poor prognosis and outcomes. Cancer cachexia associated weight loss affects both lean tissue (i.e., skeletal muscle) and adipose tissue. Exosomes are extracellular vesicles that originate from multivesicular bodies that contain intentionally loaded biomolecular cargo. Exosome cargo includes proteins, lipids, mitochondrial components, and nucleic acids. The cargo carried in exosomes is thought to alter cell signaling when it enters into recipient cells. Virtually every cell type secretes exosomes and exosomes are known to be present in nearly every biofluid. Exosomes alter muscle and adipose tissue metabolism and biological processes, including macrophage polarization and apoptosis which contribute to the development of the cachexia phenotype. This has led to an interest in the role of tumor cell derived exosomes and their potential role as biomarkers of cancer cell development as well as their contribution to cachexia and disease progression. In this review, we highlight published findings that have studied the effects of tumor derived exosomes (and extracellular vesicles) and their cargo on the progression of cancer cachexia. We will focus on the direct effects of tumor derived exosomes and their cellular cross talk on skeletal muscle and adipose tissue, the primary sites of weight loss due to cancer cachexia.
Collapse
|
8
|
Halle JL, Counts BR, Zhang Q, Carson JA. Short duration treadmill exercise improves physical function and skeletal muscle mitochondria protein expression after recovery from FOLFOX chemotherapy in male mice. FASEB J 2022; 36:e22437. [PMID: 35816153 DOI: 10.1096/fj.202200460r] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 01/05/2023]
Abstract
FOLFOX (5-FU, leucovorin, oxaliplatin) is a chemotherapy treatment for colorectal cancer which induces toxic side effects involving fatigue, weakness, and skeletal muscle dysfunction. There is a limited understanding of the recovery from these toxicities after treatment cessation. Exercise training can improve chemotherapy-related toxicities. However, how exercise accelerates recovery and the dose required for these benefits are not well examined. The purpose of this study was to examine the effect of exercise duration on physical function, muscle mass, and mitochondria protein expression during the recovery from FOLFOX chemotherapy. 12-week-old male mice were administered four cycles of either PBS or FOLFOX over 8-weeks. Outcomes were assessed after the fourth cycle and after either 4 (short-term; STR) or 10 weeks (long-term; LTR) recovery. Subsets of mice performed 14 sessions (6 d/wk, 18 m/min, 5% grade) of 60 min/d (long) or 15 min/d (short duration) treadmill exercise during STR. Red and white gastrocnemius mRNA and protein expression were examined. FOLFOX treatment decreased run time (RT) (-53%) and grip strength (GS) (-9%) compared to PBS. FOLFOX also reduced muscle OXPHOS complexes, COXIV, and VDAC protein expression. At LTR, FOLFOX RT (-36%) and GS (-16%) remained reduced. Long- and short-duration treadmill exercise improved RT (+58% and +56%) without restoring GS in FOLFOX mice. Both exercise durations increased muscle VDAC and COXIV expression in FOLFOX mice. These data provide evidence that FOLFOX chemotherapy induces persistent deficits in physical function that can be partially reversed by short-duration aerobic exercise.
Collapse
Affiliation(s)
- Jessica L Halle
- Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Brittany R Counts
- Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Quan Zhang
- Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - James A Carson
- Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|