1
|
Campbell KA, Colacino JA, Dou J, Dolinoy DC, Park SK, Loch-Caruso R, Padmanabhan V, Bakulski KM. Placental and immune cell DNA methylation reference panel for bulk tissue cell composition estimation in epidemiological studies. Epigenetics 2024; 19:2437275. [PMID: 39648517 PMCID: PMC11633140 DOI: 10.1080/15592294.2024.2437275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/03/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024] Open
Abstract
To distinguish DNA methylation (DNAm) from cell proportion changes in whole placental villous tissue research, we developed a robust cell type-specific DNAm reference to estimate cell composition. We collated new and existing cell type DNAm profiles quantified via Illumina EPIC or 450k microarrays. To estimate cell composition, we deconvoluted whole placental samples (n = 36) with robust partial correlation based on the top 30 hyper- and hypomethylated sites identified per cell type. To test deconvolution performance, we evaluated root mean square error in predicting principal components of DNAm variation in 204 external placental samples. We analyzed DNAm profiles (n = 368,435 sites) from 12 cell types: cytotrophoblasts (n = 18), endothelial cells (n = 19), Hofbauer cells (n = 26), stromal cells (n = 21), syncytiotrophoblasts (n = 4), six lymphocyte types (n = 36), and nucleated red blood cells (n = 11). Median cell composition was consistent with placental biology: 60.9% syncytiotrophoblast, 17.3% stromal, 8.8% endothelial, 3.7% cytotrophoblast, 3.7% Hofbauer, 1.7% nucleated red blood cells, and 1.2% neutrophils. Our expanded reference outperformed an existing reference in predicting DNAm variation (PC1, 15.4% variance explained, IQR = 21.61) with cell composition estimates (mean square error of prediction: 8.62 vs. 10.79, p-value < 0.001). This cell type reference can robustly estimate cell composition from whole placental DNAm data to detect important cell types, reveal biological mechanisms, and improve causal inference.
Collapse
Affiliation(s)
- Kyle A. Campbell
- Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Justin A. Colacino
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - John Dou
- Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Dana C. Dolinoy
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Sung Kyun Park
- Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Rita Loch-Caruso
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Vasantha Padmanabhan
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Obstetrics and Gynecology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kelly M. Bakulski
- Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Barmpa K, Saraiva C, Lopez-Pigozzi D, Gomez-Giro G, Gabassi E, Spitz S, Brandauer K, Rodriguez Gatica JE, Antony P, Robertson G, Sabahi-Kaviani R, Bellapianta A, Papastefanaki F, Luttge R, Kubitscheck U, Salti A, Ertl P, Bortolozzi M, Matsas R, Edenhofer F, Schwamborn JC. Modeling early phenotypes of Parkinson's disease by age-induced midbrain-striatum assembloids. Commun Biol 2024; 7:1561. [PMID: 39580573 PMCID: PMC11585662 DOI: 10.1038/s42003-024-07273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024] Open
Abstract
Parkinson's disease, an aging-associated neurodegenerative disorder, is characterised by nigrostriatal pathway dysfunction caused by the gradual loss of dopaminergic neurons in the substantia nigra pars compacta of the midbrain. Human in vitro models are enabling the study of the dopaminergic neurons' loss, but not the dysregulation within the dopaminergic network in the nigrostriatal pathway. Additionally, these models do not incorporate aging characteristics which potentially contribute to the development of Parkinson's disease. Here we present a nigrostriatal pathway model based on midbrain-striatum assembloids with inducible aging. We show that these assembloids can develop characteristics of the nigrostriatal connectivity, with catecholamine release from the midbrain to the striatum and synapse formation between midbrain and striatal neurons. Moreover, Progerin-overexpressing assembloids acquire aging traits that lead to early neurodegenerative phenotypes. This model shall help to reveal the contribution of aging as well as nigrostriatal connectivity to the onset and progression of Parkinson's disease.
Collapse
Affiliation(s)
- Kyriaki Barmpa
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Claudia Saraiva
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Diego Lopez-Pigozzi
- Department of Physics and Astronomy "G. Galilei", University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Gemma Gomez-Giro
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisa Gabassi
- Genomics, Stem Cell & Regenerative Medicine Group and CMBI, Institute of Molecular Biology, University of Innsbruck, Innsbruck, Austria
| | - Sarah Spitz
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Austria
| | - Konstanze Brandauer
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Austria
| | | | - Paul Antony
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Graham Robertson
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Alessandro Bellapianta
- Johannes Kepler University Linz, Kepler University Hospital, University Clinic for Ophthalmology and Optometry, Linz, Austria
| | - Florentia Papastefanaki
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
- Human Embryonic and Induced Pluripotent Stem Cell Unit, Hellenic Pasteur Institute, Athens, Greece
| | - Regina Luttge
- Eindhoven University of Technology, Microsystems, Eindhoven, Netherlands
| | - Ulrich Kubitscheck
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Ahmad Salti
- Genomics, Stem Cell & Regenerative Medicine Group and CMBI, Institute of Molecular Biology, University of Innsbruck, Innsbruck, Austria
- Johannes Kepler University Linz, Kepler University Hospital, University Clinic for Ophthalmology and Optometry, Linz, Austria
| | - Peter Ertl
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Austria
| | - Mario Bortolozzi
- Department of Physics and Astronomy "G. Galilei", University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
- Human Embryonic and Induced Pluripotent Stem Cell Unit, Hellenic Pasteur Institute, Athens, Greece
| | - Frank Edenhofer
- Genomics, Stem Cell & Regenerative Medicine Group and CMBI, Institute of Molecular Biology, University of Innsbruck, Innsbruck, Austria
| | - Jens C Schwamborn
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
3
|
Logsdon DM, Ming H, Ezashi T, West RC, Schoolcraft WB, Roberts RM, Jiang Z, Yuan Y. Transcriptome comparisons of trophoblasts from regenerative cell models with peri-implantation human embryos†. Biol Reprod 2024; 111:1000-1016. [PMID: 39109839 DOI: 10.1093/biolre/ioae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/21/2024] [Accepted: 08/06/2024] [Indexed: 11/16/2024] Open
Abstract
Mechanisms controlling trophoblast (TB) proliferation and differentiation during embryo implantation are poorly understood. Human trophoblast stem cells (TSC) and BMP4/A83-01/PD173074-treated pluripotent stem cell-derived trophoblast cells (BAP) are two widely employed, contemporary models to study TB development and function, but how faithfully they mimic early TB cells has not been fully examined. We evaluated the transcriptomes of TB cells from BAP and TSC and directly compared them with those from peri-implantation human embryos during extended embryo culture (EEC) between embryonic days 8 to 12. The BAP and TSC grouped closely with TB cells from EEC within each TB sublineage following dimensional analysis and unsupervised hierarchical clustering. However, subtle differences in transcriptional programs existed within each TB sublineage. We also validated the presence of six genes in peri-implantation human embryos by immunolocalization. Our analysis reveals that both BAP and TSC models have features of peri-implantation TB s, while maintaining minor transcriptomic differences, and thus serve as valuable tools for studying implantation in lieu of human embryos.
Collapse
Affiliation(s)
- Deirdre M Logsdon
- Colorado Center for Reproductive Medicine, 10290 RidgeGate Circle, Lone Tree, CO 80124, USA
| | - Hao Ming
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Toshihiko Ezashi
- Colorado Center for Reproductive Medicine, 10290 RidgeGate Circle, Lone Tree, CO 80124, USA
| | - Rachel C West
- Department of Anatomy, Physiology, and Pharmacology, Auburn University, Auburn, AL 36849, USA
| | - William B Schoolcraft
- Colorado Center for Reproductive Medicine, 10290 RidgeGate Circle, Lone Tree, CO 80124, USA
| | - R Michael Roberts
- Division of Animal Sciences, University of Missouri-Columbia, MO 65211, USA
| | - Zongliang Jiang
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Ye Yuan
- Colorado Center for Reproductive Medicine, 10290 RidgeGate Circle, Lone Tree, CO 80124, USA
| |
Collapse
|
4
|
Kinkade JA, Singh P, Verma M, Khan T, Ezashi T, Bivens NJ, Roberts RM, Joshi T, Rosenfeld CS. Small and Long Non-Coding RNA Analysis for Human Trophoblast-Derived Extracellular Vesicles and Their Effect on the Transcriptome Profile of Human Neural Progenitor Cells. Cells 2024; 13:1867. [PMID: 39594615 PMCID: PMC11593255 DOI: 10.3390/cells13221867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
In mice, the fetal brain is dependent upon the placenta for factors that guide its early development. This linkage between the two organs has given rise to the term, the placenta-brain axis. A similar interrelationship between the two organs may exist in humans. We hypothesize that extracellular vesicles (EVs) released from placental trophoblast (TB) cells transport small RNA and other informational biomolecules from the placenta to the brain where their contents have pleiotropic effects. Here, EVs were isolated from the medium in which human trophoblasts (TBs) had been differentiated in vitro from induced pluripotent stem cells (iPSC) and from cultured iPSC themselves, and their small RNA content analyzed by bulk RNA-seq. EVs derived from human TB cells possess unique profiles of miRs, including hsa-miR-0149-3p, hsa-302a-5p, and many long non-coding RNAs (lncRNAs) relative to EVs isolated from parental iPSC. These miRs and their mRNA targets are enriched in neural tissue. Human neural progenitor cells (NPCs), generated from the same iPSC, were exposed to EVs from either TB or iPSC controls. Both sets of EVs were readily internalized. EVs from TB cells upregulate several transcripts in NPCs associated with forebrain formation and neurogenesis; those from control iPSC upregulated a transcriptional phenotype that resembled glial cells more closely than neurons. These results shed light on the possible workings of the placenta-brain axis. Understanding how the contents of small RNA within TB-derived EVs affect NPCs might yield new insights, possible biomarkers, and potential treatment strategies for neurobehavioral disorders that originate in utero, such as autism spectrum disorders (ASDs).
Collapse
Affiliation(s)
- Jessica A. Kinkade
- Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA;
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (M.V.); (T.E.)
| | - Pallav Singh
- MU Institute of Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA;
| | - Mohit Verma
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (M.V.); (T.E.)
| | - Teka Khan
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (T.K.); (R.M.R.)
| | - Toshihiko Ezashi
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (M.V.); (T.E.)
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (T.K.); (R.M.R.)
- Colorado Center for Reproductive Medicine, Lone Tree, CO 80124, USA
| | - Nathan J. Bivens
- Department of Genomics Technology Core Facility, University of Missouri, Columbia MO 65211, USA;
| | - R. Michael Roberts
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (T.K.); (R.M.R.)
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Trupti Joshi
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (M.V.); (T.E.)
- MU Institute of Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA;
- Department of Biomedical Informatics, Biostatistics and Medical Epidemiology (BBME), University of Missouri, Columbia, MO 65212, USA
| | - Cheryl S. Rosenfeld
- Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA;
- MU Institute of Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA;
- Department of Genetics Area Program, University of Missouri, Columbia, MO 65211, USA
- Department of Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
5
|
Chen Y, Ye X, Zhong Y, Kang X, Tang Y, Zhu H, Pang C, Ning S, Liang S, Zhang F, Li C, Li J, Gu C, Cheng Y, Kuang Z, Qiu J, Jin J, Luo H, Fu M, Hui HX, Li L, Ruan D, Liu P, Chen X, Sun L, Ai S, Gao X. SP6 controls human cytotrophoblast fate decisions and trophoblast stem cell establishment by targeting MSX2 regulatory elements. Dev Cell 2024; 59:1506-1522.e11. [PMID: 38582082 DOI: 10.1016/j.devcel.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/14/2023] [Accepted: 03/12/2024] [Indexed: 04/08/2024]
Abstract
The commitment and differentiation of human placental progenitor cytotrophoblast (CT) cells are crucial for a successful pregnancy, but the underlying mechanism remains poorly understood. Here, we identified the transcription factor (TF), specificity protein 6 (SP6), as a human species-specific trophoblast lineage TF expressed in human placental CT cells. Using pluripotent stem cells as a model, we demonstrated that SP6 controls CT generation and the establishment of trophoblast stem cells (TSCs) and identified msh homeobox 2 (MSX2) as the downstream effector in these events. Mechanistically, we showed that SP6 interacts with histone acetyltransferase P300 to alter the landscape of H3K27ac at targeted regulatory elements, thereby favoring transcriptional activation and facilitating CT cell fate decisions and TSC maintenance. Our results established SP6 as a regulator of the human trophoblast lineage and implied its role in placental development and the pathogenies of placental diseases.
Collapse
Affiliation(s)
- Yanglin Chen
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xianhua Ye
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yulong Zhong
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiangjin Kang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yanqing Tang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Haoyun Zhu
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Changmiao Pang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shaoqiang Ning
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shiqing Liang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Feifan Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chao Li
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jie Li
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chengtao Gu
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuanxiong Cheng
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, Guangdong, China
| | - Zhanpeng Kuang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jingyang Qiu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jin Jin
- Department of Gynaecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haisi Luo
- Department of Gynaecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mingyu Fu
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hannah Xiaoyan Hui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Lei Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510515, China
| | - Degong Ruan
- School of Biomedical Sciences, Stem Cell, and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Pentao Liu
- School of Biomedical Sciences, Stem Cell, and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Xi Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liangzhong Sun
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Shanshan Ai
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xuefei Gao
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, Guangdong, China; Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
6
|
Khan T, Whyte JJ, Schulz LC, Roberts RM. Fluorescence-activated nuclear sorting (FANS) of nuclei from in vitro-generated syncytiotrophoblast. Placenta 2024:S0143-4004(24)00275-3. [PMID: 38944560 PMCID: PMC11638405 DOI: 10.1016/j.placenta.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/10/2024] [Indexed: 07/01/2024]
Abstract
Large, multinucleated cells, like syncytiotrophoblasts (STB), are not readily analyzed by standard methods used for single cells, such as single-cell RNA-sequencing and fluorescence-activated cellular sorting (FACS). Here we have demonstrated that fluorescence-activated nuclear sorting (FANS) is suitable to analyze nuclei from STB. Human pluripotent stem cells (PSCs) can be differentiated into a mixed trophoblast populations comprising approximately 20 % STB by treatment with BMP4 (Bone Morphogenetic Protein-4), plus A83-01 and PD173074, inhibitors of activin and FGF2 signaling, respectively (the BAP model) in about a week. Here we demonstrate that FANS can be used to separate two types of STB nuclei from the nine different clusters of trophoblast nuclei previously identified in the BAP model by single nucleus RNA sequencing (snRNAseq). Rather than using cell surface markers, as in FACS, transcription factors in various combinations were employed to target specific nuclear types. Nuclei were isolated at d 8 of BAP differentiation of H1 human embryonic stem cells and fixed in 4 % paraformaldehyde. After permeabilization in 0.1 % triton X-100, nuclei were incubated for 3 and 1 h at 4 °C with primary and secondary antibodies respectively and nuclear samples were then subjected to FANS. By using markers identified by snRNA and immunohistochemistry, nuclei were first sorted into a Topoisomerase-1, or TOP1, bright population and then into the two STB subpopulations by using antibodies to JUNB (Jun B Proto-Oncogene) and TFCP2L1 (Transcription Factor CP2 Like 1). The protocol established here is simple, straightforward, and efficient and can be used on a relatively large scale to sort individual subtypes of nuclei from mixed populations of trophoblasts for further analysis.
Collapse
Affiliation(s)
- Teka Khan
- Department of Obstetrics, Gynecology, and Women's Health, School of Medicine, University of Missouri, Columbia, MO, United States; Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Jeffrey J Whyte
- Laboratory for Infectious Disease Research (LIDR), Division of Research, Innovation and Impact, University of Missouri, Columbia, MO, United States
| | - Laura C Schulz
- Department of Obstetrics, Gynecology, and Women's Health, School of Medicine, University of Missouri, Columbia, MO, United States
| | - R Michael Roberts
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
7
|
Campbell KA, Colacino JA, Dou J, Dolinoy DC, Park SK, Loch-Caruso R, Padmanabhan V, Bakulski KM. Placental and Immune Cell DNA Methylation Reference Panel for Bulk Tissue Cell Composition Estimation in Epidemiological Studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.588886. [PMID: 38766167 PMCID: PMC11100803 DOI: 10.1101/2024.05.06.588886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
To distinguish DNA methylation (DNAm) from cell proportion changes in whole placental tissue research, we developed a robust cell type-specific DNAm reference to estimate cell composition. We collated newly collected and existing cell type DNAm profiles quantified via Illumina EPIC or 450k microarrays. To estimate cell composition, we deconvoluted whole placental samples (n=36) with robust partial correlation based on the top 50 hyper- and hypomethylated sites per cell type. To test deconvolution performance, we evaluated RMSE in predicting principal component one of DNAm variation in 204 external placental samples. We analyzed DNAm profiles (n=368,435 sites) from 12 cell types: cytotrophoblasts (n=18), endothelial cells (n=19), Hofbauer cells (n=26), stromal cells (n=21), syncytiotrophoblasts (n=4), six lymphocyte types (n=36), and nucleated red blood cells (n=11). Median cell composition was consistent with placental biology: 60.4% syncytiotrophoblast, 17.1% stromal, 8.8% endothelial, 4.5% cytotrophoblast, 3.9% Hofbauer, 1.7% nucleated red blood cells, and 1.2% neutrophils. Our expanded reference outperformed an existing reference in predicting DNAm variation (15.4% variance explained, IQR=21.61) with cell composition estimates (RMSE:10.51 vs. 11.43, p-value<0.001). This cell type reference can robustly estimate cell composition from whole placental DNAm data to detect important cell types, reveal biological mechanisms, and improve casual inference.
Collapse
Affiliation(s)
- Kyle A. Campbell
- Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Justin A. Colacino
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - John Dou
- Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dana C. Dolinoy
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sung Kyun Park
- Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rita Loch-Caruso
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vasantha Padmanabhan
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Obstetrics and Gynecology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kelly M. Bakulski
- Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Rocque B, Guion K, Singh P, Bangerth S, Pickard L, Bhattacharjee J, Eguizabal S, Weaver C, Chopra S, Zhou S, Kohli R, Sher L, Akbari O, Ekser B, Emamaullee JA. Technical optimization of spatially resolved single-cell transcriptomic datasets to study clinical liver disease. Sci Rep 2024; 14:3612. [PMID: 38351241 PMCID: PMC10864257 DOI: 10.1038/s41598-024-53993-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
Single cell and spatially resolved 'omic' techniques have enabled deep characterization of clinical pathologies that remain poorly understood, providing unprecedented insights into molecular mechanisms of disease. However, transcriptomic platforms are costly, limiting sample size, which increases the possibility of pre-analytical variables such as tissue processing and storage procedures impacting RNA quality and downstream analyses. Furthermore, spatial transcriptomics have not yet reached single cell resolution, leading to the development of multiple deconvolution methods to predict individual cell types within each transcriptome 'spot' on tissue sections. In this study, we performed spatial transcriptomics and single nucleus RNA sequencing (snRNAseq) on matched specimens from patients with either histologically normal or advanced fibrosis to establish important aspects of tissue handling, data processing, and downstream analyses of biobanked liver samples. We observed that tissue preservation technique impacts transcriptomic data, especially in fibrotic liver. Single cell mapping of the spatial transcriptome using paired snRNAseq data generated a spatially resolved, single cell dataset with 24 unique liver cell phenotypes. We determined that cell-cell interactions predicted using ligand-receptor analysis of snRNAseq data poorly correlated with cellular relationships identified using spatial transcriptomics. Our study provides a framework for generating spatially resolved, single cell datasets to study gene expression and cell-cell interactions in biobanked clinical samples with advanced liver disease.
Collapse
Affiliation(s)
- Brittany Rocque
- Division of Abdominal Organ Transplantation and Hepatobiliary Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, 1510 San Pablo Street, Suite 412, Los Angeles, CA, 90033, USA
| | - Kate Guion
- Division of Abdominal Organ Transplantation and Hepatobiliary Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, 1510 San Pablo Street, Suite 412, Los Angeles, CA, 90033, USA
| | - Pranay Singh
- Division of Abdominal Organ Transplantation and Hepatobiliary Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, 1510 San Pablo Street, Suite 412, Los Angeles, CA, 90033, USA
| | - Sarah Bangerth
- Division of Abdominal Organ Transplantation and Hepatobiliary Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, 1510 San Pablo Street, Suite 412, Los Angeles, CA, 90033, USA
| | - Lauren Pickard
- Division of Abdominal Organ Transplantation and Hepatobiliary Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, 1510 San Pablo Street, Suite 412, Los Angeles, CA, 90033, USA
| | - Jashdeep Bhattacharjee
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Sofia Eguizabal
- Division of Abdominal Organ Transplantation and Hepatobiliary Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, 1510 San Pablo Street, Suite 412, Los Angeles, CA, 90033, USA
| | - Carly Weaver
- Division of Abdominal Organ Transplantation, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Shefali Chopra
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shengmei Zhou
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California Los Angeles, Los Angeles, CA, USA
| | - Rohit Kohli
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Linda Sher
- Division of Abdominal Organ Transplantation and Hepatobiliary Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, 1510 San Pablo Street, Suite 412, Los Angeles, CA, 90033, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Juliet A Emamaullee
- Division of Abdominal Organ Transplantation and Hepatobiliary Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, 1510 San Pablo Street, Suite 412, Los Angeles, CA, 90033, USA.
- Division of Abdominal Organ Transplantation, Children's Hospital Los Angeles, Los Angeles, CA, USA.
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Elkin ER, Campbell KA, Lapehn S, Harris SM, Padmanabhan V, Bakulski KM, Paquette AG. Placental single cell transcriptomics: Opportunities for endocrine disrupting chemical toxicology. Mol Cell Endocrinol 2023; 578:112066. [PMID: 37690473 PMCID: PMC10591899 DOI: 10.1016/j.mce.2023.112066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
The placenta performs essential biologic functions for fetal development throughout pregnancy. Placental dysfunction is at the root of multiple adverse birth outcomes such as intrauterine growth restriction, preeclampsia, and preterm birth. Exposure to endocrine disrupting chemicals during pregnancy can cause placental dysfunction, and many prior human studies have examined molecular changes in bulk placental tissues. Placenta-specific cell types, including cytotrophoblasts, syncytiotrophoblasts, extravillous trophoblasts, and placental resident macrophage Hofbauer cells play unique roles in placental development, structure, and function. Toxicant-induced changes in relative abundance and/or impairment of these cell types likely contribute to placental pathogenesis. Although gene expression insights gained from bulk placental tissue RNA-sequencing data are useful, their interpretation is limited because bulk analysis can mask the effects of a chemical on individual populations of placental cells. Cutting-edge single cell RNA-sequencing technologies are enabling the investigation of placental cell-type specific responses to endocrine disrupting chemicals. Moreover, in situ bioinformatic cell deconvolution enables the estimation of cell type proportions in bulk placental tissue gene expression data. These emerging technologies have tremendous potential to provide novel mechanistic insights in a complex heterogeneous tissue with implications for toxicant contributions to adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Elana R Elkin
- School of Public Health, San Diego State University, San Diego, CA, USA.
| | - Kyle A Campbell
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Samantha Lapehn
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Sean M Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Vasantha Padmanabhan
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA; Department of Obstetrics and Gynecology, Michigan Medicine, Ann Arbor, MI, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Alison G Paquette
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
10
|
Li X, Li ZH, Wang YX, Liu TH. A comprehensive review of human trophoblast fusion models: recent developments and challenges. Cell Death Discov 2023; 9:372. [PMID: 37816723 PMCID: PMC10564767 DOI: 10.1038/s41420-023-01670-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
As an essential component of the maternal-fetal interface, the placental syncytiotrophoblast layer contributes to a successful pregnancy by secreting hormones necessary for pregnancy, transporting nutrients, mediating gas exchange, balancing immune tolerance, and resisting pathogen infection. Notably, the deficiency in mononuclear trophoblast cells fusing into multinucleated syncytiotrophoblast has been linked to adverse pregnancy outcomes, such as preeclampsia, fetal growth restriction, preterm birth, and stillbirth. Despite the availability of many models for the study of trophoblast fusion, there exists a notable disparity from the ideal model, limiting the deeper exploration into the placental development. Here, we reviewed the existing models employed for the investigation of human trophoblast fusion from several aspects, including the development history, latest progress, advantages, disadvantages, scope of application, and challenges. The literature searched covers the monolayer cell lines, primary human trophoblast, placental explants, human trophoblast stem cells, human pluripotent stem cells, three-dimensional cell spheres, organoids, and placenta-on-a-chip from 1938 to 2023. These diverse models have significantly enhanced our comprehension of placental development regulation and the underlying mechanisms of placental-related disorders. Through this review, our objective is to provide readers with a thorough understanding of the existing trophoblast fusion models, making it easier to select most suitable models to address specific experimental requirements or scientific inquiries. Establishment and application of the existing human placental trophoblast fusion models.
Collapse
Affiliation(s)
- Xia Li
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, 400016, Chongqing, China
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, 400016, Chongqing, China
| | - Zhuo-Hang Li
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, 400016, Chongqing, China
- Medical Laboratory Department, Traditional Chinese Medicine Hospital of Yaan, 625099, Sichuan, China
| | - Ying-Xiong Wang
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, 400016, Chongqing, China.
| | - Tai-Hang Liu
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, 400016, Chongqing, China.
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, 400016, Chongqing, China.
| |
Collapse
|
11
|
Zhou J, Sheridan MA, Tian Y, Dahlgren KJ, Messler M, Peng T, Ezashi T, Schulz LC, Ulery BD, Roberts RM, Schust DJ. Development of properly-polarized trophoblast stem cell-derived organoids to model early human pregnancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560327. [PMID: 37873440 PMCID: PMC10592868 DOI: 10.1101/2023.09.30.560327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The development of human trophoblast stem cells (hTSC) and stem cell-derived trophoblast organoids has enabled investigation of placental physiology and disease and early maternal-fetal interactions during a stage of human pregnancy that previously had been severely restricted. A key shortcoming in existing trophoblast organoid methodologies is the non-physiologic position of the syncytiotrophoblast (STB) within the inner portion of the organoid, which neither recapitulates placental villous morphology in vivo nor allows for facile modeling of STB exposure to the endometrium or the contents of the intervillous space. Here we have successfully established properly-polarized human trophoblast stem cell (hTSC)-sourced organoids with STB forming on the surface of the organoid. These organoids can also be induced to give rise to the extravillous trophoblast (EVT) lineage with HLA-G + migratory cells that invade into an extracellular matrix-based hydrogel. Compared to previous hTSC organoid methods, organoids created by this method more closely mimic the architecture of the developing human placenta and provide a novel platform to study normal and abnormal human placental development and to model exposures to pharmaceuticals, pathogens and environmental insults. Motivation Human placental organoids have been generated to mimic physiological cell-cell interactions. However, those published models derived from human trophoblast stem cells (hTSCs) or placental villi display a non-physiologic "inside-out" morphology. In vivo , the placental villi have an outer layer of syncytialized cells that are in direct contact with maternal blood, acting as a conduit for gas and nutrient exchange, and an inner layer of progenitor, single cytotrophoblast cells that fuse to create the syncytiotrophoblast layer. Existing "inside-out" models put the cytotrophoblast cells in contact with culture media and substrate, making physiologic interactions between syncytiotrophoblast and other cells/tissues and normal and pathogenic exposures coming from maternal blood difficult to model. The goal of this study was to develop an hTSC-derived 3-D human trophoblast organoid model that positions the syncytiotrophoblast layer on the outside of the multicellular organoid. Graphical abstract
Collapse
|
12
|
Campbell KA, Colacino JA, Puttabyatappa M, Dou JF, Elkin ER, Hammoud SS, Domino SE, Dolinoy DC, Goodrich JM, Loch-Caruso R, Padmanabhan V, Bakulski KM. Placental cell type deconvolution reveals that cell proportions drive preeclampsia gene expression differences. Commun Biol 2023; 6:264. [PMID: 36914823 PMCID: PMC10011423 DOI: 10.1038/s42003-023-04623-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
The placenta mediates adverse pregnancy outcomes, including preeclampsia, which is characterized by gestational hypertension and proteinuria. Placental cell type heterogeneity in preeclampsia is not well-understood and limits mechanistic interpretation of bulk gene expression measures. We generated single-cell RNA-sequencing samples for integration with existing data to create the largest deconvolution reference of 19 fetal and 8 maternal cell types from placental villous tissue (n = 9 biological replicates) at term (n = 40,494 cells). We deconvoluted eight published microarray case-control studies of preeclampsia (n = 173 controls, 157 cases). Preeclampsia was associated with excess extravillous trophoblasts and fewer mesenchymal and Hofbauer cells. Adjustment for cellular composition reduced preeclampsia-associated differentially expressed genes (log2 fold-change cutoff = 0.1, FDR < 0.05) from 1154 to 0, whereas downregulation of mitochondrial biogenesis, aerobic respiration, and ribosome biogenesis were robust to cell type adjustment, suggesting direct changes to these pathways. Cellular composition mediated a substantial proportion of the association between preeclampsia and FLT1 (37.8%, 95% CI [27.5%, 48.8%]), LEP (34.5%, 95% CI [26.0%, 44.9%]), and ENG (34.5%, 95% CI [25.0%, 45.3%]) overexpression. Our findings indicate substantial placental cellular heterogeneity in preeclampsia contributes to previously observed bulk gene expression differences. This deconvolution reference lays the groundwork for cellular heterogeneity-aware investigation into placental dysfunction and adverse birth outcomes.
Collapse
Affiliation(s)
- Kyle A Campbell
- Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Justin A Colacino
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | - John F Dou
- Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Elana R Elkin
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Saher S Hammoud
- Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Obstetrics and Gynecology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Steven E Domino
- Obstetrics and Gynecology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jaclyn M Goodrich
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Rita Loch-Caruso
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Vasantha Padmanabhan
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Obstetrics and Gynecology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kelly M Bakulski
- Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Monosomy X in isogenic human iPSC-derived trophoblast model impacts expression modules preserved in human placenta. Proc Natl Acad Sci U S A 2022; 119:e2211073119. [PMID: 36161909 DOI: 10.1073/pnas.2211073119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mammalian sex chromosomes encode homologous X/Y gene pairs that were retained on the Y chromosome in males and escape X chromosome inactivation (XCI) in females. Inferred to reflect X/Y pair dosage sensitivity, monosomy X is a leading cause of miscarriage in humans with near full penetrance. This phenotype is shared with many other mammals but not the mouse, which offers sophisticated genetic tools to generate sex chromosomal aneuploidy but also tolerates its developmental impact. To address this critical gap, we generated X-monosomic human induced pluripotent stem cells (hiPSCs) alongside otherwise isogenic euploid controls from male and female mosaic samples. Phased genomic variants in these hiPSC panels enable systematic investigation of X/Y dosage-sensitive features using in vitro models of human development. Here, we demonstrate the utility of these validated hiPSC lines to test how X/Y-linked gene dosage impacts a widely used model for human syncytiotrophoblast development. While these isogenic panels trigger a GATA2/3- and TFAP2A/C-driven trophoblast gene circuit irrespective of karyotype, differential expression implicates monosomy X in altered levels of placental genes and in secretion of placental growth factor (PlGF) and human chorionic gonadotropin (hCG). Remarkably, weighted gene coexpression network modules that significantly reflect these changes are also preserved in first-trimester chorionic villi and term placenta. Our results suggest monosomy X may skew trophoblast cell type composition and function, and that the combined haploinsufficiency of the pseudoautosomal region likely plays a key role in these changes.
Collapse
|
14
|
Gauster M, Moser G, Wernitznig S, Kupper N, Huppertz B. Early human trophoblast development: from morphology to function. Cell Mol Life Sci 2022; 79:345. [PMID: 35661923 PMCID: PMC9167809 DOI: 10.1007/s00018-022-04377-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/13/2022] [Accepted: 05/13/2022] [Indexed: 12/18/2022]
Abstract
Human pregnancy depends on the proper development of the embryo prior to implantation and the implantation of the embryo into the uterine wall. During the pre-implantation phase, formation of the morula is followed by internalization of blastomeres that differentiate into the pluripotent inner cell mass lineage, while the cells on the surface undergo polarization and differentiate into the trophectoderm of the blastocyst. The trophectoderm mediates apposition and adhesion of the blastocyst to the uterine epithelium. These processes lead to a stable contact between embryonic and maternal tissues, resulting in the formation of a new organ, the placenta. During implantation, the trophectoderm cells start to differentiate and form the basis for multiple specialized trophoblast subpopulations, all of which fulfilling specific key functions in placentation. They either differentiate into polar cells serving typical epithelial functions, or into apolar invasive cells that adapt the uterine wall to progressing pregnancy. The composition of these trophoblast subpopulations is crucial for human placenta development and alterations are suggested to result in placenta-associated pregnancy pathologies. This review article focuses on what is known about very early processes in human reproduction and emphasizes on morphological and functional aspects of early trophoblast differentiation and subpopulations.
Collapse
Affiliation(s)
- Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Gerit Moser
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Stefan Wernitznig
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Nadja Kupper
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria.
| |
Collapse
|
15
|
Tosevska A, Ghosh S, Ganguly A, Cappelletti M, Kallapur SG, Pellegrini M, Devaskar SU. Integrated analysis of an in vivo model of intra-nasal exposure to instilled air pollutants reveals cell-type specific responses in the placenta. Sci Rep 2022; 12:8438. [PMID: 35589747 PMCID: PMC9119931 DOI: 10.1038/s41598-022-12340-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/06/2022] [Indexed: 01/19/2023] Open
Abstract
The placenta is a heterogeneous organ whose development involves complex interactions of trophoblasts with decidual, vascular, and immune cells at the fetal-maternal interface. It maintains a critical balance between maternal and fetal homeostasis. Placental dysfunction can lead to adverse pregnancy outcomes including intra-uterine growth restriction, pre-eclampsia, or pre-term birth. Exposure to environmental pollutants contributes to the development of placental abnormalities, with poorly understood molecular underpinning. Here we used a mouse (C57BL/6) model of environmental pollutant exposure by administration of a particulate matter (SRM1649b at 300 μg/day/mouse) suspension intra-nasally beginning 2 months before conception and during gestation, in comparison to saline-exposed controls. Placental transcriptomes, at day 19 of gestation, were determined using bulk RNA-seq from whole placentas of exposed (n = 4) and control (n = 4) animals and scRNAseq of three distinct placental layers, followed by flow cytometry analysis of the placental immune cell landscape. Our results indicate a reduction in vascular placental cells, especially cells responsible for structural integrity, and increase in trophoblast proliferation in animals exposed to particulate matter. Pollution-induced inflammation was also evident, especially in the decidual layer. These data indicate that environmental exposure to air pollutants triggers changes in the placental cellular composition, mediating adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Anela Tosevska
- grid.19006.3e0000 0000 9632 6718Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA USA ,grid.22937.3d0000 0000 9259 8492Present Address: Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Shubhamoy Ghosh
- grid.19006.3e0000 0000 9632 6718Division of Neonatology & Developmental Biology, Department of Pediatrics, and the UCLA Children’s Discovery & Innovation Institute, David Geffen School of Medicine at University of California Los Angeles, 10883, Le Conte Avenue, MDCC-22-412, Los Angeles, CA 90095-1752 USA
| | - Amit Ganguly
- grid.19006.3e0000 0000 9632 6718Division of Neonatology & Developmental Biology, Department of Pediatrics, and the UCLA Children’s Discovery & Innovation Institute, David Geffen School of Medicine at University of California Los Angeles, 10883, Le Conte Avenue, MDCC-22-412, Los Angeles, CA 90095-1752 USA
| | - Monica Cappelletti
- grid.19006.3e0000 0000 9632 6718Division of Neonatology & Developmental Biology, Department of Pediatrics, and the UCLA Children’s Discovery & Innovation Institute, David Geffen School of Medicine at University of California Los Angeles, 10883, Le Conte Avenue, MDCC-22-412, Los Angeles, CA 90095-1752 USA
| | - Suhas G. Kallapur
- grid.19006.3e0000 0000 9632 6718Division of Neonatology & Developmental Biology, Department of Pediatrics, and the UCLA Children’s Discovery & Innovation Institute, David Geffen School of Medicine at University of California Los Angeles, 10883, Le Conte Avenue, MDCC-22-412, Los Angeles, CA 90095-1752 USA
| | - Matteo Pellegrini
- grid.19006.3e0000 0000 9632 6718Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA USA
| | - Sherin U. Devaskar
- grid.19006.3e0000 0000 9632 6718Division of Neonatology & Developmental Biology, Department of Pediatrics, and the UCLA Children’s Discovery & Innovation Institute, David Geffen School of Medicine at University of California Los Angeles, 10883, Le Conte Avenue, MDCC-22-412, Los Angeles, CA 90095-1752 USA
| |
Collapse
|
16
|
Seetharam AS, Vu HTH, Choi S, Khan T, Sheridan MA, Ezashi T, Roberts RM, Tuteja G. The product of BMP-directed differentiation protocols for human primed pluripotent stem cells is placental trophoblast and not amnion. Stem Cell Reports 2022; 17:1289-1302. [PMID: 35594861 PMCID: PMC9214062 DOI: 10.1016/j.stemcr.2022.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
The observation that trophoblast (TB) can be generated from primed pluripotent stem cells (PSCs) by exposure to bone morphogenetic protein-4 (BMP4) when FGF2 and ACTIVIN signaling is minimized has recently been challenged with the suggestion that the procedure instead produces amnion. Here, by analyzing transcriptome data from multiple sources, including bulk and single-cell data, we show that the BMP4 procedure generates bona fide TB with similarities to both placental villous TB and TB generated from TB stem cells. The analyses also suggest that the transcriptomic signatures between embryonic amnion and different forms of TB have commonalities. Our data provide justification for the continued use of TB derived from PSCs as a model for investigating placental development. Cells differentiated by using BAP protocols resemble TB more than embryonic amnion Deviation from the standard BAP protocol results in less differentiated TB Single-cell/nucleus RNA-seq analysis identifies two syncytiotrophoblast populations
Collapse
Affiliation(s)
- Arun S Seetharam
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA; Genetics Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Ha T H Vu
- Genetics Development and Cell Biology, Iowa State University, Ames, IA, USA; Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA
| | - Sehee Choi
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Department of Obstetrics and Gynecology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Teka Khan
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Division of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Megan A Sheridan
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Department of Obstetrics and Gynecology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Toshihiko Ezashi
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Division of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - R Michael Roberts
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Division of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Department of Biochemistry, University of Missouri, Columbia, MO, USA.
| | - Geetu Tuteja
- Genetics Development and Cell Biology, Iowa State University, Ames, IA, USA; Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
17
|
Choi S, Khan T, Roberts RM, Schust DJ. Leveraging Optimized Transcriptomic and Personalized Stem Cell Technologies to Better Understand Syncytialization Defects in Preeclampsia. Front Genet 2022; 13:872818. [PMID: 35432469 PMCID: PMC9006100 DOI: 10.3389/fgene.2022.872818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
Abstract
Understanding the process of human placentation is important to the development of strategies for treatment of pregnancy complications. Several animal and in vitro human model systems for the general study human placentation have been used. The field has expanded rapidly over the past decades to include stem cell-derived approaches that mimic preclinical placental development, and these stem cell-based models have allowed us to better address the physiology and pathophysiology of normal and compromised trophoblast (TB) sublineage development. The application of transcriptomic approaches to these models has uncovered limitations that arise when studying the distinctive characteristics of the large and fragile multinucleated syncytiotrophoblast (STB), which plays a key role in fetal-maternal communication during pregnancy. The extension of these technologies to induced pluripotent stem cells (iPSCs) is just now being reported and will allow, for the first time, a reproducible and robust approach to the study of the developmental underpinnings of late-manifesting diseases such as preeclampsia (PE) and intrauterine growth retardation in a manner that is patient- and disease-specific. Here, we will first focus on the application of various RNA-seq technologies to TB, prior limitations in fully accessing the STB transcriptome, and recent leveraging of single nuclei RNA sequencing (snRNA-seq) technology to improve our understanding of the STB transcriptome. Next, we will discuss new stem-cell derived models that allow for disease- and patient-specific study of pregnancy disorders, with a focus on the study of STB developmental abnormalities in PE that combine snRNA-seq approaches and these new in vitro models.
Collapse
Affiliation(s)
- Sehee Choi
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri School of Medicine, Columbia, MO, United States
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Teka Khan
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - R. Michael Roberts
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Danny J. Schust
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri School of Medicine, Columbia, MO, United States
- *Correspondence: Danny J. Schust,
| |
Collapse
|