1
|
Doyle K, Hassan AE, Sutter M, Rodriguez M, Kumar P, Brown E. A Comparison of in vivo Tumor-Homing Abilities of Placental-Derived and Bone Marrow-Derived Mesenchymal Stromal Cells in High-Risk Neuroblastoma. J Pediatr Surg 2025; 60:161954. [PMID: 39379183 DOI: 10.1016/j.jpedsurg.2024.161954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Neuroblastoma is a highly lethal malignancy of young children. Mesenchymal stromal cells (MSCs) may represent a novel cellular delivery vehicle due to their innate tumor-homing properties. We compared in vivo homing abilities of placental-derived MSCs (PMSCs) and bone marrow-derived MSCs (BM-MSCs) in an orthotopic neuroblastoma xenograft. METHODS 28 mice underwent direct implantation of neuroblastoma cells (cell line NB1643) into the adrenal gland followed by intraperitoneal injection of 5 × 106 MSCs (PMSC n = 13, BM-MSC n = 13, PBS controls n = 2). MSC migration was monitored with in vivo imaging system (IVIS) radiance measurements at multiple timepoints post-MSC injection. Necropsy timepoints were 72 h (n = 10) and 7 days (n = 16). Ex vivo imaging was performed on all adrenal masses and select organ tissues. Immunohistochemistry (IHC) assessed the presence of MSCs in tumors. RESULTS IVIS demonstrated initial diffuse signal that migrated to the left abdomen. Radiance decreased over time, but MSC signal persisted at day 7 in all animals. Ex vivo IVIS demonstrated signal in the adrenal tumor but not other organs. There was no significant difference in average ex vivo adrenal mass radiance between MSC groups (p = 0.74). IHC confirmed presence of both MSC types within the tumor. CONCLUSION PMSCs and BM-MSCs successfully migrated to neuroblastoma tumor tissues in vivo without evidence of migration to other organs. MSCs migrate within 72 h and persisted within the tumor up to 7 days. There was no significant difference in homing capabilities of PMSCs compared to BM-MSCs, indicating that either cell type has potential as a drug delivery vehicle. TYPE OF STUDY Original Research. LEVEL OF EVIDENCE n/a.
Collapse
Affiliation(s)
- Kathleen Doyle
- Department of Surgery, University of California-Davis, Sacramento, CA, USA.
| | | | - Maria Sutter
- Surgical Bioengineering Laboratory, Department of Surgery, University of California-Davis, Sacramento, CA, USA
| | - Monica Rodriguez
- Surgical Bioengineering Laboratory, Department of Surgery, University of California-Davis, Sacramento, CA, USA
| | - Priyadarsini Kumar
- Surgical Bioengineering Laboratory, Department of Surgery, University of California-Davis, Sacramento, CA, USA
| | - Erin Brown
- Department of Surgery, Division of Pediatric Surgery, University of California-Davis, Sacramento, CA, USA
| |
Collapse
|
2
|
Edström D, Niroomand A, Stenlo M, Broberg E, Hirdman G, Ghaidan H, Hyllén S, Pierre L, Olm F, Lindstedt S. Amniotic fluid-derived mesenchymal stem cells reduce inflammation and improve lung function following transplantation in a porcine model. J Heart Lung Transplant 2024; 43:2018-2030. [PMID: 39182800 DOI: 10.1016/j.healun.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Lung transplantation is hindered by low donor lung utilization rates. Infectious complications are reasons to decline donor grafts due to fear of post-transplant primary graft dysfunction. Mesenchymal stem cells are a promising therapy currently investigated in treating lung injury. Full-term amniotic fluid-derived lung-specific mesenchymal stem cell treatment may regenerate damaged lungs. These cells have previously demonstrated inflammatory mediation in other respiratory diseases, and we hypothesized that treatment would improve donor lung quality and postoperative outcomes. METHODS In a transplantation model, donor pigs were stratified to either the treated or the nontreated group. Acute respiratory distress syndrome was induced in donor pigs and harvested lungs were placed on ex vivo lung perfusion (EVLP) before transplantation. Treatment consisted of 3 doses of 2 × 106 cells/kg: one during EVLP and 2 after transplantation. Donors and recipients were assessed on clinically relevant parameters and recipients were followed for 3 days before evaluation for primary graft dysfunction (PGD). RESULTS Repeated injection of the cell treatment showed reductions in inflammation seen through lowered immune cell counts, reduced histology signs of inflammation, and decreased cytokines in the plasma and bronchoalveolar lavage fluid. Treated recipients showed improved pulmonary function, including increased PaO2/FiO2 ratios and reduced incidence of PGD. CONCLUSIONS Repeated injection of lung-specific cell treatment during EVLP and post transplant was associated with improved function of previously damaged lungs. Cell treatment may be considered as a potential therapy to increase the number of lungs available for transplantation and the improvement of postoperative outcomes.
Collapse
Affiliation(s)
- Dag Edström
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Anesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Anna Niroomand
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Surgery, NYU Grossman School of Medicine, New York, New York
| | - Martin Stenlo
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Anesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Ellen Broberg
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Anesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Gabriel Hirdman
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Haider Ghaidan
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
| | - Snejana Hyllén
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Anesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Leif Pierre
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
| | - Franziska Olm
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Sandra Lindstedt
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
3
|
Lin S, Gao H, Ma H, Liao Z, Zhang D, Pan J, Zhu Y. A comprehensive meta-analysis of stem cell therapy for liver failure: Assessing treatment efficacy and modality. Ann Hepatol 2024; 30:101586. [PMID: 39293783 DOI: 10.1016/j.aohep.2024.101586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024]
Abstract
INTRODUCTION AND OBJECTIVES This meta-analysis aims to evaluate the efficacy of stem cell therapy (SCT) for liver failure. MATERIALS AND METHODS The study adhered to the recommended guidelines of the PRISMA statement. Eligible studies published prior to May 13, 2023, were comprehensively searched in databases including PubMed, Web of Science, and Embase. Quality assessment was conducted using the Cochrane risk-of-bias tool, and the standard mean differences were calculated for the clinical parameters. The hazard ratios were determined by extracting individual patient data from the Kaplan-Meier curve. RESULTS A total of 2,937 articles were retrieved, and eight studies were included in the final analysis. Most of the studies focused on HBV-related liver failure and were randomized controlled trials. All studies utilized mesenchymal stem cells (MSCs), with the majority (62.5%) being allogeneic. The analysis revealed that combining stem cell therapy with standard medical treatment or plasma exchange significantly enhanced patient survival and reduced MELD scores. Specifically, allogeneic stem cells showed superior efficacy in improving survival outcomes compared to autologous stem cells. Furthermore, deep vessel injection plus a single injection demonstrated better effectiveness than peripheral vessel injection plus multiple injections in reducing MELD scores. CONCLUSIONS This comprehensive analysis underscores the potential of MSC therapy in significantly improving survival and clinical outcomes in patients with liver failure, highlighting the superior benefits of allogeneic MSCs and deep vessel plus single injection administration.
Collapse
Affiliation(s)
- Shenglong Lin
- Department of Severe Hepatopathy, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province 350028, China; Department of Hepatology, Hepatology Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province 350005, China
| | - Haibing Gao
- Department of Severe Hepatopathy, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province 350028, China
| | - Huaxi Ma
- Department of Severe Hepatopathy, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province 350028, China
| | - Ziyuan Liao
- Department of Severe Hepatopathy, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province 350028, China
| | - Dongqing Zhang
- Department of Severe Hepatopathy, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province 350028, China
| | - Jinshui Pan
- Department of Hepatology, Hepatology Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province 350005, China; Fujian Clinical Research Center for Liver and Intestinal Diseases, Fuzhou, Fujian Province 350005, China
| | - Yueyong Zhu
- Department of Hepatology, Hepatology Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province 350005, China; Fujian Clinical Research Center for Liver and Intestinal Diseases, Fuzhou, Fujian Province 350005, China.
| |
Collapse
|
4
|
Litman K, Bouch S, Litvack ML, Post M. Therapeutic characteristics of alveolar-like macrophages in mouse models of hyperoxia and LPS-induced lung inflammation. Am J Physiol Lung Cell Mol Physiol 2024; 327:L269-L281. [PMID: 38887793 PMCID: PMC11444498 DOI: 10.1152/ajplung.00270.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a severe lung disease of high mortality (30-50%). Patients require lifesaving supplemental oxygen therapy; however, hyperoxia can induce pulmonary inflammation and cellular damage. Although alveolar macrophages (AMs) are essential for lung immune homeostasis, they become compromised during inflammatory lung injury. To combat this, stem cell-derived alveolar-like macrophages (ALMs) are a prospective therapeutic for lung diseases like ARDS. Using in vitro and in vivo approaches, we investigated the impact of hyperoxia on murine ALMs during acute inflammation. In vitro, ALMs retained their viability, growth, and antimicrobial abilities when cultured at 60% O2, whereas they die at 90% O2. In contrast, ALMs instilled in mouse lungs remained viable during exposure of mice to 90% O2. The ability of the delivered ALMs to phagocytose Pseudomonas aeruginosa was not impaired by exposure to 60 or 90% O2. Furthermore, ALMs remained immunologically stable in a murine model of LPS-induced lung inflammation when exposed to 60 and 90% O2 and effectively attenuated the accumulation of CD11b+ inflammatory cells in the airways. These results support the potential use of ALMs in patients with ARDS receiving supplemental oxygen therapy.NEW & NOTEWORTHY The current findings support the prospective use of stem cell-derived alveolar-like macrophages (ALMs) as a therapeutic for inflammatory lung disease such as acute respiratory distress syndrome (ARDS) during supplemental oxygen therapy where lungs are exposed to high levels of oxygen. Alveolar-like macrophages directly delivered to mouse lungs were found to remain viable, immunologically stable, phagocytic toward live Pseudomonas aeruginosa, and effective in reducing CD11b+ inflammatory cell numbers in LPS-challenged lungs during moderate and extreme hyperoxic exposure.
Collapse
Affiliation(s)
- Kymberly Litman
- Translational Medicine Programme, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Sheena Bouch
- Translational Medicine Programme, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael L Litvack
- Translational Medicine Programme, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Martin Post
- Translational Medicine Programme, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Lyu S, Liu S, Guo X, Zhang Y, Liu Z, Shi S, Li W, Pei J, Fan Y, Sun H. hP-MSCs attenuate severe acute pancreatitis in mice via inhibiting NLRP3 inflammasome-mediated acinar cell pyroptosis. Apoptosis 2024; 29:920-933. [PMID: 38625481 DOI: 10.1007/s10495-024-01946-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Severe acute pancreatitis (SAP) is a serious gastrointestinal disease that is facilitated by pancreatic acinar cell death. The protective role of human placental mesenchymal stem cells (hP-MSCs) in SAP has been demonstrated in our previous studies. However, the underlying mechanisms of this therapy remain unclear. Herein, we investigated the regularity of acinar cell pyroptosis during SAP and investigated whether the protective effect of hP-MSCs was associated with the inhibition of acinar cell pyroptosis. METHODS A mouse model of SAP was established by the retrograde injection of sodium taurocholate (NaTC) solution in the pancreatic duct. For the hP-MSCs group, hP-MSCs were injected via the tail vein and were monitored in vivo. Transmission electron microscopy (TEM) was used to observe the pyroptosis-associated ultramorphology of acinar cells. Immunofluorescence and Western blotting were subsequently used to assess the localization and expression of pyroptosis-associated proteins in acinar cells. Systemic inflammation and local injury-associated parameters were evaluated. RESULTS Acinar cell pyroptosis was observed during SAP, and the expression of pyroptosis-associated proteins initially increased, peaked at 24 h, and subsequently showed a decreasing trend. hP-MSCs effectively attenuated systemic inflammation and local injury in the SAP model mice. Importantly, hP-MSCs decreased the expression of pyroptosis-associated proteins and the activity of the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome in acinar cells. CONCLUSIONS Our study demonstrates the regularity and important role of acinar cell pyroptosis during SAP. hP-MSCs attenuate inflammation and inhibit acinar cell pyroptosis via suppressing NLRP3 inflammasome activation, thereby exerting a protective effect against SAP.
Collapse
Affiliation(s)
- Shuang Lyu
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
- General Surgery Center of PLA and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Shuirong Liu
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Xin Guo
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Yaolei Zhang
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Zhongyu Liu
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Shan Shi
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Wenya Li
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Juan Pei
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Yonghong Fan
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China.
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China.
| | - Hongyu Sun
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China.
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China.
- General Surgery Center of PLA and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China.
| |
Collapse
|
6
|
Siemionow M, Chambily L, Brodowska S. Efficacy of Engraftment and Safety of Human Umbilical Di-Chimeric Cell (HUDC) Therapy after Systemic Intraosseous Administration in an Experimental Model. Biomedicines 2024; 12:1064. [PMID: 38791026 PMCID: PMC11117770 DOI: 10.3390/biomedicines12051064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Cell-based therapies hold promise for novel therapeutic strategies in regenerative medicine. We previously characterized in vitro human umbilical di-chimeric cells (HUDCs) created via the ex vivo fusion of human umbilical cord blood (UCB) cells derived from two unrelated donors. In this in vivo study, we assessed HUDC safety and biodistribution in the NOD SCID mouse model at 90 days following the systemic intraosseous administration of HUDCs. Twelve NOD SCID mice (n = 6/group) received intraosseous injection of donor UCB cells (3.0 × 106) in Group 1, or HUDCs (3.0 × 106) in Group 2, without immunosuppression. Flow cytometry assessed hematopoietic cell surface markers in peripheral blood and the presence of HLA-ABC class I antigens in lymphoid and non-lymphoid organs. HUDC safety was assessed by weekly evaluations, magnetic resonance imaging (MRI), and at autopsy for tumorigenicity. At 90 days after intraosseous cell administration, the comparable expression of HLA-ABC class I antigens in selected organs was found in UCB control and HUDC therapy groups. MRI and autopsy confirmed safety by no signs of tumor growth. This study confirmed HUDC biodistribution to selected lymphoid organs following intraosseous administration, without immunosuppression. These data introduce HUDCs as a novel promising approach for immunomodulation in transplantation.
Collapse
Affiliation(s)
- Maria Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (L.C.); (S.B.)
- Department of Traumatology, Orthopaedics, and Surgery of the Hand, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Lucile Chambily
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (L.C.); (S.B.)
| | - Sonia Brodowska
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (L.C.); (S.B.)
| |
Collapse
|
7
|
Gazzaniga G, Voltini M, Carletti A, Lenta E, Meloni F, Briganti DF, Avanzini MA, Comoli P, Belliato M. Potential application of mesenchymal stromal cells as a new therapeutic approach in acute respiratory distress syndrome and pulmonary fibrosis. Respir Res 2024; 25:170. [PMID: 38637860 PMCID: PMC11027419 DOI: 10.1186/s12931-024-02795-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/29/2024] [Indexed: 04/20/2024] Open
Abstract
While the COVID-19 outbreak and its complications are still under investigation, post-inflammatory pulmonary fibrosis (PF) has already been described as a long-term sequela of acute respiratory distress syndrome (ARDS) secondary to SARS-CoV2 infection. However, therapeutical strategies for patients with ARDS and PF are still limited and do not significantly extend lifespan. So far, lung transplantation remains the only definitive treatment for end-stage PF. Over the last years, numerous preclinical and clinical studies have shown that allogeneic mesenchymal stromal cells (MSCs) might represent a promising therapeutical approach in several lung disorders, and their potential for ARDS treatment and PF prevention has been investigated during the COVID-19 pandemic. From April 2020 to April 2022, we treated six adult patients with moderate COVID-19-related ARDS in a late proliferative stage with up to two same-dose infusions of third-party allogeneic bone marrow-derived MSCs (BM-MSCs), administered intravenously 15 days apart. No major adverse events were registered. Four patients completed the treatment and reached ICU discharge, while two received only one dose of MSCs due to multiorgan dysfunction syndrome (MODS) and subsequent death. All four survivors showed improved gas exchanges (PaO2/FiO2 ratio > 200), contrary to the others. Furthermore, LDH trends after MSCs significantly differed between survivors and the deceased. Although further investigations and shared protocols are still needed, the safety of MSC therapy has been recurrently shown, and its potential in treating ARDS and preventing PF might represent a new therapeutic strategy.
Collapse
Affiliation(s)
- Giulia Gazzaniga
- SC Anestesia e Rianimazione 2, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi 19, Pavia, PV, 27100, Italy.
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
- Cardio-Thoracic Surgery Department, Heart & Vascular Centre, Maastricht University Medical Centre (MUMC+), P. Debyelaan 25, Maastricht, 6229 HX, The Netherlands.
| | - Marta Voltini
- SC Anestesia e Rianimazione 2, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi 19, Pavia, PV, 27100, Italy
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Alessandro Carletti
- SC Anestesia e Rianimazione 3 - TIPO, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elisa Lenta
- SSD Cell Factory and Center for Advanced Therapies, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Federica Meloni
- UOS Transplant Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine, University of Pavia, Pavia, Italy
| | - Domenica Federica Briganti
- UOS Transplant Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine, University of Pavia, Pavia, Italy
| | - Maria Antonietta Avanzini
- SSD Cell Factory and Center for Advanced Therapies, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Pediatric Hematology/Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Patrizia Comoli
- SSD Cell Factory and Center for Advanced Therapies, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Pediatric Hematology/Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mirko Belliato
- SC Anestesia e Rianimazione 2, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi 19, Pavia, PV, 27100, Italy
| |
Collapse
|
8
|
Abe Y, Sato Y, Tanaka M, Ochiai D. Development of a new treatment for preterm birth complications using amniotic fluid stem cell therapy. Histol Histopathol 2023; 38:965-974. [PMID: 36971371 DOI: 10.14670/hh-18-607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
This paper describes the current status of studies and clinical trials on the use of mesenchymal stem cells (MSCs) and amniotic fluid stem cells (AFSCs) for complications of preterm birth (PTB), an urgent issue in the perinatal field. PTB is a serious challenge in clinical medicine that is increasing globally, and effective control of its complications is necessary for newborns' subsequent long life. Classical treatments are inadequate, and many patients have PTB complications. A growing body of evidence provided by translational medicine and others indicates that MSCs, and among them, the readily available AFSCs, may be useful in treating PTB complications. AFSCs are the only MSCs available prenatally and are known to be highly anti-inflammatory and tissue-protective and do not form tumors when transplanted. Furthermore, because they are derived from the amniotic fluid, a medical waste product, no ethical issues are involved. AFSCs are an ideal cell resource for MSC therapy in neonates. This paper targets the brain, lungs, and intestines, which are the vital organs most likely to be damaged by PTB complications. The evidence to date and future prospects with MSCs and AFSCs for these organs are described.
Collapse
Affiliation(s)
- Yushi Abe
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Yu Sato
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Mamoru Tanaka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Daigo Ochiai
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
- Department of Obstetrics and Gynecology, Kitasato University School of Medicine, Kanagawa, Japan.
| |
Collapse
|
9
|
Lim WQ, Michelle Luk KH, Lee KY, Nurul N, Loh SJ, Yeow ZX, Wong QX, Daniel Looi QH, Chong PP, How CW, Hamzah S, Foo JB. Small Extracellular Vesicles' miRNAs: Biomarkers and Therapeutics for Neurodegenerative Diseases. Pharmaceutics 2023; 15:pharmaceutics15041216. [PMID: 37111701 PMCID: PMC10143523 DOI: 10.3390/pharmaceutics15041216] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023] Open
Abstract
Neurodegenerative diseases are critical in the healthcare system as patients suffer from progressive diseases despite currently available drug management. Indeed, the growing ageing population will burden the country's healthcare system and the caretakers. Thus, there is a need for new management that could stop or reverse the progression of neurodegenerative diseases. Stem cells possess a remarkable regenerative potential that has long been investigated to resolve these issues. Some breakthroughs have been achieved thus far to replace the damaged brain cells; however, the procedure's invasiveness has prompted scientists to investigate using stem-cell small extracellular vesicles (sEVs) as a non-invasive cell-free therapy to address the limitations of cell therapy. With the advancement of technology to understand the molecular changes of neurodegenerative diseases, efforts have been made to enrich stem cells' sEVs with miRNAs to increase the therapeutic efficacy of the sEVs. In this article, the pathophysiology of various neurodegenerative diseases is highlighted. The role of miRNAs from sEVs as biomarkers and treatments is also discussed. Lastly, the applications and delivery of stem cells and their miRNA-enriched sEVs for treating neurodegenerative diseases are emphasised and reviewed.
Collapse
Affiliation(s)
- Wei Qing Lim
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Kie Hoon Michelle Luk
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Kah Yee Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Nasuha Nurul
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Sin Jade Loh
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Zhen Xiong Yeow
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Qi Xuan Wong
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Qi Hao Daniel Looi
- My CytoHealth Sdn. Bhd., Lab 6, DMC Level 2, Hive 5, Taman Teknologi MRANTI, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Pan Pan Chong
- National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Sharina Hamzah
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| |
Collapse
|
10
|
Beyond luciferase-luciferin system: Modification, improved imaging and biomedical application. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
11
|
Xu L, Xu M, Sun X, Feliu N, Feng L, Parak WJ, Liu S. Quantitative Comparison of Gold Nanoparticle Delivery via the Enhanced Permeation and Retention (EPR) Effect and Mesenchymal Stem Cell (MSC)-Based Targeting. ACS NANO 2023; 17:2039-2052. [PMID: 36717361 DOI: 10.1021/acsnano.2c07295] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
There are still some gaps in existing knowledge in the field of cancer nanotheranostics, e.g., the efficiency of nanoparticle-loaded cells for targeted delivery. In the current study, gold nanoparticles (Au NPs) were delivered to tumors in both subcutaneous tumor and lung metastasis tumor models by intravenous injection of either free Au NPs or of human bone marrow mesenchymal stem cells (MSCs), which were loaded with endocytosed Au NPs. By making injections with the same dose of administrated Au NPs, it was possible to directly compare tumor targeting of both delivery modes. Hereby, the passive targeting of tumor by the plain Au NPs was facilitated by the enhanced permeation and retention (EPR) effect. Au NP retention by tumors, as well as tumor penetration, were found to be improved up to 2.4-to-9.3-fold when comparing the MSC-mediated delivery of Au NPs to the delivery of the plain Au NPs via EPR effect on day 7 post administration. While the absolute retention of Au NPs in the tumor remained low, our data show that, upon injection of the same amount of Au NPs, in fact MSC-mediated delivery is quantitatively higher than EPR-mediated delivery of NPs by half an order of magnitude.
Collapse
Affiliation(s)
- Lining Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Sun
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22607 Hamburg, Germany
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Neus Feliu
- Fraunhofer Center for Applied Nanotechnology (CAN), 20146 Hamburg, Germany
| | - Liuxing Feng
- Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100013, China
| | - Wolfgang J Parak
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22607 Hamburg, Germany
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
12
|
Allogeneic Mesenchymal Stromal Cells as a Global Pediatric Prospective Approach in the Treatment of Respiratory Failure Associated with Surfactant Protein C Dysfunction. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10010162. [PMID: 36670712 PMCID: PMC9857592 DOI: 10.3390/children10010162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/02/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
Mesenchymal stromal cells (MSCs) have been proposed as a new therapeutic strategy to treat congenital and acquired respiratory system diseases. We describe a case report of an 18-month-old male patient with progressive chronic respiratory failure, associated with mutations of the surfactant protein C gene (SFTPC) due to c.289G > T variant p.Gly97Ser (rs927644577) and c.176A > G variant (p.His59Arg), submitted to repeated intravenous infusions of allogeneic bone marrow (BM) MSCs. The clinical condition of the patient was monitored. Immunologic studies before and during MSC treatment were performed. No adverse events related to the MSC infusions were recorded. Throughout the MSC treatment period, the patient showed a growth recovery. Starting the second infusion, the patient experienced an improvement in his respiratory condition, with progressive adaptation to mechanical ventilation. After the third infusion, five hours/die of spontaneous breathing was shown, and after infusion IV, spontaneous ventilation for 24/24 h was recorded. A gradual decrease of lymphocytes and cell subpopulations was observed. No variations in the in vitro T cell response to PHA were determined by MSC treatment as well as for the in vitro B cell response. A decrease in IFN-γ, TNF-α, and IL-10 levels was also detected. Even though we cannot exclude an improvement of pulmonary function due to the physiological maturation, the well-known action of MSCs in the repair of lung tissue, together with the sequence of events observed in our patient, may support the therapeutic role of MSCs in this clinical condition. However, further investigations are necessary to confirm the result and long-term follow-up will be mandatory to confirm the benefits on the pulmonary condition.
Collapse
|
13
|
Szymoniuk M, Litak J, Sakwa L, Dryla A, Zezuliński W, Czyżewski W, Kamieniak P, Blicharski T. Molecular Mechanisms and Clinical Application of Multipotent Stem Cells for Spinal Cord Injury. Cells 2022; 12:120. [PMID: 36611914 PMCID: PMC9818156 DOI: 10.3390/cells12010120] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Spinal Cord Injury (SCI) is a common neurological disorder with devastating psychical and psychosocial sequelae. The majority of patients after SCI suffer from permanent disability caused by motor dysfunction, impaired sensation, neuropathic pain, spasticity as well as urinary complications, and a small number of patients experience a complete recovery. Current standard treatment modalities of the SCI aim to prevent secondary injury and provide limited recovery of lost neurological functions. Stem Cell Therapy (SCT) represents an emerging treatment approach using the differentiation, paracrine, and self-renewal capabilities of stem cells to regenerate the injured spinal cord. To date, multipotent stem cells including mesenchymal stem cells (MSCs), neural stem cells (NSCs), and hematopoietic stem cells (HSCs) represent the most investigated types of stem cells for the treatment of SCI in preclinical and clinical studies. The microenvironment of SCI has a significant impact on the survival, proliferation, and differentiation of transplanted stem cells. Therefore, a deep understanding of the pathophysiology of SCI and molecular mechanisms through which stem cells act may help improve the treatment efficacy of SCT and find new therapeutic approaches such as stem-cell-derived exosomes, gene-modified stem cells, scaffolds, and nanomaterials. In this literature review, the pathogenesis of SCI and molecular mechanisms of action of multipotent stem cells including MSCs, NSCs, and HSCs are comprehensively described. Moreover, the clinical efficacy of multipotent stem cells in SCI treatment, an optimal protocol of stem cell administration, and recent therapeutic approaches based on or combined with SCT are also discussed.
Collapse
Affiliation(s)
- Michał Szymoniuk
- Student Scientific Association at the Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Jakub Litak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Department of Clinical Immunology, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Leon Sakwa
- Student Scientific Society, Kazimierz Pulaski University of Technologies and Humanities in Radom, Chrobrego 27, 26-600 Radom, Poland
| | - Aleksandra Dryla
- Student Scientific Association at the Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Wojciech Zezuliński
- Student Scientific Association at the Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Wojciech Czyżewski
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Department of Didactics and Medical Simulation, Medical University of Lublin, Chodźki 4, 20-093 Lublin, Poland
| | - Piotr Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Tomasz Blicharski
- Department of Rehabilitation and Orthopaedics, Medical University in Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| |
Collapse
|
14
|
Tynecka M, Janucik A, Niemira M, Zbikowski A, Stocker N, Tarasik A, Starosz A, Grubczak K, Szalkowska A, Korotko U, Reszec J, Kwasniewski M, Kretowski A, Akdis C, Sokolowska M, Moniuszko M, Eljaszewicz A. The short-term and long-term effects of intranasal mesenchymal stem cell administration to noninflamed mice lung. Front Immunol 2022; 13:967487. [PMID: 36189248 PMCID: PMC9523259 DOI: 10.3389/fimmu.2022.967487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022] Open
Abstract
Mesenchymal stem cells (mesenchymal stromal cells; MSC)-based therapies remain a promising approach to treat degenerative and inflammatory diseases. Their beneficial effects were confirmed in numerous experimental models and clinical trials. However, safety issues concerning MSCs’ stability and their long-term effects limit their implementation in clinical practice, including treatment of respiratory diseases such as asthma, chronic obstructive pulmonary disease, and COVID-19. Here, we aimed to investigate the safety of intranasal application of human adipose tissue-derived MSCs in a preclinical experimental mice model and elucidate their effects on the lungs. We assessed short-term (two days) and long-term (nine days) effects of MSCs administration on lung morphology, immune responses, epithelial barrier function, and transcriptomic profiles. We observed an increased frequency of IFNγ- producing T cells and a decrease in occludin and claudin 3 as a long-term effect of MSCs administration. We also found changes in the lung transcriptomic profiles, reflecting redox imbalance and hypoxia signaling pathway. Additionally, we found dysregulation in genes clustered in pattern recognition receptors, macrophage activation, oxidative stress, and phagocytosis. Our results suggest that i.n. MSCs administration to noninflamed healthy lungs induces, in the late stages, low-grade inflammatory responses aiming at the clearance of MSCs graft.
Collapse
Affiliation(s)
- Marlena Tynecka
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Janucik
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Arkadiusz Zbikowski
- Department of Medical Biology, Medical University of Bialystok, Bialystok, Poland
| | - Nino Stocker
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Davos, Switzerland
| | - Agnieszka Tarasik
- Department of Medical Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | - Aleksandra Starosz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Kamil Grubczak
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Anna Szalkowska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Urszula Korotko
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Reszec
- Department of Medical Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | - Miroslaw Kwasniewski
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Cezmi Akdis
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Davos, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Davos, Switzerland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
- *Correspondence: Andrzej Eljaszewicz, ; Marcin Moniuszko,
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
- *Correspondence: Andrzej Eljaszewicz, ; Marcin Moniuszko,
| |
Collapse
|
15
|
RGD-Hydrogel Improves the Therapeutic Effect of Bone Marrow-Derived Mesenchymal Stem Cells on Phosgene-Induced Acute Lung Injury in Rats. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:2743878. [PMID: 35619760 PMCID: PMC9129938 DOI: 10.1155/2022/2743878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/11/2022] [Accepted: 04/23/2022] [Indexed: 11/17/2022]
Abstract
Mesenchymal stem cells (MSCs) have promising potential in the treatment of various diseases, such as the therapeutic effect of bone marrow-derived MSCs for phosgene-induced acute lung injury (P-ALI). However, MSC-related therapeutics are limited due to poor cell survival, requiring appropriate MSC delivery systems to maximise therapeutic capacity. Biomaterial RGD-hydrogel is a potential cell delivery vehicle as it can mimic the natural extracellular matrix and provide cell adhesion support. The application of RGD-hydrogel in the MSC treatment of respiratory diseases is scarce. This study reports that RGD-hydrogel has good biocompatibility and can increase the secretion of Angiopoietin-1, hepatocyte growth factor, epidermal growth factor, vascular endothelial cell growth factor, and interleukin-10 in vitro MSCs. The hydrogel-encapsulated MSCs could further alleviate P-ALI and show better cell survival in vivo. Overall, RGD-hydrogel could improve the MSC treatment of P-ALI by modulating cell survival and reparative activities. It is exciting to see more and more ways to unlock the therapeutic potential of MSCs.
Collapse
|
16
|
Araldi RP, Prezoto BC, Gonzaga V, Policiquio B, Mendes TB, D’Amélio F, Vigerelli H, Viana M, Valverde CW, Pagani E, Kerkis I. Advanced cell therapy with low tissue factor loaded product NestaCell® does not confer thrombogenic risk for critically ill COVID-19 heparin-treated patients. Pharmacotherapy 2022; 149:112920. [PMID: 36068779 PMCID: PMC8971080 DOI: 10.1016/j.biopha.2022.112920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 12/15/2022]
Abstract
Since the COVID-19 pandemic started, mesenchymal stromal cells (MSC) appeared as a therapeutic option to reduce the over-activated inflammatory response and promote recovery of lung damage. Most clinical studies use intravenous injection for MSC delivery, raising several concerns of thrombogenic risk due to MSC procoagulant activity (PCA) linked to the expression of tissue factor (TF/CD142). This is the first study that demonstrated procoagulant activity of TF+ human immature dental pulp stromal cells (hIDPSC, NestaCell® product) with the percentage of TF+ cells varied from 0.2% to 63.9% in plasma of healthy donors and COVID-19 heparin-treated patients. Thrombogenic risk of TF+ hIDPSCs was evaluated by rotational thromboelastometry (in vitro) and in critically ill COVID-19 patients (clinical trial). We showed that the thromboelastography is not enough to predict the risk of TF+ MSC therapies. Using TF-negative HUVEC cells, we demonstrated that TF is not a unique factor responsible for the cell's procoagulant activity. However, heparin treatment minimizes MSC procoagulant (in vitro). We also showed that the intravenous infusion of hIDPSCs with prophylactic enoxaparin administration in moderate to critically ill COVID-19 patients did not change the values of D-dimer, neither in the PT and PTT times. Our COVID-19 clinical study measured and selected the therapeutic cells with low TF (less than 25% of TF+ hIDPSCs). Our data indicate that the concomitant administration of enoxaparin and low TF-loaded is safe even for critically ill COVID-19 patients.
Collapse
|
17
|
Tan KX, Chang T, Lin XL. Secretomes as an emerging class of bioactive ingredients for enhanced cosmeceutical applications. Exp Dermatol 2022; 31:674-688. [PMID: 35338666 DOI: 10.1111/exd.14570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/23/2022] [Accepted: 03/22/2022] [Indexed: 11/30/2022]
Abstract
Skin aging is predominantly caused by either intrinsic or extrinsic factors, leading to undesirable skin features. Advancements in both molecular and cellular fields have created possibilities in developing novel stem cell-derived active ingredients for cosmeceutical applications and the beauty industry. Mesenchymal stromal cell (MSC)-derived secretomes or conditioned media hold great promise for advancing skin repair and regeneration due to the presence of varying cytokines. These cytokines signal our cells and trigger biological mechanisms associated with anti-inflammatory, antioxidant, anti-aging, proliferative, and immunomodulatory effects. In this review, we discuss the potential of MSC secretomes as novel biomaterials for skincare and rejuvenation by illustrating their mechanism of action related to wound healing, anti-aging, and whitening properties. The advantages and disadvantages of secretomes are compared to both plant-based and animal-derived extracts. In addition, this paper reviews the current safety standards, regulations, market products and research work related to the cosmeceutical applications of secretomes along with strategies to maintain and improve the therapeutic efficacy and production of secretomes. The future outlook of beauty industry is also presented. Lastly, we highlight significant challenges to be addressed for the clinical realization of MSC secretomes-based skin therapies as well as providing perspectives for the future direction of secretomes.
Collapse
Affiliation(s)
- Kei-Xian Tan
- Esco Aster, Block 67, Ayer Rajah Crescent, 139950, Singapore
| | - Trixie Chang
- Esco Aster, Block 67, Ayer Rajah Crescent, 139950, Singapore
| | - Xiang-Liang Lin
- Esco Aster, Block 67, Ayer Rajah Crescent, 139950, Singapore
| |
Collapse
|
18
|
Pang QM, Chen SY, Fu SP, Zhou H, Zhang Q, Ao J, Luo XP, Zhang T. Regulatory Role of Mesenchymal Stem Cells on Secondary Inflammation in Spinal Cord Injury. J Inflamm Res 2022; 15:573-593. [PMID: 35115806 PMCID: PMC8802142 DOI: 10.2147/jir.s349572] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
- Qi-Ming Pang
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Si-Yu Chen
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Sheng-Ping Fu
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Hui Zhou
- The First School of Clinical Medicine, Zunyi Medical University, Zunyi, People’s Republic of China
| | - Qian Zhang
- Department of Human Anatomy, Zunyi Medical University, Zunyi, People’s Republic of China
| | - Jun Ao
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Xiao-Ping Luo
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Correspondence: Tao Zhang; Qian Zhang, Email ;
| |
Collapse
|