1
|
Luo P, Guo H, Liu B, Zhang Z, Xie Y, Yao J, Li X, Bian J, Zhuang J, Ouyang B, Wu J. Transcriptome analyses reveal key features of mouse seminal vesicle during aging. Syst Biol Reprod Med 2024; 70:249-260. [PMID: 39167124 DOI: 10.1080/19396368.2024.2388121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
Despite the significant morphological changes that occur in the seminal vesicles with aging, the transcriptomic characteristics remain largely unexplored. To address this, we performed bulk RNA sequencing on seminal vesicle samples from mice aged 3, 13, and 21 months to uncover transcriptomic alterations. Our findings reveal that aged seminal vesicles display cystic dilatation, epithelial hypoplasia, disordered muscle layers, fibrosis, and reduced proliferation capability. A comparison between 3-month-old and 21-month-old mice indicated that leukocyte-mediated immunity and leukocyte migration were the most significantly upregulated biological processes among differentially expressed genes (DEGs). Notably, several DEGs associated with "leukocyte migration," such as Vcam1, Cxcl13, and Ccl8, exhibited an increasing trend in transcriptomic and protein expression at three different time points in the seminal vesicles of mice. Additionally, we identified multiple aging-associated DEGs, including P21 and Tnfrsf1b. Two genes (Cd209f and Ccl8) were consistently upregulated across all six regions of the male reproductive glands (testis, epididymis, and seminal vesicle) in the comparison of bulk RNA datasets from 3-month-old and 21-month-old mice. These analyses highlight an enhanced state of immune and inflammatory response in aged seminal vesicles. This study represents the first exploration of the overall transcriptome landscape of seminal vesicles in a murine model of natural aging, offering new insights into the mechanisms underlying aging-related seminal vesicle dysfunction.
Collapse
Affiliation(s)
- Peng Luo
- Reproductive Medicine Center, The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital, SunYat-sen University, Guangzhou, China
| | - Haibin Guo
- Department of Reproductive Medicine, Henan Province People's Hospital, Zhengzhou, China
| | - Baoning Liu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhiqiang Zhang
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yun Xie
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiahui Yao
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangping Li
- Department of Urology and Andrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jun Bian
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jintao Zhuang
- Department of Urology, The Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bin Ouyang
- Center for Reproductive Medicine, Guangdong Women and Children Hospital, Guangzhou, China
- Department of Andrology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jinhua Wu
- Department of Andrology, Ganzhou People's Hospital of Jiangxi Province, Ganzhou, China
| |
Collapse
|
2
|
Lou S, Zhu G, Xing C, Hao S, Lin J, Xu J, Li D, Du Y, Mi C, Sun L, Wang L, Wang M, Du M, Pan Y. Transcriptome-wide association identifies KLC1 as a regulator of mitophagy in non-syndromic cleft lip with or without palate. IMETA 2024; 3:e262. [PMID: 39742305 PMCID: PMC11683466 DOI: 10.1002/imt2.262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 01/03/2025]
Abstract
This study investigated pathogenic genes associated with non-syndromic cleft lip with or without cleft palate (NSCL/P) through transcriptome-wide association studies (TWAS). By integrating expression quantitative trait loci (eQTL) data with genome-wide association study (GWAS) data, we identified key susceptibility genes, including KLC1. Notably, the variant rs12884809 G>A was associated with an increased risk of NSCL/P by enhancing the binding of the transcription factor ELK1 to the KLC1 promoter, thereby activating its expression. This alteration in KLC1 expression subsequently impacted mitophagy, leading to significant changes in cellular behavior and zebrafish morphology. Our findings illuminate the genetic mechanisms underlying NSCL/P and provide valuable insights for future prevention strategies and a deeper understanding of this condition.
Collapse
Affiliation(s)
- Shu Lou
- State Key Laboratory of Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingChina
- Department of Orthodontics, Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityNanjingChina
| | - Guirong Zhu
- State Key Laboratory of Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingChina
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityNanjingChina
| | - Changyue Xing
- State Key Laboratory of Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingChina
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityNanjingChina
| | - Shushu Hao
- State Key Laboratory of Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingChina
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityNanjingChina
| | - Junyan Lin
- State Key Laboratory of Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingChina
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityNanjingChina
| | - Jiayi Xu
- State Key Laboratory of Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingChina
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityNanjingChina
| | - Dandan Li
- State Key Laboratory of Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingChina
- Department of Orthodontics, Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityNanjingChina
| | - Yifei Du
- State Key Laboratory of Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingChina
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityNanjingChina
| | - Congbo Mi
- The First Affiliated Hospital of Xinjiang Medical UniversityWulumuqiChina
| | - Lian Sun
- State Key Laboratory of Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingChina
- Department of Orthodontics, Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityNanjingChina
| | - Lin Wang
- State Key Laboratory of Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingChina
- Department of Orthodontics, Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Meilin Wang
- State Key Laboratory of Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingChina
| | - Mulong Du
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingChina
- Department of Biostatistics, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingChina
| | - Yongchu Pan
- State Key Laboratory of Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingChina
- Department of Orthodontics, Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| |
Collapse
|
3
|
Zhou M, Yu J, Xu Y, Li H, Feng YQ, Wang X, Qiu F, Li N, Wang Z. Exosc10 deficiency in the initial segment is dispensable for sperm maturation and male fertility in mice. ZYGOTE 2024; 32:437-445. [PMID: 39552503 DOI: 10.1017/s0967199424000418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
EXOSC10 is an exosome-associated ribonuclease that degrades and processes a wide range of transcripts in the nucleus. The initial segment (IS) of the epididymis is crucial for sperm transport and maturation in mice by affecting the absorption and secretion that is required for male fertility. However, the role of EXOSC10 ribonuclease-mediated RNA metabolism within the IS in the regulation of gene expression and sperm maturation remains unknown. Herein, we established an Exosc10 conditional knockout (Exosc10 cKO) mouse model by crossing Exosc10 F/F mice with Lcn9-Cre mice which expressed recombinase in the principal cells of IS as early as post-natal day 17. Morphological and histological analyses revealed that Exosc10 cKO males had normal spermatogenesis and development of IS. Moreover, the sperm concentration, morphology, motility, and frequency of acrosome reactions in the cauda epididymides of Exosc10 cKO mice were comparable with those of control mice. Thus, Exosc10 cKO males had normal fertility. Collectively, our genetic mouse model and findings demonstrate that loss of EXOSC10 in the IS of epididymis is dispensable for sperm maturation and male fertility.
Collapse
Affiliation(s)
- Meiyang Zhou
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, PR China
| | - Junjie Yu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, PR China
| | - Yu Xu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, PR China
| | - Hong Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, PR China
| | - Yan-Qin Feng
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, PR China
| | - Xiao Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, PR China
| | - Fanyi Qiu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, PR China
| | - Nana Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, PR China
| | - Zhengpin Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
4
|
Huang X, Liu Y, Rong X, Zhao Y, Feng D, Wang J, Xing W. IFIT3 mediates TBK1 phosphorylation to promote activation of pDCs and exacerbate systemic sclerosis in mice. Clin Transl Med 2024; 14:e1800. [PMID: 39305055 PMCID: PMC11415598 DOI: 10.1002/ctm2.1800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 10/01/2024] Open
Abstract
OBJECTIVE To assess the impact of the IFIT3/TBK1 signalling pathway in activating plasmacytoid dendritic cells (pDCs) and its role in the development of SSc. METHODS Utilized single-cell RNA sequencing (scRNA-seq) and high-throughput transcriptome RNA sequencing to reveal the differential abundance of pDCs and the role of the key gene IFIT3 in SSc. Conducted in vitro cell experiments to evaluate the effect of IFIT3/TBK1 signalling pathway intervention on pDC activation cytokine release and fibroblast function. Constructed an IFIT3-/- mouse model using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing to assess the potential benefits of intervening in the IFIT3/TBK1 signalling pathway on skin and lung fibrosis in the SSc mouse model. RESULTS The IFIT3/TBK1 signalling pathway plays a crucial role in activating pDCs, with IFIT3 acting as an upstream regulator of TBK1. Intervention in the IFIT3/TBK1 signalling pathway can inhibit pDC activation cytokine release and impact fibroblast function. The IFIT3-/- mouse model shows potential benefits of targeting the IFIT3/TBK1 signalling pathway in reducing skin and lung fibrosis in the SSc mouse model. CONCLUSION This study provides new insights into potential therapeutic targets for SSc, highlighting the critical role of the IFIT3/TBK1 signalling pathway in SSc development. HIGHLIGHTS This study elucidates the pivotal role of plasmacytoid dendritic cells (pDCs) in systemic sclerosis (SSc). This study identified the key regulatory gene involved in systemic sclerosis (SSc) as IFIT3. This study has found that IFIT3 functions as an upstream regulatory factor, activating TBK1. This study provides Evidence of the regulatory effects of the IFIT3/TBK1 pathway on plasmacytoid dendritic cells (pDCs). This study validated the therapeutic potential using the IFIT3-/- mouse model.
Collapse
Affiliation(s)
- Xiangyang Huang
- Department of Rheumatology and ImmunologyWest China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Yi Liu
- Department of Communication Sciences & DisordersMGH Institute of Health ProfessionsBostonMassachusettsUSA
| | - Xia Rong
- Department of Rheumatology and ImmunologyWest China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Yiheng Zhao
- Department of Rheumatology and ImmunologyWest China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Dan Feng
- Department of Rheumatology and ImmunologyWest China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Jun Wang
- Department of Rheumatology and ImmunologyWest China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Wanhong Xing
- Department of Cardiothoracic SurgeryThe Sixth People's Hospital of ChengduChengduSichuanChina
| |
Collapse
|
5
|
Feuz MB, Nelson DC, Miller LB, Zwerdling AE, Meyer RG, Meyer-Ficca ML. Reproductive Ageing: Current insights and a potential role of NAD in the reproductive health of aging fathers and their children. Reproduction 2024; 167:e230486. [PMID: 38471307 PMCID: PMC11075800 DOI: 10.1530/rep-23-0486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
In brief In light of the increasing age of first-time fathers, this article summarizes the current scientific knowledge base on reproductive aging in the male, including sperm quality and health impacts for the offspring. The emerging role of NAD decline in reproductive aging is highlighted. Abstract Over the past decades, the age of first-time fathers has been steadily increasing due to socio-economic pressures. While general mechanisms of aging are subject to intensive research, male reproductive aging has remained an understudied area, and the effects of increased age on the male reproductive system are still only poorly understood, despite new insights into the potential dire consequences of advanced paternal age for the health of their progeny. There is also growing evidence that reproductive aging is linked to overall health in men, but this review mainly focuses on pathophysiological consequences of old age in men, such as low sperm count and diminished sperm genetic integrity, with an emphasis on mechanisms underlying reproductive aging. The steady decline of NAD levels observed in aging men represents one of the emerging concepts in that regard. Because it offers some mechanistic rationale explaining the effects of old age on the male reproductive system, some of the NAD-dependent functions in male reproduction are briefly outlined in this review. The overview also provides many questions that remain open about the basic science of male reproductive aging.
Collapse
Affiliation(s)
- Morgan B. Feuz
- Department of Veterinary, Clinical and Life Sciences, College of Veterinary Medicine, Utah State University, Logan, UT, United States
- These authors contributed equally
| | - D. Colton Nelson
- Department of Veterinary, Clinical and Life Sciences, College of Veterinary Medicine, Utah State University, Logan, UT, United States
- These authors contributed equally
| | - Laura B. Miller
- Department of Veterinary, Clinical and Life Sciences, College of Veterinary Medicine, Utah State University, Logan, UT, United States
- These authors contributed equally
| | - Alexie E Zwerdling
- Department of Veterinary, Clinical and Life Sciences, College of Veterinary Medicine, Utah State University, Logan, UT, United States
- These authors contributed equally
| | - Ralph G. Meyer
- Department of Veterinary, Clinical and Life Sciences, College of Veterinary Medicine, Utah State University, Logan, UT, United States
| | - Mirella L. Meyer-Ficca
- Department of Veterinary, Clinical and Life Sciences, College of Veterinary Medicine, Utah State University, Logan, UT, United States
| |
Collapse
|
6
|
Garratt M, Try H, Neyt C, Brooks RC. Exposure to female olfactory cues hastens reproductive ageing and increases mortality when mating in male mice. Proc Biol Sci 2024; 291:20231848. [PMID: 38412966 PMCID: PMC10898972 DOI: 10.1098/rspb.2023.1848] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
Theories of ageing predict that investment in reproduction will trade-off against survival and later-life reproduction. Recent evidence from invertebrates suggests that just perceiving cues of a potential mate's presence can reduce lifespan, particularly in males, and that activation of neuroendocrine reward pathways associated with mating can alleviate these effects. Whether similar effects occur in vertebrates remains untested. We tested whether exposure to olfactory cues from the opposite sex would influence mortality and reproductive senescence in male mice. We observed that males exposed to female olfactory cues from middle- to old age (from 10 to 24 months of age) showed reduced late-life fertility, irrespective of whether they had also been allowed to mate with females earlier in life. Males that were exposed to female odours in conjunction with mating also showed an increased mortality rate across the exposure period, indicating that olfactory cues from females can increase male mortality in some environments. Our results show that exposure to female odours can influence reproductive ageing and mortality in male mice, highlighting that sensory perception of mates may be an important driver of life-history trade-offs in mammals.
Collapse
Affiliation(s)
- Michael Garratt
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Heather Try
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Christine Neyt
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Robert C Brooks
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
7
|
Zhang D, Raza SHA, Du X, Wang J, Wang M, Ma J, Xie K, Pant SD, He J, Aloufi BH, Mei C, Zan L. Effect of feeding corn silage on semen quality and spermatogenesis of bulls. Vet Res Commun 2024; 48:391-401. [PMID: 37733150 DOI: 10.1007/s11259-023-10218-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
Bovine reproduction, including male fertility traits like semen quality, are influenced by a variety of different factors like breed, nutrition, environment, and feeding management. Diet in a crucial determinant, and in this regard although corn silage is generally considered to be a favorable roughage for fattening meat type breeds, it tends to have a negative impact on semen quality. In the current study, alfalfa hay was substituted by corn silage as a roughage source in the diet of bulls to investigate its effects on the fertility of breeding bulls. A feeding trail spanning 140 days was conducted, with semen collection occurring twice a week commencing 60 days after the start of trial. Semen quality parameters, serum antioxidant indexes, sex hormone content in semen, rumen microflora, and sperm transcriptome were characterized. Feeding corn silage enhanced host antioxidant capacity, significantly decreased spermatozoal motility and increased sperm deformity rate in bulls. Furthermore, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) content in semen were significantly decreased (P < 0.05), and the inhibin B (INHB) content was significantly increased (P < 0.01). Feeding corn silage led to significant changes in the diversity of rumen microbiota of cattle at the phylum and genus levels, some of which were significantly correlated with semen quality. Subsequent RNA sequencing indicated that DHH and PITHD1, two genes related to sperm and reproductive development, were differentially expressed, and enrichment analysis also identified several pathways and biological functions relevant to sperm development and reproduction. These results indicate that feeding corn silage modulates semen quality via different pathways. Firstly, corn silage metabolites likely affect the secretion of INHB through the testicular capillaries, which affects semen quality by regulating genes involved in spermatogenesis. Secondly, low lignin content in silage corn appears to reduce abundance of rumen flora that are positively correlated with semen quality. Overall, results indicate that feeding bulls corn silage as the primary source of forage could negatively impact semen quality and may not be appropriate as the primary roughage of forage for breeding bulls.
Collapse
Affiliation(s)
- Dianqi Zhang
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi, 712100, P.R. China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi, 712100, P.R. China
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
| | - Xinze Du
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi, 712100, P.R. China
| | - Juze Wang
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi, 712100, P.R. China
| | - Meng Wang
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi, 712100, P.R. China
| | - Jing Ma
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi, 712100, P.R. China
| | - Kuncheng Xie
- Xi'an Dairy Cow Breeding Center, Xi'an Agriculture and Rural Bureau, Xi'an, Shaanxi, 710000, P.R. China
| | - Sameer D Pant
- Gulbali Institute, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia
| | - Jie He
- Xi'an Dairy Cow Breeding Center, Xi'an Agriculture and Rural Bureau, Xi'an, Shaanxi, 710000, P.R. China
| | - Bander Hamad Aloufi
- Biology Department, Faculty of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Chugang Mei
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi, 712100, P.R. China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi, 712100, P.R. China.
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China.
| |
Collapse
|
8
|
Luo P, Chen X, Gao F, Xiang AP, Deng C, Xia K, Gao Y. Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Rescue Testicular Aging. Biomedicines 2024; 12:98. [PMID: 38255205 PMCID: PMC10813320 DOI: 10.3390/biomedicines12010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Testicular aging is associated with diminished fertility and certain age-related ailments, and effective therapeutic interventions remain elusive. Here, we probed the therapeutic efficacy of exosomes derived from human umbilical cord mesenchymal stem cells (hUMSC-Exos) in counteracting testicular aging. METHODS We employed a model of 22-month-old mice and administered intratesticular injections of hUMSC-Exos. Comprehensive analyses encompassing immunohistological, transcriptomic, and physiological assessments were conducted to evaluate the effects on testicular aging. Concurrently, we monitored alterations in macrophage polarization and the oxidative stress landscape within the testes. Finally, we performed bioinformatic analysis for miRNAs in hUMSC-Exos. RESULTS Our data reveal that hUMSC-Exos administration leads to a marked reduction in aging-associated markers and cellular apoptosis while promoting cellular proliferation in aged testis. Importantly, hUMSC-Exos facilitated the restoration of spermatogenesis and elevated testosterone synthesis in aged mice. Furthermore, hUMSC-Exos could attenuate inflammation by driving the phenotypic shift of macrophages from M1 to M2 and suppress oxidative stress by reduced ROS production. Mechanistically, these efficacies against testicular aging may be mediated by hUMSC-Exos miRNAs. CONCLUSIONS Our findings suggest that hUMSC-Exos therapy presents a viable strategy to ameliorate testicular aging, underscoring its potential therapeutic significance in managing testicular aging.
Collapse
Affiliation(s)
- Peng Luo
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (P.L.); (X.C.); (F.G.); (C.D.)
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China;
- Reproductive Medicine Center, The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xuren Chen
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (P.L.); (X.C.); (F.G.); (C.D.)
- Reproductive Medicine Center, The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Maoming Maternal and Child Health Hospital, Maoming 525000, China
| | - Feng Gao
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (P.L.); (X.C.); (F.G.); (C.D.)
- Reproductive Medicine Center, The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China;
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Chunhua Deng
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (P.L.); (X.C.); (F.G.); (C.D.)
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China;
| | - Kai Xia
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (P.L.); (X.C.); (F.G.); (C.D.)
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China;
| | - Yong Gao
- Reproductive Medicine Center, The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
9
|
Xie J, Mao H. Functional Insight into hTRIR. Curr Mol Med 2024; 24:1445-1449. [PMID: 37867262 DOI: 10.2174/0115665240260310231016112946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023]
Abstract
The uncharacterized C19orf43 was discovered to be associated with hTR maturation. Our previous work indicated that C19orf43 cleaves distinct RNA types but not DNA. We then named it hTR-interacting RNase (hTRIR) (Uniprot: Q9BQ61). hTRIR works in a broad range of temperatures and pH without any divalent cations needed. hTRIR cleaves RNA at all four nucleotide sites but preferentially at purines. In addition, hTRIR digested both ends of methylated small RNA, which suggested that it was a putative ribonuclease. Later, we designed more nucleotides that methylated small RNA to determine whether it was an exo- and/or endoribonuclease. Unlike RNase A, hTRIR could digest both ends of methylated RNA oligos 5R5, which suggested it was potentially an endoribonuclease.
Collapse
Affiliation(s)
- Jumin Xie
- Biochemistry and Molecular Biology, Hubei Polytechnic University, Huangshi, Hubei 435003, P.R. China
| | - Hui Mao
- Department of Dermatology, Huangshi Central Hospital, Huangshi, Hubei, 435000, P.R. China
| |
Collapse
|
10
|
Su Z, Liu Z, Lei W, Xia K, Xiao A, Hu Z, Zhou M, Zhu F, Tian J, Yang M, Wang D, Xiang AP, Nie J. Hyperhomocysteinemia lowers serum testosterone concentration via impairing testosterone production in Leydig cells. Cell Biol Toxicol 2023; 39:3077-3100. [PMID: 37495868 DOI: 10.1007/s10565-023-09819-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Hyperhomocysteinemia (HHcy) plays a salient role in male infertility. However, whether HHcy interferes with testosterone production remains inconclusive. Here, we reported a lower serum testosterone level in HHcy mice. Single-cell RNA sequencing revealed that genes related to testosterone biosynthesis, together with nuclear receptor subfamily 5 group A member 1 (Nr5a1), a key transcription factor for steroidogenic genes, were downregulated in the Leydig cells (LCs) of HHcy mice. Mechanistically, Hcy lowered trimethylation of histone H3 on lysine 4 (H3K4me3), which was bound on the promoter region of Nr5a1, resulting in downregulation of Nr5a1. Intriguingly, we identified an unknown cell cluster annotated as Macrophage-like Leydig cells (McLCs), expressing both LCs and macrophages markers. In HHcy mice, McLCs were shifted toward pro-inflammatory phenotype and thus promoted inflammatory response in LC. Betaine supplementation rescued the downregulation of NR5A1 and restored the serum testosterone level in HHcy mice. Overall, our study highlights an etiological role of HHcy in LCs dysfunction.
Collapse
Affiliation(s)
- Zhiyuan Su
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhuoliang Liu
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Wenjing Lei
- Department of Nephrology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Kai Xia
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - An Xiao
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zheng Hu
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Miaomiao Zhou
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Fengxin Zhu
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jianwei Tian
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Manqiu Yang
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Dong Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
11
|
Yu Z, Li M, Peng W. Exploring biomarkers of premature ovarian insufficiency based on oxford nanopore transcriptional profile and machine learning. Sci Rep 2023; 13:11498. [PMID: 37460774 PMCID: PMC10352282 DOI: 10.1038/s41598-023-38754-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/14/2023] [Indexed: 07/20/2023] Open
Abstract
Premature ovarian insufficiency (POI) is a reproductive endocrine disorder characterized by infertility and perimenopausal syndrome, with a highly heterogeneous genetic etiology and its mechanism is not fully understood. Therefore, we utilized Oxford Nanopore Technology (ONT) for the first time to characterize the full-length transcript profile, and revealed biomarkers, pathway and molecular mechanisms for POI by bioinformatics analysis and machine learning. Ultimately, we identified 272 differentially expressed genes, 858 core genes, and 25 hub genes by analysis of differential expression, gene set enrichment, and protein-protein interactions. Seven candidate genes were identified based on the intersection features of the random forest and Boruta algorithm. qRT-PCR results indicated that COX5A, UQCRFS1, LCK, RPS2 and EIF5A exhibited consistent expression trends with sequencing data and have potential as biomarkers. Additionally, GSEA analysis revealed that the pathophysiology of POI is closely associated with inhibition of the PI3K-AKT pathway, oxidative phosphorylation and DNA damage repair, as well as activation of inflammatory and apoptotic pathways. Furthermore, we emphasize that downregulation of respiratory chain enzyme complex subunits and inhibition of oxidative phosphorylation pathways play crucial roles in the pathophysiology of POI. In conclusion, our utilization of long-read sequencing has refined the annotation information within the POI transcriptional profile. This valuable data provides novel insights for further exploration into molecular regulatory networks and potential biomarkers associated with POI.
Collapse
Affiliation(s)
- Zhaoyang Yu
- The First Affiliated Clinical College of Guangxi Medical University, Nanning, China
| | - Mujun Li
- Reproductive Medicine Research Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Weilong Peng
- School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou, China.
| |
Collapse
|
12
|
Wang X, Qiu F, Yu J, Zhou M, Zuo A, Xu X, Sun XY, Wang Z. Transcriptome profiling of the initial segment and proximal caput of mouse epididymis. Front Endocrinol (Lausanne) 2023; 14:1190890. [PMID: 37324270 PMCID: PMC10266198 DOI: 10.3389/fendo.2023.1190890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/05/2023] [Indexed: 06/17/2023] Open
Abstract
Background The proximal region of the mouse epididymis plays a pivotal role in sperm transport, sperm maturation, and male fertility. Several studies have focused on segment-dependent gene expression of the mouse epididymis through high-throughput sequencing without the precision of the microdissection. Methods and results Herein, we isolated the initial segment (IS) and proximal caput (P-caput) by physical microdissection using an Lcn9-cre; Rosa26tdTomato mouse model. We defined the transcriptome changes of caput epididymis by RNA sequencing (RNA-seq), which identified 1,961 genes that were abundantly expressed in the IS and 1,739 genes that were prominently expressed in the P-caput. In addition, we found that many differentially expressed genes (DEGs) were predominantly or uniquely expressed in the epididymis and region-specific genes were highly associated with transport, secretion, sperm motility, fertilization, and male fertility. Conclusion Thus, this study provides an RNA-seq resource to identify region-specific genes in the caput epididymis. The epididymal-selective/specific genes are potential targets for male contraception and may provide new insights into understanding segment-specific epididymal microenvironment-mediated sperm transport, maturation, and male fertility.
Collapse
Affiliation(s)
- Xiao Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Fanyi Qiu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Junjie Yu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Meiyang Zhou
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Anjian Zuo
- Department of Bioinformatics, Wanhui Biomedicine Co., LTD., Hangzhou, China
| | - Xiaojiang Xu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Xiao-Yang Sun
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Zhengpin Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
13
|
Zhuang J, Li X, Yao J, Sun X, Liu J, Nie H, Hu Y, Tu X, Liu H, Qin W, Xie Y. Single-cell RNA sequencing reveals the local cell landscape in mouse epididymal initial segment during aging. Immun Ageing 2023; 20:21. [PMID: 37170325 PMCID: PMC10173474 DOI: 10.1186/s12979-023-00345-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Morphological and functional alterations in aging reproductive organs result in decreased male fertility. The epididymis functions as the transition region for post-testicular sperm maturation. And we have previously demonstrated that the epididymal initial segment (IS), a region of the reproductive tract essential for sperm maturation and capacitation, undergoes considerable histological changes and chronic immune activation in mice during aging. However, the local aging-associated cellular and molecular changes in the aged epididymal IS are poorly understood. RESULTS We conducted single-cell RNA sequencing analysis on the epididymal IS of young (3-month-old) and old (21-month-old) mice. In total, 10,027 cells from the epididymal IS tissues of young and old mice were obtained and annotated. The cell composition, including the expansion of a principal cell subtype and Ms4a4bHiMs4a6bHi T cells, changed with age. Aged principal cells displayed multiple functional gene expression changes associated with acrosome reaction and sperm maturation, suggesting an asynchronous process of sperm activation and maturation during epididymal transit. Meanwhile, aging-related altered pathways in immune cells, especially the "cell chemotaxis" in Cx3cr1Hi epididymal dendritic cells (eDCs), were identified. The monocyte-specific expression of chemokine Ccl8 increased with age in eDCs. And the aged epididymal IS showed increased inflammatory cell infiltration and cytokine secretion. Furthermore, cell-cell communication analysis indicated that age increased inflammatory signaling in the epididymal IS. CONCLUSION Contrary to the general pattern of lower immune responses in the male proximal genital tract, we revealed an inflammaging status in mouse epididymal initial segment. These findings will allow future studies to enable the delay of male reproductive aging via immune regulation.
Collapse
Affiliation(s)
- Jintao Zhuang
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiangping Li
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Jiahui Yao
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiangzhou Sun
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiumin Liu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Hua Nie
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Human Sperm Bank of Guangdong Province, Guangzhou, 510600, China
| | - Yang Hu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Human Sperm Bank of Guangdong Province, Guangzhou, 510600, China
| | - Xiangan Tu
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Huang Liu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Human Sperm Bank of Guangdong Province, Guangzhou, 510600, China.
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Human Sperm Bank of Guangdong Province, Guangzhou, 510600, China.
| | - Yun Xie
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|