1
|
Zhao R, Zhu XY, Zhang J, Xie ZY, Hu WS, Han QH, Fan JY, Yang YN, Feng BY, Cao JM, Zhou X, Wang DP. Crystal structure of F10 core protein from Mpox virus reveals its potential inhibitors. Int J Biol Macromol 2025; 284:138079. [PMID: 39603287 DOI: 10.1016/j.ijbiomac.2024.138079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/23/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Mpox virus (MPXV), a member of Poxviridae family, causes a rare zoonotic disease. According to the most recent data, over 15,600 cases and 537 deaths of human mpox have been reported. The MPXV complete RNA polymerase (RNAP), which is responsible for the entire early transcriptional cycle, comprises the RNAP core enzyme and essential factors including viral early transcription factor (VETF), nucleoside triphosphate phosphohydrolase I (NPH-I), RNA polymerase-associated protein (Rap94), and F10 core protein. The dimeric F10 core protein stabilizes the N-terminal region of Rap94, and the C-terminal domain of NPH-I, functioning as a structural clamp that enhances the stability of the RNAP complex. Here, we determined the crystal structure of the F10 core protein at a high resolution of 1.5 Å, and identified a cavity between the F10 core protein and NPH-I through superimposition of the MPXV F10 core protein and the vaccinia virus (VACV) RNAP. We further conducted a virtual screening based on this cavity, and identified 28 compounds as potential MPXV inhibitors. To the best of our knowledge, this is the first study to screen for inhibitors targeting MPXV RNAP. Our study may facilitate the development of novel ways for the discovery of anti-MPXV compounds against emerging pathogens.
Collapse
Affiliation(s)
- Rong Zhao
- Department of Cardiology, the First hospital of Shanxi Medical University, and Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China; Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiang-Yue Zhu
- Department of Cardiology, the First hospital of Shanxi Medical University, and Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Jie Zhang
- Department of Cardiology, the First hospital of Shanxi Medical University, and Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Zhi-Yan Xie
- Department of Cardiology, the First hospital of Shanxi Medical University, and Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Wen-Shu Hu
- Department of Cardiology, the First hospital of Shanxi Medical University, and Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Qing-Hua Han
- Department of Cardiology, the First hospital of Shanxi Medical University, and Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Jiao-Yan Fan
- Department of Cardiology, the First hospital of Shanxi Medical University, and Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Yan-Ni Yang
- Department of Cardiology, the First hospital of Shanxi Medical University, and Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Bao-Ying Feng
- Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ji-Min Cao
- Department of Cardiology, the First hospital of Shanxi Medical University, and Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China.
| | - Xin Zhou
- Department of Cardiology, the First hospital of Shanxi Medical University, and Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China.
| | - De-Ping Wang
- Department of Cardiology, the First hospital of Shanxi Medical University, and Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China; Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
| |
Collapse
|
2
|
Luo L, Liu K, Deng L, Wang W, Lai T, Li X. Chicoric acid acts as an ALOX15 inhibitor to prevent ferroptosis in asthma. Int Immunopharmacol 2024; 142:113187. [PMID: 39298822 DOI: 10.1016/j.intimp.2024.113187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Chicoric acid (CA) is a crucial immunologically active compound found in chicory and echinacea, possessing a range of biological activities. Ferroptosis, a type of iron-dependent cell death induced by lipid peroxidation, plays a key role in the development and advancement of asthma. Targeting ferroptosis could be a potential therapeutic strategy for treating asthma. PURPOSE The purpose of this study was to explore the screening of ALOX15, a pivotal target of ferroptosis in asthma, and potential therapeutic agents, as well as to investigate the promising potential of CA as an ALOX15 inhibitor for modulating ferroptosis in asthma. METHODS Through high-throughput data processing of bronchial epithelial RNA from asthma patients using bioinformatics and machine learning, the key target of ferroptosis in asthma, ALOX15, was identified. An inhibitor of ALOX15 was then obtained through high-throughput molecular docking and molecular dynamics simulation tests. In vitro experiments were conducted using a 16HBE cell model induced by house dust mite (HDM) and lipopolysaccharide (LPS), which were treated with the ALOX15 inhibitor (PD146176), CA treatment, or ALOX15 knockdown. In vivo experiments were also carried out using a mouse model induced by HDM and LPS. RESULTS The composite model of ALOX15 and CA in molecular dynamics simulations shows good stability and flexibility. Network pharmacological analysis reveals that CA regulates ferroptosis through ALOX15 in treating asthma. In vitro studies show that ALOX15 is highly expressed in HDM and LPS treatments, while CA inhibits HDM and LPS-induced ferroptosis in 16HBE cells by reducing ALOX15 expression. Knockdown of ALOX15 has the opposite effect. Metabolomics analysis identifies key compounds associated with ferroptosis, including L-Targinine, eicosapentaenoic acid, 16-hydroxy hexadecanoic acid, and succinic acid. In vivo experiments demonstrate that CA suppresses ALOX15 expression, inhibits ferroptosis, and improves asthma symptoms in mice. CONCLUSION Our research initially identified CA as a promising asthma treatment that effectively blocks ferroptosis by specifically targeting ALOX15. This study not only highlights CA as a potential therapeutic agent for asthma but also introduces novel targets and treatment options for this condition, along with innovative approaches for utilizing natural compounds to target diseases associated with ferroptosis.
Collapse
Affiliation(s)
- Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Kangdi Liu
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Liyan Deng
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Wenjian Wang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Tianli Lai
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Xiaoling Li
- Experimental Animal Center, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| |
Collapse
|
3
|
Zhao WY, Zhang QQ, Zhao YF, Chang C, Wang X, Geng AL. Orychophragmus violaceus and/or chicory forage affects performance, egg quality, sensory evaluation and antioxidative properties in native laying hens. Anim Biotechnol 2024; 35:2286610. [PMID: 38006583 DOI: 10.1080/10495398.2023.2286610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Orychophragmus violaceus (OV) and chicory (Cichorium intybus L., CC) can be used as fresh or dry forage for animals. To determine whether OV and/or CC have beneficial effects on performance and egg quality, a total of 1212 28-wk-old Beijing You Chicken (BYC) laying hens with similar performance were randomly allocated to 4 groups with 3 replicate pens per group, and 101 birds per pen. The birds were fed a basal diet (control), the basal diet + OV (3.507 kg/d/pen), the basal diet + CC (2.525 kg/d/pen), and the basal diet + OV + CC (OVC, 1.7535 kg/d/pen OV + 1.2625 kg/d/pen CC) for 3 wks after one wk of adaptation. The results showed that egg-laying rate was not affected by OV, CC and OVC (p > 0.05), but weekly average egg mass was significantly increased by OV and CC (p < 0.05). The feed egg ratio in the CC group (2.82) was significantly lower than that in the other three groups (p < 0.05). The eggshell thickness (EST), albumen height (AH) and Haugh unit (HU) were decreased by OV and CC (p < 0.05); while yolk color (YC) was increased in the CC and OVC groups (p < 0.05). Egg grade was decreased by OV (p < 0.05). Sensory evaluation showed that there was a trend for increased YC in OV, CC and OVC (p = 0.089). Serum total protein was significantly lower in OV group than those in the control and CC group (p < 0.05); serum albumin content was significantly decreased in OV, CC and OVC groups (p = 0.006). Serum glutathione peroxidase activity in CC and OVC groups was significantly higher than that in the control group (p < 0.05). In conclusion, the present study suggests that CC had a better effect on the performance of the native laying hens than OV. The OV and CC affected egg quality, while YC was increased in CC and OVC groups. The OVC improved YC and serum antioxidative properties of native laying hens without affecting the performance.
Collapse
Affiliation(s)
- W Y Zhao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, P. R. China
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, P. R. China
| | - Q Q Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, P. R. China
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, P. R. China
| | - Y F Zhao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, P. R. China
| | - C Chang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, P. R. China
| | - X Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, P. R. China
| | - A L Geng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, P. R. China
| |
Collapse
|
4
|
Zheleva-Dimitrova D, Petrova A, Savov Y, Gevrenova R, Balabanova V, Momekov G, Simeonova R. Protective Potential of Cicerbita alpina Leaf Extract on Metabolic Disorders and Oxidative Stress in Model Animals. Int J Mol Sci 2024; 25:10851. [PMID: 39409180 PMCID: PMC11477542 DOI: 10.3390/ijms251910851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
Metabolic disorders (MDs) include disease states such as diabetes mellitus, obesity, dyslipidemia, hyperuricemia, etc., affecting about 30% of the planet's population. The purpose of the present study was to investigate the protective potential of Cicerbita alpina leaf extract (ECA) against chemically induced type 2 diabetes in Wistar rats. Additionally, some biochemical parameters in the blood serum and liver, as well as histopathological investigation, were also performed. Quantitative analysis of the major compounds in the used extract was performed using ultrahigh-performance liquid chromatography-diode array detection (UHPLC-DAD) analyses using the external standard method. C. alpina extract revealed a beneficial effect on MDs, lowering blood sugar levels and MDA quantity in the liver, increasing the reduced glutathione level, and increasing antioxidant enzyme activity. Cichoric acid (CA) (91.93 mg/g dry extract (de) ± 4.64 mg/g de) was found to be the dominant compound in the extract, followed by caftaric (11.36 ± 2.10 mg/g de), and chlorogenic acid (CGA) (9.25 ± 0.05 mg/g de). In conclusion, C. alpina leaf extract (ECA) is rich in caffeoyltartaric and caffeoylquinic acids and provides beneficial effects on the diabetic animal model.
Collapse
Affiliation(s)
- Dimitrina Zheleva-Dimitrova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000 Sofia, Bulgaria; (R.G.); (V.B.)
| | - Alexandra Petrova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000 Sofia, Bulgaria; (A.P.); (G.M.)
| | - Yonko Savov
- Institute of Emergency Medicine “N. I. Pirogov”, Bul. Totleben 21, 1000 Sofia, Bulgaria;
| | - Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000 Sofia, Bulgaria; (R.G.); (V.B.)
| | - Vessela Balabanova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000 Sofia, Bulgaria; (R.G.); (V.B.)
| | - Georgi Momekov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000 Sofia, Bulgaria; (A.P.); (G.M.)
| | - Rumyana Simeonova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000 Sofia, Bulgaria; (A.P.); (G.M.)
| |
Collapse
|
5
|
Jeong JS, Kim JW, Kim JH, Chung EH, Lee DR, Choi BK, Ko JW, Kim TW. Oral toxicity and genotoxicity assessment of standardized Echinacea purpurea (L.) extract and the pharmacokinetic profile of its active ingredient chicoric acid. Toxicol Res 2024; 40:457-472. [PMID: 39678074 PMCID: PMC11637144 DOI: 10.1007/s43188-024-00238-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/14/2024] [Accepted: 04/05/2024] [Indexed: 12/17/2024] Open
Abstract
Echinacea purpurea (L.), a member of Asteraceae family, has traditionally been used in numerous countries to treat and prevent various immune-related diseases. This study confirmed the oral toxicity and genotoxicity profile of standardized E. purpurea extract under good laboratory practice (GLP) conditions and the pharmacokinetic features of chicoric acid, a major ingredient in E. purpurea extract. For the repeated-dose toxicity test, Sprague Dawley (SD) rats were orally administered 500, 1000, and 2000 mg/kg/day of E. purpurea extract continuously for 13 weeks. The genotoxicity of E. purpurea was determined using standard genotoxicity tests, including bacterial reverse mutations, chromosome aberrations, and micronucleus tests. Additionally, a validated LC-MS/MS method was employed to measure chicoric acid levels in rat plasma for pharmacokinetic analysis. The results of this study indicate that during repeated oral administration of E. purpurea, both male and female SD rats showed no abnormal clinical signs. Furthermore, the genotoxicity tests did not reveal any evidence of genotoxicity in E. purpurea. Pharmacokinetic profile of chicoric acid, following the oral administration of highly purified chicoric acid (95%) and standardized E. purpurea extracts containing 2% chicoric acid, revealed the oral bioavailability to be approximately 1.5%. Increasing the dose of standardized E. purpurea extract (equivalent to 20-100 mg/kg of chicoric acid) from 1 to 5 g/kg resulted in a proportional increase in systemic exposure without reaching saturation. In this study, E.purpurea did not cause oral toxicity and genotoxicity. Additionally, the crude formulation was found to have minimal impact on the pharmacokinetics of chicoric acid. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-024-00238-z.
Collapse
Affiliation(s)
- Ji-Soo Jeong
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-Ro, Daejeon, 34131 Republic of Korea
| | - Jeong-Won Kim
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-Ro, Daejeon, 34131 Republic of Korea
| | - Jin-Hwa Kim
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-Ro, Daejeon, 34131 Republic of Korea
| | - Eun-Hye Chung
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-Ro, Daejeon, 34131 Republic of Korea
| | - Dong-Ryung Lee
- Research Institute, NUON Co., Ltd., Jungwon-Gu, Seongnam, 13201 Gyeonggi-do Republic of Korea
| | - Bong-Keun Choi
- Research Institute, NUON Co., Ltd., Jungwon-Gu, Seongnam, 13201 Gyeonggi-do Republic of Korea
| | - Je-Won Ko
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-Ro, Daejeon, 34131 Republic of Korea
| | - Tae-Won Kim
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-Ro, Daejeon, 34131 Republic of Korea
| |
Collapse
|
6
|
Jabłońska-Trypuć A, Wydro U, Wołejko E, Kalinowska M, Świderski G, Krętowski R, Naumowicz M, Kondzior P, Cechowska-Pasko M, Lewandowski W. The Influence of Mesotrione on Human Colorectal Adenocarcinoma Cells and Possibility of Its Toxicity Mitigation by Cichoric Acid. Int J Mol Sci 2024; 25:5655. [PMID: 38891843 PMCID: PMC11172290 DOI: 10.3390/ijms25115655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Mesotrione, as a widely used herbicide, is present in the environment in detectable amounts, causing serious damage. Here, we aimed to investigate the effect of mesotrione on Caco-2 cells and the possibility of its toxicity mitigation by cichoric acid. Therefore, we analyzed the cytotoxicity of both these compounds and the selected oxidative stress parameters, apoptosis and interaction of both the tested compounds with the cell membrane and their accumulation within the cells. In cytotoxicity studies, the stimulating activity of mesotrione was observed, and simultaneously, the inhibitory effect of cichoric acid was noticed. This effect was related to the results of oxidative stress analysis and apoptosis measurements. The activity level of key enzymes (glutathione peroxidase, catalase and superoxide dismutase) in Caco-2 cells exposed to cichoric acid was higher as compared to that of the control. The treatment with mesotrione did not induce apoptosis in the Caco-2 cells. The penetration of the studied compounds into the Caco-2 cells was measured by using an HPLC methodology, and the results indicate mesotrione's high penetration capacity. The distribution of charge on the surface of the cell membranes changed under the influence of both compounds. Considering the mutual interactions of beneficial and potentially toxic food ingredients, it should be noted that, despite the observed favorable trend, cichoric acid is not able to overcome the toxic and cancer-stimulating effects of this pesticide.
Collapse
Affiliation(s)
- Agata Jabłońska-Trypuć
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland; (U.W.); (E.W.); (M.K.); (G.Ś.); (P.K.); (W.L.)
| | - Urszula Wydro
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland; (U.W.); (E.W.); (M.K.); (G.Ś.); (P.K.); (W.L.)
| | - Elżbieta Wołejko
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland; (U.W.); (E.W.); (M.K.); (G.Ś.); (P.K.); (W.L.)
| | - Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland; (U.W.); (E.W.); (M.K.); (G.Ś.); (P.K.); (W.L.)
| | - Grzegorz Świderski
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland; (U.W.); (E.W.); (M.K.); (G.Ś.); (P.K.); (W.L.)
| | - Rafał Krętowski
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Mickiewicza 2A, 15-222 Białystok, Poland (M.C.-P.)
| | - Monika Naumowicz
- Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Białystok, Poland;
| | - Paweł Kondzior
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland; (U.W.); (E.W.); (M.K.); (G.Ś.); (P.K.); (W.L.)
| | - Marzanna Cechowska-Pasko
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Mickiewicza 2A, 15-222 Białystok, Poland (M.C.-P.)
| | - Włodzimierz Lewandowski
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland; (U.W.); (E.W.); (M.K.); (G.Ś.); (P.K.); (W.L.)
| |
Collapse
|
7
|
Di Y, Song Y, Xu K, Wang Q, Zhang L, Liu Q, Zhang M, Liu X, Wang Y. Chicoric Acid Alleviates Colitis via Targeting the Gut Microbiota Accompanied by Maintaining Intestinal Barrier Integrity and Inhibiting Inflammatory Responses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6276-6288. [PMID: 38485738 DOI: 10.1021/acs.jafc.3c08363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Polyphenols have shown great potential to prevent ulcerative colitis. As a natural plant polyphenol, chicoric acid (CA) has antioxidant and anti-inflammatory properties. This study explored the intervention effects and potential mechanism of CA on dextran sodium sulfate (DSS)-induced colitis mice. The results showed that CA alleviated the symptoms of colitis and maintained the intestinal barrier integrity. CA significantly downregulated the mRNA expression levels of inflammatory factors including IL-6, IL-1β, TNF-α, IFN-γ, COX-2, and iNOS. In addition, CA modulated the gut microbiota by improving the microbial diversity, reducing the abundance of Gammaproteobacteriaand Clostridium_XI and increasing the abundance ofBarnesiellaandLachnospiraceae. Further fecal microbiota transplantation experiments showed that FM from CA donor mice significantly alleviated the symptoms of colitis, verifying the key role of gut microbiota. These results indicate that CA effectively relieves DSS-induced colitis via targeting gut microbiota along with preserving intestinal barrier function and suppressing inflammatory responses.
Collapse
Affiliation(s)
- Yan Di
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Yi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Kejia Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Qianxu Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Li Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Qian Liu
- College of Food Science and Technology, Northwest University, Xi'an 710069, PR China
| | - Min Zhang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, PR China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| |
Collapse
|
8
|
Guo Z, Ye G, Tang C, Xiong H. Exploring effect of herbal monomers in treating gouty arthritis based on nuclear factor-kappa B signaling: A review. Medicine (Baltimore) 2024; 103:e37089. [PMID: 38306549 PMCID: PMC10843426 DOI: 10.1097/md.0000000000037089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/05/2024] [Indexed: 02/04/2024] Open
Abstract
Gouty arthritis (GA) is an inflammatory disease caused by disorders of the purine metabolism. Although increasing number of drugs have been used to treat GA with the deepening of relevant research, GA still cannot be cured by simple drug therapy. The nuclear factor-kappa B (NF-κB) signaling pathway plays a key role in the pathogenesis of GA. A considerable number of Chinese herbal medicines have emerged as new drugs for the treatment of GA. This article collected relevant research on traditional Chinese medicine monomers in the treatment of GA using NF-κB, GA, etc. as keywords; and conducted a systematic search of relevant published articles using the PubMed database. In this study, we analyzed the therapeutic effects of traditional Chinese medicine monomers on GA in the existing literature through in vivo and in vitro experiments using animal and cell models. Based on this review, we believe that traditional Chinese medicine monomers that can treat GA through the NF-κB signaling pathway are potential new drug development targets. This study provides research ideas for the development and application of new drugs for GA.
Collapse
Affiliation(s)
- Zhanghao Guo
- Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Guisheng Ye
- Department of Ophthalmology, The First Hospital of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Chengjian Tang
- Department of Ophthalmology, The First Hospital of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Hui Xiong
- Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| |
Collapse
|
9
|
Yang J, Lin J, Gu T, Sun Q, Xu W, Peng Y. Chicoric Acid Effectively Mitigated Dextran Sulfate Sodium (DSS)-Induced Colitis in BALB/c Mice by Modulating the Gut Microbiota and Fecal Metabolites. Int J Mol Sci 2024; 25:841. [PMID: 38255916 PMCID: PMC10815209 DOI: 10.3390/ijms25020841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Chicoric acid (CA) has been reported to exhibit biological activities; it remains unclear, however, whether CA could regulate colitis via modulation of the gut microbiota and metabolites. This study aimed to assess CA's impact on dextran sulfate sodium (DSS)-induced colitis, the gut microbiota, and metabolites. Mice were induced with 2.5% DSS to develop colitis over a 7-day period. CA was administered intragastrically one week prior to DSS treatment and continued for 14 days. The microbial composition in the stool was determined using 16S rRNA sequencing, while non-targeted metabolomics was employed to analyze the metabolic profiles of each mouse group. The results show that CA effectively alleviated colitis, as evidenced by an increased colon length, lowered disease activity index (DAI) and histological scores, and decreased tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) expression levels. CA intervention restored the structure of gut microbiota. Specifically, it decreased the abundance of Bacteroidetes and Cyanobacteria at the phylum level and Bacteroides, Rosiarcus, and unclassified Xanthobacteraceae at the genus level, and increased the abundance of unclassified Lachnospiraceae at the genus level. Metabolomic analysis revealed that CA supplementation reversed the up-regulation of asymmetric dimethylarginine, N-glycolylneuraminic acid, and N-acetylneuraminic acid, as well as the down-regulation of phloroglucinol, thiamine, 4-methyl-5-thiazoleethanol, lithocholic acid, and oxymatrine induced by DSS. Our current research provides scientific evidence for developing CA into an anti-colitis functional food ingredient. Further clinical trials are warranted to elucidate the efficacy and mechanism of CA in treating human inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Jiani Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Y.); (T.G.)
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Jie Lin
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA; (J.L.); (Q.S.)
| | - Ting Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Y.); (T.G.)
| | - Quancai Sun
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA; (J.L.); (Q.S.)
| | - Weidong Xu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| |
Collapse
|
10
|
Goyal A, Dubey N, Agrawal A, Sharma R, Verma A. An Insight into the Promising Therapeutic Potential of Chicoric Acid. Curr Pharm Biotechnol 2024; 25:1708-1718. [PMID: 38083896 DOI: 10.2174/0113892010280616231127075921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 09/04/2024]
Abstract
The pharmacological treatments that are now recommended for the therapy of chronic illnesses are examined in a great number of studies to determine whether or not they are both safe and effective. Therefore, it is important to investigate various alternative therapeutic assistance, such as natural remedies derived from medicinal plants. In this context, chicoric acid, classified as a hydroxycinnamic acid, has been documented to exhibit a range of health advantages. These include antiviral, antioxidant, anti-inflammatory, obesity-preventing, and neuroprotective effects. Due to its considerable pharmacological properties, chicoric acid has found extensive applications in food, pharmaceuticals, animal husbandry, and various other commercial sectors. This article provides a comprehensive overview of in vitro and in vivo investigations on chicoric acid, highlighting its beneficial effects and therapeutic activity when used as a preventative and management aid for public health conditions, including diabetes, cardiovascular disease, and hepatic illnesses like non-alcoholic steatohepatitis. Moreover, further investigation of this compound can lead to its development as a potential phytopharmaceutical candidate.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Nandini Dubey
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Anant Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Rashmi Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aanchal Verma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
11
|
Roney M, Issahaku AR, Huq AM, Soliman MES, Tajuddin SN, Aluwi MFFM. Exploring the potential of biologically active phenolic acids from marine natural products as anticancer agents targeting the epidermal growth factor receptor. J Biomol Struct Dyn 2023; 42:13564-13587. [PMID: 37909584 DOI: 10.1080/07391102.2023.2276879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
The epidermal growth factor receptor (EGFR) dimerizes upon ligand bindings to the extracellular domain that initiates the downstream signaling cascades and activates intracellular kinase domain. Thus, activation of autophosphorylation through kinase domain results in metastasis, cell proliferation, and angiogenesis. The main objective of this research is to discover more promising anti-cancer lead compound against EGRF from the phenolic acids of marine natural products using in-silico approaches. Phenolic compounds reported from marine sources are reviewed from previous literatures. Furthermore, molecular docking was carried out using the online tool CB-Dock. The molecules with good docking and binding energies scores were subjected to ADME, toxicity and drug-likeness analysis. Subsequently, molecules from the docking experiments were also evaluated using the acute toxicity and MD simulation studies. Fourteen phenolic compounds from the reported literatures were reviewed based on the findings, isolation, characterized and applications. Molecular docking studies proved that the phenolic acids have good binding fitting by forming hydrogen bonds with amino acid residues at the binding site of EGFR. Chlorogenic acid, Chicoric acid and Rosmarinic acid showed the best binding energies score and forming hydrogen bonds with amino acid residues compare to the reference drug Erlotinib. Among these compounds, Rosmarinic acid showed the good pharmacokinetics profiles as well as acute toxicity profile. The MD simulation study further revealed that the lead complex is stable and could be future drug to treat the cancer disease. Furthermore, in a wet lab environment, both in-vitro and in-vivo testing will be employed to validate the existing computational results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
- Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
| | - Abdul Rashid Issahaku
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Akm Moyeenul Huq
- Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
- School of Medicine, Department of Pharmacy, University of Asia Pacific, Bangladesh
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Saiful Nizam Tajuddin
- Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
- Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
| |
Collapse
|
12
|
Dosoky NS, Kirpotina LN, Schepetkin IA, Khlebnikov AI, Lisonbee BL, Black JL, Woolf H, Thurgood TL, Graf BL, Satyal P, Quinn MT. Volatile Composition, Antimicrobial Activity, and In Vitro Innate Immunomodulatory Activity of Echinacea purpurea (L.) Moench Essential Oils. Molecules 2023; 28:7330. [PMID: 37959750 PMCID: PMC10647913 DOI: 10.3390/molecules28217330] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Echinacea purpurea (L.) Moench is a medicinal plant commonly used for the treatment of upper respiratory tract infections, the common cold, sore throat, migraine, colic, stomach cramps, and toothaches and the promotion of wound healing. Based on the known pharmacological properties of essential oils (EOs), we hypothesized that E. purpurea EOs may contribute to these medicinal properties. In this work, EOs from the flowers of E. purpurea were steam-distilled and analyzed by gas chromatography-mass spectrometry (GC-MS), GC with flame-ionization detection (GC-FID), and chiral GC-MS. The EOs were also evaluated for in vitro antimicrobial and innate immunomodulatory activity. About 87 compounds were identified in five samples of the steam-distilled E. purpurea EO. The major components of the E. purpurea EO were germacrene D (42.0 ± 4.61%), α-phellandrene (10.09 ± 1.59%), β-caryophyllene (5.75 ± 1.72%), γ-curcumene (5.03 ± 1.96%), α-pinene (4.44 ± 1.78%), δ-cadinene (3.31 ± 0.61%), and β-pinene (2.43 ± 0.98%). Eleven chiral compounds were identified in the E. purpurea EO, including α-pinene, sabinene, β-pinene, α-phellandrene, limonene, β-phellandrene, α-copaene, β-elemene, β-caryophyllene, germacrene D, and δ-cadinene. Analysis of E. purpurea EO antimicrobial activity showed that they inhibited the growth of several bacterial species, although the EO did not seem to be effective for Staphylococcus aureus. The E. purpurea EO and its major components induced intracellular calcium mobilization in human neutrophils. Additionally, pretreatment of human neutrophils with the E. purpurea EO or (+)-δ-cadinene suppressed agonist-induced neutrophil calcium mobilization and chemotaxis. Moreover, pharmacophore mapping studies predicted two potential MAPK targets for (+)-δ-cadinene. Our results are consistent with previous reports on the innate immunomodulatory activities of β-caryophyllene, α-phellandrene, and germacrene D. Thus, this study identified δ-cadinene as a novel neutrophil agonist and suggests that δ-cadinene may contribute to the reported immunomodulatory activity of E. purpurea.
Collapse
Affiliation(s)
- Noura S. Dosoky
- Essential Oil Science, dōTERRA International, 1248 W 700 S, Pleasant Grove, UT 84062, USA;
| | - Liliya N. Kirpotina
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (L.N.K.); (I.A.S.)
| | - Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (L.N.K.); (I.A.S.)
| | | | - Brent L. Lisonbee
- Innova Bio, Utah Valley University, 800 W University Pkwy, Orem, UT 84058, USA; (B.L.L.); (J.L.B.); (T.L.T.)
| | - Jeffrey L. Black
- Innova Bio, Utah Valley University, 800 W University Pkwy, Orem, UT 84058, USA; (B.L.L.); (J.L.B.); (T.L.T.)
| | - Hillary Woolf
- Research and Development, dōTERRA International, 389 S 1300 W, Pleasant Grove, UT 84062, USA; (H.W.); (B.L.G.)
| | - Trever L. Thurgood
- Innova Bio, Utah Valley University, 800 W University Pkwy, Orem, UT 84058, USA; (B.L.L.); (J.L.B.); (T.L.T.)
| | - Brittany L. Graf
- Research and Development, dōTERRA International, 389 S 1300 W, Pleasant Grove, UT 84062, USA; (H.W.); (B.L.G.)
| | - Prabodh Satyal
- Essential Oil Science, dōTERRA International, 1248 W 700 S, Pleasant Grove, UT 84062, USA;
| | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (L.N.K.); (I.A.S.)
| |
Collapse
|
13
|
Percaccio E, De Angelis M, Acquaviva A, Nicotra G, Ferrante C, Mazzanti G, Di Giacomo S, Nencioni L, Di Sotto A. ECHOPvir: A Mixture of Echinacea and Hop Extracts Endowed with Cytoprotective, Immunomodulatory and Antiviral Properties. Nutrients 2023; 15:4380. [PMID: 37892456 PMCID: PMC10609862 DOI: 10.3390/nu15204380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Respiratory viral infections continue to pose significant challenges, particularly for more susceptible and immunocompromised individuals. Nutraceutical strategies have been proposed as promising strategies to mitigate their impact and improve public health. In the present study, we developed a mixture of two hydroalcoholic extracts from the aerial parts of Echinacea purpurea (L.) Moench (ECP) and the cones of Humulus lupulus L. (HOP) that can be harnessed in the prevention and treatment of viral respiratory diseases. The ECP/HOP mixture (named ECHOPvir) was characterized for the antioxidant and cytoprotective properties in airway cells. Moreover, the immunomodulating properties of the mixture in murine macrophages against antioxidant and inflammatory stimuli and its antiviral efficacy against the PR8/H1N1 influenza virus were assayed. The modulation of the Nrf2 was also investigated as a mechanistic hypothesis. The ECP/HOP mixture showed a promising multitarget bioactivity profile, with combined cytoprotective, antioxidant, immunomodulating and antiviral activities, likely due to the peculiar phytocomplexes of both ECP and HOP, and often potentiated the effect of the single extracts. The Nrf2 activation seemed to trigger these cytoprotective properties and suggest a possible usefulness in counteracting the damage caused by different stressors, including viral infection. Further studies may strengthen the interest in this product and underpin its future nutraceutical applications.
Collapse
Affiliation(s)
- Ester Percaccio
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (G.M.)
| | - Marta De Angelis
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.D.A.); (L.N.)
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandra Acquaviva
- Department of Pharmacy, Botanic Garden “Giardino dei Semplici”, Università degli Studi “Gabriele d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy; (A.A.); (C.F.)
| | | | - Claudio Ferrante
- Department of Pharmacy, Botanic Garden “Giardino dei Semplici”, Università degli Studi “Gabriele d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy; (A.A.); (C.F.)
| | - Gabriela Mazzanti
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (G.M.)
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (G.M.)
- Unit of Human Nutrition and Health, Department of Food Safety, Nutrition and Veterinary Public Health, National Institute of Health, 00161 Rome, Italy;
| | - Lucia Nencioni
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.D.A.); (L.N.)
| | - Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (G.M.)
| |
Collapse
|
14
|
Tsurunaga Y, Kanou M. Effects of Steam Treatment Time and Drying Temperature on Properties of Sweet Basil's Antioxidants, Aroma Compounds, Color, and Tissue Structure. Foods 2023; 12:foods12081663. [PMID: 37107458 PMCID: PMC10137634 DOI: 10.3390/foods12081663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
This study has developed a production method for high-quality Genova tea with excellent antioxidant properties. The antioxidant properties of each part of the Genova basil plant (i.e., leaves, flowers, and stems) were determined; the leaves and flowers showed higher antioxidant values. We also investigated the effects of steaming time and drying temperature on the antioxidant composition and properties, color, and aroma using leaves with good yield potential and high antioxidant properties. The color showed excellent green color retention with freeze- and machine-drying at 40 °C without steam-heat treatment. Steaming for 2 min was effective in maintaining high values of total polyphenol content, antioxidant properties (1,1-diphenyl-2-picrylhydrazine and hydrophilic oxygen radical adsorption capacity), rosmarinic acid, and chicoric acid, and a drying temperature of ≤40 °C was recommended. Freeze-drying without steaming was the best method to retain all three of Genova's main aroma components, Linalool, trans-alpha-bergamotene, and 2-methoxy-3-(2-propenyl)-phenol. The method developed in this study can improve the quality of dried Genova products and be applied in the food industry, cosmetics, and pharmaceutical industries.
Collapse
Affiliation(s)
- Yoko Tsurunaga
- Faculty of Human Science, Shimane University, Shimane 690-8504, Japan
| | - Mina Kanou
- Graduate School of Human and Social Sciences, Shimane University, Shimane 690-8504, Japan
| |
Collapse
|
15
|
Farag MR, Zizzadoro C, Alagawany M, Abou-Zeid SM, Mawed SA, El Kholy MS, Di Cerbo A, Azzam MM, Mahdy EAA, Khedr MHE, Elhady WM. In ovo protective effects of chicoric and rosmarinic acids against Thiacloprid-induced cytotoxicity, oxidative stress, and growth retardation on newly hatched chicks. Poult Sci 2023; 102:102487. [PMID: 36739798 PMCID: PMC9932119 DOI: 10.1016/j.psj.2023.102487] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Thiacloprid (TH) is a neonicotinoid insecticide employed in agriculture to protect fruits and vegetables against different insects. It showed different deleterious effects on the general health of non-target organisms including birds and animals, however, its developmental toxicity has yet to be fully elucidated. Chicoric (CA) and rosmarinic (RA) acids are polyphenolic compounds with a wide range of beneficial biological activities. In this study, the possible protective effects of CA and RA were investigated in chick embryos exposed in ovo to TH (1µg/egg) with or without CA (100 µg/egg) or RA (100 µg/egg) co-exposure. TH reduced the hatchling body weight, body weight/egg weight, and relative weight of bursa of Fabricius in the one-day-old hatchlings. Examination of the 7-day-old chicks revealed a decline in feed intake, daily weight gain, feed conversion ratio (FCR), and plasma levels of T3, T4, and growth hormone. Serum ALT, AST activities, and total cholesterol levels showed significant elevations. Hepatic MDA was increased with a reduction in SOD activity and GSH level and downregulation of the liver SOD and GST gene expression pattern. Serum IgG and IgM levels were reduced, and various histopathological alterations were noticed in the liver. Co-administration of CA or RA with TH mitigated the toxic effects on hatchlings. When both CA and RA are combined, they present a synergistic protective effect. CA and RA can be used as protective agents against TH toxicity as they improve growth performance and have hepatoprotective and immunostimulant effects in newly hatched chicks.
Collapse
Affiliation(s)
- Mayada R Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Claudia Zizzadoro
- Department of Veterinary Medicine, University of Bari, 70010, Valenzano, Italy
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt.
| | - Shimaa M Abou-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, 6012201, Egypt
| | - Suzan Attia Mawed
- Zoology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed S El Kholy
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024, Matelica, Italy
| | - Mahmoud M Azzam
- Department of Animal Production College of Food & Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Eman A A Mahdy
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt
| | - Mariam H E Khedr
- Veterinary Public Health Department, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt
| | - Walaa M Elhady
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
16
|
Birsa ML, Sarbu LG. Health Benefits of Key Constituents in Cichorium intybus L. Nutrients 2023; 15:1322. [PMID: 36986053 PMCID: PMC10058675 DOI: 10.3390/nu15061322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
The genus Cichorium (Asteraceae) that originates from the Mediterranean area consists of six species (Cichorium intybus, Cichorium frisee, Cichorium endivia, Cichorium grouse, Cichorium chico and Cichorium pumilum). Cichorium intybus L., commonly known as chicory, has a rich history of being known as a medicinal plant and coffee substitute. A variety of key constituents in chicory play important roles as antioxidant agents. The herb is also used as a forage plant for animals. This review highlights the bioactive composition of C. intybus L. and summarizes the antioxidant activity associated with the presence of inulin, caffeic acid derivatives, ferrulic acid, caftaric acid, chicoric acid, chlorogenic and isochlorogenic acids, dicaffeoyl tartaric acid, sugars, proteins, hydroxycoumarins, flavonoids and sesquiterpene lactones. It also covers the plant's occurrence, agriculture improvement, natural biosynthesis, geographical distribution and waste valorization.
Collapse
Affiliation(s)
| | - Laura G. Sarbu
- Department of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I Blvd., 700506 Iasi, Romania
| |
Collapse
|
17
|
Epure A, Pârvu AE, Vlase L, Benedec D, Hanganu D, Oniga O, Vlase AM, Ielciu I, Toiu A, Oniga I. New Approaches on the Anti-Inflammatory and Cardioprotective Properties of Taraxacum officinale Tincture. Pharmaceuticals (Basel) 2023; 16:ph16030358. [PMID: 36986458 PMCID: PMC10053582 DOI: 10.3390/ph16030358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
The present research investigated the in vivo anti-inflammatory and cardioprotective activities, as well as the antioxidant potential of Taraxacum officinale tincture (TOT), in relation to the polyphenolic composition. Chromatographic and spectrophotometric techniques were used to determine the polyphenolic profile of TOT and the antioxidant activity was preliminarily assessed in vitro by DPPH• and FRAP spectrophotometric methods. The in vivo anti-inflammatory and cardioprotective activities were studied in rat turpentine-induced inflammation and in rat isoprenaline-induced myocardial infarction (MI) models. The main polyphenolic compound identified in TOT was cichoric acid. The oxidative stress determinations showed the capacity of the dandelion tincture not only to decrease the total oxidative stress (TOS), the oxidative stress index (OSI), and the total antioxidant capacity (TAC), but also the malondialdehide (MDA), thiols (SH), and nitrites/nitrates (NOx) levels both in inflammation and MI models. In addition, aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatin kinase-MB (CK-MB), and nuclear factor kappa B (NF-κB) parameters were decreased by the administration of the tincture. The results show that T. officinale could be considered a valuable source of natural compounds with important benefits in pathologies linked to oxidative stress.
Collapse
Affiliation(s)
- Alexandra Epure
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 V. Babeș Street, 400012 Cluj-Napoca, Romania
| | - Alina E. Pârvu
- Department of Physiopathology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 V. Babeș Street, 400012 Cluj-Napoca, Romania
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 V. Babeș Street, 400012 Cluj-Napoca, Romania
- Correspondence:
| | - Daniela Benedec
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 V. Babeș Street, 400012 Cluj-Napoca, Romania
| | - Daniela Hanganu
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 V. Babeș Street, 400012 Cluj-Napoca, Romania
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 V. Babeș Street, 400012 Cluj-Napoca, Romania
| | - Ana-Maria Vlase
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Irina Ielciu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Anca Toiu
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 V. Babeș Street, 400012 Cluj-Napoca, Romania
| | - Ilioara Oniga
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 V. Babeș Street, 400012 Cluj-Napoca, Romania
| |
Collapse
|
18
|
Mohammadi M, Abbasalipourkabir R, Ziamajidi N. Fish oil and chicoric acid combination protects better against palmitate-induced lipid accumulation via regulating AMPK-mediated SREBP-1/FAS and PPARα/UCP2 pathways. Arch Physiol Biochem 2023; 129:1-9. [PMID: 32654534 DOI: 10.1080/13813455.2020.1789881] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is associated with lipid accumulation and lipotoxicity. The main aim of this study is to evaluate the synergistic treatment effect of fish oils (FOs) and chicoric acid (CA) in palmitate (PA)-induced NAFLD HepG2 model. HepG2 cells were pre-treated with palmitate (0.75 mM) for 24 h, and then were exposed to CA, FOs and combination of these chemicals for another 24 h. Gene expression and protein levels were determined using qRT-PCR and western blotting or ELISA analysing, respectively. The combination index (CI) values of FOs and CA in HepG2 cells were calculated according to the Chou-Talalay equation using the CompuSyn software. FOs and CA acid together synergistically reduced lipid accumulation as indicated by decreased oil red O staining (vehicle-treated control: 1 ± 0.1; PA-treated control: 4.7 ± 0.4; PA + CA100: 3.9 ± 0.4; PA + CA200: 2.4 ± 0.3; PA + FOs: 2.7 ± 0.1; PA + CA200 + FOs: 1.5 ± 0.1) and triglyceride (vehicle-treatedcontrol:10 ± 1.2; PA-treated control: 25.8 ± 2.7; PA + CA100: 18.9 ± 2.5; PA + CA200: 14.4 ± 1.8; PA + FOs: 15.2 ± 2.4; PA + CA200 + FOs: 11.9 ± 1.5) levels in PA-treated HepG2 cells. Gene expression and Immunoblotting analysis confirmed the combination effect of FOs and CA in up-regulation of AMPK-mediated PPARα/UCP2 and down-regulation of AMPK-mediated SREBP-1/FAS signalling pathways. Collectively, these results suggest that combining FOs with CA can serve as a potential combination therapy for NAFLD.
Collapse
Affiliation(s)
- Mohammad Mohammadi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roghayeh Abbasalipourkabir
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nasrin Ziamajidi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
19
|
Chemical Composition, Biomolecular Analysis, and Nuclear Magnetic Resonance Spectroscopic Fingerprinting of Posidonia oceanica and Ascophyllum nodosum Extracts. Metabolites 2023; 13:metabo13020170. [PMID: 36837789 PMCID: PMC9963245 DOI: 10.3390/metabo13020170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
A detailed analysis of the elemental and molecular composition of Posidonia oceanica (PO) and Ascophyllum nodosum (AN) is presented. In particular, an in-depth study of the molecular identification via NMR spectroscopy of aqueous and organic extracts of PO and AN was carried out, exploiting 2D COSY and pseudo-2D DOSY data to aid in the assignment of peaks in complex 1D proton NMR spectra. Many metabolites were identified, such as carbohydrates, amino acids, organic acids, fatty acids, and polyphenols, with NMR complementing the characterization of the two species by standard elemental analysis, HPLC analysis, and colorimetric testing. For PO, different parts of the live plant (roots, rhizomes, and leaves) were analysed, as well as the residues of the dead plant which typically deposit along the coasts. The combination of the various studies made it possible to recognize bioactive compounds naturally present in the two plant species and, in particular, in the PO residues, opening the door for their possible recycling and use in, for example, fertilizer. Furthermore, NMR is proven to be a powerful tool for the metabolomic study of plant species as it allows for the direct identification of specific biomarkers as well as providing a molecular fingerprint of the plant variety.
Collapse
|
20
|
Luca SV, Zengin G, Sinan KI, Skalicka-Woźniak K, Trifan A. Post-Distillation By-Products of Aromatic Plants from Lamiaceae Family as Rich Sources of Antioxidants and Enzyme Inhibitors. Antioxidants (Basel) 2023; 12:antiox12010210. [PMID: 36671072 PMCID: PMC9855019 DOI: 10.3390/antiox12010210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/29/2022] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
There is currently no use for the vast quantities of post-distillation by-products, such as spent plant materials and residual waters, produced by the essential oil (EO) industry of aromatic herbs. In this study, the EOs of three Lamiaceae species (thyme, oregano, and basil) and their total, spent, and residual water extracts were phytochemically characterized and biologically assessed. The collected information was put through a series of analyses, including principal component analysis, heatmap analysis, and Pearson correlation analysis. Concerning the EOs, 58 volatile compounds were present in thyme (e.g., p-cymene, thymol), 44 compounds in oregano (e.g., thymol, carvacrol), and 67 compounds in basil (e.g., eucalyptol, linalool, estragole, (E)-methyl cinnamate). The LC-HRMS/MS analysis of the total, spent, and residual water extracts showed the presence of 31 compounds in thyme (e.g., quercetin-O-hexoside, pebrellin, eriodictyol), 31 compounds in oregano (e.g., rosmarinic acid, apigenin, kaempferol, salvianolic acids I, B, and E), and 25 compounds in basil (e.g., fertaric acid, cichoric acid, caftaric acid, salvianolic acid A). The EOs of the three Lamiaceae species showed the highest metal-reducing properties (up to 1792.32 mg TE/g in the CUPRAC assay), whereas the spent extracts of oregano and basil displayed very high radical-scavenging properties (up to 266.59 mg TE/g in DPPH assay). All extracts exhibited anti-acetylcholinesterase (up to 3.29 mg GALAE/g), anti-tyrosinase (up to 70.00 mg KAE/g), anti-amylase (up to 0.66 mmol ACAE/g), and anti-glucosidase (up to 1.22 mmol ACAE/g) effects. Thus, the present research demonstrated that both the raw extracts (EOs and total extracts) and the post-distillation by-products (spent material and residual water extracts) are rich in bioactive metabolites with antioxidant and enzyme inhibitory properties.
Collapse
Affiliation(s)
- Simon Vlad Luca
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- Correspondence: (S.V.L.); (G.Z.)
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
- Correspondence: (S.V.L.); (G.Z.)
| | - Kouadio Ibrahime Sinan
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | | | - Adriana Trifan
- Department of Pharmacognosy and Phytotherapy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| |
Collapse
|
21
|
Ebrahimi B, Baroutian S, Li J, Zhang B, Ying T, Lu J. Combination of marine bioactive compounds and extracts for the prevention and treatment of chronic diseases. Front Nutr 2023; 9:1047026. [PMID: 36712534 PMCID: PMC9879610 DOI: 10.3389/fnut.2022.1047026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Background In recent years, marine-based functional foods and combination therapy are receiving greater recognition for their roles in healthy lifestyle applications and are being investigated as viable and effective strategies for disease treatment or prevention. Aim of the review This review article presents and discusses the relevant scientific publications that have studied the synergistic and additive effects of natural marine bioactive compounds and extract combinations with anti-obesity, anti-inflammatory, antioxidant, and chemopreventive activities in the last two decades. The paper presents the mechanism of action and health benefits of developed combinations and discusses the limitation of the studies. Furthermore, it recommends alternatives and directions for future studies. Finally, it highlights the factors for developing novel combinations of marine bioactive compounds. Key scientific concepts of review Combination of marine bioactive compounds or extracts affords synergistic or additive effects by multiple means, such as multi-target effects, enhancing the bioavailability, boosting the bioactivity, and neutralizing adverse effects of compounds in the mixture. For the development of marine-based combinations, there are key points for consideration and issues to address: knowledge of the mechanism of action of individual compounds and their combinations, optimum ratio and dosing of compounds, and experimental models must all be taken into account. Strategies to increase the number and diversity of marine combinations, and further development of marine-based functional foods, are available. However, only a small number of natural marine bioactive combinations have been assessed, and most research has been focused on fish oil and carotenoid synergy. Therefore, more research and resources should be spent on developing novel marine bioactive combinations as functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Belgheis Ebrahimi
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Saeid Baroutian
- Department of Chemical and Materials Engineering, University of Auckland, Auckland, New Zealand
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Xinjiang, China
| | - Baohong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Lu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand,Institute of Biomedical Technology, Auckland University of Technology, Auckland, New Zealand,Maurice Wilkins Centre for Molecular Discovery, Auckland, New Zealand,College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China,College of Food Engineering and Nutrition Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China,College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China,*Correspondence: Jun Lu ✉
| |
Collapse
|
22
|
Saybel OL, Radimich AI, Adamov GV, Dargaeva TD, Fadeev NB, Zelenkov VN, Lapin AA. The Chemical Composition of the Fractions of the Aerial Part of Cultivated Chicory and Their Antioxidant Activity. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s106816202207024x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Ciriello M, Formisano L, Kyriacou M, Soteriou GA, Graziani G, De Pascale S, Rouphael Y. Zinc biofortification of hydroponically grown basil: Stress physiological responses and impact on antioxidant secondary metabolites of genotypic variants. FRONTIERS IN PLANT SCIENCE 2022; 13:1049004. [PMID: 36388561 PMCID: PMC9647093 DOI: 10.3389/fpls.2022.1049004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Ocimum basilicum L. is an aromatic plant rich in bioactive metabolites beneficial to human health. The agronomic biofortification of basil with Zn could provide a practical and sustainable solution to address Zn deficiency in humans. Our research appraised the effects of biofortification implemented through nutrient solutions of different Zn concentration (12.5, 25.0, 37.5, and 50 µM) on the yield, physiological indices (net CO2 assimilation rate, transpiration, stomatal conductance, and chlorophyll fluorescence), quality, and Zn concentration of basil cultivars 'Aroma 2' and 'Eleonora' grown in a floating raft system. The ABTS, DPPH, and FRAP antioxidant activities were determined by UV-VIS spectrophotometry, the concentrations of phenolic acids by mass spectrometry using a Q Extractive Orbitrap LC-MS/MS, and tissue Zn concentration by inductively coupled plasma mass spectrometry. Although increasing the concentration of Zn in the nutrient solution significantly reduced the yield, this reduction was less evident in 'Aroma 2'. However, regardless of cultivar, the use of the maximum dose of Zn (50 µM) increased the concentration of carotenoids, polyphenols, and antioxidant activity on average by 19.76, 14.57, and 33.72%, respectively, compared to the Control. The significant positive correlation between Zn in the nutrient solution and Zn in plant tissues underscores the suitability of basil for soilless biofortification programs.
Collapse
Affiliation(s)
- Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Luigi Formisano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Marios Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia, Cyprus
| | | | - Giulia Graziani
- Department of Pharmacy, Faculty of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
24
|
C3H Expression Is Crucial for Methyl Jasmonate Induction of Chicoric Acid Production by Echinacea purpurea (L.) Moench Cell Suspension Cultures. Int J Mol Sci 2022; 23:ijms231911179. [PMID: 36232482 PMCID: PMC9570471 DOI: 10.3390/ijms231911179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022] Open
Abstract
Echinacea purpurea (L.) Moench is one of the most economically important medicinal plants, cultivated worldwide for its high medicinal value and with several industrial applications in both pharmaceutical and food industries. Thanks to its various phytochemical contents, including caffeic acid derivatives (CADs), E. purpurea extracts have antioxidant, anti-inflammatory, and immuno-stimulating properties. Among CADs, chicoric acid is one of the most important compounds which have shown important pharmacological properties. The present research was aimed at optimizing the production of chicoric acid in E. purpurea cell culture. Methyl jasmonate (MeJa) at different concentrations and for different duration of treatments was utilized as elicitor, and the content of total polyphenols and chicoric acid was measured. Several genes involved in the chicoric acid biosynthetic pathway were selected, and their expression evaluated at different time points of cell culture growth. This was performed with the aim of identifying the most suitable putative molecular markers to be used as a proxy for the early prediction of chicoric acid contents, without the need of expensive quantification methods. A correlation between the production of chicoric acid in response to MeJa and an increased response to oxidative stress was also proposed.
Collapse
|
25
|
Identification of Novel Natural Inhibitors to Human 3-Phosphoglycerate Dehydrogenase (PHGDH) for Cancer Treatment. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186108. [PMID: 36144843 PMCID: PMC9501931 DOI: 10.3390/molecules27186108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022]
Abstract
Targeting the serine biosynthesis pathway enzymes has turned up as a novel strategy for anti-cancer therapeutics. 3- Phosphoglycerate dehydrogenase (PHGDH) is the rate-limiting enzyme that catalyzes the conversion of 3-Phosphoglyceric acid (3-PG) into 3-Phosphohydroxy pyruvate (3-PPyr) in the first step of serine synthesis pathway and perform a critical role in cancer progression. PHGDH has been reported to be overexpressed in different types of cancers and emerged as a novel target for cancer therapeutics. During this study, virtual screening tools were used for the identification of inhibitors of PHGDH. A library of phenolic compounds was docked against two binding sites of PHGDH using Molegro Virtual Docker (MVD) software. Out of 169 virtually tested compounds, Salvianolic acid C and Schizotenuin F possess good binding potential to co-factor binding site of PHGDH while Salvianolic acid I and Chicoric acid were identified as the best binding compounds toward the substrate binding site of PHGDH. The top selected compounds were evaluated for different physiochemical and ADMET properties, the obtained results showed that none of these hit compounds violated the Pfizer Rule and they possess acceptable ADMET profiles. Further, a commercially available hit compound, Chicoric acid, was evaluated for its anti-cancer potential against PHGDH-expressing gastric cancer cell lines (MGC-803 and SGC-7901) as well as cell lines with low expression of PHGDH (MCF-7 and MDA-MB2-31), which demonstrated that Chicoric acid possesses selective cytotoxicity toward PHGDH expressing cancer cell lines. Thus, this study has unveiled the potential of phenolic compounds, which could serve as novel candidates for the development of PHGDH inhibitors as anti-cancer agents.
Collapse
|
26
|
Targeting of Nrf2/PPARγ/NLRP3 Signaling Pathway by Stevia rebudiana Bertoni Extract Provides a Novel Insight into Its Protective Effect against Acute Gouty Arthritis-Induced Synovial Inflammation, Oxidative Stress and Apoptosis in a Rat Model. Processes (Basel) 2022. [DOI: 10.3390/pr10091751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Our research work examined the potential protection of Stevia rebaudiana extract against monosodium urate crystals (MSU)-induced acute gouty arthritis in a rat model and its possible underlying mechanism. Forty rats were allocated into four groups (n = 10); a control group; an MSU group, whose rats received 0.1 of MSU single intra-articular injection in the ankle joint on the fifth day of the experiment; an MSU + Stevia group, which received 250 mg/kg/day of Stevia extract orally for seven days and MSU crystals on the fifth day; and an MSU + colchicine group, which was administered colchicine at 0.28 mg/kg daily for seven days and MSU crystals on the fifth day. Pretreatment with Stevia extract mitigated MSU-induced inflammation as evidenced by a decrease of the ankle edema and inflammatory cell infiltration and a significant downregulation of the protein level of NFκB, TNFα, IL-1β, IL6, and IL18 as well as NLRP3 gene expression. Additionally, there was a markedly increased PPARγ gene expression (p < 0.001) compared with the MSU group (p < 0.001) and alleviated oxidative stress via significant upregulating of Nrf2/HO-1. Moreover, the pretreatment attenuated apoptosis by significantly decreasing cytochrome c, Bax, Caspase-3, and by increasing Bcl-2 protein. In conclusion, Stevia extract exhibited strong anti-inflammatory, antioxidant, and antiapoptotic effects against MSU-induced gouty arthritis similar to the standard anti-inflammatory colchicine drugs.
Collapse
|
27
|
Qu Y, Shen Y, Teng L, Huang Y, Yang Y, Jian X, Fan S, Wu P, Fu Q. Chicoric acid attenuates tumor necrosis factor-α-induced inflammation and apoptosis via the Nrf2/HO-1, PI3K/AKT and NF-κB signaling pathways in C28/I2 cells and ameliorates the progression of osteoarthritis in a rat model. Int Immunopharmacol 2022; 111:109129. [PMID: 35961266 DOI: 10.1016/j.intimp.2022.109129] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022]
Abstract
Osteoarthritis (OA) is the most common arthritis, and is characterized by inflammation and cartilage degradation. Chicoric acid (CA), a bioactive caffeic acid derivative isolated from the root of Taraxacum mongolicumHand. - Mazz., has been reported to have anti-inflammatory effects. However, the therapeutic effects of CA on chondrocyte inflammation remain unknown. Our study aimed to explore the effect of CA on OA both in vivo and in vitro. In vitro, CA treatment significantly suppressed the overproduction of nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and IL-12 in tumor necrosis factor alpha (TNF-α)-induced human C28/I2 chondrocytes. Moreover, CA attenuated TNF-α induced degradation of the extracellular matrix (ECM) by upregulating the expression of collagen Ⅱ and aggrecan, and downregulating ADAMTS-5 and matrix metalloproteinases (MMPs). Additionally, CA treatment inhibited apoptosis in C28/I2 cells by upregulating of Bcl-2 levels, downregulating Bax and ROS levels, and activating the Nrf2/HO-1 pathway. Mechanistically, CA exerted an anti-inflammatory effect by inhibiting the PI3K/AKT and NF-κB signaling pathways, enhancing Nrf-2/HO-1 to limit the activation of NF-κB. In vivo experiments also proved the therapeutic effects of CA on OA in rats. These findings indicate that CA may become a new drug for the treatment of OA.
Collapse
Affiliation(s)
- Yuhan Qu
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yue Shen
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Li Teng
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yuehui Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yuting Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xi Jian
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Shengli Fan
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Ping Wu
- Department of Pharmacy, Chengdu Integrated TCM and Western Medicine Hospital, Chengdu 610041, China.
| | - Qiang Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
28
|
Awal MA, Nur SM, Al Khalaf AK, Rehan M, Ahmad A, Hosawi SBI, Choudhry H, Khan MI. Structural-Guided Identification of Small Molecule Inhibitor of UHRF1 Methyltransferase Activity. Front Genet 2022; 13:928884. [PMID: 35991572 PMCID: PMC9382028 DOI: 10.3389/fgene.2022.928884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Ubiquitin-like containing plant homeodomain Ring Finger 1 (UHRF1) protein is recognized as a cell-cycle-regulated multidomain protein. UHRF1 importantly manifests the maintenance of DNA methylation mediated by the interaction between its SRA (SET and RING associated) domain and DNA methyltransferase-1 (DNMT1)-like epigenetic modulators. However, overexpression of UHRF1 epigenetically responds to the aberrant global methylation and promotes tumorigenesis. To date, no potential molecular inhibitor has been studied against the SRA domain. Therefore, this study focused on identifying the active natural drug-like candidates against the SRA domain. A comprehensive set of in silico approaches including molecular docking, molecular dynamics (MD) simulation, and toxicity analysis was performed to identify potential candidates. A dataset of 709 natural compounds was screened through molecular docking where chicoric acid and nystose have been found showing higher binding affinities to the SRA domain. The MD simulations also showed the protein ligand interaction stability of and in silico toxicity analysis has also showed chicoric acid as a safe and nontoxic drug. In addition, chicoric acid possessed a longer interaction time and higher LD50 of 5000 mg/kg. Moreover, the global methylation level (%5 mC) has been assessed after chicoric acid treatment was in the colorectal cancer cell line (HCT116) at different doses. The result showed that 7.5 µM chicoric acid treatment reduced methylation levels significantly. Thus, the study found chicoric acid can become a possible epidrug-like inhibitor against the SRA domain of UHRF1 protein.
Collapse
Affiliation(s)
- Md Abdul Awal
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Suza Mohammad Nur
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ali Khalaf Al Khalaf
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Rehan
- King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aamir Ahmad
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Salman Bakr I. Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
- *Correspondence: Mohammad Imran Khan,
| |
Collapse
|
29
|
Temerdashev Z, Vinitskaya E, Meshcheryakova E, Shpigun O. Chromatographic analysis of water and water-alcohol extracts of Echinacea purpurea L. obtained by various methods. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Wada KC, Inagaki N, Sakai H, Yamashita H, Nakai Y, Fujimoto Z, Yonemaru J, Itoh H. Genetic effects of Red Lettuce Leaf genes on red coloration in leaf lettuce under artificial lighting conditions. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2022; 3:179-192. [PMID: 37283610 PMCID: PMC10168059 DOI: 10.1002/pei3.10089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/15/2022] [Accepted: 08/05/2022] [Indexed: 06/08/2023]
Abstract
Some cultivars of lettuce accumulate anthocyanins, which act as functional food ingredients. Leaf lettuce has been known to be erratic in exhibiting red color when grown under artificial light, and there is a need for cultivars that more stably exhibit red color in artificial light cultivation. In this study, we aimed to dissect the genetic architecture for red coloring in various leaf lettuce cultivars grown under artificial light. We investigated the genotype of Red Lettuce Leaf (RLL) genes in 133 leaf lettuce strains, some of which were obtained from publicly available resequencing data. By studying the allelic combination of RLL genes, we further analyzed the contribution of these genes to producing red coloring in leaf lettuce. From the quantification of phenolic compounds and corresponding transcriptome data, we revealed that gene expression level-dependent regulation of RLL1 (bHLH) and RLL2 (MYB) is the underlying mechanism conferring high anthocyanin accumulation in red leaf lettuce under artificial light cultivation. Our data suggest that different combinations of RLL genotypes cause quantitative differences in anthocyanin accumulation among cultivars, and some genotype combinations are more effective at producing red coloration even under artificial lighting.
Collapse
Affiliation(s)
- Kaede C. Wada
- Breeding Big Data Management and Utilization Group, Division of Smart Breeding Research, Institute of Crop ScienceNational Agriculture and Food Research OrganizationTsukubaJapan
| | - Noritoshi Inagaki
- Biomacromolecules Research Unit, Research Center for Advanced Analysis, Core Technology Research HeadquartersNational Agriculture and Food Research OrganizationTsukubaJapan
| | - Hiroaki Sakai
- Bioinformatics Unit, Research Center for Advanced Analysis, Core Technology Research HeadquartersNational Agriculture and Food Research OrganizationTsukubaJapan
| | - Hiroto Yamashita
- Breeding Big Data Management and Utilization Group, Division of Smart Breeding Research, Institute of Crop ScienceNational Agriculture and Food Research OrganizationTsukubaJapan
| | - Yusuke Nakai
- Greenhouse Vegetable Production Group, Division of Field Crop and Vegetable Research, Kyushu‐Okinawa Agricultural Research CenterNational Agriculture and Food Research OrganizationKurumeJapan
| | - Zui Fujimoto
- Biomacromolecules Research Unit, Research Center for Advanced Analysis, Core Technology Research HeadquartersNational Agriculture and Food Research OrganizationTsukubaJapan
| | - Jun‐ichi Yonemaru
- Breeding Big Data Management and Utilization Group, Division of Smart Breeding Research, Institute of Crop ScienceNational Agriculture and Food Research OrganizationTsukubaJapan
| | - Hironori Itoh
- Breeding Big Data Management and Utilization Group, Division of Smart Breeding Research, Institute of Crop ScienceNational Agriculture and Food Research OrganizationTsukubaJapan
| |
Collapse
|
31
|
Chemotaxonomic markers for the authentication of the historical remains of chicory extract from the eighteenth century and mass spectrometry of these markers. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02934-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Spinelli V, Brasili E, Sciubba F, Ceci A, Giampaoli O, Miccheli A, Pasqua G, Persiani AM. Biostimulant Effects of Chaetomium globosum and Minimedusa polyspora Culture Filtrates on Cichorium intybus Plant: Growth Performance and Metabolomic Traits. FRONTIERS IN PLANT SCIENCE 2022; 13:879076. [PMID: 35646045 PMCID: PMC9134003 DOI: 10.3389/fpls.2022.879076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/11/2022] [Indexed: 06/12/2023]
Abstract
In this study, we investigated the biostimulant effect of fungal culture filtrates obtained from Chaetomium globosum and Minimedusa polyspora on growth performance and metabolomic traits of chicory (Cichorium intybus) plants. For the first time, we showed that M. polyspora culture filtrate exerts a direct plant growth-promoting effect through an increase of biomass, both in shoots and roots, and of the leaf area. Conversely, no significant effect on morphological traits and biomass yield was observed in C. intybus plants treated with C. globosum culture filtrate. Based on 1H-NMR metabolomics data, differential metabolites and their related metabolic pathways were highlighted. The treatment with C. globosum and M. polyspora culture filtrates stimulated a common response in C. intybus roots involving the synthesis of 3-OH-butyrate through the decrease in the synthesis of fatty acids and sterols, as a mechanism balancing the NADPH/NADP+ ratio. The fungal culture filtrates differently triggered the phenylpropanoid pathway in C. intybus plants: C. globosum culture filtrate increased phenylalanine and chicoric acid in the roots, whereas M. polyspora culture filtrate stimulated an increase of 4-OH-benzoate. Chicoric acid, whose biosynthetic pathway in the chicory plant is putative and still not well known, is a very promising natural compound playing an important role in plant defense. On the contrary, benzoic acids serve as precursors for a wide variety of essential compounds playing crucial roles in plant fitness and defense response activation. To the best of our knowledge, this is the first study that shows the biostimulant effect of C. globosum and M. polyspora culture filtrates on C. intybus growth and metabolome, increasing the knowledge on fungal bioresources for the development of biostimulants.
Collapse
Affiliation(s)
- Veronica Spinelli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Elisa Brasili
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Fabio Sciubba
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Andrea Ceci
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Ottavia Giampaoli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Alfredo Miccheli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Gabriella Pasqua
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Anna Maria Persiani
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
33
|
Secondary Metabolism Rearrangements in Linum usitatissimum L. after Biostimulation of Roots with COS Oligosaccharides from Fungal Cell Wall. Molecules 2022; 27:molecules27072372. [PMID: 35408773 PMCID: PMC9000297 DOI: 10.3390/molecules27072372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 12/03/2022] Open
Abstract
In vitro culture of flax (Linum usitatissimum L.) was exposed to chitosan oligosaccharides (COS) in order to investigate the effects on the growth and secondary metabolites content in roots and shoots. COS are fragments of chitosan released from the fungal cell wall during plant–pathogen interactions. They can be perceived by the plant as pathogen-associated signals, mediating local and systemic innate immune responses. In the present study, we report a novel COS oligosaccharide fraction with a degree of polymerization (DP) range of 2–10, which was produced from fungal chitosan by a thermal degradation method and purified by an alcohol-precipitation process. COS was dissolved in hydroponic medium at two different concentrations (250 and 500 mg/L) and applied to the roots of growing flax seedlings. Our observations indicated that the growth of roots and shoots decreased markedly in COS-treated flax seedlings compared to the control. In addition, the results of a metabolomics analysis showed that COS treatment induced the accumulation of (neo)lignans locally at roots, flavones luteolin C-glycosides, and chlorogenic acid in systemic responses in the shoots of flax seedlings. These phenolic compounds have been previously reported to exhibit a strong antioxidant and antimicrobial activities. COS oligosaccharides, under the conditions applied in this study (high dose treatment with a much longer exposure time), can be used to indirectly trigger metabolic response modifications in planta, especially secondary metabolism, because during fungal pathogen attack, COS oligosaccharides are among the signals exchanged between the pathogen and host plant.
Collapse
|
34
|
Hernán G, Ortega MJ, Tomas F. Specialized compounds across ontogeny in the seagrass Posidonia oceanica. PHYTOCHEMISTRY 2022; 196:113070. [PMID: 34999511 DOI: 10.1016/j.phytochem.2021.113070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Differences in phenolic composition across different ontogenic stages can be crucial in determining the interaction outcomes between plants and their surrounding biotic environment. In seagrasses, specific phenolic compounds have rarely been analyzed and remain unexplored in ontogenic stages other than non-reproductive adults. Furthermore, it is generally accepted that plants would prioritize defense (e.g., through increased phenolic content) on tissues or stages that are critical for plant fitness but how this affects nutritional quality or plant resources has been scarcely explored. We analyzed how phenolic composition, N and C content and carbohydrate resources varied among different life stages (i.e. old and young leaves of reproductive and non-reproductive plants, and leaves of seedlings) in the seagrass Posidonia oceanica. We identified five phenolic compounds, whose structures were established as hydroxycinnamate esters of tartaric acid. Also, our results show that in all examined ontogenic stages phenolic compounds have the same qualitative composition but inflorescences exhibit higher contents than vegetative tissues. We did not find a reduction in stored resources in reproductive plants, pointing to some kind of compensatory mechanism in the production or storage of resources. In contrast, seedlings seemed to have less phenolic compounds than reproductive plants, perhaps due to limited resources available to allocate to phenolic production. Our results demonstrate how different ontogenic stages change their investment in specialized phenolic compounds prioritizing different functions according to the needs and limitations of that stage.
Collapse
Affiliation(s)
- Gema Hernán
- Department of Biological Science, Florida State University, Tallahassee, FL, USA; Department of Marine Ecology, IMEDEA (CSIC-UIB), Esporles, Spain.
| | - María J Ortega
- Department of Organic Chemistry, University of Cadiz, Puerto Real, Spain
| | - Fiona Tomas
- Department of Marine Ecology, IMEDEA (CSIC-UIB), Esporles, Spain
| |
Collapse
|
35
|
Tráj P, Herrmann EM, Sebők C, Vörösházi J, Mackei M, Gálfi P, Kemény Á, Neogrády Z, Mátis G. Protective effects of chicoric acid on polyinosinic-polycytidylic acid exposed chicken hepatic cell culture mimicking viral damage and inflammation. Vet Immunol Immunopathol 2022; 250:110427. [DOI: 10.1016/j.vetimm.2022.110427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
|
36
|
Salvoza N, Giraudi PJ, Tiribelli C, Rosso N. Natural Compounds for Counteracting Nonalcoholic Fatty Liver Disease (NAFLD): Advantages and Limitations of the Suggested Candidates. Int J Mol Sci 2022; 23:2764. [PMID: 35269912 PMCID: PMC8911502 DOI: 10.3390/ijms23052764] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 12/20/2022] Open
Abstract
The booming prevalence of nonalcoholic fatty liver disease (NAFLD) in adults and children will threaten the health system in the upcoming years. The "multiple hit" hypothesis is the currently accepted explanation of the complex etiology and pathophysiology of the disease. Some of the critical pathological events associated with the development of NAFLD are insulin resistance, steatosis, oxidative stress, inflammation, and fibrosis. Hence, attenuating these events may help prevent or delay the progression of NAFLD. Despite an increasing understanding of the mechanisms involved in NAFLD, no approved standard pharmacological treatment is available. The only currently recommended alternative relies on lifestyle modifications, including diet and physical activity. However, the lack of compliance is still hampering this approach. Thus, there is an evident need to characterize new therapeutic alternatives. Studies of food bioactive compounds became an attractive approach to overcome the reticence toward lifestyle changes. The present study aimed to review some of the reported compounds with beneficial properties in NAFLD; namely, coffee (and its components), tormentic acid, verbascoside, and silymarin. We provide details about their protective effects, their mechanism of action in ameliorating the critical pathological events involved in NAFLD, and their clinical applications.
Collapse
Affiliation(s)
- Noel Salvoza
- Fondazione Italiana Fegato—ONLUS, Area Science Park Basovizza, SS14 km 163.5, 34149 Trieste, Italy; (N.S.); (P.J.G.)
- Philippine Council for Health Research and Development, DOST Compound, Bicutan, Taguig 1631, Philippines
| | - Pablo J. Giraudi
- Fondazione Italiana Fegato—ONLUS, Area Science Park Basovizza, SS14 km 163.5, 34149 Trieste, Italy; (N.S.); (P.J.G.)
| | - Claudio Tiribelli
- Fondazione Italiana Fegato—ONLUS, Area Science Park Basovizza, SS14 km 163.5, 34149 Trieste, Italy; (N.S.); (P.J.G.)
| | - Natalia Rosso
- Fondazione Italiana Fegato—ONLUS, Area Science Park Basovizza, SS14 km 163.5, 34149 Trieste, Italy; (N.S.); (P.J.G.)
| |
Collapse
|
37
|
Larsen DH, Li H, van de Peppel AC, Nicole CCS, Marcelis LFM, Woltering EJ. High light intensity at End-Of-Production improves the nutritional value of basil but does not affect postharvest chilling tolerance. Food Chem 2022; 369:130913. [PMID: 34481404 DOI: 10.1016/j.foodchem.2021.130913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022]
Abstract
Basil suffers from chilling injury (CI) when stored at temperatures below 10-12 °C which seems related to the imbalance between reactive oxygen species (ROS) and antioxidants. We hypothesized that increased light intensity applied shortly before harvest (EOP, End-Of-Production) increases nutritional value i.e. carbohydrates and antioxidants and could improve the chilling tolerance. Two basil cultivars were grown in a vertical farming set-up at a light intensity of 150 µmol m-2 s-1. During the last 5 days of growth, EOP light treatments ranging from 50 to 600 µmol m-2 s-1 were applied. After harvest the leaves were stored at 4 or 12 °C in darkness. Higher EOP light intensity increased the antioxidant (total ascorbic acid, rosmarinic acid) and carbohydrate contents at harvest. During storage antioxidants decreased more rapidly at 4 than at 12 °C. However, increased EOP light intensity did not alleviate chilling symptoms suggesting a minor role of antioxidants studied against chilling stress.
Collapse
Affiliation(s)
- Dorthe H Larsen
- Horticulture and Product Physiology Group, Wageningen University and Research, P.O. Box 16 6700AA, Wageningen, the Netherlands
| | - Hua Li
- Horticulture and Product Physiology Group, Wageningen University and Research, P.O. Box 16 6700AA, Wageningen, the Netherlands
| | - Arjen C van de Peppel
- Horticulture and Product Physiology Group, Wageningen University and Research, P.O. Box 16 6700AA, Wageningen, the Netherlands
| | | | - Leo F M Marcelis
- Horticulture and Product Physiology Group, Wageningen University and Research, P.O. Box 16 6700AA, Wageningen, the Netherlands
| | - Ernst J Woltering
- Horticulture and Product Physiology Group, Wageningen University and Research, P.O. Box 16 6700AA, Wageningen, the Netherlands; Food & Biobased Research, P.O. Box 17 6700AA, Wageningen University and Research, Wageningen, the Netherlands.
| |
Collapse
|
38
|
Chemotyping of commercially available basil (Ocimum basilicum L.) varieties: Cultivar and morphotype influence phenolic acid composition and antioxidant properties. NFS JOURNAL 2022. [DOI: 10.1016/j.nfs.2022.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Santarelli V, Neri L, Carbone K, Macchioni V, Pittia P. Use of Conventional and Innovative Technologies for the Production of Food Grade Hop Extracts: Focus on Bioactive Compounds and Antioxidant Activity. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010041. [PMID: 35009045 PMCID: PMC8747399 DOI: 10.3390/plants11010041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 05/15/2023]
Abstract
This study investigated the use of conventional and innovative extraction methods to produce food-grade hop extracts with high antioxidant capacity and content in bioactive compounds. Conventional extractions (CONV) were performed under dynamic maceration at 25 and 60 °C; innovative extractions were performed using two ultrasound systems, a laboratory bath (US) and a high-power ultrasound bath (HPUS), and a high-pressure industrial process. For CONV, US, and HPUS extractions the effect of the extraction time was also tested. Experimental results showed that extraction method, temperature, and time affect to a different extent the phenolic profile and have a significant effect (p < 0.05) on the total phenolic content, total flavonoid content, antiradical capacity (ABTS), chlorophyll α, and total carotenoids content. Overall, US and CONV 60 °C extractions showed the highest extraction efficiency for almost all the investigated compounds, however, the extraction method and time to be used strongly depends on the target compounds to extract.
Collapse
Affiliation(s)
- Veronica Santarelli
- Faculty of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy; (V.S.); (P.P.)
| | - Lilia Neri
- Faculty of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy; (V.S.); (P.P.)
- Correspondence:
| | - Katya Carbone
- CREA Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy; (K.C.); (V.M.)
| | - Valentina Macchioni
- CREA Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy; (K.C.); (V.M.)
| | - Paola Pittia
- Faculty of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy; (V.S.); (P.P.)
| |
Collapse
|
40
|
Olennikov DN, Chirikova NK, Tsyrenzhapov AV. Phenylpropanoids from Parasenecio hastatus (Compositae) and Their Wound-Healing Activity. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s106816202107013x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Li W, Song Y, Sun W, Yang X, Liu X, Sun L. Both Acidic pH Value and Binding Interactions of Tartaric Acid With α-Glucosidase Cause the Enzyme Inhibition: The Mechanism in α-Glucosidase Inhibition of Four Caffeic and Tartaric Acid Derivates. Front Nutr 2021; 8:766756. [PMID: 34692755 PMCID: PMC8529059 DOI: 10.3389/fnut.2021.766756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 01/02/2023] Open
Abstract
The inhibition mechanism of four caffeic and tartaric acid derivates, including caffeic acid (CA), tartaric acid (TA), caftaric acid (CFA) and chicoric acid (CHA) against α-glucosidase was characterized by substrate depletion, fluorescence quenching, isothermal titration calorimetry (ITC) and molecular docking. TA and CA were found with the highest and no inhibition effect respectively, and caffeoyl substitution at 2 and/or 3-OH of TA significantly decreased its inhibition. The enzyme inhibition effects of organic acids were not in an inhibitor concentration-dependent mode, and there was a rush increase in inhibition at a respective acidic pH value, especially for CFA and CHA, suggesting the important role of acidic pH in the enzyme inhibition for both compounds. Besides, CA, CFA and CHA were shown with strong quenching effects on α-glucosidase fluorescence because of π-conjugations between aromatic ring of caffeoyl moiety and that of enzyme fluorescent residues. However, no fluorescence quenching effect was observed for TA due to lack of aromatic ring. Additionally, a direct binding interaction behavior was observed for TA with α-glucosidase according to the fitted independent binding model in ITC, but not for CFA and CHA. Therefore, both acidic pH and binding interactions of TA with α-glucosidase resulted in the enzyme inhibition.
Collapse
Affiliation(s)
- Wenyue Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Yi Song
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Wanshu Sun
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Xi Yang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Lijun Sun
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| |
Collapse
|
42
|
Kisa D, İmamoğlu R, Genç N, Şahin S, Qayyum MA, Elmastaş M. The interactive effect of aromatic amino acid composition on the accumulation of phenolic compounds and the expression of biosynthesis-related genes in Ocimum basilicum. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2057-2069. [PMID: 34629778 PMCID: PMC8484379 DOI: 10.1007/s12298-021-01068-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 05/05/2023]
Abstract
Sweet basil (Ocimum basilicum L.), a well-known medicinal and aromatic herb, rich in essential oils and antioxidants (contributed by phenolics), is widely used in traditional medicine. The biosynthesis of phytochemicals occurs via different biochemical pathways, and the expression of selected genes encoding enzymes involved in the formation of phenolic compounds is regulated in response to environmental factors. The synthesis of the compounds is closely interrelated: usually, the products formed in the first reaction steps are used as substrates for the next reactions. The current study attempted a comprehensive overview of the effect of aromatic amino acid composition (AAAs) in Ocimum basilicum in respect to the expression of genes related to the biosynthesis of phenolic compound and their content. The transcript expression levels of EOMT, PAL, CVOMT, HPPR, C4L, EGS, and FLS increased depending on the AAAs concentration compared to the control plants. The highest mRNA accumulation was obtained in EOMT, FLS, and HPPR in the leaves of sweet basil. The expression of the TAT gene in the leaves significantly reduced in response to all AAAs applications compared to untreated groups and it had the lowest transcript accumulation. Eleven individual phenolic compounds were determined in the basil leaves, and the contents of chicoric acid, methyl chavicol, caffeic acid, and vanillic acid increased depending on administered concentration to control (p < 0.05). Additionally, AAAs lead to an incremental change in the amount of chlorogenic acid at 50 and 100 mg kg-1 compared to control plants (p < 0.05). Rutin and rosmarinic acid were detected as the main phenolic compounds in all experimental groups of sweet basil in terms of quantity. However, their amount significantly decreased as compared to control plants based on the increase in AAAs concentrations (p < 0.05). Also, the accumulation of cinnamic acid, eugenol, and quercetin did not significantly change in the leaves of AAAs treated plants compared to control (p < 0.05). When AAAs was applied, total flavonoid content increased in all treatments compared to the control plants, but total phenolic content did not change significantly (p < 0.05). To the best of our knowledge, our work is the first detailed work to evaluate in detail the impact of AAAs on individual phenolic compounds at the phytochemistry and transcriptional levels in the O. basilicum plant. For a detailed understanding of the whole mechanism of phenolic compound regulation, further research is required to fill in some gaps and to provide further clarification.
Collapse
Affiliation(s)
- Dursun Kisa
- Department of Molecular Biology and Genetics, Faculty of Science, Bartin University, Bartin, Turkey
| | - Rizvan İmamoğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Bartin University, Bartin, Turkey
| | - Nusret Genç
- Department of Chemistry, Faculty of Science and Arts, Gaziosmanpasa University, Tokat, Turkey
| | - Sezer Şahin
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Gaziosmanpasa University, Tokat, Turkey
| | - Muhammad Abdul Qayyum
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore, Pakistan
| | - Mahfuz Elmastaş
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, University of Health Sciences, İstanbul, Turkey
| |
Collapse
|
43
|
Astudillo‐Sánchez PD, Enrique J. Soriano‐Castillo MS, Manzanilla B, Rocha‐Ortiz G, Trujano‐Ortiz LG, Matus MH, Domínguez Z, Salas‐Reyes M. Electrochemical Oxidation of Symmetrical Antioxidant Chicoric Acid in DMSO: Is this a Sequential or a Simultaneous 2ECE Mechanism? ChemistrySelect 2021. [DOI: 10.1002/slct.202101952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pablo D. Astudillo‐Sánchez
- Departamento de Ciencias Básicas y Aplicadas del Centro Universitario de Tonalá Universidad de Guadalajara Av. Nuevo Periférico 555, Ejido San José Tatepozco C.P. 45425 Tonalá, Jalisco México
| | - M. S. Enrique J. Soriano‐Castillo
- Instituto de Química Aplicada Universidad Veracruzana Dr. Luis Castelazo Ayala S/N, Col. Industrial Ánimas, A.P. 575 Xalapa, Ver. 91190 México
| | - Brenda Manzanilla
- Instituto de Química Aplicada Universidad Veracruzana Dr. Luis Castelazo Ayala S/N, Col. Industrial Ánimas, A.P. 575 Xalapa, Ver. 91190 México
| | - Gilberto Rocha‐Ortiz
- Departamento de Ciencias Básicas y Aplicadas del Centro Universitario de Tonalá Universidad de Guadalajara Av. Nuevo Periférico 555, Ejido San José Tatepozco C.P. 45425 Tonalá, Jalisco México
| | - Lidia G. Trujano‐Ortiz
- Departamento de Ciencias Básicas y Aplicadas del Centro Universitario de Tonalá Universidad de Guadalajara Av. Nuevo Periférico 555, Ejido San José Tatepozco C.P. 45425 Tonalá, Jalisco México
| | - Myrna H. Matus
- Instituto de Química Aplicada Universidad Veracruzana Dr. Luis Castelazo Ayala S/N, Col. Industrial Ánimas, A.P. 575 Xalapa, Ver. 91190 México
| | - Zaira Domínguez
- Instituto de Química Aplicada Universidad Veracruzana Dr. Luis Castelazo Ayala S/N, Col. Industrial Ánimas, A.P. 575 Xalapa, Ver. 91190 México
| | - Magali Salas‐Reyes
- Instituto de Química Aplicada Universidad Veracruzana Dr. Luis Castelazo Ayala S/N, Col. Industrial Ánimas, A.P. 575 Xalapa, Ver. 91190 México
| |
Collapse
|
44
|
Unravelling the Phytochemical Composition and the Pharmacological Properties of an Optimized Extract from the Fruit from Prunus mahaleb L.: From Traditional Liqueur Market to the Pharmacy Shelf. Molecules 2021; 26:molecules26154422. [PMID: 34361576 PMCID: PMC8347645 DOI: 10.3390/molecules26154422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022] Open
Abstract
Prunus mahaleb L. fruit has long been used in the production of traditional liqueurs. The fruit also displayed scavenging and reducing activity, in vitro. The present study focused on unravelling peripheral and central protective effects, antimicrobial but also anti-COVID-19 properties exerted by the water extract of P. mahaleb. Anti-inflammatory effects were studied in isolated mouse colons exposed to lipopolysaccharide. Neuroprotection, measured as a blunting effect on hydrogen-peroxide-induced dopamine turnover, was investigated in hypothalamic HypoE22 cells. Antimicrobial effects were tested against different Gram+ and Gram- bacterial strains. Whereas anti-COVID-19 activity was studied in lung adenocarcinoma H1299 cells, where the gene expression of ACE2 and TMPRSS2 was measured after extract treatment. The bacteriostatic effects induced on Gram+ and Gram- strains, together with the inhibition of COX-2, TNFα, HIF1α, and VEGFA in the colon, suggest the potential of P. mahaleb water extract in contrasting the clinical symptoms related to ulcerative colitis. The inhibition of the hydrogen peroxide-induced DOPAC/DA ratio indicates promising neuroprotective effects. Finally, the downregulation of the gene expression of ACE2 and TMPRSS2 in H1299 cells, suggests the potential to inhibit SARS-CoV-2 virus entry in the human host. Overall, the results support the valorization of the local cultivation of P. mahaleb.
Collapse
|
45
|
Catorce MN, Gevorkian G. Evaluation of Anti-inflammatory Nutraceuticals in LPS-induced Mouse Neuroinflammation Model: An Update. Curr Neuropharmacol 2021; 18:636-654. [PMID: 31934839 PMCID: PMC7457421 DOI: 10.2174/1570159x18666200114125628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/26/2019] [Accepted: 01/11/2020] [Indexed: 02/08/2023] Open
Abstract
It is known that peripheral infections, accompanied by inflammation, represent significant risk factors for the development of neurological disorders by modifying brain development or affecting normal brain aging. The acute effects of systemic inflammation on progressive and persistent brain damage and cognitive impairment are well documented. Anti-inflammatory therapies may have beneficial effects on the brain, and the protective properties of a wide range of synthetic and natural compounds have been extensively explored in recent years. In our previous review, we provided an extensive analysis of one of the most important and widely-used animal models of peripherally induced neuroinflammation and neurodegeneration - lipopolysaccharide (LPS)-treated mice. We addressed the data reproducibility in published research and summarized basic features and data on the therapeutic potential of various natural products, nutraceuticals, with known anti-inflammatory effects, for reducing neuroinflammation in this model. Here, recent data on the suitability of the LPS-induced murine neuroinflammation model for preclinical assessment of a large number of nutraceuticals belonging to different groups of natural products such as flavonoids, terpenes, non-flavonoid polyphenols, glycosides, heterocyclic compounds, organic acids, organosulfur compounds and xanthophylls, are summarized. Also, the proposed mechanisms of action of these molecules are discussed.
Collapse
Affiliation(s)
- Miryam Nava Catorce
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico DF, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico DF, Mexico
| |
Collapse
|
46
|
Anticancer and biological properties of leaf and flower extracts of Echinacea purpurea (L.) Moench. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
47
|
Santos DCD, Oliveira Filho JGD, Sousa TLD, Ribeiro CB, Egea MB. Ameliorating effects of metabolic syndrome with the consumption of rich-bioactive compounds fruits from Brazilian Cerrado: a narrative review. Crit Rev Food Sci Nutr 2021; 62:7632-7649. [PMID: 33977838 DOI: 10.1080/10408398.2021.1916430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Evidence suggests that bioactive compounds present in fruits and vegetables, including carotenoids, polyphenols, and phytosterols, may have beneficial effects against the development of obesity and other diseases. The fruits of the Brazilian Cerrado are rich in biologically active compounds but are underexplored by the population being used only locally dietary consumption. The objective of this review is to direct attention to the bioactive compounds already elucidated for the fruits of "Cerrado" cashew (Anacadium othanianum Rizz.), baru almond (Dipteryx alata Vogel), cagaita (Eugenia dysenterica DC.), "Cerrado" pear (Eugenia klotzschiana Berg), mangaba (Hancornia speciosa), and pequi (Caryocar brasiliense Camb), demonstrating possible metabolic effects of the consumption of these fruits on the metabolic syndrome and its risk factors. Studies have shown that Cerrado native fruits have a high content of bioactive compounds such as phenolic compounds, which also demonstrate high antioxidant capacity and may be related to the protective effect in metabolic syndrome-related diseases by act as inhibitors in various processes in lipid metabolism and glucose transport. Although more scientific evidence is still needed, the consumption of native fruits from the Cerrado seems to be a promising strategy which -along with other strategies such as nutritional therapy- can ameliorate the effects of the metabolic syndrome.
Collapse
Affiliation(s)
- Daiane Costa Dos Santos
- Institute of Tropical Pathology and Public Health, IPTSP - UFG, Goias Federal University (UFG), Goiânia, Goiás, Brazil.,School of Nutrition, Unibras College of Rio Verde, Rio Verde, Goiás, Brazil
| | | | | | | | - Mariana Buranelo Egea
- Department of Agronomy, Goiás Federal University (UFG), Goiânia, Goiás, Brazil.,Goiano Federal Institute of Education, Science, and Technology, Rio Verde, Goiás, Brazil
| |
Collapse
|
48
|
Optimization of callus cultures at Echinacea purpurea L. for the amount of caffeic acid derivatives. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
49
|
Wei S, Ma W, Zhang B, Li W. NLRP3 Inflammasome: A Promising Therapeutic Target for Drug-Induced Toxicity. Front Cell Dev Biol 2021; 9:634607. [PMID: 33912556 PMCID: PMC8072389 DOI: 10.3389/fcell.2021.634607] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
Drug-induced toxicity, which impairs human organ function, is a serious problem during drug development that hinders the clinical use of many marketed drugs, and the underlying mechanisms are complicated. As a sensor of infections and external stimuli, nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome plays a key role in the pathological process of various diseases. In this review, we specifically focused on the role of NLRP3 inflammasome in drug-induced diverse organ toxicities, especially the hepatotoxicity, nephrotoxicity, and cardiotoxicity. NLRP3 inflammasome is involved in the initiation and deterioration of drug-induced toxicity through multiple signaling pathways. Therapeutic strategies via inhibiting NLRP3 inflammasome for drug-induced toxicity have made significant progress, especially in the protective effects of the phytochemicals. Growing evidence collected in this review indicates that NLRP3 is a promising therapeutic target for drug-induced toxicity.
Collapse
Affiliation(s)
- Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wanjun Ma
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
50
|
Fu R, Zhang P, Jin G, Wang L, Qi S, Cao Y, Martin C, Zhang Y. Versatility in acyltransferase activity completes chicoric acid biosynthesis in purple coneflower. Nat Commun 2021; 12:1563. [PMID: 33692355 PMCID: PMC7946891 DOI: 10.1038/s41467-021-21853-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/11/2021] [Indexed: 02/05/2023] Open
Abstract
Purple coneflower (Echinacea purpurea (L.) Moench) is a popular native North American herbal plant. Its major bioactive compound, chicoric acid, is reported to have various potential physiological functions, but little is known about its biosynthesis. Here, taking an activity-guided approach, we identify two cytosolic BAHD acyltransferases that form two intermediates, caftaric acid and chlorogenic acid. Surprisingly, a unique serine carboxypeptidase-like acyltransferase uses chlorogenic acid as its acyl donor and caftaric acid as its acyl acceptor to produce chicoric acid in vacuoles, which has evolved its acyl donor specificity from the better-known 1-O-β-D-glucose esters typical for this specific type of acyltransferase to chlorogenic acid. This unusual pathway seems unique to Echinacea species suggesting convergent evolution of chicoric acid biosynthesis. Using these identified acyltransferases, we have reconstituted chicoric acid biosynthesis in tobacco. Our results emphasize the flexibility of acyltransferases and their roles in the evolution of specialized metabolism in plants.
Collapse
Affiliation(s)
- Rao Fu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Pingyu Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Ge Jin
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Lianglei Wang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Shiqian Qi
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yang Cao
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Cathie Martin
- Department of Metabolic Biology and Biological Chemistry, John Innes Centre, Norwich, NR4 7UH, UK
| | - Yang Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|