1
|
Shadangi S, Singh A, Rana S. Deciphering the Mechanism of Action of a Short, Synthetic Designer AMP Against Gram-Negative Bacteria. Biopolymers 2025; 116:e70019. [PMID: 40231443 DOI: 10.1002/bip.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025]
Abstract
Antimicrobial peptides (AMPs), produced in various organisms, including plants, as a first line of defense, are potent, functionally versatile, fast-acting small peptides with a net charge and diverse structures. Most AMPs demonstrate potent antibacterial activity, and AMPs with multimodal actions can potentially delay the development of antimicrobial resistance (AMR), one of the top 10 global public health challenges categorized by the WHO. Notably, the FDA has already approved several AMPs (Mol. Wt. ≤ 2 kDa) as antibiotics; however, there are not enough new-age antibiotics in the current pipeline to combat the looming problem of AMR in the clinic. Nevertheless, despite their potential, natural AMPs have their fair share of shortcomings for straightforward therapeutic applications. Therefore, extensive research on developing designer synthetic AMPs with broad-spectrum antimicrobial activity is currently being undertaken to mitigate the AMR challenge. In this context, we recently demonstrated a short synthetic designer AMP (SR17: ≤ 16 aa, mol. Wt. ≤ 2 kDa) that exhibits broad-spectrum bacteriostatic and bactericidal action against both gram-negative (Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii) and gram-positive (Staphylococcus aureus) bacteria. Interestingly, in gram-negative bacteria, the outer membrane proteins (OMPs) play a key role in transporting nutrients like iron from their surroundings through siderophores, which play a crucial role in various biochemical processes essential for their survival and growth. In the current study, the ability of SR17 to target the iron-transporting OMPs acting as the siderophore uptake system is investigated through computational techniques. A series of docking and molecular dynamics (MD) simulation studies involving iron transporters of various gram-negative bacteria indicate that SR17 can occupy the binding pocket in the OMPs necessary for binding of the iron-chelated siderophores, which is likely to prevent the further uptake of siderophores, affecting the growth and survival of the bacteria. Additionally, SR17 may potentially reach the bacterial cytoplasm by utilizing the siderophore uptake system and disrupt essential cytoplasmic processes, leading to the death of the bacteria, as observed in experimental studies.
Collapse
Affiliation(s)
- Sucharita Shadangi
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Aditi Singh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| |
Collapse
|
2
|
Mekuli R, Shoukat M, Dugat-Bony E, Bonnarme P, Landaud S, Swennen D, Hervé V. Iron-based microbial interactions: the role of iron metabolism in the cheese ecosystem. J Bacteriol 2025:e0053924. [PMID: 40237503 DOI: 10.1128/jb.00539-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Iron is involved in various microbial metabolisms and interactions and is an essential micronutrient for most microorganisms. This review focuses on the cheese ecosystem, in which iron is sparse (median concentration of 2.9 mg/kg based on a literature survey) and of limited bioavailability due to the presence of various metal-binding agents in the cheese matrix. Cheese microorganisms overcome this low bioavailability of iron by producing and/or importing ferric iron-specific chelators called siderophores. We introduce these siderophores and their specific transporters, which play a key role in ecological interactions and microbial metabolism. We discuss the impact of iron on all the major taxa (fungi, bacteria, and viruses) and functional groups (starters, ripening microorganisms, and pathogens) present and interacting in cheese, from the community to individual levels. We describe the ways in which cheese-ripening microorganisms use iron and the effects of iron limitation on major metabolic pathways, including the tricarboxylic acid (TCA) cycle and amino-acid biosynthesis. The cheese ecosystem is a relevant in situ model for improving our understanding of iron biochemistry and its putative role in microbe-microbe interactions. Yet, this review highlights critical gaps in our understanding of iron's role in cheese from fundamental ecological and biochemical perspectives to applied microbiology, with broader implications for the quality, safety, and organoleptic properties of cheese.
Collapse
Affiliation(s)
- Rina Mekuli
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| | - Mahtab Shoukat
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| | - Eric Dugat-Bony
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| | - Pascal Bonnarme
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| | - Sophie Landaud
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| | - Dominique Swennen
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| | - Vincent Hervé
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| |
Collapse
|
3
|
Leon F, Espinoza-Esparza JM, Deng V, Coyle MC, Espinoza S, Booth DS. Cell differentiation controls iron assimilation in the choanoflagellate Salpingoeca rosetta. mSphere 2025; 10:e0091724. [PMID: 40008892 PMCID: PMC11934334 DOI: 10.1128/msphere.00917-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Marine microeukaryotes have evolved diverse cellular features that link their life histories to surrounding environments. How those dynamic life histories intersect with the ecological functions of microeukaryotes remains a frontier to understanding their roles in critical biogeochemical cycles. Choanoflagellates, phagotrophs that cycle nutrients through filter feeding, provide models to explore this intersection, for many choanoflagellate species transition between life history stages by differentiating into distinct cell types. Here, we report that cell differentiation in the marine choanoflagellate Salpingoeca rosetta endows one of its cell types with the ability to utilize insoluble ferric colloids. These colloids are a predominant form of iron in marine environments and are largely inaccessible to cell-walled microbes. Therefore, choanoflagellates and other phagotrophic eukaryotes may serve critical ecological roles by cycling this essential nutrient through iron utilization pathways. We found that S. rosetta can utilize these ferric colloids via the expression of a cytochrome b561 iron reductase (cytb561a). This gene and its mammalian ortholog, the duodenal cytochrome b561 (DCYTB) that reduces ferric cations for uptake in gut epithelia, belong to a subgroup of cytochrome b561 proteins with distinct biochemical features that contribute to iron reduction activity. Overall, our findings provide insight into the ecological roles choanoflagellates perform and inform reconstructions of early animal evolution where functionally distinct cell types became an integrated whole at the origin of animal multicellularity. IMPORTANCE This study examines how cell differentiation in a choanoflagellate enables the uptake of iron, an essential nutrient. Choanoflagellates are widespread, aquatic microeukaryotes that are the closest living relatives of animals. Similar to their animal relatives, we found that the model choanoflagellate, S. rosetta, divides metabolic functions between distinct cell types. One cell type uses an iron reductase to acquire ferric colloids, a key source of iron in the ocean. We also observed that S. rosetta has three variants of this reductase, each with distinct biochemical properties that likely lead to differences in how they reduce iron. These reductases are variably distributed across ocean regions, suggesting a role for choanoflagellates in cycling iron in marine environments.
Collapse
Affiliation(s)
- Fredrick Leon
- Department of Biochemistry and Biophysics, University of California, San Francisco School of Medicine, San Francisco, California, USA
- Tetrad Graduate Program, University of California, San Francisco, California, USA
| | - Jesus M. Espinoza-Esparza
- Department of Biochemistry and Biophysics, University of California, San Francisco School of Medicine, San Francisco, California, USA
| | - Vicki Deng
- Department of Biochemistry and Biophysics, University of California, San Francisco School of Medicine, San Francisco, California, USA
| | - Maxwell C. Coyle
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California, USA
| | - Sarah Espinoza
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California, USA
| | - David S. Booth
- Department of Biochemistry and Biophysics, University of California, San Francisco School of Medicine, San Francisco, California, USA
- Chan Zuckerberg Biohub SF, San Francisco, California, USA
| |
Collapse
|
4
|
Sharma R, Nahar A, Puri S. Candida albicans enhances iron uptake to maintain fluconazole resistance. Infect Immun 2025; 93:e0000225. [PMID: 39918306 PMCID: PMC11895461 DOI: 10.1128/iai.00002-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 01/18/2025] [Indexed: 03/12/2025] Open
Abstract
Widespread use of fluconazole has led to the emergence of fluconazole-resistant (FR) Candida spp. causing challenges in clinical treatment. Iron, an essential nutrient, affects the levels of ergosterol (a fluconazole target) in fungal membranes. Our lab-generated FR strain (fluconazole minimum inhibitory concentration [MIC] >125 µg/mL) showed a twofold lower MIC (4.66 µg/mL) for the iron chelator deferasirox (DFX), compared to its patent strain CAI4 (DFX MIC 9.34 µg/mL), suggesting a greater sensitivity to iron chelation. A sublethal dose of DFX (2.33 µg/mL) was able to effectively synergize with 125 µg/mL fluconazole to kill the FR strain. Iron estimation revealed significantly enhanced intracellular iron accumulation in the FR strain compared to CAI4. Expression of iron-uptake genes (FRP1, FRE10, and RBT5) was also significantly upregulated in the FR strain, particularly under high iron. FR strain also showed an increase in the levels of cellular ergosterol, along with an increase in the expression of ergosterol biosynthesis genes (ERG11 and ERG9), compared to CAI4, under both low and high iron. The strain further showed increased β-glucan levels and exposure. Additionally, FR strain showed significantly higher survival in high-iron mice compared to low-iron mice, during fluconazole treatment. Finally, we observed a synergistic fungicidal response between 2.33 µg/mL DFX and 125 µg/mL fluconazole, for FR clinical strains. Overall, this suggests that FR C. albicans actively uptakes more iron to maintain cellular conditions needed to support its resistance against fluconazole; and that DFX alone or in conjugation with fluconazole has the potential to overcome fluconazole drug resistance.
Collapse
Affiliation(s)
- Rishabh Sharma
- Oral Microbiome Research Laboratory, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania, USA
| | - Anubhav Nahar
- Oral Microbiome Research Laboratory, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania, USA
| | - Sumant Puri
- Oral Microbiome Research Laboratory, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Kim SH, Kwak M, Hwang JK, Keum J, Jin HY, Lee CY, Tanpure RS, Kim YJ, Hoh JK, Park JY, Chung W, Jeon BH, Park HK. Altered heme metabolism and hemoglobin concentration due to empirical antibiotics-induced gut dysbiosis in preterm infants. Comput Struct Biotechnol J 2025; 27:937-945. [PMID: 40123796 PMCID: PMC11930222 DOI: 10.1016/j.csbj.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/04/2025] [Accepted: 03/04/2025] [Indexed: 03/25/2025] Open
Abstract
Background High-risk infants are usually treated with empirical antibiotics after birth, regardless of the evidence of infection; however, their gut microbiome and metabolome have seldom been studied. This study investigated the influence of antibiotic exposure on the gut microbiome and associated metabolic pathways in term and preterm infants. Methods Thirty-six infants within 10 days of birth who were admitted to a neonatal intensive care unit/newborn nursery unit were divided into four groups based on maturity (gestational age) and use of empirical antibiotics. Genomic DNA was extracted from the fecal samples and underwent high-throughput 16S rRNA amplicon sequencing using the Illumina platforms. Taxonomic classification, diversity analysis, and metagenomic function prediction were performed. Results Preterm infants with empirical antibiotics showed a significantly decreased population of Firmicutes (p = 0.003) and an increased population of Proteobacteria (p < 0.001) compared to other groups. At the genus level, the populations of Raoultella (p = 0.065) and Escherichia (p = 0.052) showed an increased trend. The change in microbial composition was correlated with increased heme biosynthesis and decreased hemoglobin levels. Conclusion Collectively, our finding suggested that empirical antibiotic exposure in preterm infants alters the gut microbiome, potentially leading to adverse health outcomes. This dysbiosis may affect heme metabolism, increasing the risk of anemia in these vulnerable infants. Therefore, antibiotic use should be carefully tailored to minimize potential harm.
Collapse
Affiliation(s)
- Seung Hyun Kim
- Department of Pediatrics, Hanyang University College of Medicine, Seoul 04763, South Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Min‑Jin Kwak
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| | - Jae Kyoon Hwang
- Department of Pediatrics, Hanyang University College of Medicine, Seoul 04763, South Korea
| | - Jihyun Keum
- Department of Obstetrics and Gynecology, Hanyang University College of Medicine, Seoul 04763, South Korea
| | - Hee Yeon Jin
- Division of Microbiome, Int-Gen Company, Seoul 04799, South Korea
| | - Chan-Yeong Lee
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Rahul Sadashiv Tanpure
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Yong Joo Kim
- Department of Pediatrics, Hanyang University College of Medicine, Seoul 04763, South Korea
| | - Jeong-Kyu Hoh
- Department of Obstetrics and Gynecology, Hanyang University College of Medicine, Seoul 04763, South Korea
| | - Jae Yong Park
- Division of Microbiome, Int-Gen Company, Seoul 04799, South Korea
| | - Woojin Chung
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Hyun-Kyung Park
- Department of Pediatrics, Hanyang University College of Medicine, Seoul 04763, South Korea
| |
Collapse
|
6
|
Ten KE, Rahman S, Tan HS. Transcriptomic insights into the virulence of Acinetobacter baumannii during infection-role of iron uptake and siderophore production genes. FEBS Lett 2025; 599:120-139. [PMID: 39572900 DOI: 10.1002/1873-3468.15061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 01/30/2025]
Abstract
Acinetobacter baumannii, a top-priority WHO pathogen, causes life-threatening infections in immunocompromised patients, leading to prolonged hospitalisation and high mortality. Here, we used the Galleria mellonella model to investigate community strain C98 (Ab-C98) virulence via transcriptomic analysis. Ab-C98 showed greater killing and faster colonisation in larvae than the clinical reference strain (ATCC BAA1605). Genes in three iron clusters, acinetobactin, baumannoferrin and the Feo system, were significantly up-regulated. Targeted knockout of siderophore genes (basC, bfnD, and the gene encoding isochorismatase) significantly increased the survival of infected larvae by at least 35.16%, identifying these genes as potential targets for developing anti-virulence agents against A. baumannii.
Collapse
Affiliation(s)
- Kah Ern Ten
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Sadequr Rahman
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Hock Siew Tan
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
7
|
Dentand AL, Schubert MG, Krayenbuehl PA. Current iron therapy in the light of regulation, intestinal microbiome, and toxicity: are we prescribing too much iron? Crit Rev Clin Lab Sci 2024; 61:546-558. [PMID: 38606523 DOI: 10.1080/10408363.2024.2331477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/26/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
Iron deficiency is a widespread global health concern with varying prevalence rates across different regions. In developing countries, scarcity of food and chronic infections contribute to iron deficiency, while in industrialized nations, reduced food intake and dietary preferences affect iron status. Other causes that can lead to iron deficiency are conditions and diseases that result in reduced intestinal iron absorption and blood loss. In addition, iron absorption and its bioavailability are influenced by the composition of the diet. Individuals with increased iron needs, including infants, adolescents, and athletes, are particularly vulnerable to deficiency. Severe iron deficiency can lead to anemia with performance intolerance or shortness of breath. In addition, even without anemia, iron deficiency leads to mental and physical fatigue, which points to the fundamental biological importance of iron, especially in mitochondrial function and the respiratory chain. Standard oral iron supplementation often results in gastrointestinal side effects and poor compliance. Low-dose iron therapy seems to be a valid and reasonable therapeutic option due to reduced hepatic hepcidin formation, facilitating efficient iron resorption, replenishment of iron storage, and causing significantly fewer side effects. Elevated iron levels influence gut microbiota composition, favoring pathogenic bacteria and potentially disrupting metabolic and immune functions. Protective bacteria, such as bifidobacteria and lactobacilli, are particularly susceptible to increased iron levels. Dysbiosis resulting from iron supplementation may contribute to gastrointestinal disorders, inflammatory bowel disease, and metabolic disturbances. Furthermore, gut microbiota alterations have been linked to mental health issues. Future iron therapy should consider low-dose supplementation to mitigate adverse effects and the impact on the gut microbiome. A comprehensive understanding of the interplay between iron intake, gut microbiota, and human health is crucial for optimizing therapeutic approaches and minimizing potential risks associated with iron supplementation.
Collapse
Affiliation(s)
- Anaëlle L Dentand
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Zurich, Zurich, Switzerland
| | - Morton G Schubert
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Zurich, Zurich, Switzerland
| | - Pierre-Alexandre Krayenbuehl
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Leon F, Espinoza-Esparza JM, Deng V, Coyle MC, Espinoza S, Booth DS. Cell differentiation controls iron assimilation in a choanoflagellate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.25.595918. [PMID: 39345370 PMCID: PMC11429873 DOI: 10.1101/2024.05.25.595918] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Marine microeukaryotes have evolved diverse cellular features that link their life histories to surrounding environments. How those dynamic life histories intersect with the ecological functions of microeukaryotes remains a frontier to understand their roles in essential biogeochemical cycles1,2. Choanoflagellates, phagotrophs that cycle nutrients through filter feeding, provide models to explore this intersection, for many choanoflagellate species transition between life history stages by differentiating into distinct cell types3-6. Here we report that cell differentiation in the marine choanoflagellate Salpingoeca rosetta endows one of its cell types with the ability to utilize insoluble ferric colloids for improved growth through the expression of a cytochrome b561 iron reductase (cytb561a). This gene is an ortholog of the mammalian duodenal cytochrome b561 (DCYTB) that reduces ferric cations prior to their uptake in gut epithelia7 and is part of an iron utilization toolkit that choanoflagellates and their closest living relatives, the animals, inherited from a last common eukaryotic ancestor. In a database of oceanic metagenomes8,9, the abundance of cytb561a transcripts from choanoflagellates positively correlates with upwellings, which are a major source of ferric colloids in marine environments10. As this predominant form of iron11,12 is largely inaccessible to cell-walled microbes13,14, choanoflagellates and other phagotrophic eukaryotes may serve critical ecological roles by first acquiring ferric colloids through phagocytosis and then cycling this essential nutrient through iron utilization pathways13-15. These findings provide insight into the ecological roles choanoflagellates perform and inform reconstructions of early animal evolution where functionally distinct cell types became an integrated whole at the origin of animal multicellularity16-22.
Collapse
Affiliation(s)
- Fredrick Leon
- Chan Zuckerberg Biohub & Department of Biochemistry and Biophysics, University of California, San Francisco School of Medicine, San Francisco, CA 94143
| | - Jesus M. Espinoza-Esparza
- Chan Zuckerberg Biohub & Department of Biochemistry and Biophysics, University of California, San Francisco School of Medicine, San Francisco, CA 94143
| | - Vicki Deng
- Chan Zuckerberg Biohub & Department of Biochemistry and Biophysics, University of California, San Francisco School of Medicine, San Francisco, CA 94143
- Current Address: Department of Molecular Biosciences, University of Texas, Austin, Austin, TX 78712
| | - Maxwell C. Coyle
- Howard Hughes Medical Institute & Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
- Current Address: Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Sarah Espinoza
- Howard Hughes Medical Institute & Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - David S. Booth
- Chan Zuckerberg Biohub & Department of Biochemistry and Biophysics, University of California, San Francisco School of Medicine, San Francisco, CA 94143
| |
Collapse
|
9
|
Darwitz BP, Genito CJ, Thurlow LR. Triple threat: how diabetes results in worsened bacterial infections. Infect Immun 2024; 92:e0050923. [PMID: 38526063 PMCID: PMC11385445 DOI: 10.1128/iai.00509-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Diabetes mellitus, characterized by impaired insulin signaling, is associated with increased incidence and severity of infections. Various diabetes-related complications contribute to exacerbated bacterial infections, including hyperglycemia, innate immune cell dysfunction, and infection with antibiotic-resistant bacterial strains. One defining symptom of diabetes is hyperglycemia, resulting in elevated blood and tissue glucose concentrations. Glucose is the preferred carbon source of several bacterial pathogens, and hyperglycemia escalates bacterial growth and virulence. Hyperglycemia promotes specific mechanisms of bacterial virulence known to contribute to infection chronicity, including tissue adherence and biofilm formation. Foot infections are a significant source of morbidity in individuals with diabetes and consist of biofilm-associated polymicrobial communities. Bacteria perform complex interspecies behaviors conducive to their growth and virulence within biofilms, including metabolic cross-feeding and altered phenotypes more tolerant to antibiotic therapeutics. Moreover, the metabolic dysfunction caused by diabetes compromises immune cell function, resulting in immune suppression. Impaired insulin signaling induces aberrations in phagocytic cells, which are crucial mediators for controlling and resolving bacterial infections. These aberrancies encompass altered cytokine profiles, the migratory and chemotactic mechanisms of neutrophils, and the metabolic reprogramming required for the oxidative burst and subsequent generation of bactericidal free radicals. Furthermore, the immune suppression caused by diabetes and the polymicrobial nature of the diabetic infection microenvironment may promote the emergence of novel strains of multidrug-resistant bacterial pathogens. This review focuses on the "triple threat" linked to worsened bacterial infections in individuals with diabetes: (i) altered nutritional availability in diabetic tissues, (ii) diabetes-associated immune suppression, and (iii) antibiotic treatment failure.
Collapse
Affiliation(s)
- Benjamin P. Darwitz
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Christopher J. Genito
- Division of Oral and Craniofacial Health Sciences, University of North Carolina at Chapel Hill Adams School of Dentistry, Chapel Hill, North Carolina, USA
| | - Lance R. Thurlow
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
- Division of Oral and Craniofacial Health Sciences, University of North Carolina at Chapel Hill Adams School of Dentistry, Chapel Hill, North Carolina, USA
| |
Collapse
|
10
|
Lee KY, Schlesener CL, Aly SS, Huang BC, Li X, Atwill ER, Weimer BC. Whole genome sequence analysis reveals high genomic diversity and potential host-driven adaptations among multidrug-resistant Escherichia coli from pre-weaned dairy calves. Front Microbiol 2024; 15:1420300. [PMID: 39296303 PMCID: PMC11409426 DOI: 10.3389/fmicb.2024.1420300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/16/2024] [Indexed: 09/21/2024] Open
Abstract
Food-producing animals such as dairy cattle are potential reservoirs of antimicrobial resistance (AMR), with multidrug-resistant (MDR) organisms such as Escherichia coli observed in higher frequency in young calves compared to older cattle. In this study, we characterized the genomes of enteric MDR E. coli from pre-weaned dairy calves with and without diarrhea and evaluated the influence of host-level factors on genomic composition. Whole genome sequence comparative analysis of E. coli (n = 43) revealed substantial genomic diversity that primarily clustered by sequence type and was minimally driven by calf diarrheal disease status (healthy, diarrheic, or recovered), antimicrobial exposure, and dietary zinc supplementation. Diverse AMR genes (ARGs)-including extended-spectrum beta-lactamase genes and quinolone resistance determinants-were identified (n = 40), with unique sets of ARGs co-occurring in gene clusters with large AMR plasmids IncA/C2 and IncFIB(AP001918). Zinc supplementation was not significantly associated with the selection of individual ARGs in E. coli, however analysis of ARG and metal resistance gene pairs identified positive associations between certain aminoglycoside, beta-lactam, sulfonamide, and trimethoprim ARGs with acid, tellurium and mercury resistance genes. Although E. coli in this study lacked the typical virulence factors of diarrheagenic strains, virulence genes overlapping with those in major pathotypes were identified. Among the 103 virulence genes detected, the highest abundance and diversity of genes corresponded to iron acquisition (siderophores and heme uptake). Our findings indicate that the host-level factors evaluated in this study were not key drivers of genomic variability, but that certain accessory genes in enteric MDR E. coli may be enriched. Collectively, this work provides insight into the genomic diversity and host-microbe interface of MDR E. coli from pre-weaned dairy calves.
Collapse
Affiliation(s)
- Katie Y Lee
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Cory L Schlesener
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- 100K Pathogen Genome Project, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Sharif S Aly
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, United States
| | - Bihua C Huang
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- 100K Pathogen Genome Project, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Xunde Li
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Edward R Atwill
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Bart C Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- 100K Pathogen Genome Project, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
11
|
Jeong GJ, Khan F, Tabassum N, Jo DM, Jung WK, Kim YM. Roles of Pseudomonas aeruginosa siderophores in interaction with prokaryotic and eukaryotic organisms. Res Microbiol 2024; 175:104211. [PMID: 38734157 DOI: 10.1016/j.resmic.2024.104211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that produces two types of siderophores, pyoverdine and pyochelin, that play pivotal roles in iron scavenging from the environment and host cells. P. aeruginosa siderophores can serve as virulence factors and perform various functions. Several bacterial and fungal species are likely to interact with P. aeruginosa due to its ubiquity in soil and water as well as its potential to cause infections in plants, animals, and humans. Siderophores produced by P. aeruginosa play critical roles in iron scavenging for prokaryotic species (bacteria) and eukaryotic hosts (fungi, animals, insects, invertebrates, and plants) as well. This review provides a comprehensive discussion of the role of P. aeruginosa siderophores in interaction with prokaryotes and eukaryotes as well as their underlying mechanisms of action. The evolutionary relationship between P. aeruginosa siderophore recognition receptors, such as FpvA, FpvB, and FptA, and those of other bacterial species has also been investigated.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Institute of Fisheries Science, Pukyong National University. Busan 48513, Republic of Korea; International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Du-Min Jo
- National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do, 33662, Republic of Korea
| | - Won-Kyo Jung
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
12
|
Jamali H, Akrami F, Bouakkaz S, Dozois CM. Prevalence of specific serogroups, antibiotic resistance and virulence factors of avian pathogenic Escherichia coli (APEC) isolated from clinical cases: A systematic review and meta-analysis. Microb Pathog 2024; 194:106843. [PMID: 39117015 DOI: 10.1016/j.micpath.2024.106843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Pathogenic strains of Escherichia coli infecting poultry, commonly called avian pathogenic E. coli (APEC) present significant risks, to the health of both poultry and the general public. This systematic review aimed to examine the prevalence of APEC serotypes, sequence types (ST), phylogenetic groups, virulence factors and antibiotic resistance patterns based on 189 research papers sourced from PubMed, Web of Science, and ProQuest. Then, data were extracted from the selected studies and analyzed to assess the global distribution and characteristics of APEC strains. The metaprop codes in the Meta and Metafor packages of R as implemented in RStudio were then used to conduct meta-analysis. Among APEC strains identified from these different research reports serogroup O78 had the highest overall prevalence (16 %), followed by serogroups O2 (10 %), and O117 (8 %). The most common ST profiles were ST117 (20 %), ST140 (15 %), ST95 (12 %), and ST131 (9 %). ST117 and ST140 are known reservoirs for pathogenic E. coli in humans. Moreover, phylogenetic assessment highlighted the prevalence of phylogroups A, A1, F, D, and B2 among APEC strains indicating diversity in phylogenetic origin within poultry populations. The presence of antimicrobial resistance was notable among APEC strains against antibiotics such as tetracyclines, penicillins, and cephalosporins. This resistance may be linked to use of antimicrobials in poultry production in certain regions presenting challenges for both animal health management and human infection control. Analysis of sequences linked to adherence or virulence indicated that genes encoding adhesins (csg, fimC), iron/metal uptake (sitB, sitC, iroD) and cytotoxicity (estB, hlyF), and serum resistance (traT, iss) were highly prevalent. These factors have been reported to contribute to APEC host colonization and virulence in poultry. In summary, this overview of the characteristics of APEC highlights the pressing importance of monitoring and implementing management approaches to reduce antimicrobial resistance considering that a phylogenetic diversity of E. coli strains causes infections in both poultry and humans and represents a risk to both animal and public health. Further, determining the major conserved aspects and predominant mechanisms of virulence of APEC is critical for improving diagnostics and developing preventative measures to reduce the burden of infection caused by pathogenic E. coli in poultry and lower risks associated with foodborne transmission of E. coli to humans through poultry and poultry products.
Collapse
Affiliation(s)
- Hossein Jamali
- Institut National de La Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada; Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Fariba Akrami
- Institut National de La Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada; Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Souhaib Bouakkaz
- École de Technologie Supérieure, 1100 R. Notre Dame Ouest, Montréal, QC H3C 1K3, Canada
| | - Charles M Dozois
- Institut National de La Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada; Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada.
| |
Collapse
|
13
|
Murante D, Hogan DA. Drivers of diversification in fungal pathogen populations. PLoS Pathog 2024; 20:e1012430. [PMID: 39264909 PMCID: PMC11392411 DOI: 10.1371/journal.ppat.1012430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
To manage and treat chronic fungal diseases effectively, we require an improved understanding of their complexity. There is an increasing appreciation that chronic infection populations are often heterogeneous due to diversification and drift, even within a single microbial species. Genetically diverse populations can contribute to persistence and resistance to treatment by maintaining cells with different phenotypes capable of thriving in these dynamic environments. In chronic infections, fungal pathogens undergo prolonged challenges that can drive trait selection to convergent adapted states through restricted access to critical nutrients, assault by immune effectors, competition with other species, and antifungal drugs. This review first highlights the various genetic and epigenetic mechanisms that promote diversity in pathogenic fungal populations and provide an additional barrier to assessing the actual heterogeneity of fungal infections. We then review existing studies of evolution and genetic heterogeneity in fungal populations from lung infections associated with the genetic disease cystic fibrosis. We conclude with a discussion of open research questions that, once answered, may aid in diagnosing and treating chronic fungal infections.
Collapse
Affiliation(s)
- Daniel Murante
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Deborah Ann Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
14
|
Gray J, Torres VVL, Goodall E, McKeand SA, Scales D, Collins C, Wetherall L, Lian ZJ, Bryant JA, Milner MT, Dunne KA, Icke C, Rooke JL, Schneiders T, Lund PA, Cunningham AF, Cole JA, Henderson IR. Transposon mutagenesis screen in Klebsiella pneumoniae identifies genetic determinants required for growth in human urine and serum. eLife 2024; 12:RP88971. [PMID: 39189918 PMCID: PMC11349299 DOI: 10.7554/elife.88971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Klebsiella pneumoniae is a global public health concern due to the rising myriad of hypervirulent and multidrug-resistant clones both alarmingly associated with high mortality. The molecular mechanisms underpinning these recalcitrant K. pneumoniae infection, and how virulence is coupled with the emergence of lineages resistant to nearly all present-day clinically important antimicrobials, are unclear. In this study, we performed a genome-wide screen in K. pneumoniae ECL8, a member of the endemic K2-ST375 pathotype most often reported in Asia, to define genes essential for growth in a nutrient-rich laboratory medium (Luria-Bertani [LB] medium), human urine, and serum. Through transposon directed insertion-site sequencing (TraDIS), a total of 427 genes were identified as essential for growth on LB agar, whereas transposon insertions in 11 and 144 genes decreased fitness for growth in either urine or serum, respectively. These studies not only provide further knowledge on the genetics of this pathogen but also provide a strong impetus for discovering new antimicrobial targets to improve current therapeutic options for K. pneumoniae infections.
Collapse
Affiliation(s)
- Jessica Gray
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Von Vergel L Torres
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Emily Goodall
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Samantha A McKeand
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Danielle Scales
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Christy Collins
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Laura Wetherall
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Zheng Jie Lian
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Jack A Bryant
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Matthew T Milner
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Karl A Dunne
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Christopher Icke
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Jessica L Rooke
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Thamarai Schneiders
- Division of Infection Medicine, University of EdinburghEdinburghUnited Kingdom
| | - Peter A Lund
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of BirminghamBirminghamUnited Kingdom
| | - Jeff A Cole
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Ian R Henderson
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| |
Collapse
|
15
|
Hu B, Gao S, Zhang H, Li Q, Li G, Zhang S, Xing Y, Huang Y, Han S, Tian Y, Zhang W, He H. Whole-genome sequencing and pathogenicity analysis of Rhodococcus equi isolated in horses. BMC Vet Res 2024; 20:362. [PMID: 39129003 PMCID: PMC11318318 DOI: 10.1186/s12917-024-04167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/01/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND Rhodococcus equi (R. equi) is a Gram-positive zoonotic pathogen that frequently leads to illness and death in young horses (foals). This study presents the complete genome sequence of R. equi strain BJ13, which was isolated from a thoroughbred racehorse breeding farm in Beijing, China. RESULTS The BJ13 genome has a length of 5.30 Mb and consists of a complete chromosome and a plasmid measuring 5.22 Mb and 0.08 Mb, respectively. We predicted 4,929 coding gene open reading frames, along with 52 tRNAs and 12 rRNAs. Through analysis of mobile genetic elements, we identified 6 gene islands and 1 prophage gene. Pathogenic system analysis predicted the presence of 418 virulence factors and 225 drug resistance genes. Secretion system analysis revealed the prediction of 297 secreted proteins and 1,106 transmembrane proteins. BJ13 exhibits genomic features, virulence-associated genes, potential drug resistance, and a virulence plasmid structure that may contribute to the evolution of its pathogenicity. Lastly, the pathogenicity of the isolated strain was assessed through animal experiments, which resulted in inflammatory reactions or damage in the lungs, liver, and spleen of mice. Moreover, by the 7th day post-infection, the mortality rate of the mice reached 50.0%, indicating complex immune regulatory mechanisms, including overexpression of IL-10 and increased production of pro-inflammatory cytokines like TNF-α. These findings validate the strong pathogenicity of the isolated strain and provide insights for studying the pathogenic mechanisms of Rhodococcus equi infection. CONCLUSIONS The complete genome sequence of R. equi strain BJ13 provides valuable insights into its genomic characteristics, virulence potential, drug resistance, and secretion systems. The strong pathogenicity observed in animal experiments underscores the need for further investigation into the pathogenic mechanisms of R. equi infection.
Collapse
Affiliation(s)
- Bin Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sichao Gao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Anhui University of Science and Technology, Huainan, China
| | - Hao Zhang
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiaoqiao Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Anhui University of Science and Technology, Huainan, China
| | - Gaojian Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuairan Zhang
- College of Shenyang Institute of Technology, Shenyang, Liaoning, China
| | - Yanan Xing
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanyi Huang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Tian
- Beijing Wildlife Rescue and Rehabilitation Center, Beijing, China
| | - Wei Zhang
- Beijing Wildlife Rescue and Rehabilitation Center, Beijing, China
| | - Hongxuan He
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China.
| |
Collapse
|
16
|
Lakshminarayanan K, Murugan D, Venkatesan J, Vasanthakumari Thirumalaiswamy H, Gadais C, Rangasamy L. Siderophore-Conjugated Antifungals: A Strategy to Potentially Cure Fungal Infections. ACS Infect Dis 2024; 10:2448-2466. [PMID: 38905481 DOI: 10.1021/acsinfecdis.4c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Fungi pose a global threat to humankind due to the increasing emergence of multi-drug-resistant fungi. There is a rising incidence of invasive fungal infections. Due to the structural complexity of fungal cell membranes, only a few classes of antifungal agents are effective and have been approved by the U.S. FDA. Hence, researchers globally are focusing on developing novel strategies to cure fungal infections. One of the potential strategies is the "Trojan horse" approach, which uses the siderophore-mediated iron acquisition (SIA) system to scavenge iron to deliver potent antifungal agents for therapeutics and diagnostics. These siderophore conjugates chelate to iron and are taken up through siderophore-iron transporters, which are overexpressed exclusively on microbes such as bacteria or fungi, but not mammalian cells. Our comprehensive review delves into recent advancements in the design of siderophore-conjugated antifungal agents to gain fungal cell entry. Notably, our focus extends to unraveling the intricate relationship between the structure of natural siderophores or siderophore-like molecules and the resulting antifungal activity. By exploring these design strategies, we aim to contribute to the ongoing discourse on combating drug-resistant fungal infections and advancing the landscape of antifungal theranostics.
Collapse
Affiliation(s)
- Kalaiarasu Lakshminarayanan
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology, Vellore 632014, India
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
| | - Dhanashree Murugan
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
| | - Janarthanan Venkatesan
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology, Vellore 632014, India
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
| | - Harashkumar Vasanthakumari Thirumalaiswamy
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology, Vellore 632014, India
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
| | - Charlène Gadais
- ISCR UMR 6226 (Institute of Chemical Sciences of Rennes), Faculty of Pharmacy, University of Rennes, 35042 Rennes cedex, France
| | - Loganathan Rangasamy
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
17
|
Wybraniec C, Cournoyer B, Moussard C, Beaupère M, Lusurier L, Leriche F, Fayolle K, Sertillanges N, Haudin CS, Houot S, Patureau D, Gagne G, Galia W. Occurrence of 40 sanitary indicators in French digestates derived from different anaerobic digestion processes and raw organic wastes from agricultural and urban origin. Front Microbiol 2024; 15:1346715. [PMID: 39165575 PMCID: PMC11333366 DOI: 10.3389/fmicb.2024.1346715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
This study investigated the sanitary quality of digestates resulting from the mesophilic anaerobic digestion (AD) of urban and agricultural organic wastes (OWs). 40 sanitary indicators, including pathogenic bacteria, antimicrobial resistance genes, virulence factor genes, and mobile genetic elements were evaluated using real-time PCR and/or droplet digital PCR. 13 polycyclic aromatic hydrocarbons (PAHs) and 13 pharmaceutical products (PHPs) were also measured. We assessed agricultural OWs from three treatment plants to study the effect of different AD processes (feeding mode, number of stages, pH), and used three laboratory-scale reactors to study the effect of different feed-supplies (inputs). The lab-scale reactors included: Lab1 fed with 97% activated sludge (urban waste) and 3% cow manure; Lab2 fed with 85% sludge-manure mixture supplemented with 15% wheat straw (WS); and Lab3 fed with 81% sludge-manure mixture, 15% WS, and 4% zeolite powder. Activated sludge favored the survival of the food-borne pathogens Clostridium perfringens and Bacillus cereus, carrying the toxin-encoding genes cpe and ces, respectively. Globally, the reactors fed with fecal matter supplemented with straw (Lab2) or with straw and zeolite (Lab3) had a higher hygienization efficiency than the reactor fed uniquely with fecal matter (Lab1). Three pathogenic bacteria (Enterococcus faecalis, Enterococcus faecium, and Mycobacterium tuberculosis complex), a beta-lactam resistance gene (bla TEM), and three mobile genetic elements (intI1, intI2, and IS26) were significantly decreased in Lab2 and Lab3. Moreover, the concentrations of 11 PAHs and 11 PHPs were significantly lower in Lab2 and Lab3 samples than in Lab1 samples. The high concentrations of micropollutants, such as triclosan, found in Lab1, could explain the lower hygienization efficiency of this reactor. Furthermore, the batch-fed reactor had a more efficient hygienization effect than the semi-continuous reactors, with complete removal of the ybtA gene, which is involved in the production of the siderophore yersiniabactin, and significant reduction of intI2 and tetO. These data suggest that it is essential to control the level of chemical pollutants in raw OWs to optimize the sanitary quality of digestates, and that adding co-substrate, such as WS, may overcome the harmful effect of pollutants.
Collapse
Affiliation(s)
- Caroline Wybraniec
- Laboratoire d'Ecologie Microbienne, Research Group Bacterial Opportunistic Pathogens and Environment, Universite Claude Bernard Lyon, Villeurbanne, France
| | - Benoit Cournoyer
- Laboratoire d'Ecologie Microbienne, Research Group Bacterial Opportunistic Pathogens and Environment, Universite Claude Bernard Lyon, Villeurbanne, France
| | - Cécile Moussard
- UMRF, Université Clermont Auvergne, INRAE, VetAgro Sup, Aurillac, France
| | - Marion Beaupère
- Laboratoire d'Ecologie Microbienne, Research Group Bacterial Opportunistic Pathogens and Environment, Universite Claude Bernard Lyon, Villeurbanne, France
| | - Léa Lusurier
- Laboratoire d'Ecologie Microbienne, Research Group Bacterial Opportunistic Pathogens and Environment, Universite Claude Bernard Lyon, Villeurbanne, France
| | - Françoise Leriche
- UMRF, Université Clermont Auvergne, INRAE, VetAgro Sup, Aurillac, France
| | - Karine Fayolle
- UMRF, Université Clermont Auvergne, INRAE, VetAgro Sup, Aurillac, France
| | | | - Claire-Sophie Haudin
- UMR ECOSYS, Université Paris-Saclay, INRA, AgroParisTech, Thiverval-Grignon, France
| | - Sabine Houot
- UMR ECOSYS, Université Paris-Saclay, INRA, AgroParisTech, Thiverval-Grignon, France
| | | | - Geneviève Gagne
- UMRF, Université Clermont Auvergne, INRAE, VetAgro Sup, Aurillac, France
| | - Wessam Galia
- Laboratoire d'Ecologie Microbienne, Research Group Bacterial Opportunistic Pathogens and Environment, Universite Claude Bernard Lyon, Villeurbanne, France
| |
Collapse
|
18
|
Kostenko A, Zuffa S, Zhi H, Mildau K, Raffatellu M, Dorrestein PC, Aron AT. Dietary iron intake has long-term effects on the fecal metabolome and microbiome. Metallomics 2024; 16:mfae033. [PMID: 38992131 PMCID: PMC11272056 DOI: 10.1093/mtomcs/mfae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
Iron is essential for life, but its imbalances can lead to severe health implications. Iron deficiency is the most common nutrient disorder worldwide, and iron dysregulation in early life has been found to cause long-lasting behavioral, cognitive, and neural effects. However, little is known about the effects of dietary iron on gut microbiome function and metabolism. In this study, we sought to investigate the impact of dietary iron on the fecal metabolome and microbiome by using mice fed with three diets with different iron content: an iron deficient, an iron sufficient (standard), and an iron overload diet for 7 weeks. Additionally, we sought to understand whether any observed changes would persist past the 7-week period of diet intervention. To assess this, all feeding groups were switched to a standard diet, and this feeding continued for an additional 7 weeks. Analysis of the fecal metabolome revealed that iron overload and deficiency significantly alter levels of peptides, nucleic acids, and lipids, including di- and tri-peptides containing branched-chain amino acids, inosine and guanosine, and several microbial conjugated bile acids. The observed changes in the fecal metabolome persist long after the switch back to a standard diet, with the cecal gut microbiota composition and function of each group distinct after the 7-week standard diet wash-out. Our results highlight the enduring metabolic consequences of nutritional imbalances, mediated by both the host and gut microbiome, which persist after returning to the original standard diets.
Collapse
Affiliation(s)
- Anastasiia Kostenko
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA
| | - Simone Zuffa
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Hui Zhi
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Kevin Mildau
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
- Bioinformatics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Manuela Raffatellu
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Chiba University, UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines (CU-UCSD cMAV), La Jolla, CA, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Allegra T Aron
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
19
|
Dai J, Xu Z, Yang N, Tuerxunjiang H, Shan X, Diao Y, Zhao J, Ma M, Li X, Xiao M, Pei J. Investigation of the biocontrol mechanism of a novel Pseudomonas species against phytopathogenic Fusarium graminearum revealed by multi-omics integration analysis. Appl Environ Microbiol 2024; 90:e0045524. [PMID: 38809045 PMCID: PMC11218632 DOI: 10.1128/aem.00455-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
Phytopathogenic Fusarium graminearum poses significant threats to crop health and soil quality. Although our laboratory-cultivated Pseudomonas sp. P13 exhibited potential biocontrol capacities, its effectiveness against F. graminearum and underlying antifungal mechanisms are still unclear. In light of this, our study investigated a significant inhibitory effect of P13 on F. graminearum T1, both in vitro and in a soil environment. Conducting genomic, metabolomic, and transcriptomic analyses of P13, we sought to identify evidence supporting its antagonistic effects on T1. The results revealed the potential of P13, a novel Pseudomonas species, to produce active antifungal components, including phenazine-1-carboxylate (PCA), hydrogen cyanide (HCN), and siderophores [pyoverdine (Pvd) and histicorrugatin (Hcs)], as well as the dynamic adaptive changes in the metabolic pathways of P13 related to these active ingredients. During the logarithmic growth stage, T1-exposed P13 strategically upregulated PCA and HCN biosynthesis, along with transient inhibition of the tricarboxylic acid (TCA) cycle. However, with growth stabilization, upregulation of PCA and HCN synthesis ceased, whereas the TCA cycle was enhanced, increasing siderophores secretion (Pvd and Hcs), suggesting that this mechanism might have caused continuous inhibition of T1. These findings improved our comprehension of the biocontrol mechanisms of P13 and provided the foundation for potential application of Pseudomonas strains in the biocontrol of phytopathogenic F. graminearum. IMPORTANCE Pseudomonas spp. produces various antifungal substances, making it an effective natural biocontrol agent against pathogenic fungi. However, the inhibitory effects and the associated antagonistic mechanisms of Pseudomonas spp. against Fusarium spp. are unclear. Multi-omics integration analyses of the in vitro antifungal effects of novel Pseudomonas species, P13, against F. graminearum T1 revealed the ability of P13 to produce antifungal components (PCA, HCN, Pvd, and Hcs), strategically upregulate PCA and HCN biosynthesis during logarithmic growth phase, and enhance the TCA cycle during stationary growth phase. These findings improved our understanding of the biocontrol mechanisms of P13 and its potential application against pathogenic fungi.
Collapse
Affiliation(s)
- Jiawei Dai
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zhaofeng Xu
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Ning Yang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | | | - Xin Shan
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yuting Diao
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jiahui Zhao
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Meiqi Ma
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xiang Li
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Ming Xiao
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Junmin Pei
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
20
|
Tanwar M, Singh A, Singh TP, Sharma S, Sharma P. Comprehensive Review on the Virulence Factors and Therapeutic Strategies with the Aid of Artificial Intelligence against Mucormycosis. ACS Infect Dis 2024; 10:1431-1457. [PMID: 38682683 DOI: 10.1021/acsinfecdis.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Mucormycosis, a rare but deadly fungal infection, was an epidemic during the COVID-19 pandemic. The rise in cases (COVID-19-associated mucormycosis, CAM) is attributed to excessive steroid and antibiotic use, poor hospital hygiene, and crowded settings. Major contributing factors include diabetes and weakened immune systems. The main manifesting forms of CAM─cutaneous, pulmonary, and the deadliest, rhinocerebral─and disseminated infections elevated mortality rates to 85%. Recent focus lies on small-molecule inhibitors due to their advantages over standard treatments like surgery and liposomal amphotericin B (which carry several long-term adverse effects), offering potential central nervous system penetration, diverse targets, and simpler dosing owing to their small size, rendering the ability to traverse the blood-brain barrier via passive diffusion facilitated by the phospholipid membrane. Adaptation and versatility in mucormycosis are facilitated by a multitude of virulence factors, enabling the pathogen to dynamically respond to various environmental stressors. A comprehensive understanding of these virulence mechanisms is imperative for devising effective therapeutic interventions against this highly opportunistic pathogen that thrives in immunocompromised individuals through its angio-invasive nature. Hence, this Review delineates the principal virulence factors of mucormycosis, the mechanisms it employs to persist in challenging host environments, and the current progress in developing small-molecule inhibitors against them.
Collapse
Affiliation(s)
- Mansi Tanwar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Anamika Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Tej Pal Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| |
Collapse
|
21
|
Yan Y, Zhang W, Wang Y, Yi C, Yu B, Pang X, Li K, Li H, Dai Y. Crosstalk between intestinal flora and human iron metabolism: the role in metabolic syndrome-related comorbidities and its potential clinical application. Microbiol Res 2024; 282:127667. [PMID: 38442456 DOI: 10.1016/j.micres.2024.127667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024]
Abstract
The interaction of iron and intestinal flora, both of which play crucial roles in many physiologic processes, is involved in the development of Metabolic syndrome (MetS). MetS is a pathologic condition represented by insulin resistance, obesity, dyslipidemia, and hypertension. MetS-related comorbidities including type 2 diabetes mellitus (T2DM), obesity, metabolism-related fatty liver (MAFLD), hypertension polycystic ovary syndrome (PCOS), and so forth. In this review, we examine the interplay between intestinal flora and human iron metabolism and its underlying mechanism in the pathogenesis of MetS-related comorbidities. The composition and metabolites of intestinal flora regulate the level of human iron by modulating intestinal iron absorption, the factors associated with iron metabolism. On the other hand, the iron level also affects the abundance, composition, and metabolism of intestinal flora. The crosstalk between these factors is of significant importance in human metabolism and exerts varying degrees of influence on the manifestation and progression of MetS-related comorbidities. The findings derived from these studies can enhance our comprehension of the interplay between intestinal flora and iron metabolism, and open up novel potential therapeutic approaches toward MetS-related comorbidities.
Collapse
Affiliation(s)
- Yijing Yan
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wenlan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yulin Wang
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunmei Yi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoli Pang
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kunyang Li
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - HuHu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yongna Dai
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
22
|
Omar KM, Kitundu GL, Jimoh AO, Namikelwa DN, Lisso FM, Babajide AA, Olufemi SE, Awe OI. Investigating antimicrobial resistance genes in Kenya, Uganda and Tanzania cattle using metagenomics. PeerJ 2024; 12:e17181. [PMID: 38666081 PMCID: PMC11044882 DOI: 10.7717/peerj.17181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
Antimicrobial resistance (AMR) is a growing problem in African cattle production systems, posing a threat to human and animal health and the associated economic value chain. However, there is a poor understanding of the resistomes in small-holder cattle breeds in East African countries. This study aims to examine the distribution of antimicrobial resistance genes (ARGs) in Kenya, Tanzania, and Uganda cattle using a metagenomics approach. We used the SqueezeMeta-Abricate (assembly-based) pipeline to detect ARGs and benchmarked this approach using the Centifuge-AMRplusplus (read-based) pipeline to evaluate its efficiency. Our findings reveal a significant number of ARGs of critical medical and economic importance in all three countries, including resistance to drugs of last resort such as carbapenems, suggesting the presence of highly virulent and antibiotic-resistant bacterial pathogens (ESKAPE) circulating in East Africa. Shared ARGs such as aph(6)-id (aminoglycoside phosphotransferase), tet (tetracycline resistance gene), sul2 (sulfonamide resistance gene) and cfxA_gen (betalactamase gene) were detected. Assembly-based methods revealed fewer ARGs compared to read-based methods, indicating the sensitivity and specificity of read-based methods in resistome characterization. Our findings call for further surveillance to estimate the intensity of the antibiotic resistance problem and wider resistome classification. Effective management of livestock and antibiotic consumption is crucial in minimizing antimicrobial resistance and maximizing productivity, making these findings relevant to stakeholders, agriculturists, and veterinarians in East Africa and Africa at large.
Collapse
Affiliation(s)
- Kauthar M. Omar
- Department of Biochemistry and Biotechnology, School of Pure and Applied Sciences, Pwani University, Kilifi, Kenya
| | - George L. Kitundu
- Department of Biochemistry and Biotechnology, School of Pure and Applied Sciences, Pwani University, Kilifi, Kenya
| | - Adijat O. Jimoh
- Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Genetics, Genomics and Bioinformatics Department, National Biotechnology Development Agency, Abuja, Nigeria
| | - Dorcus N. Namikelwa
- Department of Data Management, Modelling and Geo-Information Unit, International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Felix M. Lisso
- Department of Biochemistry and Biotechnology, School of Pure and Applied Sciences, Pwani University, Kilifi, Kenya
| | - Abiola A. Babajide
- South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Seun E. Olufemi
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Olaitan I. Awe
- African Society for Bioinformatics and Computational Biology, Cape Town, South Africa
- Department of Computer Science, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
23
|
Munjal R, Kyarikwal R, Sarkar S, Nag P, Vennapusa SR, Mukhopadhyay S. A Siderophore Mimicking Gelation Component for Capturing and Self-Separation of Fe(III) from an Aqueous Solution of Mixture of Metal Ions. Inorg Chem 2024; 63:7089-7103. [PMID: 38573755 DOI: 10.1021/acs.inorgchem.4c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The carbohydrazide-based gelation component N2,N4,N6-(1,3,5-triazine-2,4,6-triyl)tris(benzene-1,3,5-tricarbohydrazide) (CBTC) was synthesized and characterized using various spectroscopic tools. CBTC and trimesic acid (TMA) get self-assembled to form metallogel with Fe3+, specifically through various noncovalent interactions in a DMSO and H2O mixture. The self-assembly shows remarkable specificity toward Fe(III) among different transition metal salts. It is pertinent to point out that the binding specificity for Fe3+ can also be found in nature in the form of siderophores, as they are mainly involved in scavenging iron selectively from the surroundings. DFT studies have been used to investigate the possible interaction between the different components of the iron metallogel. To determine the selectivity of CBTC for iron, CBTC, along with trimesic acid, is used to interact with other metal ions, including Fe(III) ions, in a single system. The gelation components CBTC and TMA selectively bind with iron(III), which leads to the formation of metallogel and gets separated as a discrete layer, leaving the other metal ions in the solution. Therefore, CBTC and TMA together show iron-scavenging properties. This selective scavenging property is explored through FE-SEM, XPS, PXRD, IR, and ICP-AES analysis. The FE-SEM analysis shows a flower-petal-like morphology for the Fe(III) metallogel. The resemblance in the CBTC-TMA-Fe metallogel and metallogel obtained from the mixture of different metal salts is established through FE-SEM images and XPS analysis. The release of iron from the metallogel is achieved with the help of ascorbic acid, which converts Fe3+ to Fe2+. In biological systems, iron also gets released similarly from siderophores. This is the first report where the synthesized gelation component CBTC molecule is capable of scavenging out iron in the form of metallogel and self-separating from the aqueous mixture in the presence of various other metal ions.
Collapse
Affiliation(s)
- Ritika Munjal
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa road, Simrol, Indore 453552, India
| | - Reena Kyarikwal
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa road, Simrol, Indore 453552, India
| | - Sayantan Sarkar
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa road, Simrol, Indore 453552, India
| | - Probal Nag
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India
| | - Sivaranjana Reddy Vennapusa
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India
| | - Suman Mukhopadhyay
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa road, Simrol, Indore 453552, India
| |
Collapse
|
24
|
Kalalah AA, Koenig SSK, Bono JL, Bosilevac JM, Eppinger M. Pathogenomes and virulence profiles of representative big six non-O157 serogroup Shiga toxin-producing Escherichia coli. Front Microbiol 2024; 15:1364026. [PMID: 38562479 PMCID: PMC10982417 DOI: 10.3389/fmicb.2024.1364026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) of non-O157:H7 serotypes are responsible for global and widespread human food-borne disease. Among these serogroups, O26, O45, O103, O111, O121, and O145 account for the majority of clinical infections and are colloquially referred to as the "Big Six." The "Big Six" strain panel we sequenced and analyzed in this study are reference type cultures comprised of six strains representing each of the non-O157 STEC serogroups curated and distributed by the American Type Culture Collection (ATCC) as a resource to the research community under panel number ATCC MP-9. The application of long- and short-read hybrid sequencing yielded closed chromosomes and a total of 14 plasmids of diverse functions. Through high-resolution comparative phylogenomics, we cataloged the shared and strain-specific virulence and resistance gene content and established the close relationship of serogroup O26 and O103 strains featuring flagellar H-type 11. Virulence phenotyping revealed statistically significant differences in the Stx-production capabilities that we found to be correlated to the strain's individual stx-status. Among the carried Stx1a, Stx2a, and Stx2d phages, the Stx2a phage is by far the most responsive upon RecA-mediated phage mobilization, and in consequence, stx2a + isolates produced the highest-level of toxin in this panel. The availability of high-quality closed genomes for this "Big Six" reference set, including carried plasmids, along with the recorded genomic virulence profiles and Stx-production phenotypes will provide a valuable foundation to further explore the plasticity in evolutionary trajectories in these emerging non-O157 STEC lineages, which are major culprits of human food-borne disease.
Collapse
Affiliation(s)
- Anwar A. Kalalah
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, United States
| | - Sara S. K. Koenig
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, United States
| | - James L. Bono
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Meat Animal Research Center, Clay Center, NE, United States
| | - Joseph M. Bosilevac
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Meat Animal Research Center, Clay Center, NE, United States
| | - Mark Eppinger
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, United States
| |
Collapse
|
25
|
Ficiarà E, Stura I, Vernone A, Silvagno F, Cavalli R, Guiot C. Iron Overload in Brain: Transport Mismatches, Microbleeding Events, and How Nanochelating Therapies May Counteract Their Effects. Int J Mol Sci 2024; 25:2337. [PMID: 38397013 PMCID: PMC10889007 DOI: 10.3390/ijms25042337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Iron overload in many brain regions is a common feature of aging and most neurodegenerative diseases. In this review, the causes, mechanisms, mathematical models, and possible therapies are summarized. Indeed, physiological and pathological conditions can be investigated using compartmental models mimicking iron trafficking across the blood-brain barrier and the Cerebrospinal Fluid-Brain exchange membranes located in the choroid plexus. In silico models can investigate the alteration of iron homeostasis and simulate iron concentration in the brain environment, as well as the effects of intracerebral iron chelation, determining potential doses and timing to recover the physiological state. Novel formulations of non-toxic nanovectors with chelating capacity are already tested in organotypic brain models and could be available to move from in silico to in vivo experiments.
Collapse
Affiliation(s)
- Eleonora Ficiarà
- School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy;
| | - Ilaria Stura
- Department of Neurosciences, Università degli Studi di Torino, 10125 Torino, TO, Italy; (A.V.); (C.G.)
| | - Annamaria Vernone
- Department of Neurosciences, Università degli Studi di Torino, 10125 Torino, TO, Italy; (A.V.); (C.G.)
| | - Francesca Silvagno
- Department of Oncology, Università degli Studi di Torino, 10126 Torino, TO, Italy;
| | - Roberta Cavalli
- Department of Drug Science and Technology, Università degli Studi di Torino, 10125 Torino, TO, Italy;
| | - Caterina Guiot
- Department of Neurosciences, Università degli Studi di Torino, 10125 Torino, TO, Italy; (A.V.); (C.G.)
| |
Collapse
|
26
|
Lu L, Wang J, Wang C, Zhu J, Wang H, Liao L, Zhao Y, Wang X, Yang C, He Z, Li M. Plant-derived virulence arresting drugs as novel antimicrobial agents: Discovery, perspective, and challenges in clinical use. Phytother Res 2024; 38:727-754. [PMID: 38014754 DOI: 10.1002/ptr.8072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/23/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023]
Abstract
Antimicrobial resistance (AMR) emerges as a severe crisis to public health and requires global action. The occurrence of bacterial pathogens with multi-drug resistance appeals to exploring alternative therapeutic strategies. Antivirulence treatment has been a positive substitute in seeking to circumvent AMR, which aims to target virulence factors directly to combat bacterial infections. Accumulated evidence suggests that plant-derived natural products, which have been utilized to treat infectious diseases for centuries, can be abundant sources for screening potential virulence-arresting drugs (VADs) to develop advanced therapeutics for infectious diseases. This review sums up some virulence factors and their actions in various species of bacteria, as well as recent advances pertaining to plant-derived natural products as VAD candidates. Furthermore, we also discuss natural VAD-related clinical trials and patents, the perspective of VAD-based advanced therapeutics for infectious diseases and critical challenges hampering clinical use of VADs, and genomics-guided identification for VAD therapeutic. These newly discovered natural VADs will be encouraging and optimistic candidates that may sustainably combat AMR.
Collapse
Affiliation(s)
- Lan Lu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Jingya Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Chongrui Wang
- Faculty of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, P.R. China
| | - Jie Zhu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Hongping Wang
- Safety Evaluation Center, Sichuan Institute for Drug Control (Sichuan Testing Center of Medical Devices), Chengdu, Sichuan, P.R. China
| | - Li Liao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Yuting Zhao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Xiaobo Wang
- Department of Hepatobiliary Surgery, Langzhong People's Hospital, Langzhong, Sichuan, P.R. China
| | - Chen Yang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Zhengyou He
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| |
Collapse
|
27
|
Smith P, Schuster M. The fitness benefit of pyoverdine cross-feeding by Pseudomonas protegens Pf-5. Environ Microbiol 2024; 26:e16554. [PMID: 38097191 DOI: 10.1111/1462-2920.16554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023]
Abstract
Under iron-limiting conditions, fluorescent pseudomonads acquire iron from the environment by secreting strain-specific, iron-chelating siderophores termed pyoverdines (PVD). The rhizosphere bacterium Pseudomonas protegens Pf-5 produces its own PVD but also can cross-feed on PVDs produced by other species. Previous work has found that Pf-5 continues to produce its own PVD when allowed to cross-feed, raising questions about the benefit of heterologous PVD utilisation. Here, we investigate this question using a defined, unidirectional P. protegens Pf-5/Pseudomonas aeruginosa PAO1 cross-feeding model. Quantifying the production of PVD in the presence of heterologous PVD produced by PAO1, we show that cross-feeding Pf-5 strains reduce the production of their own PVD, while non-cross-feeding Pf-5 strains increase the production of PVD. Measuring the fitness of cross-feeding and non-cross-feeding Pf-5 strains in triple coculture with PAO1, we find that cross-feeding provides a fitness benefit to Pf-5 when the availability of heterologous PVD is high. We conclude that cross-feeding can reduce the costs of self-PVD production and may thus aid in the colonisation of iron-limited environments that contain compatible siderophores produced by other resident microbes. Taken together, these results expand our understanding of the mechanisms of interspecific competition for iron in microbial communities.
Collapse
Affiliation(s)
- Parker Smith
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Martin Schuster
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
28
|
Agyeman-Duah E, Okonkwo CC, Ujor VC. Microbial removal of nutrients from anaerobic digestate: assessing product-coupled and non-product-coupled approaches. Front Microbiol 2023; 14:1299402. [PMID: 38146449 PMCID: PMC10749329 DOI: 10.3389/fmicb.2023.1299402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023] Open
Abstract
Although anaerobic digestate contains >90% water, the high nutrient content of digestate makes it economically and technically intractable to treatment by existing wastewater treatment technologies. This study separately assessed the feasibility of nutrient removal from digestate by Rhizopus delemar DSM 905 and a culture of phosphate-accumulating organisms (PAOs). With Rhizopus delemar DSM 905, we investigated concomitant nutrient removal from digestate-supplemented medium and fumaric acid production, as a potentially economical strategy for digestate treatment. Following the cultivation of R. delemar DSM 905 in a fermentation medium containing 25% (v/v) digestate, the concentrations of Al, Cr, Cu, Fe, K, Mg, Mn, Pb, and Zn reduced 40, 12, 74, 96, 12, 26, 23%, ~18, and 28%, respectively. Similarly, the concentrations of total phosphorus, total nitrogen, phosphate (PO4-P), ammonium (NH4-N), nitrate (NO3-N), and sulfur decreased 93, 88, 97, 98, 69, and 13%, respectively. Concomitantly, cultures supplemented with 25 and 15% (v/v) digestate produced comparable titers of fumarate (~11 and ~ 17 g/L, respectively) to the digestate un-supplemented control cultures. With PAOs, we assessed the removal of total phosphorus, total nitrogen, PO4-P, and NH4-N, of which the concentrations reduced 86, 90%, ~99, and 100%, respectively in 60% (v/v) digestate. This study provides additional bases for microbial removal of excess nutrients from anaerobic digestate, with the potential to engender future water recovery from this waste stream that is currently largely recalcitrant to treatment.
Collapse
Affiliation(s)
- Eric Agyeman-Duah
- Fermentation Science and Metabolic Engineering Group, Department of Food Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Christopher C. Okonkwo
- Biotechnology Program, Department of Chemistry and Chemical Biology, The Roux Institute, Northeastern University, Portland, ME, United States
| | - Victor C. Ujor
- Fermentation Science and Metabolic Engineering Group, Department of Food Science, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
29
|
Perera DN, Palliyaguruge CL, Eapasinghe DD, Liyanage DM, Seneviratne RACH, Demini SMD, Jayasinghe JASM, Faizan M, Rajagopalan U, Galhena BP, Hays H, Senathilake K, Tennekoon KH, Samarakoon SR. Factors affecting iron absorption and the role of fortification in enhancing iron levels. NUTR BULL 2023; 48:442-457. [PMID: 37965925 DOI: 10.1111/nbu.12643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 11/16/2023]
Abstract
Iron is an important micronutrient required for a number of biological processes including oxygen transport, cellular respiration, the synthesis of nucleic acids and the activity of key enzymes. The World Health Organization has recognised iron deficiency as the most common nutritional deficiency globally and as a major determinant of anaemia. Iron deficiency anaemia affects 40% of all children between the ages of 6 and 59 months, 37% of mothers who are pregnant and 30% of women between the ages of 15 and 49 years worldwide. Dietary iron exists in two main forms known as haem iron and non-haem iron. Haem iron is obtained from animal sources such as meat and shows higher bioavailability than non-haem iron, which can be obtained from both plant and animal sources. Different components in food can enhance or inhibit iron absorption from the diet. Components such as meat proteins and organic acids increase iron absorption, while phytate, calcium and polyphenols reduce iron absorption. Iron levels in the body are tightly regulated since both iron overload and iron deficiency can exert harmful effects on human health. Iron is stored mainly as haemoglobin and as iron bound to proteins such as ferritin and hemosiderin. Iron deficiency affects individuals at increased risk due to factors such as age, pregnancy, menstruation and various diseases. Different solutions for iron deficiency are applied at individual and community levels. Iron supplements and intravenous iron can be used to treat individuals with iron deficiency, while various types of iron-fortified foods and biofortified crops can be employed for larger communities. Foods such as rice, flour and biscuits have been used to prepare fortified iron products. However, it is important to ensure the fortification process does not exert significant negative effects on organoleptic properties and the shelf life of the food product.
Collapse
Affiliation(s)
- Dipun Nirmal Perera
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | | | - Dasuni Dilkini Eapasinghe
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Dilmi Maleesha Liyanage
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - R A C Haily Seneviratne
- Department of Food Sciences Technology, Faculty of Livestock Fisheries and Nutrition, Wayamba University of Sri Lanka, Kuliyapitiya, Sri Lanka
| | - S M D Demini
- Lanka ORIX Leasing Company (LOLC) Advanced Technologies (Pvt) Ltd, Ethul Kotte, Sri Lanka
| | - J A S M Jayasinghe
- Lanka ORIX Leasing Company (LOLC) Advanced Technologies (Pvt) Ltd, Ethul Kotte, Sri Lanka
| | - Mishal Faizan
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | | | - B Prasanna Galhena
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Hasi Hays
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Kanishka Senathilake
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Kamani H Tennekoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Sameera R Samarakoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
30
|
Brauner M, Briggs BR. Microbial iron acquisition is influenced by spatial and temporal conditions in a glacial influenced river and estuary system. Environ Microbiol 2023; 25:3450-3465. [PMID: 37956696 PMCID: PMC10872409 DOI: 10.1111/1462-2920.16541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
In Arctic regions, glaciers are major sources of iron to rivers and streams; however, estuaries are considered iron sinks due to the coagulation and flocculation processes that occur at higher salinities. It is unknown how iron dynamics in a glacial influenced river and estuary environment affect microbial mechanisms for iron acquisition. Microbial taxonomic and functional sequencing was performed on samples taken throughout the year from the Kenai River and the estuary, Alaska. Despite distinct iron, sodium, and other nutrient concentrations, the river and estuary did not have statistically different microbial communities nor was time of sampling significant. However, ferrous iron transport (Feo) system genes were more abundant in river environments, while siderophore genes were more abundant and diverse in estuary environments. Siderophore transport and iron storage genes were found in all samples, but gene abundance and distribution were potentially influenced by physical drivers such as discharge rates and nutrient distributions. Differences in iron metabolism between river and estuary ecosystems indicate environmental conditions drive microbial mechanisms to sequester iron. This could have implications for iron transport as the Arctic continues to warm.
Collapse
Affiliation(s)
- Megan Brauner
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr CPSB 101, Anchorage, Alaska
| | - Brandon R. Briggs
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr CPSB 101, Anchorage, Alaska
| |
Collapse
|
31
|
Morrill SR, Saha S, Varki AP, Lewis WG, Ram S, Lewis AL. Gardnerella Vaginolysin Potentiates Glycan Molecular Mimicry by Neisseria gonorrhoeae. J Infect Dis 2023; 228:1610-1620. [PMID: 37722688 PMCID: PMC10681867 DOI: 10.1093/infdis/jiad391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/01/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023] Open
Abstract
Bacterial vaginosis (BV) is a dysbiotic condition of the vaginal microbiome associated with higher risk of infection by Neisseria gonorrhoeae-the cause of gonorrhea. Here we test if one known facet of BV-the presence of bacterial cytolysins-leads to mobilization of intracellular contents that enhance gonococcal virulence. We cloned and expressed recombinant vaginolysin (VLY), a cytolysin produced by the BV-associated bacterium Gardnerella, verifying that it liberates contents of cervical epithelial (HeLa) cells, while vector control preparations did not. We tested if VLY mediates a well-known gonococcal virulence mechanism-the molecular mimicry of host glycans. To evade host immunity, N. gonorrhoeae caps its lipooligosaccharide (LOS) with α2-3-linked sialic acid. For this, gonococci must scavenge a metabolite made inside host cells. Flow cytometry-based lectin-binding assays showed that gonococci exposed to vaginolysin-liberated contents of HeLa cells displayed greater sialic acid capping of their LOS. This higher level of bacterial sialylation was accompanied by increased binding of the complement regulatory protein factor H, and greater resistance to complement attack. Together these results suggest that cytolytic activities present during BV may enhance the ability of N. gonorrhoeae to capture intracellular metabolites and evade host immunity via glycan molecular mimicry.
Collapse
Affiliation(s)
- Sydney R Morrill
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, California, USA
| | - Sudeshna Saha
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, California, USA
| | - Ajit P Varki
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, California, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
- Department of Pathology, University of California San Diego, La Jolla, California, USA
- Center for Academic Research and Training in Anthropogeny, University of California San Diego, La Jolla, California, USA
| | - Warren G Lewis
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, California, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Amanda L Lewis
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
32
|
Fatima A, Ibrahim M, Naseer A, Pervez A, Asad M, Shah AA, Hasan F, Alonazi WB, Ferheen I, Khan S. Identification, Genome Sequencing, and Characterizations of Helicobacter pylori Sourced from Pakistan. Microorganisms 2023; 11:2658. [PMID: 38004670 PMCID: PMC10673187 DOI: 10.3390/microorganisms11112658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/19/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
The stomach's colonization by Helicobacter pylori (H. pylori) results in gastritis, ulcers, and stomach cancer. Frequently, pain is treated with medication, but resistant H. pylori infections are not. Therefore, it is important to find pharmacological targets and improved treatments for resistant H. pylori strains. The aim of the current study was sampling, identification, drug susceptibility testing following genome sequencing and comparative genome-wide analysis of selected H. pylori strains from Pakistan with three representative strains for virulence and drug-resistant characteristics. Based on culture, biochemistry, and molecular biology, 84 strains of H. pylori were identified, which made up 47% of the enrolled cases. Among all H. pylori strains, the highest resistance was reported for metronidazole with 82 H. pylori strains (98%), followed by clarithromycin with 62 resistant strains (74%). Among metronidazole-resistant strains, 38 strains (46%) were also resistant to clarithromycin, contributing 61% of clarithromycin resistant cases. Two strains, HPA1 and HPA2, isolated from 'gastritis' and 'gastric ulcer' patients, respectively, were further processed for WGS. The draft genome sequences of H. pylori strains HPA1 and HPA2 encode 1.66 Mbp and 1.67 Mbp genome size, 24 and 4 contiguous DNA sequences, and 1650 and 1625 coding sequences, respectively. Both the genomes showed greater than 90% similarity with the reference strain H. pylori ATCC 43504/PMSS1. The antibiotic-resistant genes were identified among all the strains with overall similarity above 95%, with minor differences in the sequence similarity. Using the virulent gene data obtained from the Virulence Factor Database, 75 to 85 virulent genes were identified in the five genome assemblies with various key genes such as cytolethal distending toxin (cdt), type IV secretion system, cag PAI, plasticity region, cell-motility- and flagellar-associated genes, neutrophil-activating protein (HP-NAP), T4SS effector cytotoxin-associated gene A (cagA), and urease-associated genes ureA and ureB, etc. Sequence similarity between the virulence factors found in this study and reference genes was at least 90%. In summary, the results of our study showed the relationship between clinical results and specific H. pylori strains' (HPA1 and HPA2) genetics such as antibiotic resistance and specific virulence factors. These findings provide valued understanding of the epidemiology of H. pylori-associated diseases. Moreover, identification and genomics analysis have provided insights into the epidemiology, genetic diversity, pathogenicity, and potential drug resistance genes of H. pylori strains, offering a foundation for developing more targeted and effective medical interventions, including anti-virulent medications.
Collapse
Affiliation(s)
- Anees Fatima
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad 45320, Pakistan; (A.F.); (A.A.S.); (F.H.)
- Department of Microbiology, Faculty of Health & Biological Sciences, Abbottabad University of Science & Technology, Abbottabad 22500, Pakistan
| | - Muhammad Ibrahim
- Department of Biosciences, COMSATS University Islamabad (CUI), Sahiwal Campus, Sahiwal 55000, Pakistan (M.A.)
| | - Adil Naseer
- Department of Gastroenterology, Ayub Medical College, Main Mansehra Road, Abbottabad 22020, Pakistan;
| | - Arshid Pervez
- Department of Environmental Sciences, COMSATS University Islamabad (CUI), Abbottabad Campus, University Road, Tobe Camp, Abbottabad 22010, Pakistan;
| | - Muhammad Asad
- Department of Biosciences, COMSATS University Islamabad (CUI), Sahiwal Campus, Sahiwal 55000, Pakistan (M.A.)
| | - Aamer Ali Shah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad 45320, Pakistan; (A.F.); (A.A.S.); (F.H.)
| | - Fariha Hasan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad 45320, Pakistan; (A.F.); (A.A.S.); (F.H.)
| | - Wadi B. Alonazi
- Health Administration Department, College of Business Administration, King Saud University, Riyadh 11587, Saudi Arabia;
| | - Ifra Ferheen
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy;
| | - Samiullah Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad 45320, Pakistan; (A.F.); (A.A.S.); (F.H.)
| |
Collapse
|
33
|
Yang Y, Hu Z, Kang Y, Gao J, Chen H, Liu H, Wang Y, Liu B. Phage SPO1 Protein Gp49 Is a Novel RNA Binding Protein That Is Involved in Host Iron Metabolism. Int J Mol Sci 2023; 24:14318. [PMID: 37762620 PMCID: PMC10531801 DOI: 10.3390/ijms241814318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Bacillus subtilis is a model organism for studying Gram-positive bacteria and serves as a cell factory in the industry for enzyme and chemical production. Additionally, it functions as a probiotic in the gastrointestinal tract, modulating the gut microbiota. Its lytic phage SPO1 is also the most studied phage among the genus Okubovrius, including Bacillus phage SPO1 and Camphawk. One of the notable features of SPO1 is the existence of a "host-takeover module", a cluster of 24 genes which occupies most of the terminal redundancy. Some of the gene products from the module have been characterized, revealing their ability to disrupt host metabolism by inhibiting DNA replication, RNA transcription, cell division, and glycolysis. However, many of the gene products which share limited similarity to known proteins remain under researched. In this study, we highlight the involvement of Gp49, a gene product from the module, in host RNA binding and heme metabolism-no observation has been reported in other phages. Gp49 folds into a structure that does not resemble any protein in the database and has a new putative RNA binding motif. The transcriptome study reveals that Gp49 primarily upregulates host heme synthesis which captures cytosolic iron to facilitate phage development.
Collapse
Affiliation(s)
- Yanan Yang
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Yanta District, Xi’an 710061, China; (Y.Y.); (Z.H.); (Y.K.); (J.G.); (H.C.); (H.L.)
- Centre for Biobank and Advanced Medical Research of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Zhenyue Hu
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Yanta District, Xi’an 710061, China; (Y.Y.); (Z.H.); (Y.K.); (J.G.); (H.C.); (H.L.)
- Centre for Biobank and Advanced Medical Research of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Yue Kang
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Yanta District, Xi’an 710061, China; (Y.Y.); (Z.H.); (Y.K.); (J.G.); (H.C.); (H.L.)
- Centre for Biobank and Advanced Medical Research of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Juanjuan Gao
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Yanta District, Xi’an 710061, China; (Y.Y.); (Z.H.); (Y.K.); (J.G.); (H.C.); (H.L.)
- Centre for Biobank and Advanced Medical Research of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Huan Chen
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Yanta District, Xi’an 710061, China; (Y.Y.); (Z.H.); (Y.K.); (J.G.); (H.C.); (H.L.)
- Centre for Biobank and Advanced Medical Research of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Hui Liu
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Yanta District, Xi’an 710061, China; (Y.Y.); (Z.H.); (Y.K.); (J.G.); (H.C.); (H.L.)
- Centre for Biobank and Advanced Medical Research of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Yawen Wang
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Yanta District, Xi’an 710061, China; (Y.Y.); (Z.H.); (Y.K.); (J.G.); (H.C.); (H.L.)
- Centre for Biobank and Advanced Medical Research of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Bing Liu
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Yanta District, Xi’an 710061, China; (Y.Y.); (Z.H.); (Y.K.); (J.G.); (H.C.); (H.L.)
- Centre for Biobank and Advanced Medical Research of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
34
|
Fu J, Nisbett LM, Guo Y, Boon EM. NosP Detection of Heme Modulates Burkholderia thailandensis Biofilm Formation. Biochemistry 2023; 62:2426-2441. [PMID: 37498555 PMCID: PMC10478957 DOI: 10.1021/acs.biochem.3c00187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Aggregated bacteria embedded within self-secreted extracellular polymeric substances, or biofilms, are resistant to antibiotics and cause chronic infections. As such, they are a significant public health threat. Heme is an abundant iron source for pathogenic bacteria during infection; many bacteria have systems to detect heme assimilated from host cells, which is correlated with the transition between acute and chronic infection states. Here, we investigate the heme-sensing function of a newly discovered multifactorial sensory hemoprotein called NosP and its role in biofilm regulation in the soil-dwelling bacterium Burkholderia thailandensis, the close surrogate of Bio-Safety-Level-3 pathogen Burkholderia pseudomallei. The NosP family protein has previously been shown to exhibit both nitric oxide (NO)- and heme-sensing functions and to regulate biofilms through NosP-associated histidine kinases and two-component systems. Our in vitro studies suggest that BtNosP exhibits heme-binding kinetics and thermodynamics consistent with a labile heme-responsive protein and that the holo-form of BtNosP acts as an inhibitor of its associated histidine kinase BtNahK. Furthermore, our in vivo studies suggest that increasing the concentration of extracellular heme decreases B. thailandensis biofilm formation, and deletion of nosP and nahK abolishes this phenotype, consistent with a model that BtNosP detects heme and exerts an inhibitory effect on BtNahK to decrease the biofilm.
Collapse
Affiliation(s)
- Jiayuan Fu
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Lisa-Marie Nisbett
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Yulong Guo
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Elizabeth M Boon
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
35
|
Apostolidi EA, Gamaletsou MN, Arapaki M, Asimakopoulos JV, Diamantopoulos P, Zafeiratou S, Kofteridis D, Pagoni M, Kotsopoulou M, Voulgarelis M, Sipsas NV. Bone Marrow Iron Stores Are Not Associated with Increased Risk for Invasive Fungal Infections in Patients with Newly Diagnosed Acute Leukemia or Myelodysplastic Syndrome in Transformation: Is There a Relationship? J Fungi (Basel) 2023; 9:748. [PMID: 37504736 PMCID: PMC10381291 DOI: 10.3390/jof9070748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/02/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
Iron plays an important role in the pathogenesis of infections, including invasive fungal infections (IFIs). Studies suggested that iron overload might represent an additional risk factor for IFIs among patients with hematological malignancies. We conducted a prospective, multi-center study amongst adult patients with newly diagnosed acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS) in transformation to determine whether baseline iron overload as measured using the bone marrow iron store (BMIS) score is an independent risk factor for the development of IFIs. We also measured baseline serum iron and ferritin levels. A total of 98 patients were enrolled (76 with AML) and were followed for 12 months. Twenty-two patients developed IFI during the follow-up period (invasive aspergillosis n = 16, candidemia n = 5, mucormycosis n = 1). A baseline BMIS score ≥ 3 indicated that iron overload was relatively common (38/98 patients, 38%), and its frequency was comparable between patients with no IFIs (31/76, 40.7%) and in those with IFIs (8/22, 36.4%). Univariate analysis showed that only the presence of AML was associated with increased risk for IFIs [OR (95% CI) 7.40 (1.05-325.42)]. Both univariate and multivariate analyses showed that an increased BMIS score (≥3) at baseline was not an independent risk factor for IFIs. Similarly, there was no difference in serum iron and ferritin between the two groups that had similar demographic characteristics. Indices of iron overload were not independent risk factors for IFIs in our cohort of Greek patients with newly diagnosed AML/MDS in transformation.
Collapse
Affiliation(s)
- Eirini A Apostolidi
- Pathophysiology Department, General Hospital of Athens Laiko, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria N Gamaletsou
- Pathophysiology Department, General Hospital of Athens Laiko, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Arapaki
- Hematology Department, General Hospital of Athens Laiko, 11527 Athens, Greece
| | | | - Panagiotis Diamantopoulos
- First Department of Internal Medicine, General Hospital of Athens Laiko, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Sofia Zafeiratou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Diamantis Kofteridis
- Medicine Department, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Maria Pagoni
- Hematology Department, General Hospital of Athens Evangelismos, 10676 Athens, Greece
| | | | - Michael Voulgarelis
- Pathophysiology Department, General Hospital of Athens Laiko, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos V Sipsas
- Pathophysiology Department, General Hospital of Athens Laiko, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
36
|
Limantoro C, Das T, He M, Dirin D, Manos J, Kovalenko MV, Chrzanowski W. Synthesis of Antimicrobial Gallium Nanoparticles Using the Hot Injection Method. ACS MATERIALS AU 2023; 3:310-320. [PMID: 38090131 PMCID: PMC10347687 DOI: 10.1021/acsmaterialsau.2c00078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 09/03/2024]
Abstract
Antibiotic resistance continues to be an ongoing problem in global public health despite interventions to reduce antibiotic overuse. Furthermore, it threatens to undo the achievements and progress of modern medicine. To address these issues, the development of new alternative treatments is needed. Metallic nanoparticles have become an increasingly attractive alternative due to their unique physicochemical properties that allow for different applications and their various mechanisms of action. In this study, gallium nanoparticles (Ga NPs) were tested against several clinical strains of Pseudomonas aeruginosa (DFU53, 364077, and 365707) and multi-drug-resistant Acinetobacter baumannii (MRAB). The results showed that Ga NPs did not inhibit bacterial growth when tested against the bacterial strains using a broth microdilution assay, but they exhibited effects in biofilm production in P. aeruginosa DFU53. Furthermore, as captured by atomic force microscopy imaging, P. aeruginosa DFU53 and MRAB biofilms underwent morphological changes, appearing rough and irregular when they were treated with Ga NPs. Although Ga NPs did not affect planktonic bacterial growth, their effects on both biofilm formation and established biofilm demonstrate their potential role in the race to combat antibiotic resistance, especially in biofilm-related infections.
Collapse
Affiliation(s)
- Christina Limantoro
- Sydney
Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney
Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Theerthankar Das
- Department
of Infectious Diseases and Immunology, School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Meng He
- Department
of Chemistry and Applied Biosciences, ETH
Zürich—Swiss Federal Institute of Technology Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Dmitry Dirin
- Department
of Chemistry and Applied Biosciences, ETH
Zürich—Swiss Federal Institute of Technology Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Jim Manos
- Department
of Infectious Diseases and Immunology, School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Maksym V. Kovalenko
- Department
of Chemistry and Applied Biosciences, ETH
Zürich—Swiss Federal Institute of Technology Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Wojciech Chrzanowski
- Sydney
Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney
Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
37
|
Patil RH, Luptáková D, Havlíček V. Infection metallomics for critical care in the post-COVID era. MASS SPECTROMETRY REVIEWS 2023; 42:1221-1243. [PMID: 34854486 DOI: 10.1002/mas.21755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 06/07/2023]
Abstract
Infection metallomics is a mass spectrometry (MS) platform we established based on the central concept that microbial metallophores are specific, sensitive, noninvasive, and promising biomarkers of invasive infectious diseases. Here we review the in vitro, in vivo, and clinical applications of metallophores from historical and functional perspectives, and identify under-studied and emerging application areas with high diagnostic potential for the post-COVID era. MS with isotope data filtering is fundamental to infection metallomics; it has been used to study the interplay between "frenemies" in hosts and to monitor the dynamic response of the microbiome to antibiotic and antimycotic therapies. During infection in critically ill patients, the hostile environment of the host's body activates secondary bacterial, mycobacterial, and fungal metabolism, leading to the production of metallophores that increase the pathogen's chance of survival in the host. MS can reveal the structures, stability, and threshold concentrations of these metal-containing microbial biomarkers of infection in humans and model organisms, and can discriminate invasive disease from benign colonization based on well-defined thresholds distinguishing proliferation from the colonization steady state.
Collapse
Affiliation(s)
- Rutuja H Patil
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
- Department of Analytical Chemistry, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Dominika Luptáková
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Vladimír Havlíček
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
- Department of Analytical Chemistry, Faculty of Science, Palacký University, Olomouc, Czechia
| |
Collapse
|
38
|
Venkateswaran P, Vasudevan S, David H, Shaktivel A, Shanmugam K, Neelakantan P, Solomon AP. Revisiting ESKAPE Pathogens: virulence, resistance, and combating strategies focusing on quorum sensing. Front Cell Infect Microbiol 2023; 13:1159798. [PMID: 37457962 PMCID: PMC10339816 DOI: 10.3389/fcimb.2023.1159798] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
The human-bacterial association is long-known and well-established in terms of both augmentations of human health and attenuation. However, the growing incidents of nosocomial infections caused by the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter sp.) call for a much deeper understanding of these organisms. Adopting a holistic approach that includes the science of infection and the recent advancements in preventing and treating infections is imperative in designing novel intervention strategies against ESKAPE pathogens. In this regard, this review captures the ingenious strategies commissioned by these master players, which are teamed up against the defenses of the human team, that are equally, if not more, versatile and potent through an analogy. We have taken a basketball match as our analogy, dividing the human and bacterial species into two teams playing with the ball of health. Through this analogy, we make the concept of infectious biology more accessible.
Collapse
Affiliation(s)
- Parvathy Venkateswaran
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Sahana Vasudevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adityan Shaktivel
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Karthik Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Prasanna Neelakantan
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
39
|
Ray S, Gaudet R. Structures and coordination chemistry of transporters involved in manganese and iron homeostasis. Biochem Soc Trans 2023; 51:897-923. [PMID: 37283482 PMCID: PMC10330786 DOI: 10.1042/bst20210699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023]
Abstract
A repertoire of transporters plays a crucial role in maintaining homeostasis of biologically essential transition metals, manganese, and iron, thus ensuring cell viability. Elucidating the structure and function of many of these transporters has provided substantial understanding into how these proteins help maintain the optimal cellular concentrations of these metals. In particular, recent high-resolution structures of several transporters bound to different metals enable an examination of how the coordination chemistry of metal ion-protein complexes can help us understand metal selectivity and specificity. In this review, we first provide a comprehensive list of both specific and broad-based transporters that contribute to cellular homeostasis of manganese (Mn2+) and iron (Fe2+ and Fe3+) in bacteria, plants, fungi, and animals. Furthermore, we explore the metal-binding sites of the available high-resolution metal-bound transporter structures (Nramps, ABC transporters, P-type ATPase) and provide a detailed analysis of their coordination spheres (ligands, bond lengths, bond angles, and overall geometry and coordination number). Combining this information with the measured binding affinity of the transporters towards different metals sheds light into the molecular basis of substrate selectivity and transport. Moreover, comparison of the transporters with some metal scavenging and storage proteins, which bind metal with high affinity, reveal how the coordination geometry and affinity trends reflect the biological role of individual proteins involved in the homeostasis of these essential transition metals.
Collapse
Affiliation(s)
- Shamayeeta Ray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, U.S.A
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, U.S.A
| |
Collapse
|
40
|
de Souza PC, Corrêa AEDN, Gameiro JG, de Oliveira Júnior AG, Panagio LA, Venancio EJ, Almeida RS. Production of IgY against iron permease Ftr1 from Candida albicans and evaluation of its antifungal activity using Galleria mellonella as a model of systemic infection. Microb Pathog 2023:106166. [PMID: 37290729 DOI: 10.1016/j.micpath.2023.106166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/07/2023] [Accepted: 05/19/2023] [Indexed: 06/10/2023]
Abstract
Candida albicans is one of the leading pathological agents of mucosal and deep tissue infections. Considering that the variety of antifungals is restricted and that toxicity limits their use, immunotherapies against pathogenic fungi have been viewed as alternatives with reduced adverse effects. In this context, C. albicans has a protein used to capture iron from the environment and the host, known as the high-affinity iron permease Ftr1. This protein may be a new target of action for novel antifungal therapies, as it influences the virulence of this yeast. Thus, the aim of the present study was to produce and conduct the biological characterization of IgY antibodies against C. albicans Ftr1. Immunization of laying hens with an Ftr1-derived peptide resulted in IgY antibodies extracted from egg yolks capable of binding to the antigen with high affinity (avidity index = 66.6 ± 0.3%). These antibodies reduced the growth and even eliminated C. albicans under iron restriction, a favorable condition for the expression of Ftr1. This also occurred with a mutant strain that does not produce Ftr1 in the presence of iron, a circumstance in which the protein analog of iron permease, Ftr2, is expressed. Furthermore, the survival of G. mellonella larvae infected with C. albicans and treated with the antibodies was 90% higher than the control group, which did not receive treatment (p < 0.0001). Therefore, our data suggest that IgY antibodies against Ftr1 from C. albicans can inhibit yeast propagation by blocking iron uptake.
Collapse
Affiliation(s)
- Patricia Canteri de Souza
- Department of Microbiology, Center of Biological Science, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445, Km 380, Londrina, 86.057-970, Paraná, Brazil
| | - Alana Elke do Nascimento Corrêa
- Department of Microbiology, Center of Biological Science, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445, Km 380, Londrina, 86.057-970, Paraná, Brazil
| | - Juliana Gutschow Gameiro
- Department of Pathology, Clinical and Toxicological Analysis, Center of Health Sciences, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445, Km 380, Londrina, 86.057-970, Paraná, Brazil
| | - Admilton Gonçalves de Oliveira Júnior
- Department of Microbiology, Center of Biological Science, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445, Km 380, Londrina, 86.057-970, Paraná, Brazil
| | - Luciano Aparecido Panagio
- Department of Microbiology, Center of Biological Science, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445, Km 380, Londrina, 86.057-970, Paraná, Brazil
| | - Emerson José Venancio
- Department of Pathological Sciences, Center of Biological Science, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445, Km 380, Londrina, 86.057-970, Paraná, Brazil
| | - Ricardo Sergio Almeida
- Department of Microbiology, Center of Biological Science, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445, Km 380, Londrina, 86.057-970, Paraná, Brazil.
| |
Collapse
|
41
|
Sarma A, Gunasekaran D, Phukan H, Baby A, Hariharan S, De AK, Bhattacharya D, Natesan S, Tennyson J, Madanan MG. Leptospiral imelysin (LIC_10713) is secretory, immunogenic and binds to laminin, fibronectin, and collagen IV. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12573-6. [PMID: 37227474 DOI: 10.1007/s00253-023-12573-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023]
Abstract
Leptospirosis is a widespread zoonotic disease caused by pathogenic Leptospira. Early and accurate diagnosis is the prime step in managing the disease. Secretory proteins of Leptospira remain distinguished for diagnosis due to their availability as soluble proteins in the serum and their interaction with the host immune response due to their extracellular presence. This study presents the cloning, expression, purification, and characterization of imelysin or LruB (LIC_10713), a putative leptospiral protein. We report that the localization of imelysin showed its presence in the inner membrane and in the culture supernatant. The imelysin was upregulated under in vitro physiological conditions of infection. The LIC_10713 interacted significantly with laminin, fibronectin, collagen type I, and collagen type IV in a dose-dependent manner. Phylogenetic analysis showed that LIC_10713 is predominately found in the pathogenic species of Leptospira, and the GxHxxE motif of imelysin-like proteins is represented as the amino acid sequence GWHAIE. Also, immunoglobulins in leptospirosis-infected patients recognize recombinant-LIC_10713 with 100% specificity and 90.9% sensitivity. The secretion nature, abundance, upregulation, binding to ECM components, and immunogenicity determine LIC_10713 as an important molecule that can be used as an anti-leptospirosis measure. KEY POINTS: • The imelysin-like protein (LIC_10713) of Leptospira is a secretory protein • The protein LIC_10713 can bind ECM molecules • The LIC_10713 is mainly found in pathogenic leptospires • The anti-LIC_10713 antibody from human serum can detect the r-LIC_10713.
Collapse
Affiliation(s)
- Abhijit Sarma
- Department of Biochemistry, ICMR - Regional Medical Research Centre, Port Blair, 744103, Andaman and Nicobar Islands, India
| | - Dhandapani Gunasekaran
- Department of Biochemistry, ICMR - Regional Medical Research Centre, Port Blair, 744103, Andaman and Nicobar Islands, India
| | - Homen Phukan
- Department of Biochemistry, ICMR - Regional Medical Research Centre, Port Blair, 744103, Andaman and Nicobar Islands, India
| | - Akhil Baby
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamraj University, Madurai, Tamil Nadu, 625021, India
| | - Suneetha Hariharan
- Department of Biochemistry, ICMR - Regional Medical Research Centre, Port Blair, 744103, Andaman and Nicobar Islands, India
| | - Arun Kumar De
- Division of Animal Science, ICAR- Central Island Agricultural Research Institute, Port Blair, 744105, Andaman and Nicobar Islands, India
| | - Debasis Bhattacharya
- Division of Animal Science, ICAR- Central Island Agricultural Research Institute, Port Blair, 744105, Andaman and Nicobar Islands, India
| | - Sankar Natesan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamraj University, Madurai, Tamil Nadu, 625021, India
| | - Jebasingh Tennyson
- Department of Plant Sciences, School of Biological Sciences, Madurai Kamraj University, Madurai, Tamil Nadu, 625021, India
| | | |
Collapse
|
42
|
Lau SH, Su CL, Yu TY, Zhong Y, Xu X, Jane WN, Chang YT. The use of immobilised bacteria cross-linked within magnetic alginate beads enhances the treatment of benzophenone-type UV filter chemicals by the SBR system. CHEMOSPHERE 2023; 334:139038. [PMID: 37244550 DOI: 10.1016/j.chemosphere.2023.139038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Benzophenone-n compounds (BPs) are applied in a broad spectrum of commercial products, one of which is sunscreen. These chemicals are frequently detected in a variety of environmental matrices worldwide, especially water bodies. BPs are defined as emerging contaminants as well as endocrine-disrupting contaminants; thus, it has become necessary to develop aggressive and green treatments to remove BPs. In this study, we used immobilised BP-biodegrading bacteria linked to reusable magnetic alginate beads (MABs). The MABs were added to a sequencing batch reactor (SBR) system to enhance the removal of 2,4-dihydroxybenzophenone (BP-1) and oxybenzone (BP-3) from sewage. The BP-1 and BP-3 biodegrading bacteria in the MABs consisted of strains from up to three genera to allow for efficient biodegradation. The strains used were Pseudomonas spp., Gordonia sp., and Rhodococcus sp. The optimal composition of the MABs consisted of 3% (w/v) alginate and 10% (w/v) magnetite. The MABs resulted in 60.8%-81.7% recovery by weight after 28 days, and there was a continuous release of bacteria. Moreover, the biological treatment of the BPs sewage improved after adding 100 g of BP1-MABs (1:27) and also 100 g BP3-MABs (1:27) into the SBR system at a hydraulic retention time (HRT) of 8 h. Compared with the SBR system without MABs, the removal rates of BP-1 and BP-3 increased from 64.2% to 71.5% and from 78.1% to 84.1%, respectively. Furthermore, the COD removal increased from 36.1% to 42.1%, and total nitrogen increased from 30.5% to 33.2%. Total phosphorus remained constant at 29%. The bacterial community analysis showed that the Pseudomonas population was <2% before the MAB addition, but increased to 56.1% by day 14. In contrast, the Gordonia sp. And Rhodococcus sp. Populations (<2%) remained unchanged throughout the 14-day treatment period.
Collapse
Affiliation(s)
- Sai Hung Lau
- Department of Microbiology, Soochow University, Taipei, 11102, Taiwan
| | - Ching-Lun Su
- Department of Microbiology, Soochow University, Taipei, 11102, Taiwan
| | - Ting-Yu Yu
- Department of Microbiology, Soochow University, Taipei, 11102, Taiwan
| | - YuYing Zhong
- School of Ocean, Fuzhou University, Fuzhou, 362200, China
| | - XinYuan Xu
- School of Ocean, Fuzhou University, Fuzhou, 362200, China
| | - Wann-Neng Jane
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Yi-Tang Chang
- Department of Microbiology, Soochow University, Taipei, 11102, Taiwan.
| |
Collapse
|
43
|
Ramoneda J, Stallard-Olivera E, Hoffert M, Winfrey CC, Stadler M, Niño-García JP, Fierer N. Building a genome-based understanding of bacterial pH preferences. SCIENCE ADVANCES 2023; 9:eadf8998. [PMID: 37115929 PMCID: PMC10146879 DOI: 10.1126/sciadv.adf8998] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The environmental preferences of many microbes remain undetermined. This is the case for bacterial pH preferences, which can be difficult to predict a priori despite the importance of pH as a factor structuring bacterial communities in many systems. We compiled data on bacterial distributions from five datasets spanning pH gradients in soil and freshwater systems (1470 samples), quantified the pH preferences of bacterial taxa across these datasets, and compiled genomic data from representative bacterial taxa. While taxonomic and phylogenetic information were generally poor predictors of bacterial pH preferences, we identified genes consistently associated with pH preference across environments. We then developed and validated a machine learning model to estimate bacterial pH preferences from genomic information alone, a model that could aid in the selection of microbial inoculants, improve species distribution models, or help design effective cultivation strategies. More generally, we demonstrate the value of combining biogeographic and genomic data to infer and predict the environmental preferences of diverse bacterial taxa.
Collapse
Affiliation(s)
- Josep Ramoneda
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Corresponding author. (J.R.); (N.F.)
| | - Elias Stallard-Olivera
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Michael Hoffert
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Claire C. Winfrey
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Masumi Stadler
- Département des Sciences Biologiques, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-Ville, Montréal, QC H3C 3P8, Canada
| | - Juan Pablo Niño-García
- Département des Sciences Biologiques, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-Ville, Montréal, QC H3C 3P8, Canada
- Escuela de Microbiología, Universidad de Antioquia, Ciudad Universitaria Calle 67 No 12 53-108, Medellín, Colombia
| | - Noah Fierer
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
- Corresponding author. (J.R.); (N.F.)
| |
Collapse
|
44
|
My TT, Thien LV, Manh VD, My BTP, Lan DTM, Binh DX, Duc VM. Antimicrobial resistance and molecular characterization of Escherichia coli isolated from bovine mastitis samples in Nghe An province, Vietnam. Vet World 2023; 16:743-751. [PMID: 37235152 PMCID: PMC10206968 DOI: 10.14202/vetworld.2023.743-751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/06/2023] [Indexed: 05/28/2023] Open
Abstract
Background and Aim Vietnam's dairy sector is in its early phase of large-scale farming development. Therefore, mastitis in cows is always a concern to farm owners. This study aimed to determine the antimicrobial susceptibility, resistance, and virulence-related genes of Escherichia coli isolated from bovine mastitis in Nghe An province of Vietnam. Materials and Methods Fifty E. coli strains were isolated from the clinical cases and subjected to this study. All isolates were tested for antimicrobial susceptibility by the disk-diffusion method, as described by the Clinical and Laboratory Standards Institute. Antimicrobial and virulence genes were confirmed by polymerase chain reaction with specific primers. Results All isolates were resistant to lincomycin and sulfamethoxazole and sensitive to gentamicin, while other antimicrobials showed resistance from 2% to 90%. Multidrug resistance was confirmed in 46% of isolates, and none of them were identified as extended-spectrum beta-lactamase producers. From fifty strains tested for antimicrobial and virulence genes, six isolates harbored tetA, 6 tetB, 13 sul1, 15 sul2, 2 Intimin (eae), 1 iutA, and 3 stx2. Conclusion Antimicrobial and multidrug resistances are the main virulence factors of E. coli isolated from bovine mastitis in Vietnam. The virulence genes encoding adhesion, siderophore, Shiga-toxin-producing, and antimicrobials resistant were first reported in Vietnam with low prevalence and contributed to the pathogenesis.
Collapse
Affiliation(s)
- Tran Trung My
- Department of Animal Science and Veterinary Medicine, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen University, Quyet Thang, Thai Nguyen City, Vietnam
- Department of Quality Assurance, TH Dairy Institute, Nghia Son, Nghia Dan, Nghe An, Vietnam
| | - Le Van Thien
- Department of Quality Assurance, TH Dairy Institute, Nghia Son, Nghia Dan, Nghe An, Vietnam
- Department of Veterinary Medicine, The Vietnam National University of Agriculture, Trau Quy, Gia Lam, Ha Noi, Vietnam
| | - Vu Duy Manh
- TH Milk Food Joint Stock Company, Nghia Son, Nghia Dan, Nghe An, Vietnam
| | - Bui Thi Phuong My
- TH Milk Food Joint Stock Company, Nghia Son, Nghia Dan, Nghe An, Vietnam
| | - Dang Thi Mai Lan
- Department of Animal Science and Veterinary Medicine, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen University, Quyet Thang, Thai Nguyen City, Vietnam
| | - Dang Xuan Binh
- Department of Animal Science and Veterinary Medicine, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen University, Quyet Thang, Thai Nguyen City, Vietnam
| | - Vu Minh Duc
- Department of Agro-forestry Technology, College of Economics and Technology, Thai Nguyen University, Thinh Dan, Thai Nguyen City, Vietnam
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
45
|
XUE P, SÁNCHEZ-LEÓN E, DAMOO D, HU G, JUNG WH, KRONSTAD JW. Heme sensing and trafficking in fungi. FUNGAL BIOL REV 2023; 43:100286. [PMID: 37781717 PMCID: PMC10540271 DOI: 10.1016/j.fbr.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Fungal pathogens cause life-threatening diseases in humans, and the increasing prevalence of these diseases emphasizes the need for new targets for therapeutic intervention. Nutrient acquisition during infection is a promising target, and recent studies highlight the contributions of endomembrane trafficking, mitochondria, and vacuoles in the sensing and acquisition of heme by fungi. These studies have been facilitated by genetically encoded biosensors and other tools to quantitate heme in subcellular compartments and to investigate the dynamics of trafficking in living cells. In particular, the applications of biosensors in fungi have been extended beyond the detection of metabolites, cofactors, pH, and redox status to include the detection of heme. Here, we focus on studies that make use of biosensors to examine mechanisms of heme uptake and degradation, with guidance from the model fungus Saccharomyces cerevisiae and an emphasis on the pathogenic fungi Candida albicans and Cryptococcus neoformans that threaten human health. These studies emphasize a role for endocytosis in heme uptake, and highlight membrane contact sites involving mitochondria, the endoplasmic reticulum and vacuoles as mediators of intracellular iron and heme trafficking.
Collapse
Affiliation(s)
- Peng XUE
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eddy SÁNCHEZ-LEÓN
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Djihane DAMOO
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guanggan HU
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Won Hee JUNG
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Korea
| | - James W. KRONSTAD
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
46
|
Factors Influencing the Nitrogen-Source Dependent Flucytosine Resistance in Cryptococcus Species. mBio 2023; 14:e0345122. [PMID: 36656038 PMCID: PMC9973006 DOI: 10.1128/mbio.03451-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Flucytosine (5-FC) is an antifungal agent commonly used for treatment of cryptococcosis and several other systemic mycoses. In fungi, cytosine permease and cytosine deaminase are known major players in flucytosine resistance by regulating uptake and deamination of 5-FC, respectively. Cryptococcus species have three paralogs each of cytosine permease (FCY2, FCY3, and FCY4) and cytosine deaminase (FCY1, FCY5 and FCY6). As in other fungi, we found FCY1 and FCY2 to be the primary cytosine deaminase and permease gene, respectively, in C. neoformans H99 (VNI), C. gattii R265 (VGIIa) and WM276 (VGI). However, when various amino acids were used as the sole nitrogen source, C. neoformans and C. gattii diverged in the function of FCY3 and FCY6. Though there was some lineage-dependent variability, the two genes functioned as the secondary permease and deaminase, respectively, only in C. gattii when the nitrogen source was arginine, asparagine, or proline. Additionally, the expression of FCY genes, excluding FCY1, was under nitrogen catabolic repression in the presence of NH4. Functional analysis of GAT1 and CIR1 gene deletion constructs demonstrated that these two genes regulate the expression of each permease and deaminase genes individually. Furthermore, the expression levels of FCY3 and FCY6 under different amino acids corroborated the 5-FC susceptibility in fcy2Δ or fcy1Δ background. Thus, the mechanism of 5-FC resistance in C. gattii under diverse nitrogen conditions is orchestrated by two transcription factors of GATA family, cytosine permease and deaminase genes. IMPORTANCE 5-FC is a commonly used antifungal drug for treatment of cryptococcosis caused by Cryptococcus neoformans and C. gattii species complexes. When various amino acids were used as the sole nitrogen source for growth, we found lineage dependent differences in 5-FC susceptibility. Deletion of the classical cytosine permease (FCY2) and deaminase (FCY1) genes caused increased 5-FC resistance in all tested nitrogen sources in C. neoformans but not in C. gattii. Furthermore, we demonstrate that the two GATA family transcription factor genes GAT1 and CIR1 are involved in the nitrogen-source dependent 5-FC resistance by regulating the expression of the paralogs of cytosine permease and deaminase genes. Our study not only identifies the new function of paralogs of the cytosine permease and deaminase and the role of their regulatory transcription factors but also denotes the differences in the mechanism of 5-FC resistance among the two etiologic agents of cryptococcosis under different nitrogen sources.
Collapse
|
47
|
Buzzanca D, Alessandria V, Botta C, Seif Zadeh N, Ferrocino I, Houf K, Cocolin L, Rantsiou K. Transcriptome Analysis of Arcobacter butzleri Infection in a Mucus-Producing Human Intestinal In Vitro Model. Microbiol Spectr 2023; 11:e0207122. [PMID: 36622176 PMCID: PMC9927503 DOI: 10.1128/spectrum.02071-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Arcobacter butzleri is a foodborne pathogen belonging to the Arcobacteraceae family. This Gram-negative bacterium is found in water, food, and various organisms, including farm animals, clams, and fish. Moreover, A. butzleri has been isolated from human stool samples, where it was associated with gastrointestinal symptoms such as diarrhea. The present study focused on the transcriptome analysis of three A. butzleri strains isolated from human stools and displaying variable virulence potential in vitro. We used a mucus-producing human intestinal in vitro model (Caco-2/HT29-MTX-E12) to study the colonization and invasion abilities of the three A. butzleri strains. The ability of all three A. butzleri strains to colonize our in vitro model system was subsequently confirmed. Moreover, transcriptomics showed the upregulation of putative virulence genes. Among these genes, tonB, exbB, and exbD, which belong to the same operon, were upregulated in strain LMG 11119, which also had the greatest colonization ability. Moreover, genes not currently considered A. butzleri virulence genes were differentially expressed during cell model colonization. The main functions of these genes were linked to organic acid metabolism and iron transport and particularly to the function of the TonB complex. IMPORTANCE Recent advancements in the genomic characterization of A. butzleri revealed putative virulence genes and highlighted the possible pathogenic mechanisms used by this foodborne pathogen. It is therefore possible to study the transcriptomes of these bacteria to explore possible virulence mechanisms under conditions that mimic the infection process. The transcriptome and colonization/invasion analyses that we performed in this study enabled the evaluation of A. butzleri-mediated infection of the mucus-producing human intestinal in vitro model. We confirmed the upregulation of previously proposed virulence genes in the A. butzleri strains. In addition, we identified the differential expression of a number of other genes, which are not currently thought to be associated with virulence, in three A. butzleri strains during infection of mucus-producing human epithelial cells. Changes in the concentration of acetic acid and the upregulation of genes associated with organic acid metabolism during host-pathogen contact were also observed. These findings highlight the importance of previously unreported genes in the virulence mechanisms of A. butzleri.
Collapse
Affiliation(s)
- Davide Buzzanca
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Valentina Alessandria
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Cristian Botta
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Negin Seif Zadeh
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Kurt Houf
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Kalliopi Rantsiou
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| |
Collapse
|
48
|
Deblais L, Ranjit S, Vrisman C, Antony L, Scaria J, Miller SA, Rajashekara G. Role of Stress-Induced Proteins RpoS and YicC in the Persistence of Salmonella enterica subsp. enterica Serotype Typhimurium in Tomato Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:109-118. [PMID: 36394339 DOI: 10.1094/mpmi-07-22-0152-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Understanding the functional role of bacterial genes in the persistence of Salmonella in plant organs can facilitate the development of agricultural practices to mitigate food safety risks associated with the consumption of fresh produce contaminated with Salmonella spp. Our study showed that Salmonella enterica subsp. enterica serotype Typhimurium (strain MDD14) persisted less in inoculated tomato plants than other Salmonella Typhimurium strains tested (JSG210, JSG626, JSG634, JSG637, JSG3444, and EV030415; P < 0.01). In-vitro assays performed in limited-nutrient conditions (growth rate, biofilm production, and motility) were inconclusive in explaining the in-planta phenotype observed with MDD14. Whole-genome sequencing combined with non-synonymous single nucleotide variations analysis was performed to identify genomic differences between MDD14 and the other Salmonella Typhimurium strains. The genome of MDD14 contained a truncated version (123 bp N-terminal) of yicC and a mutated version of rpoS (two non-synonymous substitutions, i.e., G66E and R82C), which are two stress-induced proteins involved in iron acquisition, environmental sensing, and cell envelope integrity. The rpoS and yicC genes were deleted in Salmonella Typhimurium JSG210 with the Lambda Red recombining system. Both mutants had limited persistence in tomato plant organs, similar to that of MDD14. In conclusion, we demonstrated that YicC and RpoS are involved in the persistence of Salmonella in tomato plants in greenhouse conditions and, thus, could represent potential targets to mitigate persistence of Salmonella spp. in planta. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Loïc Deblais
- Department of Animal Sciences, The Ohio State University, Wooster, OH, U.S.A
| | - Sochina Ranjit
- Department of Animal Sciences, The Ohio State University, Wooster, OH, U.S.A
| | - Claudio Vrisman
- Department of Plant Pathology, The Ohio State University, Wooster, OH, U.S.A
| | - Linto Antony
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, U.S.A
| | - Joy Scaria
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, U.S.A
| | - Sally A Miller
- Department of Plant Pathology, The Ohio State University, Wooster, OH, U.S.A
| | - Gireesh Rajashekara
- Department of Animal Sciences, The Ohio State University, Wooster, OH, U.S.A
| |
Collapse
|
49
|
Molecular Interactions of the Copper Chaperone Atx1 of Paracoccidioides brasiliensis with Fungal Proteins Suggest a Crosstalk between Iron and Copper Homeostasis. Microorganisms 2023; 11:microorganisms11020248. [PMID: 36838213 PMCID: PMC9963772 DOI: 10.3390/microorganisms11020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
Paracoccidioides spp. are endemic fungi from Latin America that cause Paracoccidioidomycosis, a systemic disease. These fungi present systems for high-affinity metal uptake, storage, and mobilization, which counteract host nutritional immunity and mitigate the toxic effects of metals. Regarding Cu mobilization, the metallochaperone Atx1 is regulated according to Cu bioavailability in Paracoccidioides spp., contributing to metal homeostasis. However, additional information in the literature on PbAtx1 is scarce. Therefore, in the present work, we aimed to study the PbAtx1 protein-protein interaction networks. Heterologous expressed PbAtx1 was used in a pull-down assay with Paracoccidioides brasiliensis cytoplasmic extract. Nineteen proteins that interacted with PbAtx1 were identified by HPLC-MSE. Among them, a relevant finding was a Cytochrome b5 (PbCyb5), regulated by Fe bioavailability in Aspergillus fumigatus and highly secreted by P. brasiliensis in Fe deprivation. We validated the interaction between PbAtx1-PbCyb5 through molecular modeling and far-Western analyses. It is known that there is a relationship between Fe homeostasis and Cu homeostasis in organisms. In this sense, would PbAtx1-PbCyb5 interaction be a new metal-sensor system? Would it be supported by the presence/absence of metals? We intend to answer those questions in future works to contribute to the understanding of the strategies employed by Paracoccidioides spp. to overcome host defenses.
Collapse
|
50
|
Kuang H, Dou G, Cheng L, Wang X, Xu H, Liu X, Ding F, Yang X, Liu S, Bao L, Liu H, Liu Y, Li B, Jin Y, Liu S. Humoral regulation of iron metabolism by extracellular vesicles drives antibacterial response. Nat Metab 2023; 5:111-128. [PMID: 36658400 DOI: 10.1038/s42255-022-00723-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 12/07/2022] [Indexed: 01/21/2023]
Abstract
Immediate restriction of iron initiated by the host is a critical process to protect against bacterial infections and has been described in the liver and spleen, but it remains unclear whether this response also entails a humoral mechanism that would enable systemic sequestering of iron upon infection. Here we show that upon bacterial invasion, host macrophages immediately release extracellular vesicles (EVs) that capture circulating iron-containing proteins. Mechanistically, in a sepsis model in female mice, Salmonella enterica subsp. enterica serovar Typhimurium induces endoplasmic reticulum stress in macrophages and activates inositol-requiring enzyme 1α signaling, triggering lysosomal dysfunction and thereby promoting the release of EVs, which bear multiple receptors required for iron uptake. By binding to circulating iron-containing proteins, these EVs prevent bacteria from iron acquisition, which inhibits their growth and ultimately protects against infection and related tissue damage. Our findings reveal a humoral mechanism that can promptly regulate systemic iron metabolism during bacterial infection.
Collapse
Affiliation(s)
- Huijuan Kuang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, PR China
| | - Geng Dou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, PR China
| | - Linfeng Cheng
- Department of Medical Microbiology and Parasitology, The Fourth Military Medical University, Xi'an, PR China
| | - Xiangdong Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, PR China
| | - Haokun Xu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, PR China
| | - Xuemei Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, PR China
- Department of Paediatric Dentistry, School of Stomatology, China Medical University, Shenyang, PR China
| | - Feng Ding
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, PR China
| | - Xiaoshan Yang
- Stomatology Hospital, Southern Medical University, Guangzhou, PR China
| | - Siying Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, PR China
| | - Lili Bao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, PR China
| | - Huan Liu
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, PR China
| | - Yao Liu
- Department of Paediatric Dentistry, School of Stomatology, China Medical University, Shenyang, PR China
| | - Bei Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, PR China
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, PR China.
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, PR China.
| |
Collapse
|