1
|
Ma Q, Li J, Yu S, Liu Y, Zhou J, Wang X, Wang L, Zou J, Li Y. ActA-mediated PykF acetylation negatively regulates oxidative stress adaptability of Streptococcus mutans. mBio 2024; 15:e0183924. [PMID: 39248567 PMCID: PMC11481489 DOI: 10.1128/mbio.01839-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
Dental caries is associated with microbial dysbiosis caused by the excessive proliferation of Streptococcus mutans in dental biofilms, where oxidative stress serves as the major stressor to microbial communities. The adaptability of S. mutans to oxidative stress is a prerequisite for its proliferation and even for exerting its virulence. Protein acetylation is a reversible and conserved regulatory mechanism enabling bacteria to rapidly respond to external environmental stressors. However, the functions of protein acetylation in regulating oxidative stress adaptability of S. mutans are still unknown. Here, we unveil the impact of acetyltransferase ActA-mediated acetylation on regulating the oxidative stress response of S. mutans. actA overexpression increased the sensitivity of S. mutans to hydrogen peroxide and diminished its competitive ability against Streptococcus sanguinis. In contrast, actA deletion enhanced oxidative stress tolerance and competitiveness of S. mutans. The mass spectrometric analysis identified pyruvate kinase (PykF) as a substrate of ActA, with its acetylation impairing its enzymatic activity and reducing pyruvate production. Supplementation with exogenous pyruvate mitigated oxidative stress sensitivity and restored competitiveness in multi-species biofilms. In vitro acetylation analysis further confirmed that ActA directly acetylates PykF, negatively affecting its enzymatic activity. Moreover, 18 potential lysine-acetylated sites on PykF were identified in vitro, which account for 75% of lysine-acetylated sites detected in vivo. Taken together, our study elucidates a novel regulatory mechanism of ActA-mediated acetylation of PykF in modulating oxidative stress adaptability of S. mutans by influencing pyruvate production, providing insights into the importance of protein acetylation in microbial environmental adaptability and interspecies interactions within dental biofilms. IMPORTANCE Dental caries poses a significant challenge to global oral health, driven by microbial dysbiosis within dental biofilms. The pathogenicity of Streptococcus mutans, a major cariogenic bacterium, is closely linked to its ability to adapt to changing environments and cellular stresses. Our investigation into the protein acetylation mechanisms, particularly through the acetyltransferase ActA, reveals a critical pathway by which S. mutans modulates its adaptability to oxidative stress, the dominant stressor within dental biofilms. By elucidating how ActA affects the oxidative stress adaptability and competitiveness of S. mutans through the regulatory axis of ActA-PykF-pyruvate, our findings provide insights into the dynamic interplay between cariogenic and commensal bacteria within dental biofilms. This work emphasizes the significance of protein acetylation in bacterial stress response and competitiveness, opening avenues for the development of novel strategies to maintain oral microbial balance within dental biofilms.
Collapse
Affiliation(s)
- Qizhao Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuxing Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaqi Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyue Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lingyun Wang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jing Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Center for Archaeological Science, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Pinheiro ET, Karygianni L, Candeiro GTM, Vilela BG, Dantas LO, Pereira ACC, Gomes BPFA, Attin T, Thurnheer T, Russo G. Metatranscriptome and Resistome of the Endodontic Microbiome. J Endod 2024; 50:1059-1072.e4. [PMID: 38719087 DOI: 10.1016/j.joen.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/07/2024] [Accepted: 03/11/2024] [Indexed: 06/07/2024]
Abstract
INTRODUCTION In this study, we used metatranscriptomics for the first time to investigate microbial composition, functional signatures, and antimicrobial resistance gene expression in endodontic infections. METHODS Root canal samples were collected from ten teeth, including five primary and five persistent/secondary endodontic infections. RNA from endodontic samples was extracted, and RNA sequencing was performed on a NovaSeq6000 system (Illumina). Taxonomic analysis was performed using the Kraken2 bacterial database. Then, sequences with a taxonomic classification were annotated against the Universal Protein Knowledgebase for functional annotation and the Comprehensive Antibiotic Resistance Database for AR-like gene identification. RESULTS Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria represented the dominant phyla, whereas Fusobacteria, Spirochetes, and Synergistetes were among the nondominant phyla. The top ten species were mainly represented by obligate (or quasiobligate) anaerobes, including Gram-negative (eg, Capnocytophaga sp. oral taxon 323, Fusobacterium nucleatum, Prevotella intermedia, Prevotella oris, Tannerella forsythia, and Tannerella sp. oral taxon HOT-286) and Gram-positive species (eg, Olsenella uli and Parvimonas micra). Transcripts encoding moonlighting proteins (eg, glycolytic proteins, translational elongation factors, chaperonin, and heat shock proteins) were highly expressed, potentially affecting bacterial adhesion, biofilm formation, host defense evasion, and inflammation induction. Endodontic bacteria expressed genes conferring resistance to antibiotic classes commonly used in dentistry, with a high prevalence and expression of tetracycline and lincosamide resistance genes. Antibiotic efflux and antibiotic target alteration/protection were the main resistance mechanisms. CONCLUSIONS Metatranscriptomics revealed the activity of potential endodontic pathogens, which expressed putative virulence factors and a wide diversity of genes potentially involved in AR.
Collapse
Affiliation(s)
- Ericka T Pinheiro
- Department of Dentistry, School of Dentistry, University of São Paulo, São Paulo, Brazil; Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zürich, Switzerland.
| | - Lamprini Karygianni
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zürich, Switzerland
| | - George T M Candeiro
- Faculty of Dentistry, Christus University Center (Unichristus), Fortaleza, Ceará, Brazil
| | - Bruna G Vilela
- Department of Dentistry, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Larissa O Dantas
- Department of Dentistry, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Ana C C Pereira
- Department of Dentistry, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Brenda P F A Gomes
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| | - Thomas Attin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zürich, Switzerland
| | - Thomas Thurnheer
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zürich, Switzerland
| | - Giancarlo Russo
- Functional Genomics Center Zurich, ETH-University of Zurich, Zürich, Switzerland (previous affiliation); EMBL Partnership Institute for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania; Institute of Bioscience, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
3
|
Yu S, Ma Q, Huang J, Liu Y, Li J, Wang Y, Gong T, Zhang Q, Zou J, Li Y. SMU_1361c regulates the oxidative stress response of Streptococcus mutans. Appl Environ Microbiol 2024; 90:e0187123. [PMID: 38299814 PMCID: PMC10880606 DOI: 10.1128/aem.01871-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024] Open
Abstract
Dental caries is the most common chronic infectious disease around the world and disproportionately affects the marginalized socioeconomic group. Streptococcus mutans, considered a primary etiological agent of caries, depends on the coordinated physiological response to tolerate the oxidative stress generated by commensal species within dental plaque, which is a critical aspect of its pathogenicity. Here, we identified and characterized a novel tetracycline repressor family regulator, SMU_1361c, which appears to be acquired by the bacteria via horizontal gene transfer. Surprisingly, smu_1361c functions as a negative transcriptional regulator to regulate gene expression outside its operon and is involved in the oxidative stress response of S. mutans. The smu_1361c overexpression strain UA159/pDL278-1361c was more susceptible to oxidative stress and less competitive against hydrogen peroxide generated by commensal species Streptococcus gordonii and Streptococcus sanguinis. Transcriptomics analysis revealed that smu_1361c overexpression resulted in the significant downregulation of 22 genes, mainly belonging to three gene clusters responsible for the oxidative stress response. The conversed DNA binding motif of SMU_1361c was determined by electrophoretic mobility shift and DNase I footprinting assay with purified SMU_1361c protein; therefore, smu_1361c is directly involved in gene transcription related to the oxidative stress response. Crucially, our finding provides a new understanding of how S. mutans deals with the oxidative stress that is required for pathogenesis and will facilitate the development of new and improved therapeutic approaches for dental caries.IMPORTANCEStreptococcus mutans is the major organism associated with the development of dental caries, which globally is the most common chronic disease. To persist and survive in biofilms, S. mutans must compete with commensal species that occupy the same ecological niche. Here, we uncover a novel molecular mechanism of how tetracycline repressor family regulator smu_1361c is involved in the oxidative stress response through transcriptomics analysis, electrophoretic mobility shift assay, and DNase I footprinting assay. Furthermore, we demonstrated that smu_1361c mediates S. mutans sensitivity to oxidative stress and competitiveness with commensal streptococci. Therefore, this study has revealed a previously unknown regulation between smu_1361c and genes outside its operon and demonstrated the importance of smu_1361c in the oxidative stress response and the fitness of S. mutans within the plaque biofilms, which can be exploited as a new therapy to modulate ecological homeostasis and prevent dental caries.
Collapse
Affiliation(s)
- Shuxing Yu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qizhao Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Huang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaqi Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Gong
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiong Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Spatafora G, Li Y, He X, Cowan A, Tanner ACR. The Evolving Microbiome of Dental Caries. Microorganisms 2024; 12:121. [PMID: 38257948 PMCID: PMC10819217 DOI: 10.3390/microorganisms12010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Dental caries is a significant oral and public health problem worldwide, especially in low-income populations. The risk of dental caries increases with frequent intake of dietary carbohydrates, including sugars, leading to increased acidity and disruption of the symbiotic diverse and complex microbial community of health. Excess acid production leads to a dysbiotic shift in the bacterial biofilm composition, demineralization of tooth structure, and cavities. Highly acidic and acid-tolerant species associated with caries include Streptococcus mutans, Lactobacillus, Actinomyces, Bifidobacterium, and Scardovia species. The differences in microbiotas depend on tooth site, extent of carious lesions, and rate of disease progression. Metagenomics and metatranscriptomics not only reveal the structure and genetic potential of the caries-associated microbiome, but, more importantly, capture the genetic makeup of the metabolically active microbiome in lesion sites. Due to its multifactorial nature, caries has been difficult to prevent. The use of topical fluoride has had a significant impact on reducing caries in clinical settings, but the approach is costly; the results are less sustainable for high-caries-risk individuals, especially children. Developing treatment regimens that specifically target S. mutans and other acidogenic bacteria, such as using nanoparticles, show promise in altering the cariogenic microbiome, thereby combatting the disease.
Collapse
Affiliation(s)
- Grace Spatafora
- Biology and Program in Molecular Biology and Biochemistry, Middlebury College, Middlebury, VT 05753, USA
| | - Yihong Li
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY 14853, USA;
| | - Xuesong He
- ADA-Forsyth Institute, Cambridge, MA 02142, USA;
| | - Annie Cowan
- The Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | | |
Collapse
|
5
|
Ev LD, Poloni JDF, Damé-Teixeira N, Arthur RA, Corralo DJ, Henz SL, Do T, Maltz M, Parolo CCF. Hub genes and pathways related to caries-free dental biofilm: clinical metatranscriptomic study. Clin Oral Investig 2023; 27:7725-7735. [PMID: 37924358 DOI: 10.1007/s00784-023-05363-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
OBJECTIVE This study aimed to evaluate the microbial functional profile of biofilms related to caries-free (CF, n = 6) and caries-arrested (CI, n = 3) compared to caries-active (CA, n = 5) individuals. MATERIALS AND METHODS A metatranscriptomic was performed in supragingival biofilm from different clinical conditions related to caries or health. Total RNA was extracted and cDNAs were obtained and sequenced (Illumina HiSeq3000). Trimmed data (SortMeRNA) were submitted to the SqueezeMeta pipeline in the co-assembly mode for functional analysis and further differential gene expression analysis (DESeq2) and weighted gene co-expression network analysis (WCGNA) to explore and identify gene modules related to these clinical conditions. RESULTS A total of 5303 genes were found in the metatranscriptomic analysis. A co-expression network identified the most relevant modules strongly related to specific caries status. Correlation coefficients were calculated between the eigengene modules and the clinical conditions (CA, CI, and CF) discriminating multiple modules. CA and CI showed weak correlation coefficient strength across the modules, while the CF condition presented a very strong positive correlation coefficient (r = 0.9, p value = 4 × 10-9). Pearson's test was applied to further analyze the module membership and gene significance in CF conditions, and the most relevant were HSPA1s-K03283, Epr- K13277, and SLC1A-K05613. Gene Ontology (GO) shows important bioprocesses, such as two-component system, fructose and mannose metabolism, pentose and glucuronate interconversions, and flagellar assembly (p-adjust < 0.05). The ability to use different carbohydrates, integrate multiple signals, swarm, and bacteriocin production are significant metabolic advantages in the oral environment related to CF. CONCLUSIONS A distinct functional health profile could be found in CF, where co-occurring genes can act in different pathways at the same time. Genes HSPA1s, Epr, and SLC1A may be appointed as potential biomarkers for caries-free biofilms. CLINICAL RELEVANCE Potential biomarkers for caries-free biofilms could contribute to the knowledge of caries prevention and control.
Collapse
Affiliation(s)
- Laís Daniela Ev
- Department of Preventive and Social Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Joice de Faria Poloni
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, National Institute of Science and Technology - Forensic Science, Porto Alegre, Brazil
| | - Nailê Damé-Teixeira
- Department of Dentistry, Faculty of Health Sciences, University of Brasília, Brasília, DF, Brazil
| | - Rodrigo Alex Arthur
- Department of Preventive and Social Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniela Jorge Corralo
- Department of Dentistry, School of Dentistry, Passo Fundo University, Passo Fundo, RS, Brazil
| | - Sandra Liana Henz
- Department of Preventive and Social Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Thuy Do
- Division of Oral Biology, School of Dentistry, Faculty of Medicine & Health, University of Leeds, Leeds, UK
| | - Marisa Maltz
- Department of Preventive and Social Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
6
|
Cho H, Qu Y, Liu C, Tang B, Lyu R, Lin BM, Roach J, Azcarate-Peril MA, Aguiar Ribeiro A, Love MI, Divaris K, Wu D. Comprehensive evaluation of methods for differential expression analysis of metatranscriptomics data. Brief Bioinform 2023; 24:bbad279. [PMID: 37738402 PMCID: PMC10516371 DOI: 10.1093/bib/bbad279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/23/2023] [Accepted: 07/18/2023] [Indexed: 09/24/2023] Open
Abstract
Understanding the function of the human microbiome is important but the development of statistical methods specifically for the microbial gene expression (i.e. metatranscriptomics) is in its infancy. Many currently employed differential expression analysis methods have been designed for different data types and have not been evaluated in metatranscriptomics settings. To address this gap, we undertook a comprehensive evaluation and benchmarking of 10 differential analysis methods for metatranscriptomics data. We used a combination of real and simulated data to evaluate performance (i.e. type I error, false discovery rate and sensitivity) of the following methods: log-normal (LN), logistic-beta (LB), MAST, DESeq2, metagenomeSeq, ANCOM-BC, LEfSe, ALDEx2, Kruskal-Wallis and two-part Kruskal-Wallis. The simulation was informed by supragingival biofilm microbiome data from 300 preschool-age children enrolled in a study of childhood dental disease (early childhood caries, ECC), whereas validations were sought in two additional datasets from the ECC study and an inflammatory bowel disease study. The LB test showed the highest sensitivity in both small and large samples and reasonably controlled type I error. Contrarily, MAST was hampered by inflated type I error. Upon application of the LN and LB tests in the ECC study, we found that genes C8PHV7 and C8PEV7, harbored by the lactate-producing Campylobacter gracilis, had the strongest association with childhood dental disease. This comprehensive model evaluation offers practical guidance for selection of appropriate methods for rigorous analyses of differential expression in metatranscriptomics. Selection of an optimal method increases the possibility of detecting true signals while minimizing the chance of claiming false ones.
Collapse
Affiliation(s)
- Hunyong Cho
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States
| | - Yixiang Qu
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States
| | - Chuwen Liu
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States
| | - Boyang Tang
- Department of Statistics, University of Connecticut, Storrs, CT, United States
| | - Ruiqi Lyu
- School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Bridget M Lin
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States
| | - Jeffrey Roach
- Research Computing, University of North Carolina, Chapel Hill, NC, United States
| | - M Andrea Azcarate-Peril
- Department of Medicine and Nutrition, University of North Carolina, Chapel Hill, NC, United States
| | - Apoena Aguiar Ribeiro
- Division of Diagnostic Sciences, University of North Carolina, Chapel Hill, NC, United States
| | - Michael I Love
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina, Chapel Hill, NC, United States
| | - Kimon Divaris
- Division of Pediatric and Public Health, University of North Carolina, Chapel Hill, NC, United States
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States
| | - Di Wu
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States
- Division of Oral and Craniofacial Health Sciences, Adam School of Dentistry, University of North Carolina, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
7
|
Baker JL. Illuminating the oral microbiome and its host interactions: recent advancements in omics and bioinformatics technologies in the context of oral microbiome research. FEMS Microbiol Rev 2023; 47:fuad051. [PMID: 37667515 PMCID: PMC10503653 DOI: 10.1093/femsre/fuad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/02/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023] Open
Abstract
The oral microbiota has an enormous impact on human health, with oral dysbiosis now linked to many oral and systemic diseases. Recent advancements in sequencing, mass spectrometry, bioinformatics, computational biology, and machine learning are revolutionizing oral microbiome research, enabling analysis at an unprecedented scale and level of resolution using omics approaches. This review contains a comprehensive perspective of the current state-of-the-art tools available to perform genomics, metagenomics, phylogenomics, pangenomics, transcriptomics, proteomics, metabolomics, lipidomics, and multi-omics analysis on (all) microbiomes, and then provides examples of how the techniques have been applied to research of the oral microbiome, specifically. Key findings of these studies and remaining challenges for the field are highlighted. Although the methods discussed here are placed in the context of their contributions to oral microbiome research specifically, they are pertinent to the study of any microbiome, and the intended audience of this includes researchers would simply like to get an introduction to microbial omics and/or an update on the latest omics methods. Continued research of the oral microbiota using omics approaches is crucial and will lead to dramatic improvements in human health, longevity, and quality of life.
Collapse
Affiliation(s)
- Jonathon L Baker
- Department of Oral Rehabilitation & Biosciences, School of Dentistry, Oregon Health & Science University, 3181 Sam Jackson Park Road, Portland, OR 97202, United States
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, CA 92037, United States
- Department of Pediatrics, UC San Diego School of Medicine, La Jolla, CA 92093, United States
| |
Collapse
|
8
|
Barbosa A, Miranda S, Azevedo NF, Cerqueira L, Azevedo AS. Imaging biofilms using fluorescence in situ hybridization: seeing is believing. Front Cell Infect Microbiol 2023; 13:1195803. [PMID: 37284501 PMCID: PMC10239779 DOI: 10.3389/fcimb.2023.1195803] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/08/2023] [Indexed: 06/08/2023] Open
Abstract
Biofilms are complex structures with an intricate relationship between the resident microorganisms, the extracellular matrix, and the surrounding environment. Interest in biofilms is growing exponentially given its ubiquity in so diverse fields such as healthcare, environmental and industry. Molecular techniques (e.g., next-generation sequencing, RNA-seq) have been used to study biofilm properties. However, these techniques disrupt the spatial structure of biofilms; therefore, they do not allow to observe the location/position of biofilm components (e.g., cells, genes, metabolites), which is particularly relevant to explore and study the interactions and functions of microorganisms. Fluorescence in situ hybridization (FISH) has been arguably the most widely used method for an in situ analysis of spatial distribution of biofilms. In this review, an overview on different FISH variants already applied on biofilm studies (e.g., CLASI-FISH, BONCAT-FISH, HiPR-FISH, seq-FISH) will be explored. In combination with confocal laser scanning microscopy, these variants emerged as a powerful approach to visualize, quantify and locate microorganisms, genes, and metabolites inside biofilms. Finally, we discuss new possible research directions for the development of robust and accurate FISH-based approaches that will allow to dig deeper into the biofilm structure and function.
Collapse
Affiliation(s)
- Ana Barbosa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Sónia Miranda
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Porto, Portugal
| | - Nuno F. Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Laura Cerqueira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Andreia S. Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
9
|
Cho H, Ren Z, Divaris K, Roach J, Lin BM, Liu C, Azcarate-Peril MA, Simancas-Pallares MA, Shrestha P, Orlenko A, Ginnis J, North KE, Zandona AGF, Ribeiro AA, Wu D, Koo H. Selenomonas sputigena acts as a pathobiont mediating spatial structure and biofilm virulence in early childhood caries. Nat Commun 2023; 14:2919. [PMID: 37217495 PMCID: PMC10202936 DOI: 10.1038/s41467-023-38346-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Streptococcus mutans has been implicated as the primary pathogen in childhood caries (tooth decay). While the role of polymicrobial communities is appreciated, it remains unclear whether other microorganisms are active contributors or interact with pathogens. Here, we integrate multi-omics of supragingival biofilm (dental plaque) from 416 preschool-age children (208 males and 208 females) in a discovery-validation pipeline to identify disease-relevant inter-species interactions. Sixteen taxa associate with childhood caries in metagenomics-metatranscriptomics analyses. Using multiscale/computational imaging and virulence assays, we examine biofilm formation dynamics, spatial arrangement, and metabolic activity of Selenomonas sputigena, Prevotella salivae and Leptotrichia wadei, either individually or with S. mutans. We show that S. sputigena, a flagellated anaerobe with previously unknown role in supragingival biofilm, becomes trapped in streptococcal exoglucans, loses motility but actively proliferates to build a honeycomb-like multicellular-superstructure encapsulating S. mutans, enhancing acidogenesis. Rodent model experiments reveal an unrecognized ability of S. sputigena to colonize supragingival tooth surfaces. While incapable of causing caries on its own, when co-infected with S. mutans, S. sputigena causes extensive tooth enamel lesions and exacerbates disease severity in vivo. In summary, we discover a pathobiont cooperating with a known pathogen to build a unique spatial structure and heighten biofilm virulence in a prevalent human disease.
Collapse
Affiliation(s)
- Hunyong Cho
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhi Ren
- Biofilm Research Laboratories, Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kimon Divaris
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jeffrey Roach
- UNC Information Technology Services and Research Computing, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bridget M Lin
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chuwen Liu
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M Andrea Azcarate-Peril
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Miguel A Simancas-Pallares
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Poojan Shrestha
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alena Orlenko
- Artificial Intelligence Innovation Lab, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jeannie Ginnis
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Apoena Aguiar Ribeiro
- Division of Diagnostic Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Di Wu
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Hyun Koo
- Biofilm Research Laboratories, Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Ojala T, Kankuri E, Kankainen M. Understanding human health through metatranscriptomics. Trends Mol Med 2023; 29:376-389. [PMID: 36842848 DOI: 10.1016/j.molmed.2023.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/27/2023]
Abstract
Metatranscriptomics has revolutionized our ability to explore and understand transcriptional programs in microbial communities. Moreover, it has enabled us to gain deeper and more specific insight into the microbial activities in human gut, respiratory, oral, and vaginal communities. Perhaps the most important contribution of metatranscriptomics arises, however, from the analyses of disease-associated communities. We review the advantages and disadvantages of metatranscriptomics analyses in understanding human health and disease. We focus on human tissues low in microbial biomass and conditions associated with dysbiotic microbiota. We conclude that a more widespread use of metatranscriptomics and increased knowledge on microbe activities will uncover critical interactions between microbes and host in human health and provide diagnostic basis for culturing-independent, direct functional pathogen identification.
Collapse
Affiliation(s)
- Teija Ojala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Laboratory of Genetics, HUS Diagnostic Center, Hospital District of Helsinki and Uusimaa (HUS), Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matti Kankainen
- Laboratory of Genetics, HUS Diagnostic Center, Hospital District of Helsinki and Uusimaa (HUS), Helsinki, Finland; Hematology Research Unit Helsinki, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
11
|
Yun Z, Xianghong L, Qianhua G, Qin D. Copper ions inhibit Streptococcus mutans-Veillonella parvula dual biofilm by activating Streptococcus mutans reactive nitrogen species. BMC Oral Health 2023; 23:48. [PMID: 36709299 PMCID: PMC9883903 DOI: 10.1186/s12903-023-02738-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/11/2023] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND To investigate the inhibition mechanism of copper ions on Streptococcus mutans-Veillonella parvula dual biofilm. METHODS S. mutans-V. parvula dual biofilm was constructed and copper ions were added at different concentrations. After the biofilm was collected, RNA-seq and qRT-PCR were then performed to get gene information. RESULTS The coculture of S. mutans and V. parvula formed a significantly better dual biofilm of larger biomass than S. mutans mono biofilm. And copper ions showed a more significant inhibitory effect on S. mutans-V. parvula dual biofilm than on S. mutans mono biofilm when copper ions concentration reached 100 µM, and copper ions showed a decreased inhibitory effect on S. gordonii-V. parvula dual biofilm and S. sanguis-V.parvula dual biofilm than on the two mono biofilms as the concentration of copper ions increased. And common trace elements such as iron, magnesium, and zinc showed no inhibitory effect difference on S. mutans-V. parvula dual biofilm. The RNA-seq results showed a significant difference in the expression of a new ABC transporter SMU_651c, SMU_652c, SMU_653c, and S. mutans copper chaperone copYAZ. SMU_651c, SMU_652c, and SMU_653c were predicted to function as nitrite/nitrate transporter-related proteins, which suggested the specific inhibition of copper ions on S. mutans-V. parvula dual biofilm may be caused by the activation of S. mutans reactive nitrogen species. CONCLUSIONS Streptococcus mutans and Veillonella parvula are symbiotic, forming a dual biofilm of larger biomass to better resist the external antibacterial substances, which may increase the virulence of S. mutans. While common trace elements such as iron, magnesium, and zinc showed no specific inhibitory effect on S. mutans-V. parvula dual biofilm, copper ion had a unique inhibitory effect on S. mutans-V. parvula dual biofilm which may be caused by activating S. mutans RNS when copper ions concentration reached 250 µM.
Collapse
Affiliation(s)
- Zhang Yun
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041 Sichuan China ,grid.13291.380000 0001 0807 1581Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan China
| | - Liu Xianghong
- grid.54549.390000 0004 0369 4060Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 China
| | - Gao Qianhua
- grid.54549.390000 0004 0369 4060Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 China
| | - Du Qin
- grid.54549.390000 0004 0369 4060Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 China
| |
Collapse
|
12
|
Neculae E, Gosav EM, Valasciuc E, Dima N, Floria M, Tanase DM. The Oral Microbiota in Valvular Heart Disease: Current Knowledge and Future Directions. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010182. [PMID: 36676130 PMCID: PMC9862471 DOI: 10.3390/life13010182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Oral microbiota formation begins from birth, and everything from genetic components to the environment, alongside the host's behavior (such as diet, smoking, oral hygiene, and even physical activity), contributes to oral microbiota structure. Even though recent studies have focused on the gut microbiota's role in systemic diseases, the oral microbiome represents the second largest community of microorganisms, making it a new promising therapeutic target. Periodontitis and dental caries are considered the two main consequences of oral bacterial imbalance. Studies have shown that oral dysbiosis effects are not limited locally. Due to technological advancement, research identified oral bacterial species in heart valves. This evidence links oral dysbiosis with the development of valvular heart disease (VHD). This review focuses on describing the mechanism behind prolonged local inflammation and dysbiosis, that can induce bacteriemia by direct or immune-mediated mechanisms and finally VHD. Additionally, we highlight emerging therapies based on controlling oral dysbiosis, periodontal disease, and inflammation with immunological and systemic effects, that exert beneficial effects in VHD management.
Collapse
Affiliation(s)
- Ecaterina Neculae
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Nicoleta Dima
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Correspondence:
| | - Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| |
Collapse
|
13
|
Duque C, Chrisostomo DA, Souza ACA, de Almeida Braga GP, Dos Santos VR, Caiaffa KS, Pereira JA, de Oliveira WC, de Aguiar Ribeiro A, Parisotto TM. Understanding the Predictive Potential of the Oral Microbiome in the Development and Progression of Early Childhood Caries. Curr Pediatr Rev 2023; 19:121-138. [PMID: 35959611 DOI: 10.2174/1573396318666220811124848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/24/2022] [Accepted: 04/22/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Early childhood caries (ECC) is the most common chronic disease in young children and a public health problem worldwide. It is characterized by the presence of atypical and fast progressive caries lesions. The aggressive form of ECC, severe early childhood caries (S-ECC), can lead to the destruction of the whole crown of most of the deciduous teeth and cause pain and sepsis, affecting the child's quality of life. Although the multifactorial etiology of ECC is known, including social, environmental, behavioral, and genetic determinants, there is a consensus that this disease is driven by an imbalance between the oral microbiome and host, or dysbiosis, mediated by high sugar consumption and poor oral hygiene. Knowledge of the microbiome in healthy and caries status is crucial for risk monitoring, prevention, and development of therapies to revert dysbiosis and restore oral health. Molecular biology tools, including next-generation sequencing methods and proteomic approaches, have led to the discovery of new species and microbial biomarkers that could reveal potential risk profiles for the development of ECC and new targets for anti-caries therapies. This narrative review summarized some general aspects of ECC, such as definition, epidemiology, and etiology, the influence of oral microbiota in the development and progression of ECC based on the current evidence from genomics, transcriptomic, proteomic, and metabolomic studies and the effect of antimicrobial intervention on oral microbiota associated with ECC. CONCLUSION The evaluation of genetic and proteomic markers represents a promising approach to predict the risk of ECC before its clinical manifestation and plan efficient therapeutic interventions for ECC in its initial stages, avoiding irreversible dental cavitation.
Collapse
Affiliation(s)
- Cristiane Duque
- Department of Preventive and Restorative Dentistry, Araçatuba Dental School, State University of São Paulo (UNESP), Araçatuba, Brazil
| | - Daniela Alvim Chrisostomo
- Department of Preventive and Restorative Dentistry, Araçatuba Dental School, State University of São Paulo (UNESP), Araçatuba, Brazil
| | - Amanda Caselato Andolfatto Souza
- Department of Preventive and Restorative Dentistry, Araçatuba Dental School, State University of São Paulo (UNESP), Araçatuba, Brazil
| | - Gabriela Pacheco de Almeida Braga
- Department of Preventive and Restorative Dentistry, Araçatuba Dental School, State University of São Paulo (UNESP), Araçatuba, Brazil
| | - Vanessa Rodrigues Dos Santos
- Department of Preventive and Restorative Dentistry, Araçatuba Dental School, State University of São Paulo (UNESP), Araçatuba, Brazil
| | - Karina Sampaio Caiaffa
- Department of Preventive and Restorative Dentistry, Araçatuba Dental School, State University of São Paulo (UNESP), Araçatuba, Brazil
| | - Jesse Augusto Pereira
- Department of Preventive and Restorative Dentistry, Araçatuba Dental School, State University of São Paulo (UNESP), Araçatuba, Brazil
| | - Warlley Campos de Oliveira
- Department of Preventive and Restorative Dentistry, Araçatuba Dental School, State University of São Paulo (UNESP), Araçatuba, Brazil
| | - Apoena de Aguiar Ribeiro
- Division of Diagnostic Sciences, University of North Carolina at Chapel Hill - Adams School of Dentistry, Chapel Hill, North Carolina, United State
| | - Thaís Manzano Parisotto
- Laboratory of Clinical and Molecular Microbiology, São Francisco University, Bragança Paulista, Brazil
| |
Collapse
|
14
|
Abstract
The oral cavity is an unique ecosystem formed by different structures, tissues, and a complex microbial community formed by hundreds of different species of bacteria, fungi, viruses, phages, and the candidate phyla radiation (CPR) group, all living in symbiosis with healthy individuals. In an opposite state, dental caries is a biofilm-mediated dysbiosis that involves changes in the core microbiome composition and function, which leads to the demineralization of tooth tissues due to the fermentation of dietary carbohydrates, producing acid by select oral bacteria. The cariogenic biofilm is typically characterized by bacterial species with the ability of adhering to the saliva-coated tooth surface, production of exopolysaccharides-rich matrix (which will limit the diffusion of acidic products of carbohydrate fermentation), and the ability of surviving in this acidic environment. Besides years of research and dental treatment, dental caries remains the most common chronic disease in children worldwide. This article aims to bring an insightful discussion about important questions that remain unanswered in the Cariology and Oral Microbiology fields, to move Science forward, characterize the interrelationships of these communities, and understand mechanistic functions between microorganisms and the host, therefore leading to translatable knowledge that benefits the provision of care to our pediatric patients.
Collapse
Affiliation(s)
- Apoena Aguiar Ribeiro
- Division of Diagnostic Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, USA
- CONTACT Apoena Aguiar Ribeiro Division of Diagnostic Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, 150 Dental Circle, Chapel Hill, CB 7450, USA
| | - Bruce J. Paster
- Department of Microbiology, The Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, USA
| |
Collapse
|
15
|
Bessa LJ, Botelho J, Machado V, Alves R, Mendes JJ. Managing Oral Health in the Context of Antimicrobial Resistance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16448. [PMID: 36554332 PMCID: PMC9778414 DOI: 10.3390/ijerph192416448] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 05/25/2023]
Abstract
The oral microbiome plays a major role in shaping oral health/disease state; thus, a main challenge for dental practitioners is to preserve or restore a balanced oral microbiome. Nonetheless, when pathogenic microorganisms install in the oral cavity and are incorporated into the oral biofilm, oral infections, such as gingivitis, dental caries, periodontitis, and peri-implantitis, can arise. Several prophylactic and treatment approaches are available nowadays, but most of them have been antibiotic-based. Given the actual context of antimicrobial resistance (AMR), antibiotic stewardship in dentistry would be a beneficial approach to optimize and avoid inappropriate or even unnecessary antibiotic use, representing a step towards precision medicine. Furthermore, the development of new effective treatment options to replace the need for antibiotics is being pursued, including the application of photodynamic therapy and the use of probiotics. In this review, we highlight the advances undergoing towards a better understanding of the oral microbiome and oral resistome. We also provide an updated overview of how dentists are adapting to better manage the treatment of oral infections given the problem of AMR.
Collapse
Affiliation(s)
- Lucinda J. Bessa
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
| | - João Botelho
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
- Clinical Research Unit (CRU), CiiEM, Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
- Evidence-Based Hub, CiiEM, Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
| | - Vanessa Machado
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
- Clinical Research Unit (CRU), CiiEM, Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
- Evidence-Based Hub, CiiEM, Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
| | - Ricardo Alves
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
- Clinical Research Unit (CRU), CiiEM, Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
| | - José João Mendes
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
- Clinical Research Unit (CRU), CiiEM, Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
- Evidence-Based Hub, CiiEM, Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
| |
Collapse
|
16
|
Moussa DG, Ahmad P, Mansour TA, Siqueira WL. Current State and Challenges of the Global Outcomes of Dental Caries Research in the Meta-Omics Era. Front Cell Infect Microbiol 2022; 12:887907. [PMID: 35782115 PMCID: PMC9247192 DOI: 10.3389/fcimb.2022.887907] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/04/2022] [Indexed: 12/20/2022] Open
Abstract
Despite significant healthcare advances in the 21st century, the exact etiology of dental caries remains unsolved. The past two decades have witnessed a tremendous growth in our understanding of dental caries amid the advent of revolutionary omics technologies. Accordingly, a consensus has been reached that dental caries is a community-scale metabolic disorder, and its etiology is beyond a single causative organism. This conclusion was based on a variety of microbiome studies following the flow of information along the central dogma of biology from genomic data to the end products of metabolism. These studies were facilitated by the unprecedented growth of the next- generation sequencing tools and omics techniques, such as metagenomics and metatranscriptomics, to estimate the community composition of oral microbiome and its functional potential. Furthermore, the rapidly evolving proteomics and metabolomics platforms, including nuclear magnetic resonance spectroscopy and/or mass spectrometry coupled with chromatography, have enabled precise quantification of the translational outcomes. Although the majority supports 'conserved functional changes' as indicators of dysbiosis, it remains unclear how caries dynamics impact the microbiota functions and vice versa, over the course of disease onset and progression. What compounds the situation is the host-microbiota crosstalk. Genome-wide association studies have been undertaken to elucidate the interaction of host genetic variation with the microbiome. However, these studies are challenged by the complex interaction of host genetics and environmental factors. All these complementary approaches need to be orchestrated to capture the key players in this multifactorial disease. Herein, we critically review the milestones in caries research focusing on the state-of-art singular and integrative omics studies, supplemented with a bibliographic network analysis to address the oral microbiome, the host factors, and their interactions. Additionally, we highlight gaps in the dental literature and shed light on critical future research questions and study designs that could unravel the complexities of dental caries, the most globally widespread disease.
Collapse
Affiliation(s)
- Dina G. Moussa
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Paras Ahmad
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tamer A. Mansour
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, United States
- Department of Clinical Pathology, School of Medicine, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
17
|
Danenberg AH. The etiology of gut dysbiosis and its role in chronic disease. MICROBIOME, IMMUNITY, DIGESTIVE HEALTH AND NUTRITION 2022:71-91. [DOI: 10.1016/b978-0-12-822238-6.00020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
18
|
Sedghi LM, Bacino M, Kapila YL. Periodontal Disease: The Good, The Bad, and The Unknown. Front Cell Infect Microbiol 2021; 11:766944. [PMID: 34950607 PMCID: PMC8688827 DOI: 10.3389/fcimb.2021.766944] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/11/2021] [Indexed: 01/08/2023] Open
Abstract
Periodontal disease is classically characterized by progressive destruction of the soft and hard tissues of the periodontal complex, mediated by an interplay between dysbiotic microbial communities and aberrant immune responses within gingival and periodontal tissues. Putative periodontal pathogens are enriched as the resident oral microbiota becomes dysbiotic and inflammatory responses evoke tissue destruction, thus inducing an unremitting positive feedback loop of proteolysis, inflammation, and enrichment for periodontal pathogens. Keystone microbial pathogens and sustained gingival inflammation are critical to periodontal disease progression. However, recent studies have revealed the importance of previously unidentified microbes involved in disease progression, including various viruses, phages and bacterial species. Moreover, newly identified immunological and genetic mechanisms, as well as environmental host factors, including diet and lifestyle, have been discerned in recent years as further contributory factors in periodontitis. These factors have collectively expanded the established narrative of periodontal disease progression. In line with this, new ideologies related to maintaining periodontal health and treating existing disease have been explored, such as the application of oral probiotics, to limit and attenuate disease progression. The role of systemic host pathologies, such as autoimmune disorders and diabetes, in periodontal disease pathogenesis has been well noted. Recent studies have additionally identified the reciprocated importance of periodontal disease in potentiating systemic disease states at distal sites, such as in Alzheimer's disease, inflammatory bowel diseases, and oral cancer, further highlighting the importance of the oral cavity in systemic health. Here we review long-standing knowledge of periodontal disease progression while integrating novel research concepts that have broadened our understanding of periodontal health and disease. Further, we delve into innovative hypotheses that may evolve to address significant gaps in the foundational knowledge of periodontal disease.
Collapse
Affiliation(s)
- Lea M. Sedghi
- School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
| | - Margot Bacino
- School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
| | - Yvonne Lorraine Kapila
- School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
- Department of Periodontology, School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
19
|
The human microbiome encodes resistance to the antidiabetic drug acarbose. Nature 2021; 600:110-115. [PMID: 34819672 DOI: 10.1038/s41586-021-04091-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/01/2021] [Indexed: 12/26/2022]
Abstract
The human microbiome encodes a large repertoire of biochemical enzymes and pathways, most of which remain uncharacterized. Here, using a metagenomics-based search strategy, we discovered that bacterial members of the human gut and oral microbiome encode enzymes that selectively phosphorylate a clinically used antidiabetic drug, acarbose1,2, resulting in its inactivation. Acarbose is an inhibitor of both human and bacterial α-glucosidases3, limiting the ability of the target organism to metabolize complex carbohydrates. Using biochemical assays, X-ray crystallography and metagenomic analyses, we show that microbiome-derived acarbose kinases are specific for acarbose, provide their harbouring organism with a protective advantage against the activity of acarbose, and are widespread in the microbiomes of western and non-western human populations. These results provide an example of widespread microbiome resistance to a non-antibiotic drug, and suggest that acarbose resistance has disseminated in the human microbiome as a defensive strategy against a potential endogenous producer of a closely related molecule.
Collapse
|
20
|
Influence of Curing Time on the Microbiological Behavior of Bulk-Fill Nanohybrid Resin Composites. Polymers (Basel) 2021; 13:polym13172948. [PMID: 34502989 PMCID: PMC8434565 DOI: 10.3390/polym13172948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
This in vitro study aimed to evaluate the influence of curing time on surface characteristics and microbiological behavior of three bulk-fill resin-based composites (RBCs). Materials were light-cured for either 10 s or 80 s, then finished using a standard clinical procedure. They were characterized by surface morphology (SEM), surface elemental composition (EDS), surface roughness (SR), and surface free energy (SFE). Microbiological behavior was assessed as S. mutans adherence (2 h) and biofilm formation (24 h) using a continuous-flow bioreactor. Statistical analysis included a two-way ANOVA and Tukey’s test (p < 0.05). Materials differed substantially as filler shape, dimension, elemental composition and resin matrix composition. Significant differences between materials were found for SR, SFE, and microbiological behavior. Such differences were less pronounced or disappeared after prolonged photocuring. The latter yielded significantly lower adherence and biofilm formation on all tested materials, similar to conventional RBCs. Improved photoinitiators and UDMA-based resin matrix composition may explain these results. No correlation between surface characteristics and microbiological behavior can explain the similar microbiological behavior of bulk-fill materials after prolonged photocuring. This different performance of bulk-fill materials compared with conventional RBCs, where surface characteristics, especially surface chemistry, influence microbiological behavior, may have important implications for secondary caries occurrence and restoration longevity.
Collapse
|
21
|
Zhang Y, Thompson KN, Branck T, Yan Yan, Nguyen LH, Franzosa EA, Huttenhower C. Metatranscriptomics for the Human Microbiome and Microbial Community Functional Profiling. Annu Rev Biomed Data Sci 2021; 4:279-311. [PMID: 34465175 DOI: 10.1146/annurev-biodatasci-031121-103035] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Shotgun metatranscriptomics (MTX) is an increasingly practical way to survey microbial community gene function and regulation at scale. This review begins by summarizing the motivations for community transcriptomics and the history of the field. We then explore the principles, best practices, and challenges of contemporary MTX workflows: beginning with laboratory methods for isolation and sequencing of community RNA, followed by informatics methods for quantifying RNA features, and finally statistical methods for detecting differential expression in a community context. In thesecond half of the review, we survey important biological findings from the MTX literature, drawing examples from the human microbiome, other (nonhuman) host-associated microbiomes, and the environment. Across these examples, MTX methods prove invaluable for probing microbe-microbe and host-microbe interactions, the dynamics of energy harvest and chemical cycling, and responses to environmental stresses. We conclude with a review of open challenges in the MTX field, including making assays and analyses more robust, accessible, and adaptable to new technologies; deciphering roles for millions of uncharacterized microbial transcripts; and solving applied problems such as biomarker discovery and development of microbial therapeutics.
Collapse
Affiliation(s)
- Yancong Zhang
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kelsey N Thompson
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Tobyn Branck
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Department of Systems, Synthetic, and Quantitative Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yan Yan
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Long H Nguyen
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02108, USA
| | - Eric A Franzosa
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Curtis Huttenhower
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| |
Collapse
|
22
|
Redanz U, Redanz S, Treerat P, Prakasam S, Lin LJ, Merritt J, Kreth J. Differential Response of Oral Mucosal and Gingival Cells to Corynebacterium durum, Streptococcus sanguinis, and Porphyromonas gingivalis Multispecies Biofilms. Front Cell Infect Microbiol 2021; 11:686479. [PMID: 34277471 PMCID: PMC8282179 DOI: 10.3389/fcimb.2021.686479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/06/2021] [Indexed: 01/28/2023] Open
Abstract
Polymicrobial interactions with oral mucosal surfaces determine the health status of the host. While a homeostatic balance provides protection from oral disease, a dysbiotic polymicrobial community promotes tissue destruction and chronic oral diseases. How polymicrobial communities transition from a homeostatic to a dysbiotic state is an understudied process. Thus, we were interested to investigate this ecological transition by focusing on biofilm communities containing high abundance commensal species and low abundance pathobionts to characterize the host-microbiome interactions occurring during oral health. To this end, a multispecies biofilm model was examined using the commensal species Corynebacterium durum and Streptococcus sanguinis and the pathobiont Porphyromonas gingivalis. We compared how both single and multispecies biofilms interact with different oral mucosal and gingival cell types, including the well-studied oral keratinocyte cell lines OKF4/TERT-1and hTERT TIGKs as well as human primary periodontal ligament cells. While single species biofilms of C. durum, S. sanguinis, and P. gingivalis are all characterized by unique cytokine responses for each species, multispecies biofilms elicited a response resembling S. sanguinis single species biofilms. One notable exception is the influence of P. gingivalis upon TNF-α and Gro-α production in hTERT TIGKs cells, which was not affected by the presence of other species. This study is also the first to examine the host response to C. durum. Interestingly, C. durum yielded no notable inflammatory responses from any of the tested host cells, suggesting it functions as a true commensal species. Conversely, S. sanguinis was able to induce expression and secretion of the proinflammatory cytokines IL-6 and IL-8, demonstrating a much greater inflammatory potential, despite being health associated. Our study also demonstrates the variability of host cell responses between different cell lines, highlighting the importance of developing relevant in vitro models to study oral microbiome-host interactions.
Collapse
Affiliation(s)
- Ulrike Redanz
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, United States
| | - Sylvio Redanz
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, United States,Department of Translational Rheumatology and Immunology, Institute for Musculoskeletal Medicine, University of Münster, Münster, Germany
| | - Puthalayai Treerat
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, United States
| | - Sivaraman Prakasam
- Department of Periodontology, School of Dentistry, Oregon Health & Science University, Portland, OR, United States
| | - Li-Jung Lin
- Department of Translational Rheumatology and Immunology, Institute for Musculoskeletal Medicine, University of Münster, Münster, Germany
| | - Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, United States,Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, United States,Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health & Science University, Portland, OR, United States,*Correspondence: Jens Kreth,
| |
Collapse
|
23
|
da Costa Rosa T, de Almeida Neves A, Azcarate-Peril MA, Divaris K, Wu D, Cho H, Moss K, Paster BJ, Chen T, B. Freitas-Fernandes L, Fidalgo TKS, Tadeu Lopes R, Valente AP, R. Arnold R, de Aguiar Ribeiro A. The bacterial microbiome and metabolome in caries progression and arrest. J Oral Microbiol 2021; 13:1886748. [PMID: 34188775 PMCID: PMC8211139 DOI: 10.1080/20002297.2021.1886748] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 01/04/2023] Open
Abstract
Aim: This in vivo experimental study investigated bacterial microbiome and metabolome longitudinal changes associated with enamel caries lesion progression and arrest. Methods: We induced natural caries activity in three caries-free volunteers prior to four premolar extractions for orthodontic reasons. The experimental model included placement of a modified orthodontic band on smooth surfaces and a mesh on occlusal surfaces. We applied the caries-inducing protocol for 4- and 6-weeks, and subsequently promoted caries lesion arrest via a 2-week toothbrushing period. Lesions were verified clinically and quantitated via micro-CT enamel density measurements. The biofilm microbial composition was determined via 16S rRNA gene Illumina sequencing and NMR spectrometry was used for metabolomics. Results: Biofilm maturation and caries lesion progression were characterized by an increase in Gram-negative anaerobes, including Veillonella and Prevotella. Streptococcus was associated caries lesion progression, while a more equal distribution of Streptococcus, Bifidobacterium, Atopobium, Prevotella, Veillonella, and Saccharibacteria (TM7) characterized arrest. Lactate, acetate, pyruvate, alanine, valine, and sugars were more abundant in mature biofilms compared to newly formed biofilms. Conclusions: These longitudinal bacterial microbiome and metabolome results provide novel mechanistic insights into the role of the biofilm in caries progression and arrest and offer promising candidate biomarkers for validation in future studies.
Collapse
Affiliation(s)
| | - Aline de Almeida Neves
- Department of Pediatric Dentistry, Rio de Janeiro Federal University, Brazil
- Centre for Oral Clinical and Translational Sciences, King’s College London, London, UK
| | - M. Andrea Azcarate-Peril
- Microbiome Core Facility, University of North Carolina School of Medicine, Chapel Hill, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of North Carolina, Chapel Hill, USA
| | - Kimon Divaris
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina, Chapel Hill, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, USA
| | - Di Wu
- Division of Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, USA
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, USA
| | - Hunyong Cho
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, USA
| | - Kevin Moss
- Division of Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, USA
| | - Bruce J. Paster
- Department of Microbiology, Forsyth Institute, Cambridge, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, USA
| | - Tsute Chen
- Department of Microbiology, Forsyth Institute, Cambridge, USA
| | - Liana B. Freitas-Fernandes
- Department of Pediatric Dentistry, Rio de Janeiro Federal University, Brazil
- National Center for Nuclear Magnetic Resonance, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana K. S. Fidalgo
- National Center for Nuclear Magnetic Resonance, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Preventive and Community Dentistry, School of Dentistry, Rio de Janeiro State University, Brazil
| | - Ricardo Tadeu Lopes
- Laboratory of Nuclear Instrumentation, Federal University of Rio de Janeiro, Rio De Janeiro, Brazil
| | - Ana Paula Valente
- National Center for Nuclear Magnetic Resonance, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roland R. Arnold
- Division of Diagnostic Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, USA
| | - Apoena de Aguiar Ribeiro
- Division of Diagnostic Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, USA
| |
Collapse
|
24
|
Liu J, Liu Z, Huang J, Tao R. Effect of probiotics on gingival inflammation and oral microbiota: A meta-analysis. Oral Dis 2021; 28:1058-1067. [PMID: 33772970 DOI: 10.1111/odi.13861] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/18/2021] [Accepted: 03/19/2021] [Indexed: 12/29/2022]
Abstract
To evaluate the effect of probiotics on gingival inflammation and oral microbiota in patients suffering from plaque-induced gingivitis. PubMed, Cochrane Central Register of Controlled Trials (CENTRAL), and EMBASE were electronically searched until December 2020. The quality of included studies was assessed with the Cochrane Collaboration's Risk of Bias tool. The differences were expressed as weighted mean differences (WMD) and 95% of confidence interval (95% CI). I2 test was performed to evaluate the heterogeneity of the studies. All analyses were performed using Review Manager (version 5.3). Eleven randomized and controlled trials were included, enrolling 554 patients. All comparisons displayed that oral probiotics had no significant improvement in the Gingival Index (GI), Plaque Index (PI), and bleeding on probing (BOP) of patients with plaque-induced gingivitis. In terms of microecology, no significant difference in the volumes of gingival crevicular fluid (GCF), the concentration of IL-1β, and the counts of Aggregatibacter actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), and Fusobacterium nucleatum (Fn) were found between the probiotic group and the placebo group. There exists no clear evidence that oral probiotics have positive effect on gingival inflammation and oral microecological environment of patients with plaque-induced gingivitis.
Collapse
Affiliation(s)
- Jiaxuan Liu
- College of Stomatology, Guangxi Medical University, Guangxi, China
| | - Zhenmin Liu
- College of Stomatology, Guangxi Medical University, Guangxi, China
| | - Jiaqi Huang
- College of Stomatology, Guangxi Medical University, Guangxi, China
| | - Renchuan Tao
- College of Stomatology, Guangxi Medical University, Guangxi, China
| |
Collapse
|
25
|
Identification of unknown acid-resistant genes of oral microbiotas in patients with dental caries using metagenomics analysis. AMB Express 2021; 11:39. [PMID: 33675438 PMCID: PMC7936999 DOI: 10.1186/s13568-021-01199-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/23/2021] [Indexed: 11/10/2022] Open
Abstract
Acid resistance is critical for the survival of bacteria in the dental caries oral micro-environment. However, there are few acid-resistant genes of microbiomes obtained through traditional molecular biology experimental techniques. This study aims to try macrogenomics technologies to efficiently identify acid-resistant genes in oral microbes of patients with dental caries. Total DNA was extracted from oral microbiota obtained from thirty dental caries patients and subjected to high-throughput sequencing. This data was used to build a metagenomic library, which was compared to the sequences of two Streptococcus mutant known acid-resistant genes, danK and uvrA, using a BLAST search. A total of 19 and 35 unknown gene sequences showed similarities with S. mutans uvrA and dnaK in the metagenomic library, respectively. Two unknown genes, mo-dnaK and mo-uvrA, were selected for primer design and bioinformatic analysis based on their sequences. Bioinformatics analysis predicted them encoding of a human heat-shock protein (HSP) 70 and an ATP-dependent DNA repair enzyme, respectively, closely related with the acid resistance mechanism. After cloning, these genes were transferred into competent Escherichia coli for acid resistance experiments. E. coli transformed with both genes demonstrated acid resistance, while the survival rate of E. coli transformed with mo-uvrA was significantly higher in an acidic environment (pH = 3). Through this experiment we found that identify unknown acid-resistant genes in oral microbes of patients with caries by establishing a metagenomic library is very efficient. Our results provide an insight into the mechanisms and pathogenesis of dental caries for their treatment without affecting oral probiotics.
Collapse
|
26
|
Walther C, Zumbülte S, Faerber CM, Wierichs RJ, Meyer-Lueckel H, Conrads G, Henne K, Esteves-Oliveira M. Analysis of relative bacterial activity and lactate dehydrogenase gene expression of caries-associated bacteria in a site-specific natural biofilm: an ex vivo study. Clin Oral Investig 2020; 25:3669-3679. [PMID: 33226500 PMCID: PMC8137627 DOI: 10.1007/s00784-020-03691-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/10/2020] [Indexed: 11/30/2022]
Abstract
Objectives Detecting bacterial activity is considered a promising approach to monitor shifts from symbiosis to dysbiosis in oral microbiome. The present study aimed at investigating both the relative bacterial activity and the lactate dehydrogenase (ldh) gene expression of caries-associated bacteria in a site-specific natural biofilm. Material and methods Sixty subjects (age, mean ± SE: 30.1 ± 1.4) were allocated to two groups: caries-free subjects (CF) or caries-active subjects (CA). CF presented one sound surface (CFS, n = 30). CA presented two donor sites: a cavitated caries lesion (CAC, n = 30) and a sound reference surface (CAS, n = 30). Real-time quantitative PCR (q-PCR) on species or genus level and total bacteria was performed targeting the 16S gene, the 16S rRNA, the ldh gene, and the ldh mRNA (increasing 16S ribosomal RNA copy numbers can function as an indicator of increased energy metabolism). As the 16S rRNA abundance represents the number of ribosomes, while the 16S gene abundance represents the number of genomes, the quotient of the relative abundances functions as a measure for the relative bacterial activity (%). Results Both lactobacilli and S. mutans showed the highest relative bacterial activity in CAC ((mean ± SE) 218 ± 60% and 61 ± 16%, respectively) and the lowest values for both sound reference surfaces (69 ± 48%; 8 ± 3%). Significant differences were found between CAC and CAS as well as between CAC and CFS for both lactobacilli and S. mutans (p < 0.05). The ldh gene expression of lactobacilli and S. mutans only showed moderate values in CAC (1.90E+03 ± 2.11E+03; 2.08E+04 ± 4.44E+04 transcripts/μl) and CFS (2.04E+03 ± 2.74E+03; 8.16E+03 ± 6.64E+03 transcripts/μl); consequently no significant differences were detected. Conclusion and clinical relevance Caries-associated bacteria (lactobacilli and S. mutans) showed the highest relative bacterial activity in plaque of cavitated lesions, the lowest in sound surfaces, allowing the detection of a significant activity shift in health and disease for caries-active patients. However, no significant differences in ldh gene expression could be determined.
Collapse
Affiliation(s)
- Carolin Walther
- Department of Prosthetic Dentistry, Center for Dental and Oral Medicine, University Medical Center, Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Sandra Zumbülte
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology, and Preventive Dentistry, RWTH Aachen University, Aachen, Germany
| | - Christoph M Faerber
- Department of Operative Dentistry, Periodontology, and Preventive Dentistry, RWTH Aachen University, Aachen, Germany
| | - Richard Johannes Wierichs
- Department of Restorative, Preventive and Pediatric Dentistry, zmk bern, University of Bern, Bern, Switzerland
| | - Hendrik Meyer-Lueckel
- Department of Restorative, Preventive and Pediatric Dentistry, zmk bern, University of Bern, Bern, Switzerland
| | - Georg Conrads
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology, and Preventive Dentistry, RWTH Aachen University, Aachen, Germany
| | - Karsten Henne
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology, and Preventive Dentistry, RWTH Aachen University, Aachen, Germany
| | - Marcella Esteves-Oliveira
- Department of Operative Dentistry, Periodontology, and Preventive Dentistry, RWTH Aachen University, Aachen, Germany.,Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
27
|
Abstract
Although the composition of the oral human microbiome is now well studied, regulation of genes within oral microbial communities remains mostly uncharacterized. Current concepts of periodontal disease and caries highlight the importance of oral biofilms and their role as etiological agents of those diseases. Currently, there is increased interest in exploring and characterizing changes in the composition and gene-expression profiles of oral microbial communities. These efforts aim to identify changes in functional activities that could explain the transition from health to disease and the reason for the chronicity of those infections. It is now clear that the functions of distinct species within the subgingival microbiota are intimately intertwined with the rest of the microbial community. This point highlights the relevance of examining the expression profile of specific species within the subgingival microbiota in the case of periodontal disease or caries lesions, in the context of the other members of the biofilm in vivo. Metatranscriptomic analysis of the oral community is the starting point for identifying environmental signals that modulate the shift in metabolism of the community from commensal to dysbiotic. These studies give a snapshot of the expression patterns of microbial communities and also allow us to determine triggers to diseases. For example, in the case of caries, studies have unveiled a potential new pathway of sugar metabolism, namely the use of sorbitol as an additional source of carbon by Streptococcus mutans; and in the case of periodontal disease, high levels of extracellular potassium could be a signal of disease. Longitudinal studies are needed to identify the real markers of the initial stages of caries and periodontal disease. More information on the gene-expression profiles of the host, along with the patterns from the microbiome, will lead to a clearer understanding of the modulation of health and disease. This review presents a summary of these initial studies, which have opened the door to a new understanding of the dynamics of the oral community during the dysbiotic process in the oral cavity.
Collapse
Affiliation(s)
- Ana E Duran-Pinedo
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
28
|
Seneviratne CJ, Suriyanarayanan T, Widyarman AS, Lee LS, Lau M, Ching J, Delaney C, Ramage G. Multi-omics tools for studying microbial biofilms: current perspectives and future directions. Crit Rev Microbiol 2020; 46:759-778. [PMID: 33030973 DOI: 10.1080/1040841x.2020.1828817] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The advent of omics technologies has greatly improved our understanding of microbial biology, particularly in the last two decades. The field of microbial biofilms is, however, relatively new, consolidated in the 1980s. The morphogenic switching by microbes from planktonic to biofilm phenotype confers numerous survival advantages such as resistance to desiccation, antibiotics, biocides, ultraviolet radiation, and host immune responses, thereby complicating treatment strategies for pathogenic microorganisms. Hence, understanding the mechanisms governing the biofilm phenotype can result in efficient treatment strategies directed specifically against molecular markers mediating this process. The application of omics technologies for studying microbial biofilms is relatively less explored and holds great promise in furthering our understanding of biofilm biology. In this review, we provide an overview of the application of omics tools such as transcriptomics, proteomics, and metabolomics as well as multi-omics approaches for studying microbial biofilms in the current literature. We also highlight how the use of omics tools directed at various stages of the biological information flow, from genes to metabolites, can be integrated via multi-omics platforms to provide a holistic view of biofilm biology. Following this, we propose a future artificial intelligence-based multi-omics platform that can predict the pathways associated with different biofilm phenotypes.
Collapse
Affiliation(s)
- Chaminda J Seneviratne
- Singapore Oral Microbiomics Initiative (SOMI), National Dental Research Institute Singapore, National Dental Centre, Singapore, Singapore.,Duke NUS Medical School, Singapore, Singapore
| | - Tanujaa Suriyanarayanan
- Singapore Oral Microbiomics Initiative (SOMI), National Dental Research Institute Singapore, National Dental Centre, Singapore, Singapore.,Duke NUS Medical School, Singapore, Singapore
| | - Armelia Sari Widyarman
- Department of Microbiology, Faculty of Dentistry, Trisakti University, Grogol, West Jakarta, Indonesia
| | - Lye Siang Lee
- Duke-NUS Medical School, Metabolomics Lab, Cardiovascular and Metabolic Disorders, Singapore, Singapore
| | - Matthew Lau
- Singapore Oral Microbiomics Initiative (SOMI), National Dental Research Institute Singapore, National Dental Centre, Singapore, Singapore
| | - Jianhong Ching
- Duke-NUS Medical School, Metabolomics Lab, Cardiovascular and Metabolic Disorders, Singapore, Singapore
| | - Christopher Delaney
- School of Medicine, Dentistry & Nursing, Glasgow Dental Hospital & School, University of Glasgow, Glasgow, UK
| | - Gordon Ramage
- School of Medicine, Dentistry & Nursing, Glasgow Dental Hospital & School, University of Glasgow, Glasgow, UK
| |
Collapse
|
29
|
Characterization of Scardovia wiggsiae Biofilm by Original Scanning Electron Microscopy Protocol. Microorganisms 2020; 8:microorganisms8060807. [PMID: 32471210 PMCID: PMC7355790 DOI: 10.3390/microorganisms8060807] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 01/11/2023] Open
Abstract
Early childhood caries (ECC) is a severe manifestation of carious pathology with rapid and disruptive progression. The ECC microbiota includes a wide variety of bacterial species, among which is an anaerobic newly named species, Scardovia wiggsiae, a previously unidentified Bifidobacterium. Our aim was to provide the first ultrastructural characterization of S. wiggsiae and its biofilm by scanning electron microscopy (SEM) using a protocol that faithfully preserved the biofilm architecture and allowed an investigation at very high magnifications (order of nanometers) and with the appropriate resolution. To accomplish this task, we analyzed Streptococcus mutans’ biofilm by conventional SEM and VP-SEM protocols, in addition, we developed an original procedure, named OsO4-RR-TA-IL, which avoids dehydration, drying and sputter coating. This innovative protocol allowed high-resolution and high-magnification imaging (from 10000× to 35000×) in high-vacuum and high-voltage conditions. After comparing three methods, we chose OsO4-RR-TA-IL to investigate S. wiggsiae. It appeared as a fusiform elongated bacterium, without surface specialization, arranged in clusters and submerged in a rich biofilm matrix, which showed a well-developed micro-canalicular system. Our results provide the basis for the development of innovative strategies to quantify the effects of different treatments, in order to establish the best option to counteract ECC in pediatric patients.
Collapse
|
30
|
Solidago virgaurea L. Plant Extract Targeted Against Candida albicans to Reduce Oral Microbial Biomass: a Double Blind Randomized Trial on Healthy Adults. Antibiotics (Basel) 2020; 9:antibiotics9040137. [PMID: 32218125 PMCID: PMC7235725 DOI: 10.3390/antibiotics9040137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Oral microbiome plays an important part on oral health and endogenous bacteria and fungi should not be eradicated. However, their proliferation must be controlled by oral hygiene care. In vitro, Solidago virgaurea ssp. virgaurea L. (SV) plant extract inhibits the adherence and hyphal formation of a fungus, Candida albicans. It reduces the biomass of Candida-bacterial biofilms but not fungal or bacterial growth. Unlike chemical antiseptics, like triclosan and chlorhexidine for instance, SV is a plant extract easily biodegradable. The purpose of this study was to assess the in vivo effectiveness of SV extract in reducing oral biomass. A randomized, double-blind clinical study, with dental plaque evaluation designed to assess the effectiveness of a fluorinated toothpaste containing SV (Bucovia™, Givaudan, Vernier, Switzerland) was conducted. Sixty-six subjects (SV group n = 33 vs. control n = 33) brushed their teeth twice a day for a 4-week period. Supragingival dental plaque was sampled. Total bacterial load (broad spectral bacterial quantitative Polymerase Chain Reaction (qPCR)), C. albicans and seven bacterial species were quantified by qPCR. In the Intervention group, there was a decrease of Total bacterial load (ΔD0D28 p = 0.005 and ΔD14D28 p = 0.026), Streptococcus mutans (ΔD0D14 p = 0.024) and C. albicans (ΔD0D28 p = 0.022). In the Control group Total bacterial load tended to decrease from baseline to day 28 (ΔD0D28 p = 0.062 and ΔD14D28 p = 0.009). Plaque Index and Gingival Index improved in both groups.
Collapse
|
31
|
Kreth J, Abdelrahman YM, Merritt J. Multiplex Imaging of Polymicrobial Communities-Murine Models to Study Oral Microbiome Interactions. Methods Mol Biol 2020; 2081:107-126. [PMID: 31721121 PMCID: PMC7398006 DOI: 10.1007/978-1-4939-9940-8_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Similar to other mucosal surfaces of the body, the oral cavity hosts a diverse microbial flora that live in polymicrobial biofilm communities. It is the ecology of these communities that are the primary determinants of oral health (symbiosis) or disease (dysbiosis). As such, both symbiosis and dysbiosis are inherently polymicrobial phenomena. In an effort to facilitate studies of polymicrobial communities within rodent models, we developed a suite of synthetic luciferases suitable for multiplexed in situ analyses of microbial ecology and specific gene expression. Using this approach, it is feasible to noninvasively measure multiple luciferase signals in vivo with both spatial and temporal resolution. In the following chapter, we describe the relevant details and protocols used to establish a biophotonic imaging platform for the study of experimental polymicrobial oral biofilms and abscesses in mice. The protocols described here are specifically tailored for use with oral streptococci, but the general strategies are adaptable for a wide range of polymicrobial infection studies using other species.
Collapse
Affiliation(s)
- Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - Yasser M Abdelrahman
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA.
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
32
|
Frias-Lopez J, Duran-Pinedo AE. The Function of the Oral Microbiome in Health and Disease. EMERGING THERAPIES IN PERIODONTICS 2020:141-173. [DOI: 10.1007/978-3-030-42990-4_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
33
|
Liu S, Chen M, Wang Y, Zhou X, Peng X, Ren B, Li M, Cheng L. Effect of Veillonella parvula on the physiological activity of Streptococcus mutans. Arch Oral Biol 2020; 109:104578. [DOI: 10.1016/j.archoralbio.2019.104578] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 11/29/2022]
|
34
|
Mark Welch JL, Dewhirst FE, Borisy GG. Biogeography of the Oral Microbiome: The Site-Specialist Hypothesis. Annu Rev Microbiol 2019; 73:335-358. [PMID: 31180804 PMCID: PMC7153577 DOI: 10.1146/annurev-micro-090817-062503] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microbial communities are complex and dynamic, composed of hundreds of taxa interacting across multiple spatial scales. Advances in sequencing and imaging technology have led to great strides in understanding both the composition and the spatial organization of these complex communities. In the human mouth, sequencing results indicate that distinct sites host microbial communities that not only are distinguishable but to a meaningful degree are composed of entirely different microbes. Imaging suggests that the spatial organization of these communities is also distinct. Together, the literature supports the idea that most oral microbes are site specialists. A clear understanding of microbiota structure at different sites in the mouth enables mechanistic studies, informs the generation of hypotheses, and strengthens the position of oral microbiology as a model system for microbial ecology in general.
Collapse
Affiliation(s)
| | - Floyd E. Dewhirst
- The Forsyth Institute, Cambridge MA 02142 and Harvard School of Dental Medicine, Boston MA 02115
| | | |
Collapse
|
35
|
Stashenko P, Yost S, Choi Y, Danciu T, Chen T, Yoganathan S, Kressirer C, Ruiz-Tourrella M, Das B, Kokaras A, Frias-Lopez J. The Oral Mouse Microbiome Promotes Tumorigenesis in Oral Squamous Cell Carcinoma. mSystems 2019; 4:e00323-19. [PMID: 31387932 PMCID: PMC6687944 DOI: 10.1128/msystems.00323-19] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignancy of the head and neck worldwide. Dysbiosis of the microbiome has increasingly been linked to the development of different kinds of cancer. Applying 16S rRNA gene sequence analysis and metatranscriptomic analyses, we characterized the longitudinal changes in the profiles and the function of the oral microbiome in a 4-nitroquinoline-1-oxide (4-NQO)-induced model of OSCC in gnotobiotic mice. We characterized the dynamics of the oral microbiome in this model using two different microbiome inocula: one from healthy mice and the other from mice bearing a 4-NQO-induced tumor. Mice colonized with different oral microbiomes and exposed to 4-NQO had increased tumor numbers and sizes compared to controls exposed to 4-NQO but lacking a microbiome. We observed an overall increase in diversity in the tumorigenic samples compared to that in the nontumor group not exposed to 4-NQO. Despite the variability in community dynamics, specific patterns emerged during the progression of the disease. In the two groups that were inoculated with the OSCC-associated microbiome, we observed opposite profiles of abundance in Parabacteroides and Corynebacterium While the percentage of Parabacteroides bacteria decreased in the control group, it increased in the OSCC group, and the opposite was observed for Corynebacterium The metatranscriptomic analysis revealed overexpression of the same metabolic signatures associated with OSCC regardless of the community profile. These included nitrogen transport, response to stress, interspecies interactions, Wnt pathway modulation, and amino acid and lipid biosynthesis. Thus, these results seem to suggest that certain collective physiological activities are critical for microbiome-mediated OSCC progression.IMPORTANCE There is growing evidence that changes in the microbiome are associated with carcinogenesis. To date, no consistent oral microbiome composition associated with OSCC has been identified. Longitudinal and functional studies like the study presented here should yield a better understanding of the role that the oral microbiome plays in OSCC. Our findings, obtained using a germ-free mouse model, indicate that the presence of different oral microbiomes enhances tumorigenesis and increases the final number of tumors in mice. By studying community-wide expression profiles, we found that regardless of the phylogenetic composition of the microbiome, the same metabolic activities were consistently associated with OSCC. Therefore, due to the functional redundancy of the microbiome, the critical element in explaining the contribution of the microbiota in OSCC is the collective physiological activity of the community, thus accounting for the previous inability to identify a consensus community profile or etiologic agents for OSCC.
Collapse
Affiliation(s)
- Philip Stashenko
- Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts, USA
| | - Susan Yost
- Forsyth Institute, Cambridge, Massachusetts, USA
| | - Yoonhee Choi
- Forsyth Institute, Cambridge, Massachusetts, USA
| | - Theodora Danciu
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Tsute Chen
- Forsyth Institute, Cambridge, Massachusetts, USA
| | | | | | | | - Bikul Das
- Department of Cancer and Stem Cell Biology, Thoreau Lab for Global Health, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
| | | | - Jorge Frias-Lopez
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| |
Collapse
|
36
|
McGinniss JE, Imai I, Simon-Soro A, Brown MC, Knecht VR, Frye L, Ravindran PM, Dothard MI, Wadell DA, Sohn MB, Li H, Christie JD, Diamond JM, Haas AR, Lanfranco AR, DiBardino DM, Bushman FD, Collman RG. Molecular analysis of the endobronchial stent microbial biofilm reveals bacterial communities that associate with stent material and frequent fungal constituents. PLoS One 2019; 14:e0217306. [PMID: 31141557 PMCID: PMC6541290 DOI: 10.1371/journal.pone.0217306] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/08/2019] [Indexed: 12/19/2022] Open
Abstract
Endobronchial stents are increasingly used to treat airway complications in multiple conditions including lung transplantation but little is known about the biofilms that form on these devices. We applied deep sequencing to profile luminal biofilms of 46 endobronchial stents removed from 20 subjects primarily with lung transplantation-associated airway compromise. Microbial communities were analyzed by bacterial 16S rRNA and fungal ITS marker gene sequencing. Corynebacterium was the most common bacterial taxa across biofilm communities. Clustering analysis revealed three bacterial biofilm types: one low diversity and dominated by Corynebacterium; another was polymicrobial and characterized by Staphylococcus; and the third was polymicrobial and associated with Pseudomonas, Streptococcus, and Prevotella. Biofilm type was significantly correlated with stent material: covered metal with the Staphylococcus-type biofilm, silicone with the Corynebacterium-dominated biofilm, and uncovered metal with the polymicrobial biofilm. Subjects with sequential stents had frequent transitions between community types. Fungal analysis found Candida was most prevalent, Aspergillus was common and highly enriched in two of three stents associated with airway anastomotic dehiscence, and fungal taxa not typically considered pathogens were highly enriched in some stents. Thus, molecular analysis revealed a complex and dynamic endobronchial stent biofilm with three bacterial types that associate with stent material, a central role for Corynebacterium, and that both expected and unexpected fungi inhabit this unique niche. The current work provides a foundation for studies to investigate the relationship between stent biofilm composition and clinical outcomes, mechanisms of biofilm establishment, and strategies for improved stent technology and use in airway compromise.
Collapse
Affiliation(s)
- John E. McGinniss
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ize Imai
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Aurea Simon-Soro
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Melanie C. Brown
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Vincent R. Knecht
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Laura Frye
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Priyanka M. Ravindran
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Marisol I. Dothard
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dylan A. Wadell
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael B. Sohn
- Department of Epidemiology, Biostatistics and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hongzhe Li
- Department of Epidemiology, Biostatistics and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jason D. Christie
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Epidemiology, Biostatistics and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Joshua M. Diamond
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Andrew R. Haas
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Anthony R. Lanfranco
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - David M. DiBardino
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (RGC); (FDB)
| | - Ronald G. Collman
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (RGC); (FDB)
| |
Collapse
|
37
|
Borkent D, Reardon RJM, McLACHLAN G, Glendinning L, Dixon PM. A microbiome analysis of equine peripheral dental caries using next generation sequencing. Equine Vet J 2019; 52:67-75. [PMID: 31006119 DOI: 10.1111/evj.13126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 04/11/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Although, peripheral caries (PC) affects almost half of UK horses, no comprehensive microbiological study has been performed on this disorder. As a high proportion of oral bacteria cannot be conventionally cultured, molecular microbiological techniques such as Next Generation Sequencing are required to examine the complex oral bacteria community. OBJECTIVES To identify the microbiota involved in equine PC, including comparing microbiota at the more commonly and severely affected three caudal cheek teeth with the less commonly affected three rostral cheek teeth. STUDY DESIGN AND METHODS Equine dental plaque samples were collected from the palatal aspects of cheek teeth of 63 horses. DNA was isolated and amplified using PCR, targeting the V4 region of the 16S rRNA gene and Next Generation Sequencing of these gene amplicons was performed. The acquired data were processed and analysed using Mothur and R. RESULTS Streptococcus species was the genus most commonly associated with equine PC, whereas Gemella species was the genus most associated with the control group. In a further analysis where the rostral and caudal cheek teeth were compared with each other and with the control group. Veillonella species was the most commonly associated genus with PC of the rostral cheek teeth, Streptococcus species was the most associated genus with the caudal cheek teeth, and Corynebacterium with the control group. MAIN LIMITATIONS Some bacteria can have multiple heterogeneous copies of the 16S rRNA gene, which can affect the estimation of their relative abundance. CONCLUSIONS Similar to caries studies in other species, acidogenic and aciduric microorganisms including Streptococcus species were found to be associated with equine peripheral caries.
Collapse
Affiliation(s)
- D Borkent
- Division of Veterinary Clinical Studies, Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Midlothian, UK
| | - R J M Reardon
- Division of Veterinary Clinical Studies, Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Midlothian, UK
| | - G McLACHLAN
- Division of Veterinary Clinical Studies, Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Midlothian, UK
| | - L Glendinning
- Division of Veterinary Clinical Studies, Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Midlothian, UK
| | - P M Dixon
- Division of Veterinary Clinical Studies, Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Midlothian, UK
| |
Collapse
|
38
|
Aleti G, Baker JL, Tang X, Alvarez R, Dinis M, Tran NC, Melnik AV, Zhong C, Ernst M, Dorrestein PC, Edlund A. Identification of the Bacterial Biosynthetic Gene Clusters of the Oral Microbiome Illuminates the Unexplored Social Language of Bacteria during Health and Disease. mBio 2019; 10:e00321-19. [PMID: 30992349 PMCID: PMC6469967 DOI: 10.1128/mbio.00321-19] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/12/2019] [Indexed: 01/03/2023] Open
Abstract
Small molecules are the primary communication media of the microbial world. Recent bioinformatic studies, exploring the biosynthetic gene clusters (BGCs) which produce many small molecules, have highlighted the incredible biochemical potential of the signaling molecules encoded by the human microbiome. Thus far, most research efforts have focused on understanding the social language of the gut microbiome, leaving crucial signaling molecules produced by oral bacteria and their connection to health versus disease in need of investigation. In this study, a total of 4,915 BGCs were identified across 461 genomes representing a broad taxonomic diversity of oral bacteria. Sequence similarity networking provided a putative product class for more than 100 unclassified novel BGCs. The newly identified BGCs were cross-referenced against 254 metagenomes and metatranscriptomes derived from individuals either with good oral health or with dental caries or periodontitis. This analysis revealed 2,473 BGCs, which were differentially represented across the oral microbiomes associated with health versus disease. Coabundance network analysis identified numerous inverse correlations between BGCs and specific oral taxa. These correlations were present in healthy individuals but greatly reduced in individuals with dental caries, which may suggest a defect in colonization resistance. Finally, corroborating mass spectrometry identified several compounds with homology to products of the predicted BGC classes. Together, these findings greatly expand the number of known biosynthetic pathways present in the oral microbiome and provide an atlas for experimental characterization of these abundant, yet poorly understood, molecules and socio-chemical relationships, which impact the development of caries and periodontitis, two of the world's most common chronic diseases.IMPORTANCE The healthy oral microbiome is symbiotic with the human host, importantly providing colonization resistance against potential pathogens. Dental caries and periodontitis are two of the world's most common and costly chronic infectious diseases and are caused by a localized dysbiosis of the oral microbiome. Bacterially produced small molecules, often encoded by BGCs, are the primary communication media of bacterial communities and play a crucial, yet largely unknown, role in the transition from health to dysbiosis. This study provides a comprehensive mapping of the BGC repertoire of the human oral microbiome and identifies major differences in health compared to disease. Furthermore, BGC representation and expression is linked to the abundance of particular oral bacterial taxa in health versus dental caries and periodontitis. Overall, this study provides a significant insight into the chemical communication network of the healthy oral microbiome and how it devolves in the case of two prominent diseases.
Collapse
Affiliation(s)
- Gajender Aleti
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, California, USA
| | - Jonathon L Baker
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, California, USA
| | - Xiaoyu Tang
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, California, USA
| | - Ruth Alvarez
- School of Dentistry, The University of California, Los Angeles, California, USA
| | - Márcia Dinis
- School of Dentistry, The University of California, Los Angeles, California, USA
| | - Nini C Tran
- School of Dentistry, The University of California, Los Angeles, California, USA
| | - Alexey V Melnik
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego, La Jolla, California, USA
| | - Cuncong Zhong
- Department of Electric Engineering and Computer Science, The University of Kansas, Lawrence, Kansas, USA
| | - Madeleine Ernst
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego, La Jolla, California, USA
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego, La Jolla, California, USA
| | - Anna Edlund
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, California, USA
| |
Collapse
|
39
|
Ghosh S, Gupta A, Sarkar J, Verma S, Mukherjee A, Sar P. Enrichment of indigenous arsenate reducing anaerobic bacteria from arsenic rich aquifer sediment of Brahmaputra river basin and their potential role in as mobilization. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:635-647. [PMID: 30849279 DOI: 10.1080/10934529.2019.1579524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 01/18/2019] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
Anaerobic enrichment of As5+ reducing bacteria in the presence and/or absence of organic carbon (OC) and As5+ from As contaminated soil of Brahmaputra river basin (BRB) (Jorhat, Assam) was performed. Denaturing gradient gel electrophoresis of the 16SrRNA gene sequences amplified from the enriched microbial community indicated occurrence of maximum diversity under conditions receiving no OC (MSM) followed by moderate OC (LB). However, higher OC or As showed antagonistic effect on bacterial enrichment whereas together (BB + As) they showed a synergistic effect. Phylogenetic analysis of the prominent bands revealed an overall abundance of Lachnoanaerobaculum (39%), Clostridium (39%), Bacillus, Peptostreptococcaceae, Anaerostipes (13%), and Desulfotomaculum (8.7%). Moderate OC (LB) led to maximum As mobilization i.e. 27.42 µg/L, whereas presence of added As together with high OC (BB + As) enhanced the mobilization process. Mineralogical analyses of the sediments after incubation showed prominent weathering and loss of crystallinity in MSM and LB. Appearance of a new peak corresponding to arsenolamprite (As) in LB and LB + As indicated opening up of secondary phases of the minerals harboring As due to microbial leaching under moderate OC. This is the first study reporting Lachnoanaerobaculumas a potent As5+ dissimilating bacterium isolated from As contaminated subsurface sediment of BRB.
Collapse
Affiliation(s)
- Soma Ghosh
- a Environmental Microbiology and Genomics Laboratory, Department of Biotechnology , Indian Institute of Technology Kharagpur , Kharagpur , India
- b School of Environmental Studies , Jadavpur University , Kolkata , India
| | - Abhishek Gupta
- a Environmental Microbiology and Genomics Laboratory, Department of Biotechnology , Indian Institute of Technology Kharagpur , Kharagpur , India
| | - Jayeeta Sarkar
- a Environmental Microbiology and Genomics Laboratory, Department of Biotechnology , Indian Institute of Technology Kharagpur , Kharagpur , India
| | - Swati Verma
- c Department of Geology and Geophysics , Indian Institute of Technology Kharagpur , Kharagpur , India
| | - Abhijit Mukherjee
- c Department of Geology and Geophysics , Indian Institute of Technology Kharagpur , Kharagpur , India
| | - Pinaki Sar
- a Environmental Microbiology and Genomics Laboratory, Department of Biotechnology , Indian Institute of Technology Kharagpur , Kharagpur , India
| |
Collapse
|
40
|
Yost S, Stashenko P, Choi Y, Kukuruzinska M, Genco CA, Salama A, Weinberg EO, Kramer CD, Frias-Lopez J. Increased virulence of the oral microbiome in oral squamous cell carcinoma revealed by metatranscriptome analyses. Int J Oral Sci 2018; 10:32. [PMID: 30420594 PMCID: PMC6232154 DOI: 10.1038/s41368-018-0037-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most prevalent and most commonly studied oral cancer. However, there is a void regarding the role that the oral microbiome may play in OSCC. Although the relationship between microbial community composition and OSCC has been thoroughly investigated, microbial profiles of the human microbiome in cancer are understudied. Here we performed a small pilot study of community-wide metatranscriptome analysis to profile mRNA expression in the entire oral microbiome in OSCC to reveal molecular functions associated with this disease. Fusobacteria showed a statistically significantly higher number of transcripts at tumour sites and tumour-adjacent sites of cancer patients compared to the healthy controls analysed. Regardless of the community composition, specific metabolic signatures were consistently found in disease. Activities such as iron ion transport, tryptophanase activity, peptidase activities and superoxide dismutase were over-represented in tumour and tumour-adjacent samples when compared to the healthy controls. The expression of putative virulence factors in the oral communities associated with OSCC showed that activities related to capsule biosynthesis, flagellum synthesis and assembly, chemotaxis, iron transport, haemolysins and adhesins were upregulated at tumour sites. Moreover, activities associated with protection against reactive nitrogen intermediates, chemotaxis, flagellar and capsule biosynthesis were also upregulated in non-tumour sites of cancer patients. Although they are preliminary, our results further suggest that Fusobacteria may be the leading phylogenetic group responsible for the increase in expression of virulence factors in the oral microbiome of OSCC patients.
Collapse
Affiliation(s)
- Susan Yost
- Forsyth Institute, 245 First Street, Cambridge, MA, 02142, USA
| | - Philip Stashenko
- Boston University Henry M. Goldman School of Dental Medicine, 100 East Newton Street, Boston, MA, 02118, USA
| | - Yoonhee Choi
- Forsyth Institute, 245 First Street, Cambridge, MA, 02142, USA
| | - Maria Kukuruzinska
- Boston University Henry M. Goldman School of Dental Medicine, 100 East Newton Street, Boston, MA, 02118, USA
| | - Caroline A Genco
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Andrew Salama
- Boston University Henry M. Goldman School of Dental Medicine, 100 East Newton Street, Boston, MA, 02118, USA
| | - Ellen O Weinberg
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Carolyn D Kramer
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Jorge Frias-Lopez
- Department of Oral Biology, College of Dentistry, University of Florida, 1395 Center Drive, Gainesville, FL, 32610-0424, USA.
| |
Collapse
|
41
|
AlAnazi GS, Pani SC, AlKabbaz HJ. Salivary antioxidant capacity of children with severe early childhood caries before and after complete dental rehabilitation. Arch Oral Biol 2018; 95:165-169. [PMID: 30125817 DOI: 10.1016/j.archoralbio.2018.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVE There is a need to determine whether total antioxidant capacity (TAC) in severe early childhood caries (S-ECC) is an indicator of inflammatory response to the lesion or a marker of the disease. This study compared TAC levels in children with ECC before and after dental treatment and compared the results with those of caries-free children. DESIGN Prospective study. SETTING A teaching hospital. PATIENT SELECTION Salivary samples were obtained from 20 children aged 5 years and diagnosed with S-ECC, and 20 age- and sex-matched controls. INTERVENTION DETAILS Complete dental rehabilitation under general anesthesia was performed on the children with S-ECC, and follow-up salivary samples were obtained one week and three months postoperatively. TAC was measured using a commercially available Oxygen Radical Absorbance Antioxidant Assay measurement kit (Zen-Bio ORAC™, AMS Biotechnology, Abington, UK). OUTCOME MEASURES Differences between children with and without dental caries were tested using the Mann-Whitney U test; differences before and after dental treatment were analyzed using Friedman test followed by Wilcoxon sign-rank test with Bonferroni correction to compensate for multiple comparisons. RESULTS Median TAC (1.54 mcg/L, CI 1.15-1.92) of the control group was significantly lower than that of the treated group prior to treatment (p = 0.003). Treatment of the dental lesions significantly reduced TAC of the treated group, and no significant differences were observed between the test and control groups at either one week (p = 0.076) recall or three-month recall (p = 0.096). TAC in children posttreatment was significantly reduced compared to their pretreatment values (p < 0.001). CONCLUSION Total antioxidant capacity in the saliva of children with severe early childhood caries undergoes significant reduction following treatment of the carious lesions.
Collapse
Affiliation(s)
| | - Sharat Chandra Pani
- Department of Pediatric Dentistry, Riyadh Elm University, Riyadh, Saudi Arabia.
| | - Hana J AlKabbaz
- Department of Microbiology and Immunology, Riyadh Elm University, Riyadh, Saudi Arabia
| |
Collapse
|
42
|
Early Childhood Caries: Epidemiology, Aetiology, and Prevention. Int J Dent 2018; 2018:1415873. [PMID: 29951094 PMCID: PMC5987323 DOI: 10.1155/2018/1415873] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023] Open
Abstract
Early childhood caries (ECC) is one of the most prevalent diseases in children worldwide. ECC is driven by a dysbiotic state of oral microorganisms mainly caused by a sugar-rich diet. Additionally, poor oral hygiene or insufficient dental plaque removal leads to the rapid progression of ECC. ECC leads not only to dental destruction and pain with children, but also affects the quality of life of the caregivers. Children with extensive ECC are at high risk to develop caries with the permanent dentition or will have other problems with speaking and/or eating. To prevent ECC, several strategies should be taken into account. Children should brush their teeth with toothpastes containing gentle ingredients, such as mild surfactants and agents showing antiadherent properties regarding oral microorganisms. Parents/caregivers have to help their children with brushing the teeth. Furthermore, remineralizing and nontoxic agents should be included into the toothpaste formulation. Two promising biomimetic agents for children's oral care are amorphous calcium phosphate [Cax(PO4)yn H2O] and hydroxyapatite [Ca5(PO4)3(OH)].
Collapse
|
43
|
Abstract
The last few decades have witnessed an increasing interest in studying the human microbiome and its role in health and disease. The focus of those studies was mainly the characterization of changes in the composition of the microbial communities under different conditions. As a result of those studies, we now know that imbalance in the composition of the microbiome, also referred to as microbial dysbiosis, is directly linked to developing certain conditions. Dysbiosis of the oral microbiome is a prime example of how this imbalance leads to disease in the case of periodontal disease. However, there is considerable overlap in the phylogenetic profiles of microbial communities associated with active and inactive lesions, suggesting that the difference in periodontal status of those sites may not be explained solely by differences in the subgingival microbial composition. These findings suggest that differences in functional activities may be the essential elements that define the dysbiotic process. Researchers have recently begun to study gene expression of the oral microbiome in situ with the goal of identifying changes in functional activities that could explain the transition from health to disease. These initial results suggest that, rather than a specific composition, a better understanding of oral dysbiosis can be obtained from the study of functional activities of the microbial community. In this review, we give a summary of these initial studies, which have opened a new door to our understanding of the dynamics of the oral community during the dysbiotic process in the oral cavity.
Collapse
Affiliation(s)
- J Solbiati
- 1 Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - J Frias-Lopez
- 1 Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
44
|
Lamure J, Chevalier M, Rathelot P, Mignolet F, Precheur I. In Vitro Screening of the Antibacterial and Anti-Candida Properties of Crushed Nonantimicrobial Drugs Frequently Prescribed in Nursing Homes. Res Gerontol Nurs 2018; 11:82-90. [PMID: 29451932 DOI: 10.3928/19404921-20180131-01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 12/14/2017] [Indexed: 01/21/2023]
Abstract
Frail older adults often experience swallowing disorders, prompting nursing staff to crush tablets, open capsules, and mix drugs into their meals or gelled water. However, crushing drugs can lead to pharmacological and gustatory problems. As crushed drugs can stay in prolonged contact with oral microbial biofilm, the current study aimed to investigate their antimicrobial properties. Crushed drugs were diluted in 1 mL of isotonic water and assayed in vitro for: (a) growth inhibition of five bacterial strains and Candida albicans by the diffusion method; (b) inhibition of Streptococcus salivarius and C. albicans biofilm formation; and (c) elimination of a preformed biofilm of S. salivarius and C. albicans after 5-minute contact. Eight of 29 crushed drugs inhibited bacterial and/or fungal growth on agar plates. Twenty-eight of 29 crushed drugs reduced the total biomass when incubated with S. salivarius, and 28 of 29 crushed drugs inhibited C. albicans biofilm formation. Preformed biomass was reduced by ≥25% by seven of 29 drugs. Crushed drugs may unbalance oral ecosystems and contribute to oral inflammation. [Res Gerontol Nurs. 2018; 11(2):82-90.].
Collapse
|
45
|
Liu Y, Palmer SR, Chang H, Combs AN, Burne RA, Koo H. Differential oxidative stress tolerance of Streptococcus mutans isolates affects competition in an ecological mixed-species biofilm model. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:12-22. [PMID: 29124888 PMCID: PMC5812797 DOI: 10.1111/1758-2229.12600] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 05/10/2023]
Abstract
Streptococcus mutans strongly influences the development of pathogenic biofilms associated with dental caries. Our understanding of S. mutans behaviour in biofilms is based on a few well-characterized laboratory strains; however, individual isolates vary widely in genome content and virulence-associated phenotypes, such as biofilm formation and environmental stress sensitivity. Using an ecological biofilm model, we assessed the impact of co-cultivation of several S. mutans isolates with Streptococcus oralis and Actinomyces naeslundii on biofilm composition following exposure to sucrose. The laboratory reference strain S. mutans UA159 and clinical isolates Smu44 (most aciduric), Smu56 (altered biofilm formation) and Smu81 (more sensitive to oxidative stress) were used. Our data revealed S. mutans isolates varied in their ability to compete and become dominant in the biofilm after the addition of sucrose, and this difference correlated with sensitivity to H2 O2 produced by S. oralis. Smu81 was particularly sensitive to H2 O2 and could not compete with S. oralis in mixed-species biofilm, despite forming robust biofilms on its own. Thus, diminished oxidative stress tolerance in S. mutans isolates can impair their ability to compete in complex biofilms, even in the presence of sucrose, which could influence the progression of a healthy biofilm community to one capable of causing disease.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Orthodontics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sara R. Palmer
- Division of Biosciences, The Ohio State University, Columbus, Ohio
| | - Hsiaochi Chang
- Division of Biosciences, The Ohio State University, Columbus, Ohio
| | - Ashton N. Combs
- Division of Biosciences, The Ohio State University, Columbus, Ohio
| | - Robert A. Burne
- Department of Oral Biology, University of Florida, Gainesville, Florida
| | - Hyun Koo
- Department of Orthodontics, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
46
|
Byrne SJ, Butler CA, Reynolds EC, Dashper SG. Taxonomy of Oral Bacteria. METHODS IN MICROBIOLOGY 2018. [DOI: 10.1016/bs.mim.2018.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Cohen LJ, Esterhazy D, Kim SH, Lemetre C, Aguilar RR, Gordon EA, Pickard AJ, Cross JR, Emiliano AB, Han SM, Chu J, Vila-Farres X, Kaplitt J, Rogoz A, Calle PY, Hunter C, Bitok JK, Brady SF. Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature 2017; 549:48-53. [PMID: 28854168 PMCID: PMC5777231 DOI: 10.1038/nature23874] [Citation(s) in RCA: 315] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 08/01/2017] [Indexed: 02/08/2023]
Abstract
Commensal bacteria are believed to have important roles in human health. The mechanisms by which they affect mammalian physiology remain poorly understood, but bacterial metabolites are likely to be key components of host interactions. Here we use bioinformatics and synthetic biology to mine the human microbiota for N-acyl amides that interact with G-protein-coupled receptors (GPCRs). We found that N-acyl amide synthase genes are enriched in gastrointestinal bacteria and the lipids that they encode interact with GPCRs that regulate gastrointestinal tract physiology. Mouse and cell-based models demonstrate that commensal GPR119 agonists regulate metabolic hormones and glucose homeostasis as efficiently as human ligands, although future studies are needed to define their potential physiological role in humans. Our results suggest that chemical mimicry of eukaryotic signalling molecules may be common among commensal bacteria and that manipulation of microbiota genes encoding metabolites that elicit host cellular responses represents a possible small-molecule therapeutic modality (microbiome-biosynthetic gene therapy).
Collapse
Affiliation(s)
- Louis J Cohen
- Laboratory of Genetically Encoded Small Molecules, Rockefeller University, New York, New York 10065, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Daria Esterhazy
- Laboratory of Mucosal Immunology, Rockefeller University, New York, New York 10065, USA
| | - Seong-Hwan Kim
- Laboratory of Genetically Encoded Small Molecules, Rockefeller University, New York, New York 10065, USA
| | - Christophe Lemetre
- Laboratory of Genetically Encoded Small Molecules, Rockefeller University, New York, New York 10065, USA
| | - Rhiannon R Aguilar
- Laboratory of Genetically Encoded Small Molecules, Rockefeller University, New York, New York 10065, USA
| | - Emma A Gordon
- Laboratory of Genetically Encoded Small Molecules, Rockefeller University, New York, New York 10065, USA
| | - Amanda J Pickard
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Justin R Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Ana B Emiliano
- Laboratory of Molecular Genetics, Rockefeller University, New York, New York 10065, USA
| | - Sun M Han
- Laboratory of Genetically Encoded Small Molecules, Rockefeller University, New York, New York 10065, USA
| | - John Chu
- Laboratory of Genetically Encoded Small Molecules, Rockefeller University, New York, New York 10065, USA
| | - Xavier Vila-Farres
- Laboratory of Genetically Encoded Small Molecules, Rockefeller University, New York, New York 10065, USA
| | - Jeremy Kaplitt
- Laboratory of Genetically Encoded Small Molecules, Rockefeller University, New York, New York 10065, USA
| | - Aneta Rogoz
- Laboratory of Mucosal Immunology, Rockefeller University, New York, New York 10065, USA
| | - Paula Y Calle
- Laboratory of Genetically Encoded Small Molecules, Rockefeller University, New York, New York 10065, USA
| | - Craig Hunter
- Comparative Biosciences Center, Rockefeller University, New York, New York 10065, USA
| | - J Kipchirchir Bitok
- Laboratory of Genetically Encoded Small Molecules, Rockefeller University, New York, New York 10065, USA
| | - Sean F Brady
- Laboratory of Genetically Encoded Small Molecules, Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
48
|
Ribeiro AA, Azcarate-Peril MA, Cadenas MB, Butz N, Paster BJ, Chen T, Bair E, Arnold RR. The oral bacterial microbiome of occlusal surfaces in children and its association with diet and caries. PLoS One 2017; 12:e0180621. [PMID: 28678838 PMCID: PMC5498058 DOI: 10.1371/journal.pone.0180621] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 06/19/2017] [Indexed: 11/19/2022] Open
Abstract
Dental caries is the most prevalent disease in humans globally. Efforts to control it have been invigorated by an increasing knowledge of the oral microbiome composition. This study aimed to evaluate the bacterial diversity in occlusal biofilms and its relationship with clinical surface diagnosis and dietary habits. Anamneses were recorded from thirteen 12-year-old children. Biofilm samples collected from occlusal surfaces of 46 permanent second molars were analyzed by 16S rRNA amplicon sequencing combined with the BLASTN-based search algorithm for species identification. The overall mean decayed, missing and filled surfaces modified index [DMFSm Index, including active white spot lesions (AWSL)] value was 8.77±7.47. Biofilm communities were highly polymicrobial collectively, representing 10 bacterial phyla, 25 classes, 29 orders, 58 families, 107 genera, 723 species. Streptococcus sp_Oral_Taxon_065, Corynebacterium matruchotii, Actinomyces viscosus, Actinomyces sp_Oral_Taxon_175, Actinomyces sp_Oral_Taxon_178, Actinomyces sp_Oral_Taxon_877, Prevotella nigrescens, Dialister micraerophilus, Eubacterium_XI G 1 infirmum were more abundant among surfaces with AWSL, and Streptococcus gordonii, Streptococcus sp._Oral_Taxon_058, Enterobacter sp._str._638 Streptococcus australis, Yersinia mollaretii, Enterobacter cloacae, Streptococcus sp._Oral_Taxon_71, Streptococcus sp._Oral_Taxon_F11, Centipeda sp._Oral_Taxon_D18 were more abundant among sound surfaces. Streptococcus mutans was detected on all surfaces in all patients, while Streptococcus sobrinus was detected only in three patients (mean relative abundances 7.1% and 0.6%, respectively). Neither species differentiated healthy from diseased sites. Diets of nine of the subjects were scored as high in fermentable carbohydrates (≧2X/day between meals). A direct association between relative abundances of bacteria and carbohydrate consumption was observed among 18 species. High consumption of fermentable carbohydrates and sound surfaces were associated with a reduction in bacterial diversity. PCoA plots displayed differences in bacterial community profiles between sound and diseased surfaces. Our study showed that, in addition to mutans streptococci, other species may be associated with the initiation of dental caries on occlusal surfaces, and that biofilm diversity of tooth surfaces is influenced by carbohydrate consumption and a surface's health status.
Collapse
Affiliation(s)
- Apoena Aguiar Ribeiro
- Department of Pediatric Dentistry and Cariology, School of Dentistry, Fluminense Federal University, Nova Friburgo, Brazil
- Department of Diagnostic Sciences, School of Dentistry, University of North Carolina, Chapel Hill, United States of America
| | - Maria Andrea Azcarate-Peril
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, United States of America
- Microbiome Core Facility, School of Medicine, University of North Carolina, Chapel Hill, United States of America
| | - Maria Belen Cadenas
- Microbiome Core Facility, School of Medicine, University of North Carolina, Chapel Hill, United States of America
| | - Natasha Butz
- Microbiome Core Facility, School of Medicine, University of North Carolina, Chapel Hill, United States of America
| | - Bruce J. Paster
- Department of Microbiology, Forsyth Institute, Cambridge, United States of America
- Department of Oral Medicine, Infection & Immunity, Harvard School of Dental Medicine, Boston, United States of America
| | - Tsute Chen
- Department of Microbiology, Forsyth Institute, Cambridge, United States of America
| | - Eric Bair
- Department of Endodontics and Biostatistics, School of Dentistry, University of North Carolina, Chapel Hill, United States of America
| | - Roland R. Arnold
- Department of Diagnostic Sciences, School of Dentistry, University of North Carolina, Chapel Hill, United States of America
| |
Collapse
|
49
|
Kreth J, Giacaman RA, Raghavan R, Merritt J. The road less traveled - defining molecular commensalism with Streptococcus sanguinis. Mol Oral Microbiol 2017; 32:181-196. [PMID: 27476770 PMCID: PMC5288394 DOI: 10.1111/omi.12170] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2016] [Indexed: 12/15/2022]
Abstract
The commensal oral microbial flora has evolved with the human host to support colonization of the various intraoral sites without triggering a significant immune response. In exchange, the commensal microbes provide critical protection against invading pathogens. The intrinsic ability of the oral flora to create a symbiotic microbial community with the host can be disturbed, selecting for the overgrowth of a dysbiotic community that can result in dental diseases, such as caries and periodontitis. Although the mechanisms of molecular pathogenesis in oral diseases are well characterized, much less is known about the molecular mechanisms used by the commensal flora to maintain oral health. Here we focus on the commensal species Streptococcus sanguinis, which is found in abundance in the early oral biofilm and is strongly correlated with oral health. Streptococcus sanguinis exhibits a variety of features that make it ideally suited as a model organism to explore the molecular basis for commensalism. As such, this review will describe our current mechanistic understanding of S. sanguinis commensalism and speculate upon its molecular traits that may be exploitable to maintain or restore oral health under conditions that would otherwise lead to disease.
Collapse
Affiliation(s)
- Jens Kreth
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - Rodrigo A. Giacaman
- Cariology Unit, Department of Oral Rehabilitation and Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), University of Talca, Talca, Chile
| | - Rahul Raghavan
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR, USA
| | - Justin Merritt
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
50
|
Lin NJ. Biofilm over teeth and restorations: What do we need to know? Dent Mater 2017; 33:667-680. [PMID: 28372810 DOI: 10.1016/j.dental.2017.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 03/09/2017] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The goal of this manuscript is to provide an overview of biofilm attributes and measurement approaches in the context of studying biofilms on tooth and dental material surfaces to improve oral health. METHODS A historical perspective and terminology are presented, followed by a general description of the complexity of oral biofilms. Then, an approach to grouping measurable biofilm properties is presented and considered in relation to biofilm-material interactions and material design strategies to alter biofilms. Finally, the need for measurement assurance in biofilm and biofilm-materials research is discussed. RESULTS Biofilms are highly heterogeneous communities that are challenging to quantify. Their characteristics can be broadly categorized into constituents (identity), quantity, structure, and function. These attributes can be measured over time and in response to substrates and external stimuli. Selecting the biofilm attribute(s) of interest and appropriate measurement methods will depend on the application and, in the case of antimicrobial therapies, the strategic approach and expected mechanism of action. To provide measurement assurance, community accepted protocols and guidelines for minimum data and metadata should be established and broadly applied. Consensus standards may help to streamline testing and demonstration of product claims. SIGNIFICANCE Understanding oral biofilms and their interactions with tooth and dental material surfaces holds great promise for enabling improvements in oral and overall human health. Both substrate and biofilm properties should be considered to develop a more thorough understanding of the system.
Collapse
Affiliation(s)
- Nancy J Lin
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8543, USA.
| |
Collapse
|