1
|
Oliulla H, Mizan MFR, Ashrafudoulla M, Meghla NS, Ha AJW, Park SH, Ha SD. The challenges and prospects of using cold plasma to prevent bacterial contamination and biofilm formation in the meat industry. Meat Sci 2024; 217:109596. [PMID: 39089085 DOI: 10.1016/j.meatsci.2024.109596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 08/03/2024]
Abstract
The risk of foodborne disease outbreaks increases when the pathogenic bacteria are able to form biofilms, and this presents a major threat to public health. An emerging non-thermal cold plasma (CP) technology has proven a highly effective method for decontaminating meats and their products and extended their shelf life. CP treatments have ability to reduce microbial load and, biofilm formation with minimal change of color, pH value, and lipid oxidation of various meat and meat products. The CP technique offers many advantages over conventional processing techniques due to its layout flexibility, nonthermal behavior, affordability, and ecological sustainability. The technology is still in its infancy, and continuous research efforts are needed to realize its full potential in the meat industry. This review addresses the basic principles and the impact of CP technology on biofilm formation, meat quality (including microbiological, color, pH value, texture, and lipid oxidation), and microbial inactivation pathways and also the prospects of this technology.
Collapse
Affiliation(s)
- Humaun Oliulla
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea
| | - Md Furkanur Rahaman Mizan
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea
| | - Md Ashrafudoulla
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea
| | - Nigar Sultana Meghla
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea
| | - Angela Jie-Won Ha
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea; Grand Hyatt Hotel Jeju, 12 Noyeon Ro, Jeju, Jeju-Do, Republic of Korea
| | - Si Hong Park
- Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Sang-Do Ha
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea.
| |
Collapse
|
2
|
Ge Y, Wang J, Gu D, Cao W, Feng Y, Wu Y, Liu H, Xu Z, Zhang Z, Xie J, Geng S, Cong J, Liu Y. Low-temperature plasma jet suppresses bacterial colonisation and affects wound healing through reactive species. Wound Repair Regen 2024; 32:407-418. [PMID: 38602090 DOI: 10.1111/wrr.13178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
An argon-based low-temperature plasma jet (LTPJ) was used to treat chronically infected wounds in Staphylococcus aureus-laden mice. Based on physicochemical property analysis and in vitro antibacterial experiments, the effects of plasma parameters on the reactive nitrogen and oxygen species (RNOS) content and antibacterial capacity were determined, and the optimal treatment parameters were determined to be 4 standard litre per minute and 35 W. Additionally, the plasma-treated activation solution had a bactericidal effect. Although RNOS are related to the antimicrobial effect of plasma, excess RNOS may be detrimental to wound remodelling. In vivo studies demonstrated that medium-dose LTPJ promoted MMP-9 expression and inhibited bacterial growth during the early stages of healing. Moreover, LTPJ increased collagen deposition, reduced inflammation, and restored blood vessel density and TGF-β levels to normal in the later stages of wound healing. Therefore, when treating chronically infected wounds with LTPJ, selecting the medium dose of plasma is more advantageous for wound recovery. Overall, our study demonstrated that low-temperature plasma jets may be a potential tool for the treatment of chronically infected wounds.
Collapse
Affiliation(s)
- Yang Ge
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Jun Wang
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
- Nanjing Guoke Medical Enginneering Technology Development co., LTD, Nanjing, Jiangsu, China
| | - DongHua Gu
- Department of Pathology, Suzhou Science & Technology Town Hospital, Suzhou, Jiangsu, China
| | - Wei Cao
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Yongtong Feng
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Yanfan Wu
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, China
| | - Han Liu
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Zhengping Xu
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Zhe Zhang
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Jinsong Xie
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Shuang Geng
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Junrui Cong
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yi Liu
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, China
| |
Collapse
|
3
|
Leelawattanachai J, Panyasu K, Prasertsom K, Manakasettharn S, Duangdaw H, Budthong P, Thepphornbanchakit N, Chetprayoon P, Muangnapoh K, Srinives S, Waraho-Zhmayev D, Triampo D. Highly stable and fast-dissolving ascorbic acid-loaded microneedles. Int J Cosmet Sci 2023; 45:612-626. [PMID: 37133325 DOI: 10.1111/ics.12865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/14/2023] [Accepted: 05/01/2023] [Indexed: 05/04/2023]
Abstract
OBJECTIVES Ascorbic acid has many benefits to the skin. Numerous attempts to promote its topical delivery show great challenges since its chemical instability and poor skin impermeability. Microneedle delivery is a simple, safe, painless and effective means to deliver therapeutic or nourishing molecules into the skin. The purpose of this study was twofold: (a) to develop a new formulation of ascorbic acid-loaded microneedles to enhance ascorbic acid stability by investigating an optimal amount of polyethyleneimine as an additive to the dextran-based microneedle formulation and (b) to assess microneedle properties in terms of dissolving rate, skin penetration ability, biocompatibility and antimicrobial activity. METHODS The microneedles formulated with ascorbic acid and varied polyethyleneimine concentrations were fabricated and subsequently tested for ascorbic acid stability using 2,2-diphenyl-1-picrylhydrazyl assay. The dissolution rate and skin penetration depth were investigated in porcine skin and the reconstructed human full-thickness skin model respectively. The skin irritation tests were done according to the Organisation for Economic Co-operation and Development Test Guideline No. 439. An antimicrobial disc susceptibility test was performed against Escherichia coli, Staphylococcus aureus and Staphylococcus epidermidis. RESULTS Among varied amounts of 0%, 1.5%, 3.0% and 4.5% (w/v), the 3.0% polyethyleneimine showed the most desirable characteristics, including well-preserved shape integrity after demoulding, significantly improved stability of ascorbic acid (p < 0.001) from 33% to 96% antioxidant activity after 8 weeks of storage at 40°C, increased dissolving rate (p < 0.001) by being completely dissolved within 2 min after the skin insertion, passing skin penetration and biocompatibility tests as well as having a broad spectrum of antimicrobial property. CONCLUSION With a safety profile and enhanced properties, the new formulation of ascorbic acid-loaded microneedles shows outstanding potential as commercially available cosmetics and healthcare products.
Collapse
Affiliation(s)
- Jeerapond Leelawattanachai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Kedsara Panyasu
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Kornkanok Prasertsom
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Supone Manakasettharn
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Hathaiphat Duangdaw
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Pitchaon Budthong
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok, Thailand
| | | | - Paninee Chetprayoon
- Toxicology and Bio Evaluation Service Center (TBES), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Kullachate Muangnapoh
- National Metal and Material Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Sira Srinives
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Dujduan Waraho-Zhmayev
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Darapond Triampo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
4
|
Ruan H, Aulova A, Ghai V, Pandit S, Lovmar M, Mijakovic I, Kádár R. Polysaccharide-based antibacterial coating technologies. Acta Biomater 2023; 168:42-77. [PMID: 37481193 DOI: 10.1016/j.actbio.2023.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
To tackle antimicrobial resistance, a global threat identified by the United Nations, is a common cause of healthcare-associated infections (HAI) and is responsible for significant costs on healthcare systems, a substantial amount of research has been devoted to developing polysaccharide-based strategies that prevent bacterial attachment and biofilm formation on surfaces. Polysaccharides are essential building blocks for life and an abundant renewable resource that have attracted much attention due to their intrinsic remarkable biological potential antibacterial activities. If converted into efficient antibacterial coatings that could be applied to a broad range of surfaces and applications, polysaccharide-based coatings could have a significant potential global impact. However, the ultimate success of polysaccharide-based antibacterial materials will be determined by their potential for use in manufacturing processes that are scalable, versatile, and affordable. Therefore, in this review we focus on recent advances in polysaccharide-based antibacterial coatings from the perspective of fabrication methods. We first provide an overview of strategies for designing polysaccharide-based antimicrobial formulations and methods to assess the antibacterial properties of coatings. Recent advances on manufacturing polysaccharide-based coatings using some of the most common polysaccharides and fabrication methods are then detailed, followed by a critical comparative overview of associated challenges and opportunities for future developments. STATEMENT OF SIGNIFICANCE: Our review presents a timely perspective by being the first review in the field to focus on advances on polysaccharide-based antibacterial coatings from the perspective of fabrication methods along with an overview of strategies for designing polysaccharide-based antimicrobial formulations, methods to assess the antibacterial properties of coatings as well as a critical comparative overview of associated challenges and opportunities for future developments. Meanwhile this work is specifically targeted at an audience focused on featuring critical information and guidelines for developing polysaccharide-based coatings. Including such a complementary work in the journal could lead to further developments on polysaccharide antibacterial applications.
Collapse
Affiliation(s)
- Hengzhi Ruan
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Alexandra Aulova
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Viney Ghai
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Santosh Pandit
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Martin Lovmar
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; Wellspect Healthcare AB, 431 21 Mölndal, Sweden
| | - Ivan Mijakovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Roland Kádár
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden; Wallenberg Wood Science Centre (WWSC), Chalmers University of Technology, 412 96 Göteborg, Sweden.
| |
Collapse
|
5
|
Pandit S, Jacquemin L, Zhang J, Gao Z, Nishina Y, Meyer RL, Mijakovic I, Bianco A, Pang C. Polymyxin B complexation enhances the antimicrobial potential of graphene oxide. Front Cell Infect Microbiol 2023; 13:1209563. [PMID: 37415828 PMCID: PMC10321305 DOI: 10.3389/fcimb.2023.1209563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Introduction The antibacterial activity of graphene oxide (GO) has been widely explored and tested against various pathogenic bacterial strains. Although antimicrobial activity of GO against planktonic bacterial cells was demonstrated, its bacteriostatic and bactericidal effect alone is not sufficient to damage sedentary and well protected bacterial cells inside biofilms. Thus, to be utilized as an effective antibacterial agent, it is necessary to improve the antibacterial activity of GO either by integration with other nanomaterials or by attachment of antimicrobial agents. In this study, antimicrobial peptide polymyxin B (PMB) was adsorbed onto the surface of pristine GO and GO functionalized with triethylene glycol. Methods The antibacterial effects of the resulting materials were examined by evaluating minimum inhibitory concentration, minimum bactericidal concentration, time kill assay, live/dead viability staining and scanning electron microscopy. Results and discussion PMB adsorption significantly enhanced the bacteriostatic and bactericidal activity of GO against both planktonic cells and bacterial cells in biofilms. Furthermore, the coatings of PMB-adsorbed GO applied to catheter tubes strongly mitigated biofilm formation, by preventing bacterial adhesion and killing the bacterial cells that managed to attach. The presented results suggest that antibacterial peptide absorption can significantly enhance the antibacterial activity of GO and the resulting material can be effectively used not only against planktonic bacteria but also against infectious biofilms.
Collapse
Affiliation(s)
- Santosh Pandit
- Systems and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Lucas Jacquemin
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| | - Jian Zhang
- Systems and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Zhengfeng Gao
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| | - Yuta Nishina
- Research Core for Interdisciplinary Sciences, Okayama University, Okayama, Japan
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Rikke Louise Meyer
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
- Department of Biology, Aarhus University, Aarhus, Denmark
| | - Ivan Mijakovic
- Systems and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| | - Chengfang Pang
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
- The Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
6
|
Xiao WL, Wang N, Yang LL, Feng YM, Chu PL, Zhang JJ, Liu SS, Shao WB, Zhou X, Liu LW, Yang S. Exploiting Natural Maltol for Synthesis of Novel Hydroxypyridone Derivatives as Promising Anti-Virulence Agents in Bactericides Discovery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6603-6616. [PMID: 37083434 DOI: 10.1021/acs.jafc.3c00465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Anti-infection strategies based on suppression of bacterial virulence factors represent a crucial direction for the development of new antibacterial agents to address the resistance triggered by traditional drugs'/pesticides' bactericidal activity. To identify and obtain more effective and diverse molecules targeting virulence, we prepared a series of 3-hydroxy-2-methyl-1-pyridin-4-(1H)-one derivatives and evaluated their antibacterial behaviors. Compound B6 exhibited the highest bioactivity, with half-maximal effective concentration (EC50) values ranging fro9m 10.03 to 30.16 μg mL-1 against three plant pathogenic bacteria. The antibacterial mechanism showed that it could considerably reduce various virulence factors (such as extracellular enzymes, biofilm, and T3SS effectors) and inhibit the expression of virulence factor-related genes. In addition, the control efficiency of compound B6 against rice bacterial leaf blight at 200 μg mL-1 was 46.15-49.15%, and their control efficiency was improved by approximately 12% after the addition of pesticide additives. Thus, a new class of bactericidal candidates targeting bacterial virulence factors was developed for controlling plant bacterial diseases.
Collapse
Affiliation(s)
- Wan-Lin Xiao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Na Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Lin-Li Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yu-Mei Feng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Pan-Long Chu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jiao-Jiao Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shuai-Shuai Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wu-Bin Shao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
7
|
Kašparová P, Vaňková E, Paldrychová M, Svobodová A, Hadravová R, Jarošová Kolouchová I, Masák J, Scholtz V. Non-thermal plasma causes Pseudomonas aeruginosa biofilm release to planktonic form and inhibits production of Las-B elastase, protease and pyocyanin. Front Cell Infect Microbiol 2022; 12:993029. [PMID: 36211963 PMCID: PMC9544392 DOI: 10.3389/fcimb.2022.993029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The increasing risk of antibiotic failure in the treatment of Pseudomonas aeruginosa infections is largely related to the production of a wide range of virulence factors. The use of non-thermal plasma (NTP) is a promising alternative to antimicrobial treatment. Nevertheless, there is still a lack of knowledge about the effects of NTP on the virulence factors production. We evaluated the ability of four NTP-affected P. aeruginosa strains to re-form biofilm and produce Las-B elastase, proteases, lipases, haemolysins, gelatinase or pyocyanin. Highly strains-dependent inhibitory activity of NTP against extracellular virulence factors production was observed. Las-B elastase activity was reduced up to 82% after 15-min NTP treatment, protease activity and pyocyanin production by biofilm cells was completely inhibited after 60 min, in contrast to lipases and gelatinase production, which remained unchanged. However, for all strains tested, a notable reduction in biofilm re-development ability was depicted using spinning disc confocal microscopy. In addition, NTP exposure of mature biofilms caused disruption of biofilm cells and their dispersion into the environment, as shown by transmission electron microscopy. This appears to be a key step that could help overcome the high resistance of P. aeruginosa and its eventual elimination, for example in combination with antibiotics still highly effective against planktonic cells.
Collapse
Affiliation(s)
- Petra Kašparová
- Laboratory of Applied Biology, Department of Biotechnology, University of Chemistry and Technology in Prague, Prague, Czechia
- Laboratory of Non-thermal Plasma, Department of Physics and Measurements, University of Chemistry and Technology in Prague, Prague, Czechia
- *Correspondence: Petra Kašparová,
| | - Eva Vaňková
- Laboratory of Applied Biology, Department of Biotechnology, University of Chemistry and Technology in Prague, Prague, Czechia
- Laboratory of Non-thermal Plasma, Department of Physics and Measurements, University of Chemistry and Technology in Prague, Prague, Czechia
| | - Martina Paldrychová
- Laboratory of Applied Biology, Department of Biotechnology, University of Chemistry and Technology in Prague, Prague, Czechia
- Laboratory of Non-thermal Plasma, Department of Physics and Measurements, University of Chemistry and Technology in Prague, Prague, Czechia
| | - Alžběta Svobodová
- Laboratory of Applied Biology, Department of Biotechnology, University of Chemistry and Technology in Prague, Prague, Czechia
| | - Romana Hadravová
- Viral and Microbial Proteins, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Irena Jarošová Kolouchová
- Laboratory of Applied Biology, Department of Biotechnology, University of Chemistry and Technology in Prague, Prague, Czechia
| | - Jan Masák
- Laboratory of Applied Biology, Department of Biotechnology, University of Chemistry and Technology in Prague, Prague, Czechia
| | - Vladimir Scholtz
- Laboratory of Non-thermal Plasma, Department of Physics and Measurements, University of Chemistry and Technology in Prague, Prague, Czechia
| |
Collapse
|
8
|
Control Measurements of Escherichia coli Biofilm: A Review. Foods 2022; 11:foods11162469. [PMID: 36010469 PMCID: PMC9407607 DOI: 10.3390/foods11162469] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 12/05/2022] Open
Abstract
Escherichia coli (E. coli) is a common pathogen that causes diarrhea in humans and animals. In particular, E. coli can easily form biofilm on the surface of living or non-living carriers, which can lead to the cross-contamination of food. This review mainly summarizes the formation process of E. coli biofilm, the prevalence of biofilm in the food industry, and inhibition methods of E. coli biofilm, including chemical and physical methods, and inhibition by bioactive extracts from plants and animals. This review aims to provide a basis for the prevention and control of E. coli biofilm in the food industry.
Collapse
|
9
|
Qi PY, Zhang TH, Feng YM, Wang MW, Shao WB, Zeng D, Jin LH, Wang PY, Zhou X, Yang S. Exploring an Innovative Strategy for Suppressing Bacterial Plant Disease: Excavated Novel Isopropanolamine-Tailored Pterostilbene Derivatives as Potential Antibiofilm Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4899-4911. [PMID: 35437986 DOI: 10.1021/acs.jafc.2c00590] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bacterial biofilms are the root cause of persistent and chronic phytopathogenic bacterial infections. Therefore, developing novel agrochemicals that target the biofilm of phytopathogenic bacteria has been regarded as an innovative tactic to suppress their invasive infection or decrease bacterial drug resistance. In this study, a series of natural pterostilbene (PTE) derivatives were designed, and their antibacterial potency and antibiofilm ability were assessed. Notably, compound C1 displayed excellent antibacterial potency in vitro, affording an EC50 value of 0.88 μg mL-1 against Xoo (Xanthomonas oryzae pv. oryzae). C1 could significantly reduce biofilm formation and extracellular polysaccharides (EPS). Furthermore, C1 also possessed remarkable inhibitory activity against bacterial extracellular enzymes, pathogenicity, and other virulence factors. Subsequently, pathogenicity experiments were further conducted to verify the above primary outcomes. More importantly, C1 with pesticide additives displayed excellent control efficiency. Given these promising profiles, these pterostilbene derivatives can serve as novel antibiofilm agents to suppress plant pathogenic bacteria.
Collapse
Affiliation(s)
- Pu-Ying Qi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Tai-Hong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yu-Mei Feng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ming-Wei Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wu-Bin Shao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Dan Zeng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Lin-Hong Jin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
10
|
Non-Thermal Atmospheric Plasma for Microbial Decontamination and Removal of Hazardous Chemicals: An Overview in the Circular Economy Context with Data for Test Applications of Microwave Plasma Torch. Processes (Basel) 2022. [DOI: 10.3390/pr10030554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The transformation of our linear “take-make-waste” system to a cyclic flow of materials and energy is a priority task for society, but the circular use of waste streams from one industry/sector as a material input for another must be completely safe. The need for new advanced technologies and methods ensuring both microbiological safety and the removal of potential chemical residues in used materials and products is urgent. Non-thermal atmospheric plasma (cold atmospheric plasma—CAP) has recently attracted great research interest as an alternative for operative solutions of problems related to safety and quality control. CAP is a powerful tool for the inactivation of different hazardous microorganisms and viruses, and the effective decontamination of surfaces and liquids has been demonstrated. Additionally, the plasma’s active components are strong oxidizers and their synergetic effect can lead to the degradation of toxic chemical compounds such as phenols and azo-dyes.
Collapse
|
11
|
Xu C, Dong N, Chen K, Yang X, Zeng P, Hou C, Chi Chan EW, Yao X, Chen S. Bactericidal, anti-biofilm, and anti-virulence activity of vitamin C against carbapenem-resistant hypervirulent Klebsiella pneumoniae. iScience 2022; 25:103894. [PMID: 35243252 PMCID: PMC8873610 DOI: 10.1016/j.isci.2022.103894] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/15/2021] [Accepted: 02/04/2022] [Indexed: 12/27/2022] Open
Affiliation(s)
- Chen Xu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Ning Dong
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Kaichao Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Xuemei Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Ping Zeng
- State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Changshun Hou
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Edward Wai Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
- Corresponding author
| |
Collapse
|
12
|
Corona Discharge Power of Plasma Treatment Influence on the Physicochemical and Microbial Quality of Enoki Mushroom (Flammulina velutipes). JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasma treatment was widely known as an effective technology applied for contact-surface decontamination. Enoki (Flammulina velutipes) was an edible-medicinal mushroom with different phytochemicals and bioactive components beneficial for human health. Enoki mushroom had high respiration rate therefore it was highly perishable after harvesting. Moreover, it was greatly susceptible to microbial contamination but it was not feasible to be decontaminated by normal water washing. It’s urgent to extend shelf-life and control microbial criteria on this mushroom in dry manner without aqueous treatment. Corona discharge plasma was among 4 kinds of diverse cold atmospheric pressure plasma sources widely applied in food industry. This study demonstrated the influence of corona discharge plasma power values (control, 120, 150, 180, 210 W) on the physicochemical and microbial characteristics of Enoki mushroom during 10 days of storage at ambient temperature. Results showed that Enoki mushroom should be treated at 150 W of corona discharge plasma power to retain weight loss, total soluble solid, vitamin C in acceptable values while reducing total Aerobic count, Coliform, Enterobacteriaceae as much as possible. At the 10th day of storage, the weight loss, total soluble solid, vitamin C, total Aerobic count, Coliform, Enterobacteriaceae were recorded at 3.35±0.07%, 6.98±0.03 oBrix, 14.81±0.04 mg/100 g, 4.71±0.05 log CFU/g, 3.17±0.02 log CFU/g, 2.13±0.01 CFU/g, respectively. Findings of this research proved that corona discharge plasma pretreatment would be appropriate to maintain physicochemical properties and retard microbial loads on Enoki mushroom during preservation.
Collapse
|
13
|
Antagonistic Roles of Gallates and Ascorbic Acid in Pyomelanin Biosynthesis of Pseudomonas aeruginosa Biofilms. Curr Microbiol 2021; 78:3843-3852. [PMID: 34554299 DOI: 10.1007/s00284-021-02655-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Primarily synthesized for chelating metal ions from the surrounding media, the pyomelanin plays an important role in bacterial virulence where it is needed for infection and biofilm formation as well as protection from host immune response. In this study, two out of three phenolic acids, gallic acid, and propyl gallate induced pyomelanin in two clinical isolates of Pseudomonas aeruginosa and inhibited biofilm formation. Ascorbic acid treatment reversed the gallic acid and propyl gallate mediated pyomelanin synthesis without reversing the inhibition of the biofilm formation. mRNA expression study revealed the upregulation of homogentisic acid oxidase enzyme by ascorbic acid treatment, possibly contributing towards the inhibition of pyomelanin synthesis. Tannic acid did not show any antibacterial or pyomelanin-induction activities. The synergistic effect of gallates and ascorbic acid in the inhibition of biofilm formation and associated pyomelanin synthesis was evidenced which needs further studies to establish their antibacterial efficacies, especially against the clinical isolates of Pseudomonas sp.
Collapse
|
14
|
Labadie M, Marchal F, Merbahi N, Girbal-Neuhauser E, Fontagné-Faucher C, Marcato-Romain CE. Response of Controlled Cell Load Biofilms to Cold Atmospheric Plasma Jet: Evidence of Extracellular Matrix Contribution. Life (Basel) 2021; 11:life11070694. [PMID: 34357067 PMCID: PMC8304013 DOI: 10.3390/life11070694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
Aim: Study of the biocidal effect of a cold atmospheric-pressure plasma in ambient air on single-species bacterial biofilms with controlled cell density, characterized by different extracellular matrices. Methods and results: Two bacterial strains were chosen to present different Gram properties and contrasted extracellular matrices: Pseudomonas aeruginosa ATCC 15442 (Gram-negative), and Leuconostoc citreum NRRL B-1299 (Gram-positive). P. aeruginosa biofilm exhibits a complex matrix, rich in proteins while L. citreum presents the specificity to produce glucan-type exopolysaccharides when grown in the presence of sucrose. Plasma was applied on both surface-spread cells and 24-h grown biofilms with controlled cell loads over 5, 10, or 20 min. Surface-spread bacteria showed a time dependent response, with a maximal bacterial reduction of 2.5 log after 20 min of treatment. On the other hand, in our experimental conditions, no bactericidal effect could be observed when treating biofilms of P. aeruginosa and glucan-rich L. citreum. Conclusions: For biofilms presenting equivalent cell loads, the response to plasma treatment seemed to depend on the properties of the extracellular matrix characterized by infrared spectroscopy, scanning electron microscopy, or dry weight. Significance and impact of study: Both cell load standardization and biofilm characterization are paramount factors to consider the biocide effect of plasma treatments. The extracellular matrix could affect the plasma efficacy by physical and/or chemical protective effects.
Collapse
Affiliation(s)
- Maritxu Labadie
- UPS, IUT “A”, LBAE EA 4565 (Laboratoire de Biotechnologies Agroalimentaire et Environnementale), Université de Toulouse, IUT Site d’AUCH, 24 rue d’Embaquès, F-32000 Auch, France; (M.L.); (E.G.-N.); (C.F.-F.)
| | - Frédéric Marchal
- UPS, INPT, CNRS, LAPLACE UMR 5213 (Laboratoire Plasma et Conversion d’Energie), Université de Toulouse, 118 Route de Narbonne, F-31062 Toulouse, France; (F.M.); (N.M.)
| | - Nofel Merbahi
- UPS, INPT, CNRS, LAPLACE UMR 5213 (Laboratoire Plasma et Conversion d’Energie), Université de Toulouse, 118 Route de Narbonne, F-31062 Toulouse, France; (F.M.); (N.M.)
| | - Elisabeth Girbal-Neuhauser
- UPS, IUT “A”, LBAE EA 4565 (Laboratoire de Biotechnologies Agroalimentaire et Environnementale), Université de Toulouse, IUT Site d’AUCH, 24 rue d’Embaquès, F-32000 Auch, France; (M.L.); (E.G.-N.); (C.F.-F.)
| | - Catherine Fontagné-Faucher
- UPS, IUT “A”, LBAE EA 4565 (Laboratoire de Biotechnologies Agroalimentaire et Environnementale), Université de Toulouse, IUT Site d’AUCH, 24 rue d’Embaquès, F-32000 Auch, France; (M.L.); (E.G.-N.); (C.F.-F.)
| | - Claire-Emmanuelle Marcato-Romain
- UPS, IUT “A”, LBAE EA 4565 (Laboratoire de Biotechnologies Agroalimentaire et Environnementale), Université de Toulouse, IUT Site d’AUCH, 24 rue d’Embaquès, F-32000 Auch, France; (M.L.); (E.G.-N.); (C.F.-F.)
- Correspondence: ; Tel.: +33-562-61-63-05
| |
Collapse
|
15
|
Bambeni T, Tayengwa T, Chikwanha OC, Manley M, Gouws PA, Marais J, Fawole OA, Mapiye C. Biopreservative efficacy of grape (Vitis vinifera) and clementine mandarin orange (Citrus reticulata) by-product extracts in raw ground beef patties. Meat Sci 2021; 181:108609. [PMID: 34147962 DOI: 10.1016/j.meatsci.2021.108609] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 12/28/2022]
Abstract
Beef patties were treated with 450 μg/g of extracts from grape (Vitis vinifera) seeds (GSE), pomace (GPE) or orange (Citrus reticulata) pomace (OPE) and compared to negative (no extract; CTR) and positive (sodium metabisulphite; SMB) controls for their effect on colour, lipid and protein oxidation and bacterial growth under simulated retail display conditions (4 °C) for 9 d, and sensory quality. Antioxidant activity and redness of beef patties increased in the order of CTR < OPE = GPE < GSE < SMB. The order of thiobarbituric acid reactive substances and carbonyl values were CTR > GPE = OPE > GSE > SBM, while that of bacterial counts were CTR > GSE = GPE > OPE > SMB. Retail display period had significant effect on all the shelf-life parameters. Overall, intensity of aroma, beef-like aroma and flavour in beef patties were highest in OPE. Results suggested that GSE and OPE could be commercially valorised as natural antioxidants and antibacterials in beef patties, respectively.
Collapse
Affiliation(s)
- Thandikhaya Bambeni
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Tawanda Tayengwa
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Obert C Chikwanha
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Marena Manley
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Pieter A Gouws
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Jeannine Marais
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Olaniyi A Fawole
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, Faculty of Sciences, University of Johannesburg, Private Bag 524, Auckland Park 2006, South Africa
| | - Cletos Mapiye
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
16
|
Aashique M, Roy A, Kosuru RY, Bera S. Membrane Depolarization Sensitizes Pseudomonas aeruginosa Against Tannic Acid. Curr Microbiol 2021; 78:713-717. [PMID: 33410955 DOI: 10.1007/s00284-020-02330-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
The use of dietary polyphenols as antimicrobial agents has gained immense popularity in recent years, although few of them-like tannic acid has limited use in this field of research; one of the main reasons is its restricted access through the bacterial membrane. Dissipating the bacterial membrane potential with a sub-lethal dosage of the protonophore, carbonyl cyanide m-chlorophenyl hydrazone, enhanced the tannic acid-cytotoxicity with subsequent inhibition of aerobic respiration in Pseudomonas aeruginosa strains which otherwise exhibited a minimum response to tannic acid. However, ascorbic acid, an antioxidant and bacterial membrane-stabilizing compound, had rescued the cells from both tannic acid- and CCCP-mediated lethality. The results suggested that dispersing the membrane potential with a protonophore can enhance the antibacterial properties of tannic acid.
Collapse
Affiliation(s)
- Md Aashique
- School of Life Sciences, B.S.Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, Tamil Nadu, India
| | - Amrita Roy
- Department of Biotechnology, Indian Academy Degree College, Bangalore, Karnataka, 5600043, India
| | - Rekha Yamini Kosuru
- School of Life Sciences, B.S.Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, Tamil Nadu, India
| | - Soumen Bera
- School of Life Sciences, B.S.Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, Tamil Nadu, India.
| |
Collapse
|
17
|
Liu D, Huang Q, Gu W, Zeng XA. A review of bacterial biofilm control by physical strategies. Crit Rev Food Sci Nutr 2021; 62:3453-3470. [PMID: 33393810 DOI: 10.1080/10408398.2020.1865872] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Biofilms are multicellular communities of microorganisms held together by a self-produced extracellular matrix, which contribute to hygiene problems in the food and medical fields. Both spoilage and pathogenic bacteria that grow in the complex structure of biofilm are more resistant to harsh environmental conditions and conventional antimicrobial agents. Therefore, it is important to develop eco-friendly preventive methodologies to eliminate biofilms from foods and food contact equipment. The present paper gives an overview of the current physical methods for biofilm control and removal. Current physical strategies adopted for the anti-biofilm treatment mainly focused on use of ultrasound power, electric or magnetic field, plasma, and irradiation. Furthermore, the mechanisms of anti-biofilm action and application of different physical methods are discussed. Physical strategies make it possible to combat biofilm without the use of biocidal agents. The remarkable microbiocidal properties of physical strategies are promising tools for antimicrobial applications.
Collapse
Affiliation(s)
- Dan Liu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, PR China
| | - Quanfeng Huang
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, PR China
| | - Weiming Gu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, PR China
| | - Xin-An Zeng
- School of Food Science & Engineering, South China University of Technology, Guangzhou, Guangdong, PR China
| |
Collapse
|
18
|
Abstract
In recent years, the consumption of the fresh-cut products has been increased due to the consumers’ lifestyle and awareness. However, maintaining the quality and nutritional value of these products during storage is being difficult in comparison to whole fruits and vegetables. In actual, the procedures used in the fresh-cut industry may intensify the deterioration caused by physical damage by minimal processing. Commonly, the quality degradation, discolouration, loss of moisture, loss of firmness, microbial load increase, and loss of nutrients and flavor occur in the fresh-cut product after minimal processing. To maintain the quality and increase the shelf-life of the fresh-cut product, it is necessary to use various techniques, including physical, chemical, and nondestructive processes. In this review, first, an introduction to minimal processing and its effect on fresh-cut product quality was expressed, and then, the methods used to maintain fresh-cut product quality after minimal processing were reviewed. Finally, the effect of cold plasma on the qualitative characteristics in some fresh-cut products was investigated. The review showed that cold plasma treatments can significantly inhibit microorganisms and extend the shelf-life of fresh-cut products. In addition, no or minimal impacts were observed on physicochemical and organoleptic quality attributes of the treated fresh-cut products. Therefore, the use of cold plasma is promising for the fresh-cut industry.
Collapse
|
19
|
Synergistic Antimicrobial Activity of Supplemented Medical-Grade Honey against Pseudomonas aeruginosa Biofilm Formation and Eradication. Antibiotics (Basel) 2020; 9:antibiotics9120866. [PMID: 33291554 PMCID: PMC7761815 DOI: 10.3390/antibiotics9120866] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Biofilms hinder wound healing. Medical-grade honey (MGH) is a promising therapy because of its broad-spectrum antimicrobial activity and the lack of risk for resistance. This study investigated the inhibitory and eradicative activity against multidrug-resistant Pseudomonas aeruginosa biofilms by different established MGH-based wound care formulations. Six different natural wound care products (Medihoney, Revamil, Mebo, Melladerm, L-Mesitran Ointment, and L-Mesitran Soft) were tested in vitro. Most of them contain MGH only, whereas some were supplemented. L-Mesitran Soft demonstrated the most potent antimicrobial activity (6.08-log inhibition and 3.18-log eradication). Other formulations ranged between 0.89-log and 4.80-log inhibition and 0.65-log and 1.66-log eradication. Therefore, the contribution of different ingredients of L-Mesitran Soft was investigated in more detail. The activity of the same batch of raw MGH (1.38-log inhibition and 2.35-log eradication), vitamins C and E (0.95-log inhibition and 0.94-log eradication), and all ingredients except MGH (1.69-log inhibition and 0.75-log eradication) clearly support a synergistic activity of components within the L-Mesitran Soft formulation. Several presented clinical cases illustrate its clinical antimicrobial efficacy against Pseudomonas aeruginosa biofilms. In conclusion, MGH is a potent treatment for Pseudomonas biofilms. L-Mesitran Soft has the strongest antimicrobial activity, which is likely due to the synergistic activity mediated by its supplements.
Collapse
|
20
|
Cold plasma processing of powdered Spirulina algae for spore inactivation and preservation of bioactive compounds. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107378] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Costello KM, Smet C, Gutierrez-Merino J, Bussemaker M, Van Impe JF, Velliou EG. The impact of food model system structure on the inactivation of Listeria innocua by cold atmospheric plasma and nisin combined treatments. Int J Food Microbiol 2020; 337:108948. [PMID: 33197682 DOI: 10.1016/j.ijfoodmicro.2020.108948] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/14/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022]
Abstract
Novel processing methods such as cold atmospheric plasma (CAP) and natural antimicrobials like nisin, are of interest to replace traditional food decontamination approaches as, due to their mild nature, they can maintain desirable food characteristics, i.e., taste, texture, and nutritional content. However, the microbial growth characteristics (planktonic growth/surface colonies) and/or the food structure itself (liquid/solid surface) can impact the inactivation efficacy of these novel processing methods. More specifically, cells grown as colonies on a solid(like) surface experience a completely different growth environment to cells grown planktonically in liquid, and thus could display a different response to novel processing treatments through stress adaptation and/or cross protection mechanisms. The order in which combined treatments are applied could also impact their efficacy, especially if the mechanisms of action are complementary. This work presents a fundamental study on the efficacy of CAP and nisin, alone and combined, as affected by food system structure. More specifically, Listeria innocua was grown planktonically (liquid broth) or on a viscoelastic Xanthan gum gel system (1.5% w/v) and treated with CAP, nisin, or a combination of the two. Both the inactivation system, i.e., liquid versus solid(like) surface and the growth characteristics, i.e., planktonic versus colony growth, were shown to impact the treatment efficacy. The combination of nisin and CAP was more effective than individual treatments, but only when nisin was applied before the CAP treatment. This study provides insight into the environmental stress response/adaptation of L. innocua grown on structured systems in response to natural antimicrobials and novel processing technologies, and is a step towards the faster delivery of these food decontamination methods from the bench to the food industry.
Collapse
Affiliation(s)
- Katherine M Costello
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Cindy Smet
- Chemical and Biochemical Process Technology and Control Laboratory (BioTeC+), KU Leuven, Sustainable Chemical Process Technology, Ghent, Belgium
| | | | - Madeleine Bussemaker
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Jan F Van Impe
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Eirini G Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|
22
|
Francolini I, Piozzi A. Role of Antioxidant Molecules and Polymers in Prevention of Bacterial Growth and Biofilm Formation. Curr Med Chem 2020; 27:4882-4904. [DOI: 10.2174/0929867326666190409120409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 01/22/2023]
Abstract
Background:
Antioxidants are multifaceted molecules playing a crucial role in several
cellular functions. There is by now a well-established knowledge about their involvement in numerous
processes associated with aging, including vascular damage, neurodegenerative diseases and
cancer. An emerging area of application has been lately identified for these compounds in relation to
the recent findings indicating their ability to affect biofilm formation by some microbial pathogens,
including Staphylococcus aureus, Streptococcus mutans, and Pseudomonas aeruginosa.
Methods:
A structured search of bibliographic databases for peer-reviewed research literature was
performed using a focused review question. The quality of retrieved papers was appraised using
standard tools.
Results:
One hundred sixty-five papers extracted from pubmed database and published in the last
fifteen years were included in this review focused on the assessment of the antimicrobial and antibiofilm
activity of antioxidant compounds, including vitamins, flavonoids, non-flavonoid polyphenols,
and antioxidant polymers. Mechanisms of action of some important antioxidant compounds,
especially for vitamin C and phenolic acids, were identified.
Conclusion:
The findings of this review confirm the potential benefits of the use of natural antioxidants
as antimicrobial/antibiofilm compounds. Generally, gram-positive bacteria were found to be
more sensitive to antioxidants than gram-negatives. Antioxidant polymeric systems have also been
developed mainly derived from functionalization of polysaccharides with antioxidant molecules.
The application of such systems in clinics may permit to overcome some issues related to the systemic
delivery of antioxidants, such as poor absorption, loss of bioactivity, and limited half-life.
However, investigations focused on the study of antibiofilm activity of antioxidant polymers are still
very limited in number and therefore they are strongly encouraged in order to lay the foundations for
application of antioxidant polymers in treatment of biofilm-based infections.
Collapse
Affiliation(s)
- Iolanda Francolini
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 5 - 00185, Rome, Italy
| | - Antonella Piozzi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 5 - 00185, Rome, Italy
| |
Collapse
|
23
|
Liao X, Cullen PJ, Muhammad AI, Jiang Z, Ye X, Liu D, Ding T. Cold Plasma–Based Hurdle Interventions: New Strategies for Improving Food Safety. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09222-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Przekwas J, Wiktorczyk N, Budzyńska A, Wałecka-Zacharska E, Gospodarek-Komkowska E. Ascorbic Acid Changes Growth of Food-Borne Pathogens in the Early Stage of Biofilm Formation. Microorganisms 2020; 8:E553. [PMID: 32290491 PMCID: PMC7232495 DOI: 10.3390/microorganisms8040553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
Since bacterial biofilm may contribute to the secondary contamination of food during the manufacturing/processing stage there is a need for new methods allowing its effective eradication. Application of food additives such as vitamin C already used in food industry as antioxidant food industry antioxidants may be a promising solution. The aim of this research was evaluation of the impact of vitamin C (ascorbic acid), in a range of concentrations 2.50 µg mL-1-25.0 mg mL-1, on biofilms of Staphylococcus aureus, Escherichia coli, and Listeria monocytogenes strains isolated from food. The efficacy of ascorbic acid was assessed based on the reduction of optical density (λ = 595 nm). The greatest elimination of the biofilm was achieved at the concentration of vitamin C of 25.0 mg mL-1. The effect of the vitamin C on biofilm, however, was strain dependent. The concentration of 25.0 mg mL-1 reduced 93.4%, 74.9%, and 40.5% of E. coli, L. monocytogenes, and S. aureus number, respectively. For E. coli and S. aureus lower concentrations were ineffective. In turn, for L. monocytogenes the biofilm inhibition was observed even at the concentration of 0.25 mg mL-1. The addition of vitamin C may be helpful in the elimination of bacterial biofilms. Nonetheless, some concentrations can induce growth of the pathogens, posing risk for the consumers' health.
Collapse
Affiliation(s)
- Jana Przekwas
- Department of Microbiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, 9 Maria Skłodowska-Curie Street, 85-094 Bydgoszcz, Poland
| | - Natalia Wiktorczyk
- Department of Microbiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, 9 Maria Skłodowska-Curie Street, 85-094 Bydgoszcz, Poland
| | - Anna Budzyńska
- Department of Microbiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, 9 Maria Skłodowska-Curie Street, 85-094 Bydgoszcz, Poland
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, 31 C.K. Norwida St., 50-375 Wrocław, Poland
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, 9 Maria Skłodowska-Curie Street, 85-094 Bydgoszcz, Poland
| |
Collapse
|
25
|
Kırmusaoğlu S, Kaşıkçı H. Identification of ica-dependent biofilm production by Staphylococcus aureus clinical isolates and antibiofilm effects of ascorbic acid against biofilm production. J Clin Pathol 2020; 73:261-266. [PMID: 32213553 DOI: 10.1136/jclinpath-2019-206280] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/30/2020] [Accepted: 02/12/2020] [Indexed: 11/03/2022]
Abstract
AIMS Staphylococcus aureus (S. aureus) is a life-threatening pathogen with high morbidity and mortality rates which causes nosocomial and community-acquired infections. Biofilm, considered to be a common virulence factor for pathogens, plays a significant role in recurrent and untreatable infections. Biofilm formation of S. aureus is mediated by synthesis of either poly-N-acetylglucosamine in an ica-dependent manner or surface proteins in an ica-independent manner. In some cases treatment is impossible and recurrent. In this study, ica-dependent biofilm-producing S. aureus isolates were detected and the anti-biofilm effect of ascorbic acid against biofilm formation of isolates was investigated. METHODS A total of 21 methicillin-sensitive S. aureus (MSSA) clinical isolates stored in our bacterial stock were used to detect ica-dependent biofilm-producing MSSA isolates. The anti-biofilm study was undertaken with three ica-dependent biofilm-producing isolates (MSSA2-4) and ATCC 29213 (MSSA1). Biofilms and the anti-biofilm effect of ascorbic acid were detected using the microtitre plate (MtP) method. 16S-rRNA, nuc, icaA and icaD genes and expression levels of icaA and icaD of isolates were detected by RT-PCR. RESULTS The minimum inhibitory concentrations (MICs) of ascorbic acid prevented biofilm formation of MSSA1 and MSSA3. Also, 1/2 MIC of ascorbic acid prevented biofilm formation of MSSA3. It was observed that biofilm formation decreased with increased concentration. There was no significant increase in ica gene expression of MSSA1 and MSSA2. Expression of icaA and icaD of MSSA3 decreased 13% and 38%, respectively. Expression of icaA in MSSA4 decreased 12%. CONCLUSION The results of our study show that ascorbic acid can be used as an anti-biofilm agent to prevent biofilm formation of S. aureus and thus biofilm-related infections.
Collapse
Affiliation(s)
- Sahra Kırmusaoğlu
- Molecular Biology and Genetics, Haliç University, Istanbul, Sütlüce-Beyoğlu, Turkey
| | - Havva Kaşıkçı
- Molecular Biology and Genetics, Haliç University, Istanbul, Sütlüce-Beyoğlu, Turkey
| |
Collapse
|
26
|
Li R, Guo C, Li Y, Liang X, Yang L, Huang W. Therapeutic target and molecular mechanism of vitamin C-treated pneumonia: a systematic study of network pharmacology. Food Funct 2020; 11:4765-4772. [PMID: 32420559 DOI: 10.1039/d0fo00421a] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vitamin C (VC), a well-reported antioxidant, is found with beneficial actions of preventing and treating pneumonia.
Collapse
Affiliation(s)
- Rong Li
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation
- Guilin Medical University
- Guilin
- China
| | - Chao Guo
- Department of Pharmacy
- Guigang City People's Hospital
- The Eighth Affiliated Hospital of Guangxi Medical University
- Guigang
- PR China
| | - Yu Li
- College of Pharmacy
- Guilin Medical University
- Guilin
- PR China
| | - Xiao Liang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation
- Guilin Medical University
- Guilin
- China
| | - Lu Yang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation
- Guilin Medical University
- Guilin
- China
| | - Wenjun Huang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation
- Guilin Medical University
- Guilin
- China
| |
Collapse
|
27
|
Habib S, Lehocky M, Vesela D, Humpolíček P, Krupa I, Popelka A. Preparation of Progressive Antibacterial LDPE Surface via Active Biomolecule Deposition Approach. Polymers (Basel) 2019; 11:polym11101704. [PMID: 31627328 PMCID: PMC6835596 DOI: 10.3390/polym11101704] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 11/16/2022] Open
Abstract
The use of polymers in all aspects of daily life is increasing considerably, so there is high demand for polymers with specific properties. Polymers with antibacterial properties are highly needed in the food and medical industries. Low-density polyethylene (LDPE) is widely used in various industries, especially in food packaging, because it has suitable mechanical and safety properties. Nevertheless, the hydrophobicity of its surface makes it vulnerable to microbial attack and culturing. To enhance antimicrobial activity, a progressive surface modification of LDPE using the antimicrobial agent grafting process was applied. LDPE was first exposed to nonthermal radio-frequency (RF) plasma treatment to activate its surface. This led to the creation of reactive species on the LDPE surface, resulting in the ability to graft antibacterial agents, such as ascorbic acid (ASA), commonly known as vitamin C. ASA is a well-known antioxidant that is used as a food preservative, is essential to biological systems, and is found to be reactive against a number of microorganisms and bacteria. The antimicrobial effect of grafted LDPE with ASA was tested against two strong kinds of bacteria, namely, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), with positive results. Surface analyses were performed thoroughly using contact angle measurements and peel tests to measure the wettability or surface free energy and adhesion properties after each modification step. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to analyze the surface morphology or topography changes of LDPE caused by plasma treatment and ASA grafting. Surface chemistry was studied by measuring the functional groups and elements introduced to the surface after plasma treatment and ASA grafting, using Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). These results showed wettability, adhesion, and roughness changes in the LDPE surface after plasma treatment, as well as after ASA grafting. This is a positive indicator of the ability of ASA to be grafted onto polymeric materials using plasma pretreatment, resulting in enhanced antibacterial activity.
Collapse
Affiliation(s)
- Salma Habib
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Marian Lehocky
- Centre of Polymer Systems, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic.
- Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech Republic.
| | - Daniela Vesela
- Centre of Polymer Systems, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic.
| | - Petr Humpolíček
- Centre of Polymer Systems, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic.
- Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech Republic.
| | - Igor Krupa
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Anton Popelka
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
28
|
Hermanns R, Cremers NA, Leeming JP, van der Werf ET. Sweet Relief: Determining the Antimicrobial Activity of Medical Grade Honey Against Vaginal Isolates of Candida albicans. J Fungi (Basel) 2019; 5:E85. [PMID: 31505796 PMCID: PMC6787731 DOI: 10.3390/jof5030085] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/27/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022] Open
Abstract
Recurrent vulvovaginal candidiasis (RVVC) is predicted to increase to almost 158 million cases annually by 2030. Extensive self-diagnosis and easily accessible over-the-counter (OTC) fungistatic drugs contribute to antifungal-resistance, illustrating the need for novel therapies. Honey possesses multiple antimicrobial mechanisms, and there is no antimicrobial resistance towards honey reported. We evaluated the susceptibility of five clinical isolates of Candida albicans and a control strain to regular honey and a medical grade honey (MGH) gel formulation (L-Mesitran, containing 40% honey and vitamins C and E) using an adapted version of the EUCAST protocol at pH 5.2, 4.6, and 4.0. 40% regular honey did not kill or inhibit C. albicans. In contrast, the minimal inhibitory concentration (MIC) of L-Mesitran was 25%-50%, while fungicidal effects occurred at a 50% concentration (MBC) of the MGH formulation, except for one strain which was not killed at pH 4.0. Overall, pH had little effect on antimicrobial activity. MGH formulation L-Mesitran has antimicrobial activity against C. albicans over a relevant pH range. The vitamin supplements or other components of L-Mesitran may enhance the antifungal activity of the honey. This study supports performing clinical trials for conditions, such as RVVC, to find an alternative to available OTC fungistatic drugs.
Collapse
Affiliation(s)
- Renée Hermanns
- Triticum Exploitatie B.V., Sleperweg 44, 6222NK Maastricht, The Netherlands; (R.H.)
| | - Niels A.J. Cremers
- Triticum Exploitatie B.V., Sleperweg 44, 6222NK Maastricht, The Netherlands; (R.H.)
| | - John P. Leeming
- Infection Sciences Department, Severn Pathology, Southmead Hospital, Bristol BS10 5NB, UK;
| | - Esther T. van der Werf
- Bristol Medical School, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, UK;
- School of Medicine1, Taylor’s University, Jalan Taylor’s, 47500 Subang Jaya, Selangor D.E., Malaysia
| |
Collapse
|
29
|
Pan Y, Cheng JH, Sun DW. Cold Plasma-Mediated Treatments for Shelf Life Extension of Fresh Produce: A Review of Recent Research Developments. Compr Rev Food Sci Food Saf 2019; 18:1312-1326. [PMID: 33336905 DOI: 10.1111/1541-4337.12474] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 05/01/2019] [Accepted: 05/22/2019] [Indexed: 11/30/2022]
Abstract
Fresh produce, like fruits and vegetables, are important sources of nutrients and health-promoting compounds. However, incidences of foodborne outbreaks associated with fresh produce often occur; it is thus important to develop and expand decay-control technologies that can not only maintain the quality but can also control the biological hazards in postharvest, processing, and storage to extend their shelf life. It is under such a situation that plasma-mediated treatments have been developed as a novel nonthermal processing tool, offering many advantages and attracting much interest from researchers and the food industry. This review summarizes recent developments of cold plasma technology and associated activated water for shelf life extension of fresh produce. An overview of plasma generation and its physical-chemical properties as well as methods for improving plasma efficiency are first presented. Details of using the technology as a nonthermal agent in inhibiting spoilage and pathogenic microorganisms, inactivating enzymes, and modifying the barrier properties or imparting specific functionalities of packaging materials to extend shelf life of food produce are then reviewed, and the effects of cold plasma-mediated treatment on microstructure and quality attributes of fresh produce are discussed. Future prospects and research gaps of cold plasma are finally elucidated. The review shows that atmospheric plasma-mediated treatments in various gas mixtures can significantly inhibit microorganisms, inactive enzyme, and modify packaging materials, leading to shelf life extension of fresh produce. The quality attributes of treated produce are not compromised but improved. Therefore, plasma-mediated treatment has great potential and values for its application in the food industry.
Collapse
Affiliation(s)
- Yuanyuan Pan
- School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510006, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510006, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510006, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, Dublin, Ireland
| |
Collapse
|
30
|
Julák J, Scholtz V, Vaňková E. Medically important biofilms and non-thermal plasma. World J Microbiol Biotechnol 2018; 34:178. [PMID: 30456518 DOI: 10.1007/s11274-018-2560-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/13/2018] [Indexed: 11/29/2022]
Abstract
In recent decades, the non-thermal plasma, i.e. partially or completely ionized gas produced by electric discharges at ambient temperature, has become of interest for its microbiocidal properties with potential of use in the food industry or medicine. Recently, this interest focuses not only on the planktonic forms of microorganisms but also on their biofilms. The works in this interdisciplinary field are summarized in this review. The wide range of biofilm-plasma interactions is divided into studies of general plasma action on bacteria, on biofilm and on its oral and dental application; a short overview of plasma instrumentation is also included. In addition, not only biofilm combating but also an important area of biofilm prevention is discussed. Various DC discharges of the point-to-plane type. Author's photograph, published in Khun et al. (Plasma Sources Sci Technol 27:065002, 2018).
Collapse
Affiliation(s)
- Jaroslav Julák
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Studničkova 7, 128 00, Prague 2, Czech Republic.
| | - Vladimír Scholtz
- Department of Physics and Measurements, University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic
| | - Eva Vaňková
- Department of Biotechnology, University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic
| |
Collapse
|
31
|
Hafner S, Ehrenfeld M, Neumann AC, Wieser A. Comparison of the bactericidal effect of cold atmospheric pressure plasma (CAPP), antimicrobial photodynamic therapy (aPDT), and polihexanide (PHX) in a novel wet surface model to mimic oral cavity application. J Craniomaxillofac Surg 2018; 46:2197-2202. [PMID: 30316654 DOI: 10.1016/j.jcms.2018.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/21/2018] [Accepted: 09/10/2018] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Cold atmospheric pressure plasma (CAPP) is increasingly used for medical applications. The first devices are available from commercial manufactures, promising to improve wound healing and disinfection. The underlying antimicrobial mechanisms of CAPP are discussed, while the first results on its bactericidal efficiency against common bacterial species have already been published, with promising results. Most of the plasma sources used in these studies were built by the investigators themselves, and are not commercially available or licensed for clinical use. To evaluate the postulated bactericidal effects in clinical practice, we studied a commercially available, ready-to-use CAPP-device, which is also designed to be used in the field of dental, oral, and maxillofacial treatment. MATERIALS AND METHODS Standardized bacterial cultures of two different pathogens (Acinetobacter baumannii and Staphylococcus aureus) were produced with defined colony-forming unit concentrations. Dilutions of these cultures were treated with a commercially available CAPP product according to the manufacturer's instructions in order to evaluate the antimicrobial activity of the technique. This in vitro study compared the CAPP treatment with established clinical therapies like polihexanide (PHX) and antimicrobial photodynamic therapy (aPDT). RESULTS The bactericidal effect was evaluated in terms of reduction in colony-forming units after treatment of the bacterial samples with a defined dose of plasma, aPDT, or PHX. For CAPP, the bactericidal effect was found to be stronger in the Gram-negative isolate (A. baumannii) than in the Gram-positive S. aureus. A strong depth dependency was observed, especially with the Gram-negative isolate. Good bactericidal effects, with a reduction in bacterial load of more than 2 × log10, could only be observed in conditions of 0.3 mm of water-film thickness or less. Such a significant reduction in bactericidal effect depending on depth was not observed using aPDT or PHX in the studied depth range of 0.3-1.8 mm. CONCLUSION CAPP treatment performed by the device (Plasma ONE) and configuration we used in this study seems to be ill suited for sufficiently killing Acinetobacter baumannii or Staphylococcus aureus in a moist infection site, as would be expected in the oral cavity. Established local antimicrobial therapies using PHX or aPDT showed better disinfectant properties. The clinical effect of improved wound healing, described by the manufacturer and some scientists, could not be investigated using this model. Given the results, however, it seems unlikely to be a direct consequence of bactericidal effects of CAPP in a wet environment. Further development of CAPP devices, or a different configuration (e.g. with a higher output, resulting in reactive nitrogen species-dominated, gas-phase chemistry), may enhance antibacterial effects in future, while tissue compatibility of such techniques remains to be elucidated further.
Collapse
Affiliation(s)
- S Hafner
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, LMU Munich, 80337 Munich, Germany.
| | - M Ehrenfeld
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, LMU Munich, 80337 Munich, Germany
| | - A-C Neumann
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany
| | - Andreas Wieser
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, 80802 Munich, Germany; Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, 81377 Munich, Germany.
| |
Collapse
|
32
|
Singh P, Pandit S, Garnæs J, Tunjic S, Mokkapati VR, Sultan A, Thygesen A, Mackevica A, Mateiu RV, Daugaard AE, Baun A, Mijakovic I. Green synthesis of gold and silver nanoparticles from Cannabis sativa (industrial hemp) and their capacity for biofilm inhibition. Int J Nanomedicine 2018; 13:3571-3591. [PMID: 29950836 PMCID: PMC6016601 DOI: 10.2147/ijn.s157958] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Cannabis sativa (hemp) is a source of various biologically active compounds, for instance, cannabinoids, terpenes and phenolic compounds, which exhibit antibacterial, antifungal, anti-inflammatory and anticancer properties. With the purpose of expanding the auxiliary application of C. sativa in the field of bio-nanotechnology, we explored the plant for green and efficient synthesis of gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs). Methods and results The nanoparticles were synthesized by utilizing an aqueous extract of C. sativa stem separated into two different fractions (cortex and core [xylem part]) without any additional reducing, stabilizing and capping agents. In the synthesis of AuNPs using the cortex enriched in bast fibers, fiber-AuNPs (F-AuNPs) were achieved. When using the core part of the stem, which is enriched with phenolic compounds such as alkaloids and cannabinoids, core-AuNPs (C-AuNPs) and core-AgNPs (C-AgNPs) were formed. Synthesized nanoparticles were character-ized by UV–visible analysis, transmission electron microscopy, atomic force microscopy, dynamic light scattering, Fourier transform infrared, and matrix-assisted laser desorption/ionization time-of-flight. In addition, the stable nature of nanoparticles has been shown by thermogravimetric analysis and inductively coupled plasma mass spectrometry (ICP-MS). Finally, the AgNPs were explored for the inhibition of Pseudomonas aeruginosa and Escherichia coli biofilms. Conclusion The synthesized nanoparticles were crystalline with an average diameter between 12 and 18 nm for F-AuNPs and C-AuNPs and in the range of 20–40 nm for C-AgNPs. ICP-MS analysis revealed concentrations of synthesized nanoparticles as 0.7, 4.5 and 3.6 mg/mL for F-AuNPs, C-AuNPs and C-AgNPs, respectively. Fourier transform infrared spectroscopy revealed the presence of flavonoids, cannabinoids, terpenes and phenols on the nanoparticle surface, which could be responsible for reducing the salts to nanoparticles and further stabilizing them. In addition, the stable nature of synthesized nanoparticles has been shown by thermogravimetric analysis and ICP-MS. Finally, the AgNPs were explored for the inhibition of P. aeruginosa and E. coli biofilms. The nanoparticles exhibited minimum inhibitory concentration values of 6.25 and 5 µg/mL and minimum bactericidal concentration values of 12.5 and 25 µg/mL against P. aeruginosa and E. coli, respectively.
Collapse
Affiliation(s)
- Priyanka Singh
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Santosh Pandit
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Jørgen Garnæs
- Danish Institute of Fundamental Metrology, Lyngby, Denmark
| | - Sanja Tunjic
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Venkata Rss Mokkapati
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Abida Sultan
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Anders Thygesen
- Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Aiga Mackevica
- Department of Environmental Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Ramona Valentina Mateiu
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Anders Egede Daugaard
- Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Anders Baun
- Department of Environmental Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
33
|
Van Impe J, Smet C, Tiwari B, Greiner R, Ojha S, Stulić V, Vukušić T, Režek Jambrak A. State of the art of nonthermal and thermal processing for inactivation of micro-organisms. J Appl Microbiol 2018; 125:16-35. [DOI: 10.1111/jam.13751] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/16/2018] [Accepted: 02/27/2018] [Indexed: 02/03/2023]
Affiliation(s)
- J. Van Impe
- Department of Chemical Engineering; KU Leuven; Leuven Belgium
| | - C. Smet
- Department of Chemical Engineering; KU Leuven; Leuven Belgium
| | - B. Tiwari
- Department of Food Biosciences; Teagasc - Irish Agriculture and Food Development Authority; Carlow Ireland
| | - R. Greiner
- Department of Food Technology and Bioprocess Engineering; Max Rubner-Institut; Karlsruhe Germany
| | - S. Ojha
- Department of Food Biosciences; Teagasc - Irish Agriculture and Food Development Authority; Carlow Ireland
| | - V. Stulić
- Faculty of Food Technology and Biotechnology; University of Zagreb; Zagreb Croatia
| | - T. Vukušić
- Faculty of Food Technology and Biotechnology; University of Zagreb; Zagreb Croatia
| | - A. Režek Jambrak
- Faculty of Food Technology and Biotechnology; University of Zagreb; Zagreb Croatia
| |
Collapse
|
34
|
Pandit S, Ravikumar V, Abdel-Haleem AM, Derouiche A, Mokkapati VRSS, Sihlbom C, Mineta K, Gojobori T, Gao X, Westerlund F, Mijakovic I. Low Concentrations of Vitamin C Reduce the Synthesis of Extracellular Polymers and Destabilize Bacterial Biofilms. Front Microbiol 2017; 8:2599. [PMID: 29317857 PMCID: PMC5748153 DOI: 10.3389/fmicb.2017.02599] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/13/2017] [Indexed: 11/13/2022] Open
Abstract
Extracellular polymeric substances (EPS) produced by bacteria form a matrix supporting the complex three-dimensional architecture of biofilms. This EPS matrix is primarily composed of polysaccharides, proteins and extracellular DNA. In addition to supporting the community structure, the EPS matrix protects bacterial biofilms from the environment. Specifically, it shields the bacterial cells inside the biofilm, by preventing antimicrobial agents from getting in contact with them, thereby reducing their killing effect. New strategies for disrupting the formation of the EPS matrix can therefore lead to a more efficient use of existing antimicrobials. Here we examined the mechanism of the known effect of vitamin C (sodium ascorbate) on enhancing the activity of various antibacterial agents. Our quantitative proteomics analysis shows that non-lethal concentrations of vitamin C inhibit bacterial quorum sensing and other regulatory mechanisms underpinning biofilm development. As a result, the EPS biosynthesis in reduced, and especially the polysaccharide component of the matrix is depleted. Once the EPS content is reduced beyond a critical point, bacterial cells get fully exposed to the medium. At this stage, the cells are more susceptible to killing, either by vitamin C-induced oxidative stress as reported here, or by other antimicrobials or treatments.
Collapse
Affiliation(s)
- Santosh Pandit
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Vaishnavi Ravikumar
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Alyaa M Abdel-Haleem
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Abderahmane Derouiche
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - V R S S Mokkapati
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Carina Sihlbom
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Katsuhiko Mineta
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Takashi Gojobori
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Xin Gao
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Fredrik Westerlund
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ivan Mijakovic
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|