1
|
Jiang Q, Li B, Zhang L, Li T, Hu Q, Li H, Zou W, Hu Z, Huang Q, Zhou R. DivIVA Interacts with the Cell Wall Hydrolase MltG To Regulate Peptidoglycan Synthesis in Streptococcus suis. Microbiol Spectr 2023; 11:e0475022. [PMID: 37212666 PMCID: PMC10269899 DOI: 10.1128/spectrum.04750-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/23/2023] [Indexed: 05/23/2023] Open
Abstract
Bacterial morphology is largely determined by the spatial and temporal regulation of peptidoglycan (PG) biosynthesis. Ovococci possess a unique pattern of PG synthesis different from the well studied Bacillus, and the mechanism of the coordination of PG synthesis remains poorly understood. Several regulatory proteins have been identified to be involved in the regulation of ovococcal morphogenesis, among which DivIVA is an important one to regulate PG synthesis in streptococci, while its mechanism is largely unknown. Here, the zoonotic pathogen Streptococcus suis was used to investigate the regulation of DivIVA on PG synthesis. Fluorescent d-amino acid probing and 3D-structured illumination microscopy found that DivIVA deletion caused abortive peripheral PG synthesis, resulting in a decreased aspect ratio. The phosphorylation-depleted mutant (DivIVA3A) cells displayed a longer nascent PG and became longer, whereas the phosphorylation-mimicking mutant (DivIVA3E) cells showed a shorter nascent PG and became shorter, suggesting that DivIVA phosphorylation is involved in regulating peripheral PG synthesis. Several DivIVA-interacting proteins were identified, and the interaction was confirmed between DivIVA and MltG, a cell wall hydrolase essential for cell elongation. DivIVA did not affect the PG hydrolysis activity of MltG, while the phosphorylation state of DivIVA affected its interaction with MltG. MltG was mislocalized in the ΔdivIVA and DivIVA3E cells, and both ΔmltG and DivIVA3E cells formed significantly rounder cells, indicating an important role of DivIVA phosphorylation in regulating PG synthesis through MltG. These findings highlight the regulatory mechanism of PG synthesis and morphogenesis of ovococci. IMPORTANCE The peptidoglycan (PG) biosynthesis pathway provides a rich source of novel antimicrobial drug targets. However, bacterial PG synthesis and its regulation is a very complex process involving dozens of proteins. Moreover, unlike the well studied Bacillus, ovococci undergo unusual PG synthesis with unique mechanisms of coordination. DivIVA is an important regulator of PG synthesis in ovococci, while its exact role in regulating PG synthesis remains poorly understood. In this study, we determined the role of DivIVA in regulating lateral PG synthesis of Streptococcus suis and identified a critical interacting partner, MltG, in which DivIVA influenced the subcellular localizations of MltG through its phosphorylation. Our study characterizes the detailed role of DivIVA in regulating bacterial PG synthesis, which is very helpful for understanding the process of PG synthesis in streptococci.
Collapse
Affiliation(s)
- Qinggen Jiang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Boxi Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liangsheng Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tingting Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qiao Hu
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Haotian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wenjin Zou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhe Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- International Research Centre for Animal Diseases (MOST), Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- International Research Centre for Animal Diseases (MOST), Wuhan, China
| |
Collapse
|
2
|
Tan MF, Tan J, Zhang FF, Li HQ, Ji HY, Fang SP, Wu CC, Rao YL, Zeng YB, Yang Q. Exogenous glycogen utilization effects the transcriptome and pathogenicity of Streptococcus suis serotype 2. Front Cell Infect Microbiol 2022; 12:938286. [PMID: 36439226 PMCID: PMC9683343 DOI: 10.3389/fcimb.2022.938286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/24/2022] [Indexed: 09/23/2024] Open
Abstract
Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen that causes severe infections in humans and the swine industry. Acquisition and utilization of available carbon sources from challenging host environments is necessary for bacterial pathogens to ensure growth and proliferation. Glycogen is abundant in mammalian body and may support the growth of SS2 during infection in hosts. However, limited information is known about the mechanism between the glycogen utilization and host adaptation of SS2. Here, the pleiotropic effects of exogenous glycogen on SS2 were investigated through transcriptome sequencing. Analysis of transcriptome data showed that the main basic metabolic pathways, especially the core carbon metabolism pathways and virulence-associated factors, of SS2 responded actively to glycogen induction. Glycogen induction led to the perturbation of the glycolysis pathway and citrate cycle, but promoted the pentose phosphate pathway and carbohydrate transport systems. Extracellular glycogen utilization also promoted the mixed-acid fermentation in SS2 rather than homolactic fermentation. Subsequently, apuA, a gene encoding the unique bifunctional amylopullulanase for glycogen degradation, was deleted from the wild type and generated the mutant strain ΔapuA. The pathogenicity details of the wild type and ΔapuA cultured in glucose and glycogen were investigated and compared. Results revealed that the capsule synthesis or bacterial morphology were not affected by glycogen incubation or apuA deletion. However, extracellular glycogen utilization significantly enhanced the hemolytic activity, adhesion and invasion ability, and lethality of SS2. The deletion of apuA also impaired the pathogenicity of bacteria cultured in glucose, indicating that ApuA is indeed an important virulence factor. Our results revealed that exogenous glycogen utilization extensively influenced the expression profile of the S. suis genome. Based on the transcriptome response, exogenous glycogen utilization promoted the carbon adaption and pathogenicity of SS2.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yan-Bin Zeng
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Qun Yang
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| |
Collapse
|
3
|
Li H, Li T, Hu Q, Yao Z, Li L, Huang Q, Zhou R. Inhibitors targeting the autophosphorylation of serine/threonine kinase of Streptococcus suis show potent antimicrobial activity. Front Microbiol 2022; 13:990091. [PMID: 36118193 PMCID: PMC9478340 DOI: 10.3389/fmicb.2022.990091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/09/2022] [Indexed: 11/19/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global concern threatening public health. Developing novel antibiotics is one of the effective strategies to tackle AMR. Serine/threonine kinases (STKs) have been recently shown to play critical roles in the physiology and pathogenesis of several important bacterial pathogens which are regarded as a promising antimicrobial drug target. We previously reported the roles of STK in the regulation of bacterial cell division, metabolism, and pathogenesis in Streptococcus suis, an important zoonotic bacterial pathogen. In this study, we firstly identified the Thr167 and Ser175 residues in the activation loop of S. suis STK (ssSTK) as the kinase autophosphorylation sites. Phenotyping results demonstrated that the autophosphorylation deficient strain resembled the stk deletion strain showing essentiality for bacterial growth in minimal medium, abnormal morphology, and decreased virulence when compared with the wild-type S. suis SC19 strain. Based on these findings, we established an ssSTK inhibitor screening approach by measuring the growth of S. suis in a minimal medium and testing the autophosphorylation inhibition by measuring the consumption of ATP in an enzymatic reaction by ssSTK. A series of inhibitors against ssSTK are identified from a commercial kinase inhibitors library, including Staurosporine, K252a, AT9283, and APY29. These inhibitors showed antimicrobial activity in vitro. Moreover, by using Galleria mellonella larvae infection assay, compound APY29 displayed in vivo efficacy against S. suis infection. Additionally, it was predicted by molecular docking that these inhibitors could interact with ssSTK. Collectively, our data illustrated the essential roles of ssSTK autophosphorylation in the physiology and pathogenicity of S. suis and consider these inhibitors as promising antimicrobial lead compounds.
Collapse
Affiliation(s)
- Haotian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tingting Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qiao Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhiming Yao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
- International Research Center for Animal Disease (Ministry of Science & Technology of China), Wuhan, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
- International Research Center for Animal Disease (Ministry of Science & Technology of China), Wuhan, China
- *Correspondence: Qi Huang,
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
- International Research Center for Animal Disease (Ministry of Science & Technology of China), Wuhan, China
- The HZAU-HVSEN Institute, Wuhan, China
- Rui Zhou,
| |
Collapse
|
4
|
Wang X, Huang R, Lu Z, Wang Z, Chen X, Huang D. Exosomes from M1‐polarized macrophages promote apoptosis in lung adenocarcinoma via the miR‐181a‐5p/ETS1/STK16 axis. Cancer Sci 2022; 113:986-1001. [PMID: 35092121 PMCID: PMC8898733 DOI: 10.1111/cas.15268] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022] Open
Abstract
Serine/threonine kinase 16 (STK16) is crucial in on regulating tumor cell proliferation, apoptosis, and prognosis. Activated M1 macrophages regulate lung adenocarcinoma (LUAD) growth by releasing exosomes. This study aims to investigate the role of STK16 and then focus on the possible mechanisms through which exosomes derived from M1 macrophages play their roles in LUAD cells by targeting STK16. Clinical LUAD samples were used to evaluate the expression of STK16 and its association with prognosis. Exosomes were isolated from M0 and M1 macrophages by ultracentrifugation and were then identified by electron microscopy and western blotting. In vitro gain‐ and loss‐of‐function experiments with LUAD cells were performed to elucidate the functions of miR‐181a‐5p, ETS1, and STK16, and mouse xenograft models were used to verify the function of STK16 in vivo. Western blotting, quantitative real‐time PCR, CCK‐8 assay, cell apoptosis, immunohistochemistry staining, luciferase assay, ChIP assay, and bioinformatics analysis were performed to reveal the underlying mechanisms. High expression of STK16 was observed in LUAD tissues and cells, and higher expression of STK16 was associated with worse prognosis. Silencing STK16 expression inhibited cell proliferation and promoted apoptosis via the AKT1 pathway. Exosomes from M1 macrophages inhibited viability and promoted apoptosis by inhibiting STK16. Moreover, miR‐181a‐5p is the functional molecule in M1 macrophage‐derived exosomes and plays a vital role in inhibiting cell proliferation and promoting apoptosis by targeting ETS1 and STK16. Hence, exosomes derived from M1 macrophages were capable of inhibiting viability and promoting apoptosis in LUAD via the miR‐181a‐5p/ETS1/STK16 axis.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Thoracic Surgery Huashan Hospital Fudan University 12 Urumqi Road (M) Shanghai 200040 China
| | - Renhong Huang
- Department of General Surgery Comprehensive Breast Health Center Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin Second Road Shanghai 200025 China
| | - Zhouyi Lu
- Department of Thoracic Surgery Huashan Hospital Fudan University 12 Urumqi Road (M) Shanghai 200040 China
| | - Zheng Wang
- Department of General Surgery Comprehensive Breast Health Center Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin Second Road Shanghai 200025 China
| | - Xiaofeng Chen
- Department of Thoracic Surgery Huashan Hospital Fudan University 12 Urumqi Road (M) Shanghai 200040 China
| | - Dayu Huang
- Department of Thoracic Surgery Huashan Hospital Fudan University 12 Urumqi Road (M) Shanghai 200040 China
| |
Collapse
|
5
|
Ulrych A, Fabrik I, Kupčík R, Vajrychová M, Doubravová L, Branny P. Cell Wall Stress Stimulates the Activity of the Protein Kinase StkP of Streptococcus pneumoniae, Leading to Multiple Phosphorylation. J Mol Biol 2021; 433:167319. [PMID: 34688688 DOI: 10.1016/j.jmb.2021.167319] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022]
Abstract
Streptococcus pneumoniae is an opportunistic human pathogen that encodes a single eukaryotic-type Ser/Thr protein kinase StkP and its functional counterpart, the protein phosphatase PhpP. These signaling enzymes play critical roles in coordinating cell division and growth in pneumococci. In this study, we determined the proteome and phosphoproteome profiles of relevant mutants. Comparison of those with the wild-type provided a representative dataset of novel phosphoacceptor sites and StkP-dependent substrates. StkP phosphorylates key proteins involved in cell division and cell wall biosynthesis in both the unencapsulated laboratory strain Rx1 and the encapsulated virulent strain D39. Furthermore, we show that StkP plays an important role in triggering an adaptive response induced by a cell wall-directed antibiotic. Phosphorylation of the sensor histidine kinase WalK and downregulation of proteins of the WalRK core regulon suggest crosstalk between StkP and the WalRK two-component system. Analysis of proteomic profiles led to the identification of gene clusters regulated by catabolite control mechanisms, indicating a tight coupling of carbon metabolism and cell wall homeostasis. The imbalance of steady-state protein phosphorylation in the mutants as well as after antibiotic treatment is accompanied by an accumulation of the global Spx regulator, indicating a Spx-mediated envelope stress response. In summary, StkP relays the perceived signal of cell wall status to key cell division and regulatory proteins, controlling the cell cycle and cell wall homeostasis.
Collapse
Affiliation(s)
- Aleš Ulrych
- Institute of Microbiology, v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Ivo Fabrik
- Biomedical Research Center, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic.
| | - Rudolf Kupčík
- Biomedical Research Center, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic.
| | - Marie Vajrychová
- Biomedical Research Center, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic.
| | - Linda Doubravová
- Institute of Microbiology, v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Pavel Branny
- Institute of Microbiology, v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
6
|
Hu Q, Yao L, Liao X, Zhang LS, Li HT, Li TT, Jiang QG, Tan MF, Li L, Draheim RR, Huang Q, Zhou R. Comparative Phenotypic, Proteomic, and Phosphoproteomic Analysis Reveals Different Roles of Serine/Threonine Phosphatase and Kinase in the Growth, Cell Division, and Pathogenicity of Streptococcus suis. Microorganisms 2021; 9:microorganisms9122442. [PMID: 34946045 PMCID: PMC8707513 DOI: 10.3390/microorganisms9122442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022] Open
Abstract
Eukaryote-like serine/threonine kinases (STKs) and cognate phosphatases (STPs) comprise an important regulatory system in many bacterial pathogens. The complexity of this regulatory system has not been fully understood due to the presence of multiple STKs/STPs in many bacteria and their multiple substrates involved in many different physiological and pathogenetic processes. Streptococci are the best materials for the study due to a single copy of the gene encoding STK and its cognate STP. Although several studies have been done to investigate the roles of STK and STP in zoonotic Streptococcus suis, respectively, few studies were performed on the coordinated regulatory roles of this system. In this study, we carried out a systemic study on STK/STP in S. suis by using a comparative phenotypic, proteomic, and phosphoproteomic analysis. Mouse infection assays revealed that STK played a much more important role in S. suis pathogenesis than STP. The ∆stk and ∆stp∆stk strains, but not ∆stp, showed severe growth retardation. Moreover, both ∆stp and ∆stk strains displayed defects in cell division, but they were abnormal in different ways. The comparative proteomics and phosphoproteomics revealed that deletion of stk or stp had a significant influence on protein expression. Interestingly, more virulence factors were found to be downregulated in ∆stk than ∆stp. In ∆stk strain, a substantial number of the proteins with a reduced phosphorylation level were involved in cell division, energy metabolism, and protein translation. However, only a few proteins showed increased phosphorylation in ∆stp, which also included some proteins related to cell division. Collectively, our results show that both STP and STK are critical regulatory proteins for S. suis and that STK seems to play more important roles in growth, cell division, and pathogenesis.
Collapse
Affiliation(s)
- Qiao Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
| | - Lun Yao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
| | - Xia Liao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
| | - Liang-Sheng Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
| | - Hao-Tian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
| | - Ting-Ting Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
| | - Qing-Gen Jiang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
| | - Mei-Fang Tan
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China;
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
| | - Roger R. Draheim
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2UP, UK;
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
- Correspondence: (Q.H.); (R.Z.)
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
- Correspondence: (Q.H.); (R.Z.)
| |
Collapse
|
7
|
Dresen M, Rohde M, Arenas J, de Greeff A, Nerlich A, Valentin‐Weigand P. Identification and characterization of the cell division protein MapZ from Streptococcus suis. Microbiologyopen 2021; 10:e1234. [PMID: 34713609 PMCID: PMC8501179 DOI: 10.1002/mbo3.1234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/26/2021] [Indexed: 11/11/2022] Open
Abstract
Streptococcus suis, an emerging zoonotic pathogen, causes invasive diseases in pigs, including sepsis, meningitis, endocarditis, pneumonia, and arthritis. Importantly, similar pathologies are reported in human S. suis infections. In previous work, the locus SSU0375 of S. suis strain P1.7 had been identified as a conditionally essential gene by intrathecal experimental infection of pigs with a transposon library of S. suis. This study aimed to identify the function of the corresponding gene product. Bioinformatics analysis and homology modeling revealed sequence and structural homologies with the Streptococcus pneumoniae mid-cell-anchored protein Z (MapZ) that is involved in cell division in different bacterial species. Indeed, depletion of this locus in S. suis strain 10 revealed a growth defect as compared to the wild type. Electron microscopy analysis of the corresponding mutant demonstrated morphological growth defects as compared to the wild-type strain, including an irregular cell shape and size as well as mispositioned division septa. Light microscopy and subsequent quantitative image analysis confirmed these morphological alterations. In the genetic rescue strain, the wild-type phenotype was completely restored. In summary, we proposed that SSU0375 or the corresponding locus in strain 10 encode for a S. suis MapZ homolog that guides septum positioning as evidenced for other members of the Streptococci family.
Collapse
Affiliation(s)
- Muriel Dresen
- Institute for MicrobiologyCenter for Infection MedicineUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Manfred Rohde
- Central Facility for MicroscopyHelmholtz Centre for Infection ResearchBraunschweigGermany
| | - Jesús Arenas
- Unit of Microbiology and ImmunologyFaculty of VeterinaryUniversity of ZaragozaZaragozaSpain
| | - Astrid de Greeff
- Wageningen Bioveterinary ResearchPart of Wageningen University and ResearchLelystadThe Netherlands
| | - Andreas Nerlich
- Institute for MicrobiologyCenter for Infection MedicineUniversity of Veterinary Medicine HannoverHannoverGermany
- Veterinary Centre for Resistance ResearchFreie Universität BerlinBerlinGermany
| | - Peter Valentin‐Weigand
- Institute for MicrobiologyCenter for Infection MedicineUniversity of Veterinary Medicine HannoverHannoverGermany
| |
Collapse
|
8
|
Zhu H, Zhou J, Wang D, Yu Z, Li B, Ni Y, He K. Quantitative proteomic analysis reveals that serine/threonine kinase is involved in Streptococcus suis virulence and adaption to stress conditions. Arch Microbiol 2021; 203:4715-4726. [PMID: 34028569 PMCID: PMC8141825 DOI: 10.1007/s00203-021-02369-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/27/2022]
Abstract
The eukaryotic-type serine/threonine kinase of Streptococcus suis serotype 2 (SS2) performs critical roles in bacterial pathogenesis. In this study, isobaric tags for relative and absolute quantification (iTRAQ) MS/MS were used to analyze the protein profiles of wild type strain SS2-1 and its isogenic STK deletion mutant (Δstk). A total of 281 significant differential proteins, including 147 up-regulated and 134 down-regulated proteins, were found in Δstk. Moreover, 69 virulence factors (VFs) among these 281 proteins were predicted by the Virulence Factor Database (VFDB), including 38 downregulated and 31 up-regulated proteins in Δstk, among which 15 down regulated VFs were known VFs of SS2. Among the down-regulated proteins, high temperature requirement A (HtrA), glutamine synthase (GlnA), ferrichrome ABC transporter substrate-binding protein FepB, and Zinc-binding protein AdcA are known to be involved in bacterial survival and/or nutrient and energy acquisition under adverse host conditions. Overall, our results indicate that STK regulates the expression of proteins involved in virulence of SS2 and its adaption to stress environments.
Collapse
Affiliation(s)
- Haodan Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China
| | - Junming Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China
| | - Dandan Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China
| | - Zhengyu Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China
| | - Yanxiu Ni
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China.
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China.
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China.
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China.
| |
Collapse
|
9
|
Sultan A, Jers C, Ganief TA, Shi L, Senissar M, Køhler JB, Macek B, Mijakovic I. Phosphoproteome Study of Escherichia coli Devoid of Ser/Thr Kinase YeaG During the Metabolic Shift From Glucose to Malate. Front Microbiol 2021; 12:657562. [PMID: 33889145 PMCID: PMC8055822 DOI: 10.3389/fmicb.2021.657562] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/15/2021] [Indexed: 12/30/2022] Open
Abstract
Understanding phosphorylation-mediated regulation of metabolic enzymes, pathways, and cell phenotypes under metabolic shifts represents a major challenge. The kinases associated with most phosphorylation sites and the link between phosphorylation and enzyme activity remain unknown. In this study, we performed stable isotope labeling by amino acids in cell culture (SILAC)-based proteome and phosphoproteome analysis of Escherichia coli ΔyeaG, a strain lacking a poorly characterized serine/threonine kinase YeaG, to decipher kinase-substrate interactions and the effects on metabolic phenotype during shifts from glucose to malate. The starting point of our analysis was the identification of physiological conditions under which ΔyeaG exhibits a clear phenotype. By metabolic profiling, we discovered that ΔyeaG strain has a significantly shorter lag phase than the wild type during metabolic shift from glucose to malate. Under those conditions, our SILAC analysis revealed several proteins that were differentially phosphorylated in the ΔyeaG strain. By focusing on metabolic enzymes potentially involved in central carbon metabolism, we narrowed down our search for putative YeaG substrates and identified isocitrate lyase AceA as the direct substrate of YeaG. YeaG was capable of phosphorylating AceA in vitro only in the presence of malate, suggesting that this phosphorylation event is indeed relevant for glucose to malate shift. There is currently not enough evidence to firmly establish the exact mechanism of this newly observed regulatory phenomenon. However, our study clearly exemplifies the usefulness of SILAC-based approaches in identifying proteins kinase substrates, when applied in physiological conditions relevant for the activity of the protein kinase in question.
Collapse
Affiliation(s)
- Abida Sultan
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Carsten Jers
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Tariq A Ganief
- Quantitative Proteomics and Proteome Center Tübingen, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Lei Shi
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Meriem Senissar
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Julie Bonne Køhler
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Boris Macek
- Quantitative Proteomics and Proteome Center Tübingen, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Ivan Mijakovic
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.,Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
10
|
Streptococcus suis MsmK: Novel Cell Division Protein Interacting with FtsZ and Maintaining Cell Shape. mSphere 2021; 6:6/2/e00119-21. [PMID: 33731468 PMCID: PMC8546688 DOI: 10.1128/msphere.00119-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacteria of different shapes have adopted distinct mechanisms to faithfully coordinate morphogenesis and segregate their chromosomes prior to cell division. Despite recent focuses and advances, the mechanism of cell division in ovococci remains largely unknown. Streptococcus suis, a major zoonotic pathogen that causes problems in human health and in the global swine industry, is an elongated and ellipsoid bacterium that undergoes successive parallel splitting perpendicular to its long axis. Studies on cell cycle processes in this bacterium are limited. Here, we report that MsmK (multiple sugar metabolism protein K), an ATPase that contributes to the transport of multiple carbohydrates, has a novel role as a cell division protein in S. suis. MsmK can display ATPase and GTPase activities, interact with FtsZ via the N terminus of MsmK, and promote the bundling of FtsZ protofilaments in a GTP-dependent manner in vitro. Deletion of the C-terminal region or the Walker A or B motif affects the affinity between MsmK and FtsZ and decreases the ability of MsmK to promote FtsZ protofilament bundling. MsmK can form a complex with FtsZ in vivo, and its absence is not lethal but results in long chains and short, occasionally anuclear daughter cells. Superresolution microscopy revealed that the lack of MsmK in cells leads to normal septal peptidoglycan walls in mother cells but disturbed cell elongation and peripheral peptidoglycan synthesis. In summary, MsmK is a novel cell division protein that maintains cell shape and is involved in the synthesis of the peripheral cell wall. IMPORTANCE Bacterial cell division is a highly ordered process regulated in time and space and is a potential target for the development of antimicrobial drugs. Bacteria of distinct shapes depend on different cell division mechanisms, but the mechanisms used by ovococci remain largely unknown. Here, we focused on the zoonotic pathogen Streptococcus suis and identified a novel cell division protein named MsmK, which acts as an ATPase of the ATP-binding cassette-type carbohydrate transport system. MsmK has GTPase and ATPase activities. In vitro protein assays showed that MsmK interacts with FtsZ and promotes FtsZ protofilament bundling that relies on GTP. Superresolution microscopy revealed that MsmK maintains cell shape and is involved in peripheral peptidoglycan synthesis. Knowledge of the multiple functions of MsmK may broaden our understanding of known cell division processes. Further studies in this area will elucidate how bacteria can faithfully and continually multiply in a constantly changing environment.
Collapse
|
11
|
Tram G, Jennings MP, Blackall PJ, Atack JM. Streptococcus suis pathogenesis-A diverse array of virulence factors for a zoonotic lifestyle. Adv Microb Physiol 2021; 78:217-257. [PMID: 34147186 DOI: 10.1016/bs.ampbs.2020.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Streptococcus suis is a major cause of respiratory tract and invasive infections in pigs and is responsible for a substantial disease burden in the pig industry. S. suis is also a significant cause of bacterial meningitis in humans, particularly in South East Asia. S. suis expresses a wide array of virulence factors, and although many are described as being required for disease, no single factor has been demonstrated to be absolutely required. The lack of uniform distribution of known virulence factors among individual strains and lack of evidence that any particular virulence factor is essential for disease makes the development of vaccines and treatments challenging. Here we review the current understanding of S. suis virulence factors and their role in the pathogenesis of this important zoonotic pathogen.
Collapse
Affiliation(s)
- Greg Tram
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Patrick J Blackall
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
12
|
Gao T, Yuan F, Liu Z, Liu W, Zhou D, Yang K, Guo R, Liang W, Zou G, Zhou R, Tian Y. Proteomic and Metabolomic Analyses Provide Insights into the Mechanism on Arginine Metabolism Regulated by tRNA Modification Enzymes GidA and MnmE of Streptococcus suis. Front Cell Infect Microbiol 2020; 10:597408. [PMID: 33425782 PMCID: PMC7793837 DOI: 10.3389/fcimb.2020.597408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/10/2020] [Indexed: 12/22/2022] Open
Abstract
GidA and MnmE, two important tRNA modification enzymes, are contributed to the addition of the carboxymethylaminomethyl (cmnm) group onto wobble uridine of tRNA. GidA-MnmE modification pathway is evolutionarily conserved among Bacteria and Eukarya, which is crucial in efficient and accurate protein translation. However, its function remains poorly elucidated in zoonotic Streptococcus suis (SS). Here, a gidA and mnmE double knock-out (DKO) strain was constructed to systematically decode regulatory characteristics of GidA-MnmE pathway via proteomic. TMT labelled proteomics analysis identified that many proteins associated with cell divison and growth, fatty acid biosynthesis, virulence, especially arginine deiminase system (ADS) responsible for arginine metabolism were down-regulated in DKO mutant compared with the wild-type (WT) SC19. Accordingly, phenotypic experiments showed that the DKO strain displayed decreased in arginine consumption and ammonia production, deficient growth, and attenuated pathogenicity. Moreover, targeted metabolomic analysis identified that arginine was accumulated in DKO mutant as well. Therefore, these data provide molecular mechanisms for GidA-MnmE modification pathway in regulation of arginine metabolism, cell growth and pathogenicity of SS. Through proteomic and metabolomic analysis, we have identified arginine metabolism that is the links between a framework of protein level and the metabolic level of GidA-MnmE modification pathway perturbation.
Collapse
Affiliation(s)
- Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wan Liang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Geng Zou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
13
|
Liu H, Ye C, Fu H, Yue M, Li X, Fang W. Stk and Stp1 participate in Streptococcus suis serotype 2 pathogenesis by regulating capsule thickness and translocation of certain virulence factors. Microb Pathog 2020; 152:104607. [PMID: 33161059 DOI: 10.1016/j.micpath.2020.104607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 11/17/2022]
Abstract
Eukaryotic-like serine/threonine protein kinase (eSTK) and phosphatase (eSTP) play multiple roles in pathogenesis of many Gram-positive bacteria. eSTK (Stk) and eSTP (Stp1) of Streptococcus suis serotype 2 (S. suis 2) have also been reported to be virulence-associated, but their roles and underlying mechanisms in S. suis 2 pathogenesis require further investigation. We constructed mutants of stk or stp1 deletion using the virulent S. suis 2 isolate 05ZYH33 as the parental strain. Both Δstk and Δstp1 mutants showed abnormal cell division shown as increased chain length. This might be due to regulation by Stk and Stp1 of the phosphorylation status of the bacterial division protein DivIVA. Both mutants showed increased adhesion but reduced invasion to epithelial and endothelial cells. The two mutants were more readily phagocytosed by murine RAW264.7 macrophages. Western blotting revealed that GAPDH (glyceraldehyde-3-phosphate dehydrogenase), an important adhesin of S. suis, was significantly increased in the surface-associated and secreted fractions of the two mutant strains. Because increased adhesion of the mutant strains Δstk and Δstp1 to endothelial cells could be significantly inhibited by anti-GAPDH serum, we suppose that aberrant translocation of GAPDH due to deletion of the stk or stp1 gene contributed to increased interaction with host cells. The Δstk mutant showed reduced survival in macrophages, while the Δstp1 mutant showed increased survival probably as a result of increased capsule thickness. Enhanced hemolytic activity of the Δstk mutant could be due to increased secretion of suilysin. Both mutants exhibited reduced survival in pig whole blood and attenuated virulence to mice. Taken together, these results suggest that Stk and Stp1 can modulate S. suis cell division by post-translational modification of DivIVA, and regulate translocation of certain virulence factors, thereby benefiting its pathogenicity by compromising its interactions with the host.
Collapse
Affiliation(s)
- Hanze Liu
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Chaofeng Ye
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Hao Fu
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Min Yue
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Xiaoliang Li
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Weihuan Fang
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
14
|
Zheng C, Wei M, Jia M, Cao M. Involvement of Various Enzymes in the Physiology and Pathogenesis of Streptococcus suis. Vet Sci 2020; 7:vetsci7040143. [PMID: 32977655 PMCID: PMC7712317 DOI: 10.3390/vetsci7040143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
Streptococcus suis causes severe infections in both swine and humans, making it a serious threat to the swine industry and public health. Insight into the physiology and pathogenesis of S. suis undoubtedly contributes to the control of its infection. During the infection process, a wide variety of virulence factors enable S. suis to colonize, invade, and spread in the host, thus causing localized infections and/or systemic diseases. Enzymes catalyze almost all aspects of metabolism in living organisms. Numerous enzymes have been characterized in extensive detail in S. suis, and have shown to be involved in the pathogenesis and/or physiology of this pathogen. In this review, we describe the progress in the study of some representative enzymes in S. suis, such as ATPases, immunoglobulin-degrading enzymes, and eukaryote-like serine/threonine kinase and phosphatase, and we highlight the important role of various enzymes in the physiology and pathogenesis of this pathogen. The controversies about the current understanding of certain enzymes are also discussed here. Additionally, we provide suggestions about future directions in the study of enzymes in S. suis.
Collapse
Affiliation(s)
- Chengkun Zheng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (M.W.); (M.J.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-152-0527-9658
| | - Man Wei
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (M.W.); (M.J.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Mengdie Jia
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (M.W.); (M.J.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - ManMan Cao
- Guangdong Maoming Agriculture & Forestry Techical College, Maoming 525000, China;
| |
Collapse
|
15
|
Screening of Virulence-Related Transcriptional Regulators in Streptococcus suis. Genes (Basel) 2020; 11:genes11090972. [PMID: 32825733 PMCID: PMC7564649 DOI: 10.3390/genes11090972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/08/2023] Open
Abstract
Streptococcus suis (S.suis) is an important zoonotic pathogen that causes many severe diseases in pigs and humans. Virulence-related transcriptional regulators have been widely reported in pathogenic microorganisms, but only a few have been identified in S.suis. Our aim was to screen virulence-related transcriptional regulators in S.suis. A total of 89 such genes were predicted in the S.suis genome, of which 22 were up-regulated and 18 were down-regulated during S.suis infection in mice. To evaluate the roles of these differentially expressed factors in S.suis virulence, deletion mutants were constructed, and 10 mutants were successfully obtained. Among these genes, the deletion of comR, sitR, or sxvR caused significantly decreased virulence in mice, compared to that with the wild-type strain. Moreover, the survival of ΔcomR, ΔsitR, and ΔsxvR mutant strains in blood was significantly reduced both in vitro and in vivo. Furthermore, their pro-inflammatory abilities were also obviously decreased in vivo. The regulatory mechanisms of comR, sitR, and sxvR were then analyzed by whole transcriptome RNA sequencing (RNA-Seq). Results indicated that the absence of comR induced the down-regulation of 17 virulence factors or virulence-related factors, including genes involved in the synthesis of capsules, oxidative stress tolerance, immune evasion, and cell division. Furthermore, three and two virulence factors or virulence-related factors were down-regulated upon deletion of sitR and sxvR, respectively. Thus, this study reports the discovery of three virulence-associated transcriptional regulatory factors in S.suis. These factors could ultimately be targeted to control infection caused by these bacteria.
Collapse
|
16
|
Hirschfeld C, Gómez-Mejia A, Bartel J, Hentschker C, Rohde M, Maaß S, Hammerschmidt S, Becher D. Proteomic Investigation Uncovers Potential Targets and Target Sites of Pneumococcal Serine-Threonine Kinase StkP and Phosphatase PhpP. Front Microbiol 2020; 10:3101. [PMID: 32117081 PMCID: PMC7011611 DOI: 10.3389/fmicb.2019.03101] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022] Open
Abstract
Like eukaryotes, different bacterial species express one or more Ser/Thr kinases and phosphatases that operate in various signaling networks by catalyzing phosphorylation and dephosphorylation of proteins that can immediately regulate biochemical pathways by altering protein function. The human pathogen Streptococcus pneumoniae encodes a single Ser/Thr kinase-phosphatase couple known as StkP-PhpP, which has shown to be crucial in the regulation of cell wall synthesis and cell division. In this study, we applied proteomics to further understand the physiological role of pneumococcal PhpP and StkP with an emphasis on phosphorylation events on Ser and Thr residues. Therefore, the proteome of the non-encapsulated D39 strain (WT), a kinase (ΔstkP), and phosphatase mutant (ΔphpP) were compared in a mass spectrometry based label-free quantification experiment. Results show that a loss of function of PhpP causes an increased abundance of proteins in the phosphate uptake system Pst. Quantitative proteomic data demonstrated an effect of StkP and PhpP on the two-component systems ComDE, LiaRS, CiaRH, and VicRK. To obtain further information on the function, targets and target sites of PhpP and StkP we combined the advantages of phosphopeptide enrichment using titanium dioxide and spectral library based data evaluation for sensitive detection of changes in the phosphoproteome of the wild type and the mutant strains. According to the role of StkP in cell division we identified several proteins involved in cell wall synthesis and cell division that are apparently phosphorylated by StkP. Unlike StkP, the physiological function of the co-expressed PhpP is poorly understood. For the first time we were able to provide a list of previously unknown putative targets of PhpP. Under these new putative targets of PhpP are, among others, five proteins with direct involvement in cell division (DivIVA, GpsB) and peptidoglycan biosynthesis (MltG, MreC, MacP).
Collapse
Affiliation(s)
- Claudia Hirschfeld
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Alejandro Gómez-Mejia
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Jürgen Bartel
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Christian Hentschker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sandra Maaß
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
17
|
Goals and Challenges in Bacterial Phosphoproteomics. Int J Mol Sci 2019; 20:ijms20225678. [PMID: 31766156 PMCID: PMC6888350 DOI: 10.3390/ijms20225678] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
Reversible protein phosphorylation at serine, threonine and tyrosine is a well-known dynamic post-translational modification with stunning regulatory and signalling functions in eukaryotes. Shotgun phosphoproteomic analyses revealed that this post-translational modification is dramatically lower in bacteria than in eukaryotes. However, Ser/Thr/Tyr phosphorylation is present in all analysed bacteria (24 eubacteria and 1 archaea). It affects central processes, such as primary and secondary metabolism development, sporulation, pathogenicity, virulence or antibiotic resistance. Twenty-nine phosphoprotein orthologues were systematically identified in bacteria: ribosomal proteins, enzymes from glycolysis and gluconeogenesis, elongation factors, cell division proteins, RNA polymerases, ATP synthases and enzymes from the citrate cycle. While Ser/Thr/Tyr phosphorylation exists in bacteria, there is a consensus that histidine phosphorylation is the most abundant protein phosphorylation in prokaryotes. Unfortunately, histidine shotgun phosphorproteomics is not possible due to the reduced phosphohistidine half-life under the acidic pH conditions used in standard LC-MS/MS analysis. However, considering the fast and continuous advances in LC-MS/MS-based phosphoproteomic methodologies, it is expected that further innovations will allow for the study of His phosphoproteomes and a better coverage of bacterial phosphoproteomes. The characterisation of the biological role of bacterial Ser/Thr/Tyr and His phosphorylations might revolutionise our understanding of prokaryotic physiology.
Collapse
|
18
|
Henry C, Haller L, Blein-Nicolas M, Zivy M, Canette A, Verbrugghe M, Mézange C, Boulay M, Gardan R, Samson S, Martin V, André-Leroux G, Monnet V. Identification of Hanks-Type Kinase PknB-Specific Targets in the Streptococcus thermophilus Phosphoproteome. Front Microbiol 2019; 10:1329. [PMID: 31275266 PMCID: PMC6593474 DOI: 10.3389/fmicb.2019.01329] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/28/2019] [Indexed: 12/17/2022] Open
Abstract
Protein phosphorylation especially on serine/threonine/tyrosine residues are frequent in many bacteria. This post-translational modification has been associated with pathogenicity and virulence in various species. However, only few data have been produced so far on generally recognized as safe bacteria used in food fermentations. A family of kinases known as Hanks-type kinases is suspected to be responsible for, at least, a part of these phosphorylations in eukaryotes as in bacteria. The objective of our work was to establish the first phosphoproteome of Streptococcus thermophilus, a lactic acid bacterium widely used in dairy fermentations in order to identified the proteins and pathways tagged by Ser/Thr/Tyr phosphorylations. In addition, we have evaluated the role in this process of the only Hanks-type kinase encoded in the S. thermophilus genome. We have constructed a mutant defective for the Hanks type kinase in S. thermophilus and established the proteomes and phosphoproteomes of the wild type and the mutant strains. To do that, we have enriched our samples in phosphopeptides with titane beads and used dimethyl tags to compare phosphopeptide abundances. Peptides and phosphopeptides were analyzed on a last generation LC-MS/MS system. We have identified and quantified 891 proteins representing half of the theoretical proteome. Among these proteins, 106 contained phosphorylated peptides. Various functional groups of proteins (amino acid, carbon and nucleotide metabolism, translation, cell cycle, stress response, …) were found phosphorylated. The phosphoproteome was only weakly reduced in the Hanks-type kinase mutant indicating that this enzyme is only one of the players in the phosphorylation process. The proteins that are modified by the Hanks-type kinase mainly belong to the divisome.
Collapse
Affiliation(s)
- Céline Henry
- Micalis Institute, PAPPSO, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Lucia Haller
- Micalis Institute, PAPPSO, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,Micalis Institute, ComBac, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Mélisande Blein-Nicolas
- PAPPSO, GQE - Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Michel Zivy
- PAPPSO, GQE - Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Alexis Canette
- Micalis Institute, MIMA2, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Morgane Verbrugghe
- Micalis Institute, ComBac, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Christine Mézange
- Micalis Institute, ComBac, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Mylène Boulay
- Micalis Institute, ComBac, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Rozenn Gardan
- Micalis Institute, ComBac, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Samantha Samson
- MaIAGE, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | - Véronique Monnet
- Micalis Institute, PAPPSO, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,Micalis Institute, ComBac, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
19
|
Gao T, Yuan F, Liu Z, Liu W, Zhou D, Yang K, Duan Z, Guo R, Liang W, Hu Q, Tian Y, Zhou R. MnmE, a Central tRNA-Modifying GTPase, Is Essential for the Growth, Pathogenicity, and Arginine Metabolism of Streptococcus suis Serotype 2. Front Cell Infect Microbiol 2019; 9:173. [PMID: 31179247 PMCID: PMC6543552 DOI: 10.3389/fcimb.2019.00173] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
Streptococcus suis is an important pathogen in pigs and can also cause severe infections in humans. However, little is known about proteins associated with cell growth and pathogenicity of S. suis. In this study, a guanosine triphosphatase (GTPase) MnmE homolog was identified in a Chinese isolate (SC19) that drives a tRNA modification reaction. A mnmE deletion strain (ΔmnmE) and a complementation strain (CΔmnmE) were constructed to systematically decode the characteristics and functions of MnmE both in vitro and in vivo studies via proteomic analysis. Phenotypic analysis revealed that the ΔmnmE strain displayed deficient growth, attenuated pathogenicity, and perturbation of the arginine metabolic pathway mediated by the arginine deiminase system (ADS). Consistently, tandem mass tag -based quantitative proteomics analysis confirmed that 365 proteins were differentially expressed (174 up- and 191 down-regulated) between strains ΔmnmE and SC19. Many proteins associated with DNA replication, cell division, and virulence were down-regulated. Particularly, the core enzymes of the ADS were significantly down-regulated in strain ΔmnmE. These data also provide putative molecular mechanisms for MnmE in cell growth and survival in an acidic environment. Therefore, we propose that MnmE, by its function as a central tRNA-modifying GTPase, is essential for cell growth, pathogenicity, as well as arginine metabolism of S. suis.
Collapse
Affiliation(s)
- Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zhengying Duan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wan Liang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Qiao Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
| |
Collapse
|
20
|
Zhu H, Wang Y, Ni Y, Zhou J, Han L, Yu Z, Mao A, Wang D, Fan H, He K. The Redox-Sensing Regulator Rex Contributes to the Virulence and Oxidative Stress Response of Streptococcus suis Serotype 2. Front Cell Infect Microbiol 2018; 8:317. [PMID: 30280091 PMCID: PMC6154617 DOI: 10.3389/fcimb.2018.00317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/20/2018] [Indexed: 01/06/2023] Open
Abstract
Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen responsible for septicemia and meningitis. The redox-sensing regulator Rex has been reported to play critical roles in the metabolism regulation, oxidative stress response, and virulence of various pathogens. In this study, we identified and characterized a Rex ortholog in the SS2 virulent strain SS2-1 that is involved in bacterial pathogenicity and stress environment susceptibility. Our data show that the Rex-knockout mutant strain Δrex exhibited impaired growth in medium with hydrogen peroxide or a low pH compared with the wildtype strain SS2-1 and the complementary strain CΔrex. In addition, Δrex showed a decreased level of survival in whole blood and in RAW264.7 macrophages. Further analyses revealed that Rex deficiency significantly attenuated bacterial virulence in an animal model. A comparative proteome analysis found that the expression levels of several proteins involved in virulence and oxidative stress were significantly different in Δrex compared with SS2-1. Electrophoretic mobility shift assays revealed that recombinant Rex specifically bound to the promoters of target genes in a manner that was modulated by NADH and NAD+. Taken together, our data suggest that Rex plays critical roles in the virulence and oxidative stress response of SS2.
Collapse
Affiliation(s)
- Haodan Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Yong Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yanxiu Ni
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Junming Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China.,Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, China
| | - Lixiao Han
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhengyu Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Aihua Mao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Dandan Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Hongjie Fan
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China.,Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, China
| |
Collapse
|
21
|
Zheng F, Shao ZQ, Hao X, Wu Q, Li C, Hou H, Hu D, Wang C, Pan X. Identification of oligopeptide-binding protein (OppA) and its role in the virulence of Streptococcus suis serotype 2. Microb Pathog 2018; 118:322-329. [DOI: 10.1016/j.micpath.2018.03.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/12/2018] [Accepted: 03/30/2018] [Indexed: 01/02/2023]
|
22
|
Ni H, Fan W, Li C, Wu Q, Hou H, Hu D, Zheng F, Zhu X, Wang C, Cao X, Shao ZQ, Pan X. Streptococcus suis DivIVA Protein Is a Substrate of Ser/Thr Kinase STK and Involved in Cell Division Regulation. Front Cell Infect Microbiol 2018; 8:85. [PMID: 29616196 PMCID: PMC5869912 DOI: 10.3389/fcimb.2018.00085] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/02/2018] [Indexed: 12/14/2022] Open
Abstract
Streptococcus suis serotype 2 is an important swine pathogen and an emerging zoonotic agent that causes severe infections. Recent studies have reported a eukaryotic-like Ser/Thr protein kinase (STK) gene and characterized its role in the growth and virulence of different S. suis 2 strains. In the present study, phosphoproteomic analysis was adopted to identify substrates of the STK protein. Seven proteins that were annotated to participate in different cell processes were identified as potential substrates, which suggests the pleiotropic effects of stk on S. suis 2 by targeting multiple pathways. Among them, a protein characterized as cell division initiation protein (DivIVA) was further investigated. In vitro analysis demonstrated that the recombinant STK protein directly phosphorylates threonine at amino acid position 199 (Thr-199) of DivIVA. This effect could be completely abolished by the T199A mutation. To determine the specific role of DivIVA in growth and division, a divIVA mutant was constructed. The ΔdivIVA strain exhibited impaired growth and division, including lower viability, enlarged cell mass, asymmetrical division caused by aberrant septum, and extremely weak pathogenicity in a mouse infection model. Collectively, our results reveal that STK regulates the cell growth and virulence of S. suis 2 by targeting substrates that are involved in different biological pathways. The inactivation of DivIVA leads to severe defects in cell division and strongly attenuates pathogenicity, thereby indicating its potential as a molecular drug target against S. suis.
Collapse
Affiliation(s)
- Hua Ni
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics, Nanjing, China.,School of Life Sciences, Nanjing Normal University, Nanjing, China.,The Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges and Universities Under the Department of Education of Xinjiang Uygur Autonomous Region, Kashgar University, Kashgar, China
| | - Weiwei Fan
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics, Nanjing, China.,Department of Pharmacy, Changzhou Wujin People's Hospital, Changzhou, China
| | - Chaolong Li
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics, Nanjing, China.,School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qianqian Wu
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics, Nanjing, China
| | - Hongfen Hou
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics, Nanjing, China.,School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Dan Hu
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics, Nanjing, China
| | - Feng Zheng
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics, Nanjing, China
| | - Xuhui Zhu
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics, Nanjing, China
| | - Changjun Wang
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics, Nanjing, China
| | - Xiangrong Cao
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhu-Qing Shao
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiuzhen Pan
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics, Nanjing, China.,School of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|