1
|
Abramov VM, Kosarev IV, Machulin AV, Deryusheva EI, Priputnevich TV, Panin AN, Chikileva IO, Abashina TN, Manoyan AM, Ivanova OE, Papazyan TT, Nikonov IN, Suzina NE, Melnikov VG, Khlebnikov VS, Sakulin VK, Samoilenko VA, Gordeev AB, Sukhikh GT, Uversky VN, Karlyshev AV. Consortium of Lactobacillus crispatus 2029 and Ligilactobacillus salivarius 7247 Strains Shows In Vitro Bactericidal Effect on Campylobacter jejuni and, in Combination with Prebiotic, Protects Against Intestinal Barrier Dysfunction. Antibiotics (Basel) 2024; 13:1143. [PMID: 39766533 PMCID: PMC11672454 DOI: 10.3390/antibiotics13121143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives:Campylobacter jejuni (CJ) is the etiological agent of the world's most common intestinal infectious food-borne disease, ranging from mild symptoms to fatal outcomes. The development of innovative synbiotics that inhibit the adhesion and reproduction of multidrug-resistant (MDR) CJ in animals and humans, thereby preserving intestinal homeostasis, is relevant. We have created a synbiotic based on the consortium of Lactobacillus crispatus 2029 (LC2029), Ligilactobacillus salivarius 7247 (LS7247), and a mannan-rich prebiotic (Actigen®). The purpose of this work was to study the in vitro anti-adhesive and antagonistic activities of the created synbiotic against MDR CJ strains, along with its role in preventing intestinal barrier dysfunction, which disrupts intestinal homeostasis. Methods: A complex of microbiological, immunological, and molecular biological methods was used. The ability of the LC2029 and LS7247 consortium to promote intestinal homeostasis in vitro was assessed by the effectiveness of controlling CJ-induced TLR4 activation, secretion of pro-inflammatory cytokines, development of intestinal barrier dysfunction, and production of intestinal alkaline phosphatase (IAP). Results: All MDR CJ strains showed marked adhesion to human Caco-2, pig IPEC-J2, chicken CPCE, and bovine BPCE enterocytes. For the first time, we found that the prebiotic and cell-free culture supernatant (CFS) from the consortium of LC2029 and LS7247 strains exhibit an additive effect in inhibiting the adhesion of MDR strains of CJ to human and animal enterocytes. CFS from the LC2029 and LS7247 consortium increased the permeability of the outer and inner membranes of CJ cells, which led to extracellular leakage of ATP and provided access to the peptidoglycan of the pathogen for the peptidoglycan-degrading bacteriocins nisin and enterolysin A produced by LS7247. The LC2029 and LS7247 consortium showed a bactericidal effect on CJ strains. Co-cultivation of the consortium with CJ strains resulted in a decrease in the viability of the pathogen by 6 log. CFS from the LC2029 and LS7247 consortium prevented the growth of CJ-induced TLR4 mRNA expression in enterocytes. The LC2029 and LS7247 consortium inhibited a CJ-induced increase in IL-8 and TNF-α production in enterocytes, prevented CJ-induced intestinal barrier dysfunction, maintained the transepithelial electrical resistance of the enterocyte monolayers, and prevented an increase in intestinal paracellular permeability and zonulin secretion. CFS from the consortium stimulated IAP mRNA expression in enterocytes. The LC2029 and LS7247 consortium and the prebiotic Actigen represent a new synergistic synbiotic with anti-CJ properties that prevents intestinal barrier dysfunction and preserves intestinal homeostasis. Conclusions: These data highlight the potential of using a synergistic synbiotic as a preventive strategy for creating feed additives and functional nutrition products based on it to combat the prevalence of campylobacteriosis caused by MDR strains in animals and humans.
Collapse
Affiliation(s)
- Vyacheslav M. Abramov
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Igor V. Kosarev
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Tatiana V. Priputnevich
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Alexander N. Panin
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Irina O. Chikileva
- Blokhin National Research Center of Oncology, Ministry of Health, 115478 Moscow, Russia;
| | - Tatiana N. Abashina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Ashot M. Manoyan
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Olga E. Ivanova
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | | | - Ilia N. Nikonov
- Federal State Budgetary Educational Institution of Higher Education, St. Petersburg State University of Veterinary Medicine, 196084 Saint Petersburg, Russia
| | - Nataliya E. Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Vyacheslav G. Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | | | - Vadim K. Sakulin
- Institute of Immunological Engineering, 142380 Lyubuchany, Russia
| | - Vladimir A. Samoilenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Alexey B. Gordeev
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Gennady T. Sukhikh
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Andrey V. Karlyshev
- Department of Biomolecular Sciences, School of Life Sciences, Chemistry and Pharmacy, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK;
| |
Collapse
|
2
|
Ghatak S, Milton AAP, Das S, Momin KM, Srinivas K, Pyngrope DA, Priya GB. Campylobacter coli of porcine origin exhibits an open pan-genome within a single clonal complex: insights from comparative genomic analysis. Front Cell Infect Microbiol 2024; 14:1449856. [PMID: 39415896 PMCID: PMC11480030 DOI: 10.3389/fcimb.2024.1449856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Although Campylobacter spp., including Campylobacter coli, have emerged as important zoonotic foodborne pathogens globally, the understanding of the genomic epidemiology of C. coli of porcine origin is limited. Methods As pigs are an important reservoir of C. coli, we analyzed C. coli genomes that were isolated (n = 3) from pigs and sequenced (this study) them along with all other C. coli genomes for which pig intestines, pig feces, and pigs were mentioned as sources in the NCBI database up to January 6, 2023. In this paper, we report the pan-genomic features, the multi-locus sequence types, the resistome, virulome, and mobilome, and the phylogenomic analysis of these organisms that were obtained from pigs. Results and discussion Our analysis revealed that, in addition to having an open pan-genome, majority (63%) of the typeable isolates of C. coli of pig origin belonged to a single clonal complex, ST-828. The resistome of these C. coli isolates was predominated by the genes tetO (53%), blaOXA-193 (49%), and APH (3')-IIIa (21%); however, the virulome analysis revealed a core set of 37 virulence genes. Analysis of the mobile genetic elements in the genomes revealed wide diversity of the plasmids and bacteriophages, while 30 transposons were common to all genomes of C. coli of porcine origin. Phylogenomic analysis showed two discernible clusters comprising isolates originating from Japan and another set of isolates comprising mostly copies of a type strain stored in three different culture collections.
Collapse
Affiliation(s)
- Sandeep Ghatak
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya, India
| | | | - Samir Das
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya, India
| | - Kasanchi M. Momin
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya, India
| | - Kandhan Srinivas
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya, India
| | - Daniel Aibor Pyngrope
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya, India
| | - G. Bhuvana Priya
- College of Agriculture (CAU, Imphal), Kyrdemkulai, Meghalaya, India
| |
Collapse
|
3
|
Kim YH, Jang H, Kim SY, Jung JH, Kim GE, Park MR, Hong JY, Kim MN, Kim EG, Kim MJ, Kim KW, Sohn MH. Gram-negative microbiota is related to acute exacerbation in children with asthma. Clin Transl Allergy 2021; 11:e12069. [PMID: 34667591 PMCID: PMC8507365 DOI: 10.1002/clt2.12069] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The upper-airway microbiota may be associated with the pathogenesis of asthma and useful for predicting acute exacerbation. However, the relationship between the lower-airway microbiota and acute exacerbation in children with asthma is not well understood. We evaluated the characteristics of the airway microbiome using induced sputum from children with asthma exacerbation and compared the microbiota-related differences of inflammatory cytokines with those in children with asthma. METHODS We analysed the microbiome using induced sputum during acute exacerbation of asthma in children. We identified microbial candidates that were prominent in children with asthma exacerbation and compared them with those in children with stable asthma using various analytical methods. The microbial candidates were analysed to determine their association with inflammatory cytokines. We also developed a predictive functional profile using PICRUSt. RESULTS A total of 95 children with allergic sensitisation including 22 with asthma exacerbation, 67 with stable asthma, and 6 controls were evaluated. We selected 26 microbial candidates whose abundances were significantly increased, decreased, or correlated during acute exacerbation in children with asthma. Among the microbial candidates, Campylobacter, Capnocytophaga, Haemophilus, and Porphyromonas were associated with inflammatory cytokines including macrophage inflammatory protein (MIP)-1β, programmed death-ligand 1, and granzyme B. Both Campylobacter and MIP-1β levels were correlated with sputum eosinophils. Increased lipopolysaccharide biosynthesis and decreased glycan degradation were observed in children with asthma exacerbation. CONCLUSION Gram-negative microbes in the lower airway were related to acute exacerbation in children with asthma. These microbes and associated cytokines may play a role in exacerbating asthma in children.
Collapse
Affiliation(s)
- Yoon Hee Kim
- Department of PediatricsGangnam Severance HospitalSeoulKorea
- Institute of AllergySeverance Biomedical Science InstituteBrain Korea 21 Project for Medical ScienceYonsei University College of MedicineSeoulKorea
| | - Haerin Jang
- Institute of AllergySeverance Biomedical Science InstituteBrain Korea 21 Project for Medical ScienceYonsei University College of MedicineSeoulKorea
- Department of PediatricsSeverance HospitalSeoulKorea
| | - Soo Yeon Kim
- Institute of AllergySeverance Biomedical Science InstituteBrain Korea 21 Project for Medical ScienceYonsei University College of MedicineSeoulKorea
- Department of PediatricsSeverance HospitalSeoulKorea
| | - Jae Hwa Jung
- Institute of AllergySeverance Biomedical Science InstituteBrain Korea 21 Project for Medical ScienceYonsei University College of MedicineSeoulKorea
- Department of PediatricsSeverance HospitalSeoulKorea
| | - Ga Eun Kim
- Institute of AllergySeverance Biomedical Science InstituteBrain Korea 21 Project for Medical ScienceYonsei University College of MedicineSeoulKorea
- Department of PediatricsSeverance HospitalSeoulKorea
| | - Mi Reu Park
- Institute of AllergySeverance Biomedical Science InstituteBrain Korea 21 Project for Medical ScienceYonsei University College of MedicineSeoulKorea
- Department of PediatricsSeverance HospitalSeoulKorea
| | - Jung Yeon Hong
- Division of Cardiovascular Disease ResearchDepartment for Chronic Disease Convergence ResearchKorea National Institute of HealthCheongjuKorea
| | - Mi Na Kim
- Institute of AllergySeverance Biomedical Science InstituteBrain Korea 21 Project for Medical ScienceYonsei University College of MedicineSeoulKorea
- Department of PediatricsSeverance HospitalSeoulKorea
| | - Eun Gyul Kim
- Institute of AllergySeverance Biomedical Science InstituteBrain Korea 21 Project for Medical ScienceYonsei University College of MedicineSeoulKorea
- Department of PediatricsSeverance HospitalSeoulKorea
| | - Min Jung Kim
- Institute of AllergySeverance Biomedical Science InstituteBrain Korea 21 Project for Medical ScienceYonsei University College of MedicineSeoulKorea
- Department of PediatricsYongin Severance HospitalYonginKorea
| | - Kyung Won Kim
- Institute of AllergySeverance Biomedical Science InstituteBrain Korea 21 Project for Medical ScienceYonsei University College of MedicineSeoulKorea
- Department of PediatricsSeverance HospitalSeoulKorea
| | - Myung Hyun Sohn
- Institute of AllergySeverance Biomedical Science InstituteBrain Korea 21 Project for Medical ScienceYonsei University College of MedicineSeoulKorea
- Department of PediatricsSeverance HospitalSeoulKorea
| |
Collapse
|
4
|
Applied Proteomics in 'One Health'. Proteomes 2021; 9:proteomes9030031. [PMID: 34208880 PMCID: PMC8293331 DOI: 10.3390/proteomes9030031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022] Open
Abstract
‘One Health’ summarises the idea that human health and animal health are interdependent and bound to the health of ecosystems. The purpose of proteomics methodologies and studies is to determine proteins present in samples of interest and to quantify changes in protein expression during pathological conditions. The objectives of this paper are to review the application of proteomics technologies within the One Health concept and to appraise their role in the elucidation of diseases and situations relevant to One Health. The paper develops in three sections. Proteomics Applications in Zoonotic Infections part discusses proteomics applications in zoonotic infections and explores the use of proteomics for studying pathogenetic pathways, transmission dynamics, diagnostic biomarkers and novel vaccines in prion, viral, bacterial, protozoan and metazoan zoonotic infections. Proteomics Applications in Antibiotic Resistance part discusses proteomics applications in mechanisms of resistance development and discovery of novel treatments for antibiotic resistance. Proteomics Applications in Food Safety part discusses the detection of allergens, exposure of adulteration, identification of pathogens and toxins, study of product traits and characterisation of proteins in food safety. Sensitive analysis of proteins, including low-abundant ones in complex biological samples, will be achieved in the future, thus enabling implementation of targeted proteomics in clinical settings, shedding light on biomarker research and promoting the One Health concept.
Collapse
|
5
|
Kreling V, Falcone FH, Kehrenberg C, Hensel A. Campylobacter sp.: Pathogenicity factors and prevention methods-new molecular targets for innovative antivirulence drugs? Appl Microbiol Biotechnol 2020; 104:10409-10436. [PMID: 33185702 PMCID: PMC7662028 DOI: 10.1007/s00253-020-10974-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/24/2020] [Accepted: 10/21/2020] [Indexed: 02/08/2023]
Abstract
Infections caused by bacterial species from the genus Campylobacter are one of the four main causes of strong diarrheal enteritis worldwide. Campylobacteriosis, a typical food-borne disease, can range from mild symptoms to fatal illness. About 550 million people worldwide suffer from campylobacteriosis and lethality is about 33 million p.a. This review summarizes the state of the current knowledge on Campylobacter with focus on its specific virulence factors. Using this knowledge, multifactorial prevention strategies can be implemented to reduce the prevalence of Campylobacter in the food chain. In particular, antiadhesive strategies with specific adhesion inhibitors seem to be a promising concept for reducing Campylobacter bacterial load in poultry production. Antivirulence compounds against bacterial adhesion to and/or invasion into the host cells can open new fields for innovative antibacterial agents. Influencing chemotaxis, biofilm formation, quorum sensing, secretion systems, or toxins by specific inhibitors can help to reduce virulence of the bacterium. In addition, the unusual glycosylation of the bacterium, being a prerequisite for effective phase variation and adaption to different hosts, is yet an unexplored target for combating Campylobacter sp. Plant extracts are widely used remedies in developing countries to combat infections with Campylobacter. Therefore, the present review summarizes the use of natural products against the bacterium in an attempt to stimulate innovative research concepts on the manifold still open questions behind Campylobacter towards improved treatment and sanitation of animal vectors, treatment of infected patients, and new strategies for prevention. KEY POINTS: • Campylobacter sp. is a main cause of strong enteritis worldwide. • Main virulence factors: cytolethal distending toxin, adhesion proteins, invasion machinery. • Strong need for development of antivirulence compounds.
Collapse
Affiliation(s)
- Vanessa Kreling
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Franco H Falcone
- Institute of Parasitology, University of Gießen, Schubertstraße 81, 35392, Gießen, Germany
| | - Corinna Kehrenberg
- Institute of Veterinary Food Science, University of Gießen, Frankfurterstraße 81, 35392, Gießen, Germany
| | - Andreas Hensel
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany.
| |
Collapse
|
6
|
Wagle BR, Donoghue AM, Shrestha S, Upadhyaya I, Arsi K, Gupta A, Liyanage R, Rath NC, Donoghue DJ, Upadhyay A. Carvacrol attenuates Campylobacter jejuni colonization factors and proteome critical for persistence in the chicken gut. Poult Sci 2020; 99:4566-4577. [PMID: 32868001 PMCID: PMC7598144 DOI: 10.1016/j.psj.2020.06.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/25/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
Campylobacter jejuni is a major foodborne pathogen that causes gastroenteritis in humans. Chickens act as the reservoir host for C. jejuni, wherein the pathogen asymptomatically colonizes the ceca leading to contamination of carcasses during slaughter. The major colonization factors in C. jejuni include motility, intestinal epithelial attachment, acid/bile tolerance, and quorum sensing. Reducing the expression of the aforementioned factors could potentially reduce C. jejuni colonization in chickens. This study investigated the efficacy of subinhibitory concentration (SIC; compound concentration not inhibiting bacterial growth) of carvacrol in reducing the expression of C. jejuni colonization factors in vitro. Moreover, the effect of carvacrol on the expression of C. jejuni proteome was investigated using liquid chromatography-tandem mass spectrometry. The motility assay was conducted at 42°C, and the motility zone was measured after 24 h of incubation. For the adhesion assay, monolayers of primary chicken enterocytes (∼105 cells/well) were inoculated with C. jejuni (6 log cfu/well) either in the presence or absence of carvacrol, and the adhered C. jejuni were enumerated after 90 min of incubation at 42°C. The effect of carvacrol on C. jejuni quorum sensing and susceptibility to acid/bile stress was investigated using a bioluminescence assay and an acid–bile survival assay, respectively. The SIC (0.002%) of carvacrol reduced the motility of C. jejuni strains S-8 and NCTC 81-176 by ∼50 and 35%, respectively (P < 0.05). Carvacrol inhibited C. jejuni S-8 and NCTC 81-176 adhesion to chicken enterocytes by ∼0.8 and 1.5 log cfu/mL, respectively (P < 0.05). Moreover, carvacrol reduced autoinducer-2 activity and increased the susceptibility of C. jejuni to acid and bile in both the strains (P < 0.05). Liquid chromatography-tandem mass spectrometry revealed that the SIC of carvacrol reduced the expression of selected C. jejuni colonization proteins critical for motility (methyl-accepting chemotaxis protein), adhesion (GroL), growth and metabolism (AspA, AcnB, Icd, Fba, Ppa, AnsA, Ldh, Eno, PurB-1), and anaerobic respiration (NapB, HydB, SdhA, NrfA) (P < 0.05). Results suggest the mechanisms by which carvacrol could reduce C. jejuni colonization in chickens.
Collapse
Affiliation(s)
- B R Wagle
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - A M Donoghue
- Poultry Production and Product Safety Research Unit, United State Department of Agriculture-Agriculture Research Station, Fayetteville, AR, USA
| | - S Shrestha
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - I Upadhyaya
- Department of Extension, University of Connecticut, Storrs, CT, USA
| | - K Arsi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - A Gupta
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - R Liyanage
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - N C Rath
- Poultry Production and Product Safety Research Unit, United State Department of Agriculture-Agriculture Research Station, Fayetteville, AR, USA
| | - D J Donoghue
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - A Upadhyay
- Department of Animal Science, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
7
|
Simson D, Boehm M, Backert S. HtrA-dependent adherence and invasion of Campylobacter jejuni in human vs avian cells. Lett Appl Microbiol 2020; 70:326-330. [PMID: 31981418 DOI: 10.1111/lam.13277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/13/2022]
Abstract
The aim of this study was to investigate whether HtrA is responsible for differences in adherence and invasion of Campylobacter jejuni towards human and chicken cell lines. Gentamicin protection assays were performed with either human Caco-2 or chicken 2G4 cells using C. jejuni strain NCTC11168 to compare the adhesion and invasion rates towards these two cell types. The results revealed significant differences in the adhesion and invasion rates between the human and avian cells. Deletion of the Campylobacter htrA gene, coding for the dual function of serine protease and chaperonin with a role in pathogenesis, led to a reduction of the rates in both cell lines. Using a single-amino acid substitution mutant (ΔhtrA/htrAS197A ) that lacked protease activity, but retained chaperonin activity, we show that the first is involved in the invasion of human Caco-2 and chicken 2G4 cells, whereas the latter mutant invaded at lower levels. Adherence towards the chicken cells is higher than towards Caco-2 cells and this is also dependent on HtrA. Together, these data suggest that the proteolytic activity of HtrA is involved in the difference in host response of C. jejuni towards human and chicken-derived cells. SIGNIFICANCE AND IMPACT OF THE STUDY: Campylobacter jejuni is the main cause for bacterial foodborne enterocolitis worldwide. While colonization of the human intestine can lead to severe problems, avian hosts - as the major source of infection - remain unaffected by the bacteria. We showed that the bacterial serine protease and chaperonin HtrA are involved in adhesion and invasion in both species and not responsible for the discrepancy of virulence between the different hosts. In future, HtrA might act as a target for inhibitors to avoid or eradicate colonization in chickens as a less problematic alternative to antibiotics in commercial livestock breeding.
Collapse
Affiliation(s)
- D Simson
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen/Nuremberg, Erlangen, Germany
| | - M Boehm
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen/Nuremberg, Erlangen, Germany
| | - S Backert
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen/Nuremberg, Erlangen, Germany
| |
Collapse
|
8
|
Gestal MC, Howard LK, Dewan K, Johnson HM, Barbier M, Bryant C, Soumana IH, Rivera I, Linz B, Blas-Machado U, Harvill ET. Enhancement of immune response against Bordetella spp. by disrupting immunomodulation. Sci Rep 2019; 9:20261. [PMID: 31889098 PMCID: PMC6937331 DOI: 10.1038/s41598-019-56652-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 12/12/2019] [Indexed: 12/27/2022] Open
Abstract
Well-adapted pathogens must evade clearance by the host immune system and the study of how they do this has revealed myriad complex strategies and mechanisms. Classical bordetellae are very closely related subspecies that are known to modulate adaptive immunity in a variety of ways, permitting them to either persist for life or repeatedly infect the same host. Exploring the hypothesis that exposure to immune cells would cause bordetellae to induce expression of important immunomodulatory mechanisms, we identified a putative regulator of an immunomodulatory pathway. The deletion of btrS in B. bronchiseptica did not affect colonization or initial growth in the respiratory tract of mice, its natural host, but did increase activation of the inflammasome pathway, and recruitment of inflammatory cells. The mutant lacking btrS recruited many more B and T cells into the lungs, where they rapidly formed highly organized and distinctive Bronchial Associated Lymphoid Tissue (BALT) not induced by any wild type Bordetella species, and a much more rapid and strong antibody response than observed with any of these species. Immunity induced by the mutant was measurably more robust in all respiratory organs, providing completely sterilizing immunity that protected against challenge infections for many months. Moreover, the mutant induced sterilizing immunity against infection with other classical bordetellae, including B. pertussis and B. parapertussis, something the current vaccines do not provide. These findings reveal profound immunomodulation by bordetellae and demonstrate that by disrupting it much more robust protective immunity can be generated, providing a pathway to greatly improve vaccines and preventive treatments against these important pathogens.
Collapse
Affiliation(s)
- Monica C Gestal
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America.
| | - Laura K Howard
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Kalyan Dewan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Hannah M Johnson
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States of America
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, United States of America
| | - Clare Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, United Kingdom
| | - Illiassou Hamidou Soumana
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Israel Rivera
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Bodo Linz
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Uriel Blas-Machado
- Department of Pathology, Athens Veterinary Diagnostic Laboratory, University of Georgia, Athens, Georgia, United States of America
| | - Eric T Harvill
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America.
| |
Collapse
|
9
|
Erdmann J, Thöming JG, Pohl S, Pich A, Lenz C, Häussler S. The Core Proteome of Biofilm-Grown Clinical Pseudomonas aeruginosa Isolates. Cells 2019; 8:E1129. [PMID: 31547513 PMCID: PMC6829490 DOI: 10.3390/cells8101129] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022] Open
Abstract
Comparative genomics has greatly facilitated the identification of shared as well as unique features among individual cells or tissues, and thus offers the potential to find disease markers. While proteomics is recognized for its potential to generate quantitative maps of protein expression, comparative proteomics in bacteria has been largely restricted to the comparison of single cell lines or mutant strains. In this study, we used a data independent acquisition (DIA) technique, which enables global protein quantification of large sample cohorts, to record the proteome profiles of overall 27 whole genome sequenced and transcriptionally profiled clinical isolates of the opportunistic pathogen Pseudomonas aeruginosa. Analysis of the proteome profiles across the 27 clinical isolates grown under planktonic and biofilm growth conditions led to the identification of a core biofilm-associated protein profile. Furthermore, we found that protein-to-mRNA ratios between different P. aeruginosa strains are well correlated, indicating conserved patterns of post-transcriptional regulation. Uncovering core regulatory pathways, which drive biofilm formation and associated antibiotic tolerance in bacterial pathogens, promise to give clues to interactions between bacterial species and their environment and could provide useful targets for new clinical interventions to combat biofilm-associated infections.
Collapse
Affiliation(s)
- Jelena Erdmann
- Institute for Molecular Bacteriology, TWINCORE GmbH, Centre for Experimental and Clinical Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover 30625, Germany.
- Research Core Unit Proteomics and Institute of Toxicology, Hannover Medical School, Hannover 30625, Germany.
| | - Janne G Thöming
- Institute for Molecular Bacteriology, TWINCORE GmbH, Centre for Experimental and Clinical Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover 30625, Germany.
| | - Sarah Pohl
- Institute for Molecular Bacteriology, TWINCORE GmbH, Centre for Experimental and Clinical Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover 30625, Germany.
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig 38124, Germany.
| | - Andreas Pich
- Research Core Unit Proteomics and Institute of Toxicology, Hannover Medical School, Hannover 30625, Germany.
| | - Christof Lenz
- Institute of Clinical Chemistry, Bioanalytics, University Medical Center Göttingen, Göttingen 37075, Germany.
- Max Planck Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry, Göttingen 37077, Germany.
| | - Susanne Häussler
- Institute for Molecular Bacteriology, TWINCORE GmbH, Centre for Experimental and Clinical Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover 30625, Germany.
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig 38124, Germany.
| |
Collapse
|
10
|
Hu J, Ma L, Zheng W, Nie Y, Yan X. Lactobacillus gasseri LA39 Activates the Oxidative Phosphorylation Pathway in Porcine Intestinal Epithelial Cells. Front Microbiol 2018; 9:3025. [PMID: 30619122 PMCID: PMC6297174 DOI: 10.3389/fmicb.2018.03025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/22/2018] [Indexed: 12/12/2022] Open
Abstract
Intestinal microbial interactions with the host epithelium have important roles in host health. Our previous data have suggested that Lactobacillus gasseri LA39 is the predominant intestinal Lactobacillus in weaned piglets. However, the regulatory role of L. gasseri LA39 in the intestinal epithelial protein expression in piglets remains unclear. In the present study, we conducted comparative proteomics approach to investigate the intestinal epithelial protein profile alteration caused by L. gasseri LA39 in piglets. The expressions of 15 proteins significantly increased, whereas the expressions of 13 proteins significantly decreased in the IPEC-J2 cells upon L. gasseri LA39 treatment. Bioinformatics analyses, including COG function annotation, GO annotation, and KEGG pathway analysis for the differentially expressed proteins revealed that the oxidative phosphorylation (OXPHOS) pathway in IPEC-J2 cells was significantly activated by L. gasseri LA39 treatment. Further data indicated that two differentially expressed proteins UQCRC2 and TCIRG1, associated with the OXPHOS pathway, and cellular ATP levels in IPEC-J2 cells were significantly up-regulated by L. gasseri LA39 treatment. Importantly, the in vivo data indicated that oral gavage of L. gasseri LA39 significantly increased the expression of UQCRC2 and TCIRG1 and the cellular ATP levels in the intestinal epithelial cells of weaned piglets. Our results, both in vitro and in vivo, reveal that L. gasseri LA39 activates the OXPHOS pathway and increases the energy production in porcine intestinal epithelial cells. These findings suggest that L. gasseri LA39 may be a potential probiotics candidate for intestinal energy production promotion and confers health-promoting functions in mammals.
Collapse
Affiliation(s)
- Jun Hu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Hubei, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Hubei, China
| | - Libao Ma
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Hubei, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Hubei, China
| | - Wenyong Zheng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Hubei, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Hubei, China
| | - Yangfan Nie
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Hubei, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Hubei, China
| | - Xianghua Yan
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Hubei, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Hubei, China
| |
Collapse
|
11
|
Elhadidy M, Arguello H, Álvarez-Ordóñez A, Miller WG, Duarte A, Martiny D, Hallin M, Vandenberg O, Dierick K, Botteldoorn N. Orthogonal typing methods identify genetic diversity among Belgian Campylobacter jejuni strains isolated over a decade from poultry and cases of sporadic human illness. Int J Food Microbiol 2018; 275:66-75. [PMID: 29649751 DOI: 10.1016/j.ijfoodmicro.2018.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 02/08/2018] [Accepted: 04/02/2018] [Indexed: 11/30/2022]
Abstract
Campylobacter jejuni is a zoonotic pathogen commonly associated with human gastroenteritis. Retail poultry meat is a major food-related transmission source of C. jejuni to humans. The present study investigated the genetic diversity, clonal relationship, and strain risk-analysis of 403 representative C. jejuni isolates from chicken broilers (n = 204) and sporadic cases of human diarrhea (n = 199) over a decade (2006-2015) in Belgium, using multilocus sequence typing (MLST), PCR binary typing (P-BIT), and identification of lipooligosaccharide (LOS) biosynthesis locus classes. A total of 123 distinct sequence types (STs), clustered in 28 clonal complexes (CCs) were assigned, including ten novel sequence types that were not previously documented in the international database. Sequence types ST-48, ST-21, ST-50, ST-45, ST-464, ST-2274, ST-572, ST-19, ST-257 and ST-42 were the most prevalent. Clonal complex 21 was the main clonal complex in isolates from humans and chickens. Among observed STs, a total of 35 STs that represent 72.2% (291/403) of the isolates were identified in both chicken and human isolates confirming considerable epidemiological relatedness; these 35 STs also clustered together in the most prevalent CCs. A majority of the isolates harbored sialylated LOS loci associated with potential neuropathic outcomes in humans. Although the concordance between MLST and P-BIT, determined by the adjusted Rand and Wallace coefficients, showed low congruence between both typing methods. The discriminatory power of P-BIT and MLST was similar, with Simpson's diversity indexes of 0.978 and 0.975, respectively. Furthermore, P-BIT could provide additional epidemiological information that would provide further insights regarding the potential association to human health from each strain. In addition, certain clones could be linked to specific clinical symptoms. Indeed, LOS class E was associated with less severe infections. Moreover, ST-572 was significantly associated with clinical infections occurring after travelling abroad. Ultimately, the data generated from this study will help to better understand the molecular epidemiology of C. jejuni infection.
Collapse
Affiliation(s)
- Mohamed Elhadidy
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt; University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.
| | - Hector Arguello
- Genomic and Animal Biotechnology, Department of Genetics, Veterinary Faculty, Universidad de Córdoba, 14047, Córdoba, Spain
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, University of León, Spain
| | - William G Miller
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, USA
| | - Alexandra Duarte
- Laboratory of Food Microbiology and Food Preservation, Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium; National Reference Laboratory for Campylobacter, Scientific Institute of Public Health (WIV-ISP), Scientific Service: Foodborne Pathogens, Juliette Wytsman Street 14, 1050 Brussels, Belgium
| | - Delphine Martiny
- National Reference Center for Campylobacter, Saint Pierre University Hospital, Brussels, Belgium; Department of Microbiology, LHUB-ULB, Pôle Hospitalier Universitaire de Bruxelles, Brussels, Belgium
| | - Marie Hallin
- National Reference Center for Campylobacter, Saint Pierre University Hospital, Brussels, Belgium; Department of Microbiology, LHUB-ULB, Pôle Hospitalier Universitaire de Bruxelles, Brussels, Belgium; Department of Molecular Diagnosis, LHUB-ULB, Pôle Hospitalier Universitaire de Bruxelles, Brussels, Belgium
| | - Olivier Vandenberg
- National Reference Center for Campylobacter, Saint Pierre University Hospital, Brussels, Belgium; Department of Microbiology, LHUB-ULB, Pôle Hospitalier Universitaire de Bruxelles, Brussels, Belgium; Center for Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles, Brussels, Belgium
| | - Katelijne Dierick
- National Reference Laboratory for Campylobacter, Scientific Institute of Public Health (WIV-ISP), Scientific Service: Foodborne Pathogens, Juliette Wytsman Street 14, 1050 Brussels, Belgium
| | - Nadine Botteldoorn
- National Reference Laboratory for Campylobacter, Scientific Institute of Public Health (WIV-ISP), Scientific Service: Foodborne Pathogens, Juliette Wytsman Street 14, 1050 Brussels, Belgium
| |
Collapse
|
12
|
Loshaj-Shala A, Colzani M, Brezovska K, Poceva Panovska A, Suturkova L, Beretta G. Immunoproteomic identification of antigenic candidate Campylobacter jejuni and human peripheral nerve proteins involved in Guillain-Barré syndrome. J Neuroimmunol 2018; 317:77-83. [PMID: 29338928 DOI: 10.1016/j.jneuroim.2018.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/04/2018] [Accepted: 01/07/2018] [Indexed: 12/11/2022]
Abstract
Immunoproteomics is become a potent methodology used for identifying immunoreactive proteins. In this study, an immunoproteomic approach based on 2-dimensional gel electrophoresis (2D-PAGE) and immunoblotting combined with high resolution mass spectrometry (MS) was used to identify immunoreactive proteins that might be involved in mechanisms of Guillain-Barré syndrome (GBS) development, regardless of their potential reciprocal molecular mimicry. Proteins isolated from C. jejuni and human peripheral nerve tissue (HPN) were separated with 2D SDS-PAGE and subjected to western blotting using serum samples from GBS patients. The peptides generated after proteolysis of the immunoreactive proteins were submitted to nanoflow-high performance liquid chromatography-nano electrospray ionization coupled to high resolution mass spectrometry (nHPLC-nESI-MS and MS/MS) followed by SEQUESTdata analysis for proteins identification. In C. jejuni, immunoreactivity was found for GroEL and DnaK, structural proteins (MOMP), key enzymatic proteins necessary for the microbial proliferation (adenylate kinase, enolase, inorganic pyrophosphatase and aspartate ammonia-lyase), and antioxidant enzymes (alkyl hydroperoxide reductase-AhpC and DNA protection during starvation protein - DNA protection factor against Fe2+-mediated oxidative stress). HPN immunoreactive proteins identified were heat shock proteins (HSP), intermediate filaments (vimentin and desmin), and other proteins and enzymes such as troponin/tropomyosin complex and ATP synthase subunit beta and the keratan sulfate proteoglycan lumican. The targeting of vimentin and desmin, suggested that the neuronal autoimmune damage is specifically directed to intermediate neuronal (vimentin) and neuromuscular IF, probably localized nearby cell surface, affording increased accessibility to autoantibodies. These findings suggest that the post-infectious development of GBS may be also associated to additional concomitant immune factors that lead to nerve damage generated by auto-immune trigger(s) different from molecular mimicry.
Collapse
Affiliation(s)
- Aida Loshaj-Shala
- Department of Pharmacy, Faculty of Medicine, University Hasan Prishtina, Pristina, Kosovo
| | - Mara Colzani
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Katerina Brezovska
- Faculty of Pharmacy, University Ss. Cyril and Methodius, Skopje, Macedonia
| | | | - Ljubica Suturkova
- Faculty of Pharmacy, University Ss. Cyril and Methodius, Skopje, Macedonia
| | - Giangiacomo Beretta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
13
|
Starr AE, Deeke SA, Li L, Zhang X, Daoud R, Ryan J, Ning Z, Cheng K, Nguyen LVH, Abou-Samra E, Lavallée-Adam M, Figeys D. Proteomic and Metaproteomic Approaches to Understand Host–Microbe Interactions. Anal Chem 2017; 90:86-109. [DOI: 10.1021/acs.analchem.7b04340] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Amanda E. Starr
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Shelley A. Deeke
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Leyuan Li
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Xu Zhang
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Rachid Daoud
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - James Ryan
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Zhibin Ning
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Kai Cheng
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Linh V. H. Nguyen
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Elias Abou-Samra
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Mathieu Lavallée-Adam
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Daniel Figeys
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
- Molecular Architecture of Life Program, Canadian Institute for Advanced Research, Toronto, Ontario, M5G 1M1, Canada
| |
Collapse
|