1
|
Chrobak-Chmiel D, Marszalik A, Golke A, Dolka B, Kwiecień E, Stefańska I, Czopowicz M, Rzewuska M, Kizerwetter-Świda M. Virulence and host specificity of staphylococci from Staphylococcus intermedius group of pigeon origin with an emphasis on Staphylococcus intermedius. Microb Pathog 2024; 195:106906. [PMID: 39208958 DOI: 10.1016/j.micpath.2024.106906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/06/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The Staphylococcus intermedius group (SIG) includes coagulase-positive staphylococci commonly found in animals. The taxonomic classification within the SIG has evolved with molecular techniques distinguishing five species. Despite their similarities, these species exhibit varied host affinities, with unclear implications for virulence and host interaction. This study aimed to investigate the presence of coagulase-positive staphylococci in pigeons and to detect genes encoding for selected virulence factors in isolated strains. Another goal was to determine the adhesion capabilities of randomly selected pigeon S. intermedius, S. delphini, and canine S. pseudintermedius strains to canine and pigeon corneocytes and their adhesion and invasion abilities to canine keratinocytes in vitro. In total, 121 coagulase-positive strains were isolated from domestic and feral pigeons. The most prevalent species were S. delphini B and S. intermedius in domestic and feral pigeons, respectively. We proved that pigeon strains carried genes encoding for exfoliative toxin SIET and leukotoxin Luk-I. Moreover, we found that S. intermedius showed higher adherence to pigeon than to canine corneocytes, aligning with its presumed natural host. No difference in adherence abilities of S. pseudintermedius to canine and pigeon corneocytes was observed. In this study, we also observed that S. pseudintermedius could successfully invade the canine keratinocytes, in contrary to S. delphini and S. intermedius. Moreover, only S. intermedius was not able to invade canine keratinocytes at all. These findings highlight the complex interplay between SIG bacteria, and their hosts, underscoring the need for further research to understand the mechanisms of host adaptation and pathogenicity within this group.
Collapse
Affiliation(s)
- Dorota Chrobak-Chmiel
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Anna Marszalik
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Anna Golke
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Beata Dolka
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Ewelina Kwiecień
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Ilona Stefańska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Michał Czopowicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Magdalena Rzewuska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Magdalena Kizerwetter-Świda
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| |
Collapse
|
2
|
Rossi CC, Ahmad F, Giambiagi-deMarval M. Staphylococcus haemolyticus: An updated review on nosocomial infections, antimicrobial resistance, virulence, genetic traits, and strategies for combating this emerging opportunistic pathogen. Microbiol Res 2024; 282:127652. [PMID: 38432015 DOI: 10.1016/j.micres.2024.127652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/30/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
Staphylococcus haemolyticus, a key species of the Staphylococcus genus, holds significant importance in healthcare-associated infections, due to its notable resistance to antimicrobials, like methicillin, and proficient biofilms-forming capabilities. This coagulase-negative bacterium poses a substantial challenge in the battle against nosocomial infections. Recent research has shed light on Staph. haemolyticus genomic plasticity, unveiling genetic elements responsible for antibiotic resistance and their widespread dissemination within the genus. This review presents an updated and comprehensive overview of the clinical significance and prevalence of Staph. haemolyticus, underscores its zoonotic potential and relevance in the one health framework, explores crucial virulence factors, and examines genetics features contributing to its success in causing emergent and challenging infections. Additionally, we scrutinize ongoing studies aimed at controlling spread and alternative approaches for combating it.
Collapse
Affiliation(s)
- Ciro César Rossi
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, MG, Brazil.
| | - Faizan Ahmad
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, MG, Brazil
| | | |
Collapse
|
3
|
Cheung GYC, Lee JH, Liu R, Lawhon SD, Yang C, Otto M. Methicillin Resistance Elements in the Canine Pathogen Staphylococcus pseudintermedius and Their Association with the Peptide Toxin PSM-mec. Antibiotics (Basel) 2024; 13:130. [PMID: 38391516 PMCID: PMC10886032 DOI: 10.3390/antibiotics13020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Staphylococcus pseudintermedius is a frequent cause of infections in dogs. Infectious isolates of this coagulase-positive staphylococcal species are often methicillin- and multidrug-resistant, which complicates therapy. In staphylococci, methicillin resistance is encoded by determinants found on mobile genetic elements called Staphylococcal Chromosome Cassette mec (SCCmec), which, in addition to methicillin resistance factors, sometimes encode additional genes, such as further resistance factors and, rarely, virulence determinants. In this study, we analyzed SCCmec in a collection of infectious methicillin-resistant S. pseudintermedius (MRSP) isolates from predominant lineages in the United States. We found that several lineages characteristically have specific types of SCCmec elements and Agr types and harbor additional factors in their SCCmec elements that may promote virulence or affect DNA uptake. All isolates had SCCmec-encoded restriction-modification (R-M) systems of types I or II, and sequence types (STs) ST84 and ST64 had one type II and one type I R-M system, although the latter lacked a complete methylation enzyme gene. ST68 isolates also had an SCCmec-encoded CRISPR system. ST71 isolates had a psm-mec gene, which, in all but apparently Agr-dysfunctional isolates, produced a PSM-mec peptide toxin, albeit at relatively small amounts. This study gives detailed insight into the composition of SCCmec elements in infectious isolates of S. pseudintermedius and lays the genetic foundation for further efforts directed at elucidating the contribution of identified accessory SCCmec factors in impacting SCCmec-encoded and thus methicillin resistance-associated virulence and resistance to DNA uptake in this leading canine pathogen.
Collapse
Affiliation(s)
- Gordon Y C Cheung
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Ji Hyun Lee
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Ryan Liu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sara D Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Ching Yang
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Pesset CM, Fonseca COD, Antunes M, Santos ALLD, Teixeira IM, Ferreira EDO, Penna B. Biofilm formation by Staphylococcus pseudintermedius on titanium implants. BIOFOULING 2024; 40:88-97. [PMID: 38407199 DOI: 10.1080/08927014.2024.2320721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
Osteomyelitis often involves Staphylococcus spp. as the isolated genus in domestic animal cases. Implant-related infections, frequently associated with biofilm-forming microorganisms like staphylococci species, necessitate careful material selection. This study assessed biofilm formation by Staphylococcus pseudintermedius on titanium nuts used in veterinary orthopaedic surgery. Biofilm quantification employed safranin staining and spectrophotometric measurement, while bacterial counts were determined in colony-forming units (CFU). Scanning Electron Microscopy (SEM) evaluated the biofilm morphology on the surface of titanium nuts. All samples had CFU counts. Absorbance values that evidence biofilm formation were observed in seven of the eight samples tested. SEM images revealed robust bacterial colonization, and significant extracellular polymeric substance production, and the negative control displayed surface irregularities on the nut. Whole genome sequencing revealed accessory Gene Regulator (agr) type III in six samples, agr IV and agr II in two each. Genes encoding hlb, luk-S, luk-F, siet, se_int, and the icaADCB operon were identified in all sequenced samples. Other exfoliative toxins were absent. Biofilm formation by S. pseudintermedius was detected in all samples, indicating the susceptibility of orthopaedic titanium alloys to adhesion and biofilm formation by veterinary species. The biofilm formation capacity raises concerns about potential post-surgical complications and associated costs.
Collapse
Affiliation(s)
- Camilla Malcher Pesset
- Laboratory of Gram-Positive Cocci, Biomedical Institute, Federal Fluminense University, Niterói, Brazil
| | - Carolina O da Fonseca
- Laboratory of Gram-Positive Cocci, Biomedical Institute, Federal Fluminense University, Niterói, Brazil
| | - Milena Antunes
- Laboratory of Gram-Positive Cocci, Biomedical Institute, Federal Fluminense University, Niterói, Brazil
| | - Ana Luiza L Dos Santos
- Laboratory of Gram-Positive Cocci, Biomedical Institute, Federal Fluminense University, Niterói, Brazil
| | - Izabel Melo Teixeira
- Laboratory of Gram-Positive Cocci, Biomedical Institute, Federal Fluminense University, Niterói, Brazil
| | | | - Bruno Penna
- Laboratory of Gram-Positive Cocci, Biomedical Institute, Federal Fluminense University, Niterói, Brazil
| |
Collapse
|
5
|
Guimarães L, Teixeira IM, da Silva IT, Antunes M, Pesset C, Fonseca C, Santos AL, Côrtes MF, Penna B. Epidemiologic case investigation on the zoonotic transmission of Methicillin-resistant Staphylococcus pseudintermedius among dogs and their owners. J Infect Public Health 2023; 16 Suppl 1:183-189. [PMID: 37973497 PMCID: PMC10663588 DOI: 10.1016/j.jiph.2023.10.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
Dogs often carry methicillin-resistant Staphylococci asymptomatically. These bacteria are frequently linked to conditions such as canine pyoderma and otitis. Close interaction between dogs and humans can facilitate the exchange of resistant strains, particularly Methicillin-resistant Staphylococcus pseudintermedius (MRSP). This represents a public health issue, since these strains, in addition to occasionally causing infections in humans, can also serve as a source of resistance and virulence genes for strains of greater importance in human medicine, such as Staphylococcus aureus. Furthermore, MRSP strains are often multidrug resistant, which ends up compromising the treatment of infections. This study aimed to assess the potential transmission of Staphylococcus pseudintermedius among dogs and their owners. We examined a total of one hundred canine samples collected from cases of pyoderma and otitis to detect the presence of staphylococci. Simultaneously, we conducted evaluations on all dog owners. Staphylococci strains were identified using MALDI-TOF MS and PCR targeting the nuc gene. Methicillin resistance screening was also performed by detecting the mecA gene using PCR. Among the sampled dogs, 64 carried S. pseudintermedius. Nine were identified as MRSP. In six instances, dogs and their owners exhibited S. pseudintermedius. These samples underwent genome sequencing and were screened for antimicrobial resistance genes, SCCmec typing, MLST characterization, and Single Nucleotide Polymorphisms (SNP) analyses. The results of the phylogenetic analysis revealed that in three cases, dogs and owners had closely related isolates, suggesting interspecies transmission. Two of these cases involved MRSP and one MSSP. Moreover, in the two MRSP cases, the same SCCmec type (type V) was detected. Additionally, the sequence type was consistent across all three cases involving dogs and owners (MSSP ST2277, MRSP ST2282, and ST2286). These findings strongly indicate a transmission event. Since Staphylococcus pseudintermedius is primarily isolated from canine samples, it is plausible that dogs may have acted as a potential source. In the remaining three cases, despite identifying the same species in both samples, they had notable phylogenetic differences.
Collapse
Affiliation(s)
- Luciana Guimarães
- Laboratório de Cocos Gram positivos, Instituto Biomédico, UFF, Brazil; Graduate Program in Veterinary Medicine, Fluminense Federal University, Brazil
| | - Izabel Mello Teixeira
- Laboratório de Cocos Gram positivos, Instituto Biomédico, UFF, Brazil; Graduate Program in Microbiology, Instituto de Microbiologia Paulo de Goes, UFRJ, Brazil
| | - Isabella Thomaz da Silva
- Laboratório de Cocos Gram positivos, Instituto Biomédico, UFF, Brazil; Graduate Program in Veterinary Medicine, Fluminense Federal University, Brazil
| | - Milena Antunes
- Laboratório de Cocos Gram positivos, Instituto Biomédico, UFF, Brazil; Graduate Program in Microbiology, Instituto de Microbiologia Paulo de Goes, UFRJ, Brazil
| | - Camilla Pesset
- Laboratório de Cocos Gram positivos, Instituto Biomédico, UFF, Brazil
| | - Carolina Fonseca
- Laboratório de Cocos Gram positivos, Instituto Biomédico, UFF, Brazil; Graduate Program in Veterinary Medicine, Fluminense Federal University, Brazil
| | - Ana Luiza Santos
- Laboratório de Cocos Gram positivos, Instituto Biomédico, UFF, Brazil
| | - Marina Farrel Côrtes
- Laboratório de Investigação Médica LIM49, Instituto de Medicina Tropical, USP, Brazil
| | - Bruno Penna
- Laboratório de Cocos Gram positivos, Instituto Biomédico, UFF, Brazil; Graduate Program in Veterinary Medicine, Fluminense Federal University, Brazil.
| |
Collapse
|
6
|
Cheung GYC, Otto M. Virulence Mechanisms of Staphylococcal Animal Pathogens. Int J Mol Sci 2023; 24:14587. [PMID: 37834035 PMCID: PMC10572719 DOI: 10.3390/ijms241914587] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Staphylococci are major causes of infections in mammals. Mammals are colonized by diverse staphylococcal species, often with moderate to strong host specificity, and colonization is a common source of infection. Staphylococcal infections of animals not only are of major importance for animal well-being but have considerable economic consequences, such as in the case of staphylococcal mastitis, which costs billions of dollars annually. Furthermore, pet animals can be temporary carriers of strains infectious to humans. Moreover, antimicrobial resistance is a great concern in livestock infections, as there is considerable antibiotic overuse, and resistant strains can be transferred to humans. With the number of working antibiotics continuously becoming smaller due to the concomitant spread of resistant strains, alternative approaches, such as anti-virulence, are increasingly being investigated to treat staphylococcal infections. For this, understanding the virulence mechanisms of animal staphylococcal pathogens is crucial. While many virulence factors have similar functions in humans as animals, there are increasingly frequent reports of host-specific virulence factors and mechanisms. Furthermore, we are only beginning to understand virulence mechanisms in animal-specific staphylococcal pathogens. This review gives an overview of animal infections caused by staphylococci and our knowledge about the virulence mechanisms involved.
Collapse
Affiliation(s)
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD 20814, USA;
| |
Collapse
|
7
|
Miszczak M, Korzeniowska-Kowal A, Wzorek A, Gamian A, Rypuła K, Bierowiec K. Colonization of methicillin-resistant Staphylococcus species in healthy and sick pets: prevalence and risk factors. BMC Vet Res 2023; 19:85. [PMID: 37464252 DOI: 10.1186/s12917-023-03640-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND The characterization of staphylococcal species that colonize pets is important to maintain animal health and to minimize the risk of transmission to owners. Here, the prevalence of Staphylococcus spp. and methicillin resistance was investigated in canine and feline isolates, and risk factors of staphylococcal colonization were determined. Pets were examined and separated into four groups: (1) healthy dogs, (2) healthy cats, and (3) dogs and (4) cats with clinical signs of bacterial infections of skin, mucous membranes, or wounds. Specimens were collected by a veterinary physician from six anatomic sites (external ear canal, conjunctival sacs, nares, mouth, skin [groin], and anus). In total, 274 animals (cats n = 161, dogs n = 113) were enrolled. RESULTS Staphylococcus species were highly diverse (23 species; 3 coagulase-positive and 20 coagulase-negative species), with the highest variety in healthy cats (19 species). The most frequent feline isolates were S. felis and S. epidermidis, while S. pseudintermedius was the most prevalent isolate in dogs. Risk factors of staphylococcal colonization included the presence of other animals in the same household, medical treatment within the last year, and a medical profession of at least one owner. Methicillin resistance was higher in coagulase-negative (17.86%) compared to coagulase-positive (1.95%) staphylococci. The highest prevalence of methicillin-resistant CoNS colonization was observed in animals kept in homes as the most common (dogs and cats). CONCLUSIONS The association of methicillin-resistant CoNS colonization with animals most often chosen as pets, represents a high risk of transmission between them and owners. The importance of nosocomial transmission of CoNS was also confirmed. This information could guide clinical decisions during the treatment of veterinary bacterial infections. In conclusion, the epidemiologic characteristics of CoNS and their pathogenicity in pets and humans require further research.
Collapse
Affiliation(s)
- Marta Miszczak
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
| | - Agnieszka Korzeniowska-Kowal
- Department of Immunology of Infectious Diseases, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
| | - Anna Wzorek
- Department of Immunology of Infectious Diseases, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
| | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
| | - Krzysztof Rypuła
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Karolina Bierowiec
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
8
|
Astley RA, Mursalin MH, Coburn PS, Livingston ET, Nightengale JW, Bagaruka E, Hunt JJ, Callegan MC. Ocular Bacterial Infections: A Ten-Year Survey and Review of Causative Organisms Based on the Oklahoma Experience. Microorganisms 2023; 11:1802. [PMID: 37512974 PMCID: PMC10386592 DOI: 10.3390/microorganisms11071802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Ocular infections can be medical emergencies that result in permanent visual impairment or blindness and loss of quality of life. Bacteria are a major cause of ocular infections. Effective treatment of ocular infections requires knowledge of which bacteria are the likely cause of the infection. This survey of ocular bacterial isolates and review of ocular pathogens is based on a survey of a collection of isolates banked over a ten-year span at the Dean McGee Eye Institute in Oklahoma. These findings illustrate the diversity of bacteria isolated from the eye, ranging from common species to rare and unique species. At all sampled sites, staphylococci were the predominant bacteria isolated. Pseudomonads were the most common Gram-negative bacterial isolate, except in vitreous, where Serratia was the most common Gram-negative bacterial isolate. Here, we discuss the range of ocular infections that these species have been documented to cause and treatment options for these infections. Although a highly diverse spectrum of species has been isolated from the eye, the majority of infections are caused by Gram-positive species, and in most infections, empiric treatments are effective.
Collapse
Affiliation(s)
- Roger A Astley
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Md Huzzatul Mursalin
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Phillip S Coburn
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Erin T Livingston
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - James W Nightengale
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Eddy Bagaruka
- Department of Biology, Oklahoma Christian University, Edmond, OK 73013, USA
| | - Jonathan J Hunt
- Department of Biology, Oklahoma Christian University, Edmond, OK 73013, USA
| | - Michelle C Callegan
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Dean McGee Eye Institute, Oklahoma City, OK 73104, USA
| |
Collapse
|
9
|
Wang S, Nurxat N, Wei M, Wu Y, Wang Q, Li M, Liu Q. Cheilitis in an atopic dermatitis patient associated with co-infection of Staphylococcus pseudintermedius and Staphylococcus aureus. BMC Microbiol 2023; 23:130. [PMID: 37183254 PMCID: PMC10184392 DOI: 10.1186/s12866-023-02837-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/27/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Atopic dermatitis (AD) is an inflammatory skin condition distinguished by an activated Th2 immune response. The local skin microbial dysbiosis is a contributing factor to the development of AD. The pathogenic coagulase-positive Staphylococcus aureus is the primary species responsible for the progression of AD. Even though Staphylococcus pseudintermedius is an animal-origin pathogen, it is increasingly becoming a source of concern in human diseases. As another coagulase-positive Staphylococci, it is crucial to pay more attention to S. pseudintermedius isolated from the lesion site. RESULTS In our investigation, we presented a case of cheilitis in a patient with atopic dermatitis (AD). We utilized culture and next-generation genomic sequencing (NGS) to identify the bacteria present on the skin swabs taken from the lip sites both prior to and following treatment. Our findings indicated that the predominant bacteria colonizing the lesion site of AD were S. pseudintermedius and S. aureus, both of which were eradicated after treatment. The Multi-locus sequence typing (MLST) of S. pseudintermedius and S. aureus demonstrated coordinated antibiotic susceptibility, with ST2384 and ST22 being the respective types. Although the skin abscess area resulting from S. pseudintermedius infection was significantly smaller than that caused by S. aureus in mice, the expression of cytokines interleukin-4 (IL-4) and interleukin-5 (IL-5) were significantly higher in the S. pseudintermedius-infected mice. CONCLUSIONS The S. pseudintermedius strain isolated from the lesion site of the AD patient exhibited a higher expression of IL-4 and IL-5 when colonized on mouse skin, as compared to S. aureus. This observation confirms that S. pseudintermedius can effectively induce the Th2 response in vivo. Our findings suggest that animal-origin S. pseudintermedius may play a role in the development of AD when colonized on the skin, emphasizing the importance of taking preventive measures when in contact with animals.
Collapse
Affiliation(s)
- Shucui Wang
- Anhui University of Science and Technology School of Medicine, Anhui, 232001, China
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, China
| | - Nadira Nurxat
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Muyun Wei
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yao Wu
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, China
| | - Qichen Wang
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ming Li
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, China.
| | - Qian Liu
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
10
|
Breyer GM, Saggin BF, de Carli S, da Silva MERJ, da Costa MM, Brenig B, Azevedo VADC, Cardoso MRDI, Siqueira FM. Virulent potential of methicillin-resistant and methicillin-susceptible Staphylococcus pseudintermedius in dogs. Acta Trop 2023; 242:106911. [PMID: 36965612 DOI: 10.1016/j.actatropica.2023.106911] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
Staphylococcus pseudintermedius is a zoonotic pathogen responsible for several infectious diseases in pet animals, yet its pathogenic potential is not fully understood. Thus, this study aims to unravel the virulence profile of S. pseudintermedius from canine origin. Methicillin-resistant (MRSP) and methicillin-susceptible (MSSP) strains were isolated from different infection sites and their genotypic and phenotypic features were compared to determine the clinical implications of MRSP and MSSP strains. Bacterial identification was performed using MALDI-TOF and 16S-rDNA sequencing. In addition, we used multilocus sequence typing (MLST) for strains' sequence type (ST) determination and phylogenetic relationship. The strains were screened for toxin genes, including cytotoxins (lukS, lukF), exfoliative toxin (siet), enterotoxins (sea, seb, sec, secCanine, sel, sem, and seq) and toxic shock syndrome toxin (tst-1). In vitro phenotypic analyses assessing antimicrobial susceptibility profile, biofilm formation ability, and expression of extracellular matrix components were performed. The investigated S. pseudintermedius strains belong to 17 unique ST, most of which were classified as ST71. MSSP and MRSP strains shared siet, lukS, and lukF virulence markers. Our findings showed that some MSSP strains also harbored sel, seq, and sem enterotoxin genes, suggesting a more diverse virulence profile. All MRSP strains and 77% of MSSP strains were classified as multidrug resistant (MDR). Moreover, all investigated S. pseudintermedius strains showed strong biofilm formation ability. In summary, our findings highlight the wide spread of highly virulent and drug-resistant zoonotic S. pseudintermedius strains, being a potential concern for One Health issues.
Collapse
Affiliation(s)
- Gabriela Merker Breyer
- Laboratório de Bacteriologia Veterinária (LaBacVet), Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Patologia Veterinária, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Bianca Fagundes Saggin
- Laboratório de Bacteriologia Veterinária (LaBacVet), Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Patologia Veterinária, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Silvia de Carli
- Laboratório de Bacteriologia Veterinária (LaBacVet), Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Patologia Veterinária, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Maria Eduarda Rocha Jacques da Silva
- Laboratório de Bacteriologia Veterinária (LaBacVet), Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Patologia Veterinária, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Mateus Matiuzzi da Costa
- Departamento de Zootecnia, Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, Department of Molecular Biology of Livestock, Georg August University Göttingen, 37077 Göttingen, Germany
| | - Vasco Ariston de Carvalho Azevedo
- Laboratório de Genética Molecular e Celular (LGCM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Marisa Ribeiro de Itapema Cardoso
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Laboratório de Medicina Veterinária Preventiva, Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Patologia Veterinária, Porto Alegre, Brazil
| | - Franciele Maboni Siqueira
- Laboratório de Bacteriologia Veterinária (LaBacVet), Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Patologia Veterinária, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|
11
|
Moses IB, Santos FF, Gales AC. Human Colonization and Infection by Staphylococcus pseudintermedius: An Emerging and Underestimated Zoonotic Pathogen. Microorganisms 2023; 11:microorganisms11030581. [PMID: 36985155 PMCID: PMC10057476 DOI: 10.3390/microorganisms11030581] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
S. pseudintermedius is a known resident of the skin and mucous membranes and a constituent of the normal microbiota of dogs. It has also been recognized as an opportunistic and zoonotic pathogen that is able to colonize humans and cause severe diseases, especially in immunocompromised hosts. Most importantly, methicillin-resistant S. pseudintermedius (MRSP), which is intrinsically multidrug-resistant, has emerged with serious public health consequences. The epidemiological situation is further exacerbated with reports of its zoonotic transmission and human infections which have been mostly attributed to the increasing frequency of dog ownership and close contact between dogs and humans. Evidence on the zoonotic transmission of MRSP from pet dogs to humans (such as dog owners, small-animal veterinarians, and other people in close proximity to dogs) is limited, especially due to the misidentification of S. pseudintermedius as S. aureus. Despite this fact, reports on the increasing emergence and spread of MRSP in humans have been increasing steadily over the years since its first documented report in 2006 in Belgium. The emergence of MRSP strains has further compromised treatment outcomes in both veterinary and human medicine as these strains are resistant to beta-lactam antimicrobials usually prescribed as first line treatment. Frustratingly, the limited awareness and surveillance of the zoonotic transmission of S. pseudintermedius have underestimated their extent of transmission, prevalence, epidemiology, and public health significance. In order to fill this gap of information, this review focused on detailed reports on zoonotic transmission, human colonization, and infections by S. pseudintermedius, their pathogenic features, antimicrobial resistance profiles, epidemiology, risk factors, and treatment. In writing this review, we searched Web of Science, PubMed, and SCOPUS databases using the keyword “Staphylococcus pseudintermedius AND humans”. A phylogenetic tree to determine the genetic relatedness/diversity of publicly available genomes of S. pseudintermedius was also constructed.
Collapse
Affiliation(s)
- Ikechukwu Benjamin Moses
- Department of Internal Medicine, Division of Infectious Diseases, Escola Paulista de Medicina/Universidade Federal de São Paulo, Universidade Federal de São Paulo–UNIFESP, São Paulo 04039-032, Brazil
- Department of Applied Microbiology, Faculty of Sciences, Ebonyi State University, Abakaliki PMB 053, Nigeria
| | - Fernanda Fernandes Santos
- Department of Internal Medicine, Division of Infectious Diseases, Escola Paulista de Medicina/Universidade Federal de São Paulo, Universidade Federal de São Paulo–UNIFESP, São Paulo 04039-032, Brazil
| | - Ana Cristina Gales
- Department of Internal Medicine, Division of Infectious Diseases, Escola Paulista de Medicina/Universidade Federal de São Paulo, Universidade Federal de São Paulo–UNIFESP, São Paulo 04039-032, Brazil
- Correspondence:
| |
Collapse
|
12
|
Mauer AN, Allbaugh RA, Kreuder AJ, Sebbag L. Impact of multi-drug resistance on clinical outcomes of dogs with corneal ulcers infected with Staphylococcus pseudintermedius. Front Vet Sci 2022; 9:1083294. [PMID: 36504873 PMCID: PMC9729527 DOI: 10.3389/fvets.2022.1083294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
Objective Compare characteristics and clinical outcomes of dogs with infectious keratitis from Staphylococcus pseudintermedius considered to be multidrug-resistant (MDR) or not. Procedures Staphylococcus pseudintermedius isolated as the primary pathogen from canine patients with ulcerative keratitis were considered MDR if resistant to at least one agent in three or more classes of antibiotics. Medical records were reviewed for history, patients' characteristics, clinical appearance, therapeutic interventions, and clinical outcomes. Results Twenty-eight dogs (28 eyes) were included. Compared to non-MDR cases, MDR diagnosis was significantly more common in dogs with recent (≤30 days) anesthesia (7/15 vs. 1/13, P = 0.038) and more common in non-brachycephalic dogs (8/15 vs. 2/13, P = 0.055). Clinical appearance (ulcer size/depth, anterior chamber reaction, etc.) did not differ significantly between groups (P ≥ 0.055). Median (range) time to re-epithelialization was longer in MDR vs. non-MDR eyes [29 (10-47) vs. 22 (7-42) days] but the difference was not significant (P = 0.301). Follow-up time was significantly longer in dogs with MDR keratitis [47 (29-590) vs. 29 (13-148) days, P = 0.009]. No other significant differences were noted between MDR and non-MDR eyes in regard to time for ulcer stabilization [4 (1-17) days vs. 4 (1-12), P = 0.699], number of eyes requiring surgical stabilization (7/15 vs. 7/13, P = 0.246) or enucleation (1/15 vs. 2/13, P = 1.000), success in maintaining globe (14/15 vs. 11/13, P = 0.583) or success in maintaining vision (12/15 vs. 10/13, P = 1.000). Conclusions MDR infections may prolong corneal healing time but did not appear to affect overall clinical outcomes in dogs with bacterial keratitis. Further research is warranted in a larger canine population and other bacterial species.
Collapse
Affiliation(s)
- Ashley N. Mauer
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Rachel A. Allbaugh
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States,*Correspondence: Rachel A. Allbaugh
| | - Amanda J. Kreuder
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Lionel Sebbag
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States,Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel,Lionel Sebbag
| |
Collapse
|
13
|
Comparison of the prevalence, antibiotic resistance patterns, and biofilm formation ability of methicillin-resistant Staphylococcus pseudintermedius in healthy dogs and dogs with skin infections. Vet Res Commun 2022; 47:713-721. [DOI: 10.1007/s11259-022-10032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
|
14
|
Jaan S, Shah M, Ullah N, Amjad A, Javed MS, Nishan U, Mustafa G, Nawaz H, Ahmed S, Ojha SC. Multi-epitope chimeric vaccine designing and novel drug targets prioritization against multi-drug resistant Staphylococcus pseudintermedius. Front Microbiol 2022; 13:971263. [PMID: 35992654 PMCID: PMC9386485 DOI: 10.3389/fmicb.2022.971263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
Biofilm synthesizing multi-drug resistant Staphylococcus pseudintermedius bacteria has been recognized as the human infectious agent. It has been detected in the diseases of skin, ear, and postoperative infections. Its infections are becoming a major health problem due to its multi-drug resistance capabilities. However, no commercial vaccine for the treatment of its infections is currently available in the market. Here we employed the subtractive proteomics and reverse vaccinology approach to determine the potential novel drug and vaccine targets against S. pseudintermedius infections in humans. After screening the core-proteome of the 39 complete genomes of S. pseudintermedius, 2 metabolic pathways dependent and 34 independent proteins were determined as novel potential drug targets. Two proteins were found and used as potential candidates for designing the chimeric vaccine constructs. Depending on the properties such as antigenicity, toxicity and solubility, multi-epitope based vaccines constructs were designed. For immunogenicity enhancement, different specific sequences like linkers, PADRE sequences and molecular adjuvants were added. Molecular docking and molecular dynamic simulation analyses were performed to evaluate the prioritized vaccine construct’s interactions with human immune cells HLA and TLR4. Finally, the cloning and expression ability of the vaccine construct was determined in the bacterial cloning system and human body immune response was predicted through immune simulation analysis. In conclusion, this study proposed the potential drug and vaccine targets and also designed a chimera vaccine to be tested and validated against infectious S. pseudintermedius species.
Collapse
Affiliation(s)
- Samavia Jaan
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
- *Correspondence: Mohibullah Shah, ;
| | - Najeeb Ullah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Adnan Amjad
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Sameem Javed
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan
| | - Ghazala Mustafa
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Haq Nawaz
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Sarfraz Ahmed
- Department of Basic Sciences, University of Veterinary and Animal Sciences Lahore, Narowal, Pakistan
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Suvash Chandra Ojha,
| |
Collapse
|
15
|
Anthroponotic-Based Transfer of Staphylococcus to Dog: A Case Study. Pathogens 2022; 11:pathogens11070802. [PMID: 35890046 PMCID: PMC9316149 DOI: 10.3390/pathogens11070802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
Although usually harmless, Staphylococcus spp. can cause nosocomial and community-onset skin and soft tissue infections in both humans and animals; thus, it is considered a significant burden for healthcare systems worldwide. Companion animals have been identified as potential reservoirs of pathogenic Staphylococcus with specific reference to Methicillin Resistant Staphylococcus aureus (MRSA). In this study, we investigated the circulation and the genetic relationships of a collection of Staphylococcus spp. isolates in a family composed of four adults (a mother, father, grandmother, and grandfather), one child, and a dog, which were sampled over three years. The routes of transmission among humans and between humans and the dog werelyzed. The results displayed the circulation of many Staphylococcus lineages, belonging to different species and sequence types (ST) and being related to both human and pet origins. However, among the observed host-switch events, one of them clearly underpinnthroponotic route from a human to a dog. This suggests that companion animals can potentially have a role as a carrier of Staphylococcus, thus posing a serious concern about MRSA spreading within human and animal microbial communities.
Collapse
|
16
|
Eichenseher F, Herpers BL, Badoux P, Leyva-Castillo JM, Geha RS, van der Zwart M, McKellar J, Janssen F, de Rooij B, Selvakumar L, Röhrig C, Frieling J, Offerhaus M, Loessner MJ, Schmelcher M. Linker-Improved Chimeric Endolysin Selectively Kills Staphylococcus aureus In Vitro, on Reconstituted Human Epidermis, and in a Murine Model of Skin Infection. Antimicrob Agents Chemother 2022; 66:e0227321. [PMID: 35416713 PMCID: PMC9112974 DOI: 10.1128/aac.02273-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus causes a broad spectrum of diseases in humans and animals. It is frequently associated with inflammatory skin disorders such as atopic dermatitis, where it aggravates symptoms. Treatment of S. aureus-associated skin infections with antibiotics is discouraged due to their broad-range deleterious effect on healthy skin microbiota and their ability to promote the development of resistance. Thus, novel S. aureus-specific antibacterial agents are desirable. We constructed two chimeric cell wall-lytic enzymes, Staphefekt SA.100 and XZ.700, which are composed of functional domains from the bacteriophage endolysin Ply2638 and the bacteriocin lysostaphin. Both enzymes specifically killed S. aureus and were inactive against commensal skin bacteria such as Staphylococcus epidermidis, with XZ.700 proving more active than SA.100 in multiple in vitro activity assays. When surface-attached mixed staphylococcal cultures were exposed to XZ.700 in a simplified microbiome model, the enzyme selectively removed S. aureus and retained S. epidermidis. Furthermore, XZ.700 did not induce resistance in S. aureus during repeated rounds of exposure to sublethal concentrations. Finally, we demonstrated that XZ.700 formulated as a cream is effective at killing S. aureus on reconstituted human epidermis and that an XZ.700-containing gel significantly reduces bacterial numbers compared to an untreated control in a mouse model of S. aureus-induced skin infection.
Collapse
Affiliation(s)
- Fritz Eichenseher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
- Micreos GmbH, Wädenswil, Switzerland
| | - Bjorn L. Herpers
- Regional Public Health Laboratory Kennemerland, Haarlem, The Netherlands
| | - Paul Badoux
- Regional Public Health Laboratory Kennemerland, Haarlem, The Netherlands
| | | | - Raif S. Geha
- Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Ferd Janssen
- Micreos Human Health B.V., Bilthoven, The Netherlands
| | - Bob de Rooij
- Micreos Human Health B.V., Bilthoven, The Netherlands
| | | | | | | | | | - Martin J. Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Mathias Schmelcher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
- Micreos GmbH, Wädenswil, Switzerland
| |
Collapse
|
17
|
Fungwithaya P, Boonchuay K, Narinthorn R, Sontigun N, Sansamur C, Petcharat Y, Thomrongsuwannakij T, Wongtawan T. First study on diversity and antimicrobial-resistant profile of staphylococci in sports animals of Southern Thailand. Vet World 2022; 15:765-774. [PMID: 35497942 PMCID: PMC9047138 DOI: 10.14202/vetworld.2022.765-774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/15/2022] [Indexed: 11/19/2022] Open
Abstract
Background and Aim: Staphylococci are commensal bacteria and opportunistic pathogens found on the skin and mucosa. Sports animals are more prone to injury and illness, and we believe that antimicrobial agents might be extensively used for the treatment and cause the existence of antimicrobial-resistant (AMR) bacteria. This study aimed to investigate the diversity and AMR profile of staphylococci in sports animals (riding horses, fighting bulls, and fighting cocks) in South Thailand. Materials and Methods: Nasal (57 fighting bulls and 33 riding horses) and skin swabs (32 fighting cocks) were taken from 122 animals. Staphylococci were cultured in Mannitol Salt Agar and then identified species by biochemical tests using the VITEK® 2 card for Gram-positive organisms in conjunction with the VITEK® 2 COMPACT machine and genotypic identification by polymerase chain reaction (PCR). Antimicrobial susceptibility tests were performed with VITEK® 2 AST-GN80 test kit cards and VITEK® 2 COMPACT machine. Detection of AMR genes (mecA, mecC, and blaZ) and staphylococcal chromosomal mec (SCCmec) type was evaluated by PCR. Results: Forty-one colonies of staphylococci were isolated, and six species were identified, including Staphylococcus sciuri (61%), Staphylococcus pasteuri (15%), Staphylococcus cohnii (10%), Staphylococcus aureus (7%), Staphylococcus warneri (5%), and Staphylococcus haemolyticus (2%). Staphylococci were highly resistant to two drug classes, penicillin (93%) and cephalosporin (51%). About 56% of the isolates were methicillin-resistant staphylococci (MRS), and the majority was S. sciuri (82%), which is primarily found in horses. Most MRS (82%) were multidrug-resistant. Almost all (96%) of the mecA-positive MRS harbored the blaZ gene. Almost all MRS isolates possessed an unknown type of SCCmec. Interestingly, the AMR rate was notably lower in fighting bulls and cocks than in riding horses, which may be related to the owner’s preference for herbal therapy over antimicrobial drugs. Conclusion: This study presented many types of staphylococci displayed on bulls, cocks, and horses. However, we found a high prevalence of MRS in horses that could be transmitted to owners through close contact activities and might be a source of AMR genotype transmission to other staphylococci.
Collapse
Affiliation(s)
- Punpichaya Fungwithaya
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Excellence Centre for Melioidosis and Other Microorganisms, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Kanpapat Boonchuay
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Ruethai Narinthorn
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Narin Sontigun
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Excellence Centre for Melioidosis and Other Microorganisms, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Chalutwan Sansamur
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Yotsapat Petcharat
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Thotsapol Thomrongsuwannakij
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Tuempong Wongtawan
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Excellence Centre for Melioidosis and Other Microorganisms, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| |
Collapse
|
18
|
Staphylococcus pseudintermedius: Is it a real threat to human health? POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Staphylococcus Intermedius Group (SIG) staphylococci, especially Staphylococcus pseudintermedius (S. pseudintermedius), share many features with the common human Staphylococcus aureus. The similarities concern both the phenotypic characteristics and virulence of the bacteria. It is a cause of difficulties in identifying the species of isolated staphylococci. Until now, S. pseudintermedius was considered a typically animal species, of marginal importance for humans. However, it is likely that the incidence of this staphylococcus in humans is underestimated due to the misidentification of S. pseudintermedius strains as S. aureus. The cases of infections caused by S. pseudintermedius both in humans and animals described so far in the literature show that these bacteria have a similar pathogenic potential. S. pseudintermedius also produces virulence factors that favor colonization of various body regions and infections, and may affect the species composition of the natural microbiota and the host’s immune response mechanisms. Also, S. pseudintermedius may show the ability to grow in the form of a biofilm, which significantly impedes effective antibiotic therapy in clinical practice. Due to its zoonotic potential, S. pseudintermedius deserves the attention of physicians and animal owners.
Collapse
|
19
|
Bowen S, DeMarco A, Villasis L, Barsi J, Handel AS. One Affectionate Puppy: A Case of Septic Arthritis Due to Staphylococcus Pseudintermedius. Pediatr Infect Dis J 2021; 40:e381-e383. [PMID: 34525008 DOI: 10.1097/inf.0000000000003201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We describe a case of septic arthritis caused by Staphylococcus pseudintermedius, a common colonizer of dogs that has emerged as a rare human pathogen. Our patient presented with ankle pain and swelling and was treated adequately with cefazolin/cephalexin and arthrotomy. S. pseudintermedius is often misidentified as other coagulase-positive staphylococcal species and has high rates of methicillin and nonpenicillin antibiotic resistance.
Collapse
Affiliation(s)
| | | | | | | | - Andrew S Handel
- Division of Infectious Diseases, Department of Pediatrics, Stony Brook Children's Hospital, Stony Brook, NY
| |
Collapse
|
20
|
Curran K, Leeper H, O′Reilly K, Jacob J, Bermudez LE. An Analysis of the Infections and Determination of Empiric Antibiotic Therapy in Cats and Dogs with Cancer-Associated Infections. Antibiotics (Basel) 2021; 10:antibiotics10060700. [PMID: 34208146 PMCID: PMC8230819 DOI: 10.3390/antibiotics10060700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer patients commonly develop infectious complications over the course of the disease. One thousand patients receiving treatment for an oncologic disease at a single veterinary teaching hospital were retrospectively reviewed for concurrent infections. A total of 153 confirmed bacterial infections were identified, 82 of which were abscesses or wounds, 13 of which were respiratory infections, 3 of which were ear infections, and 55 of which were urinary tract infections. It was observed that the majority of the infections were caused by bacteria that are normally associated with that specific site location. Escherichia coli was the most common pathogen linked to infections in general, but Staphylococcus pseudintermedius was a frequently identified pathogen associated with wound infections. The susceptibility to diverse antimicrobials varied with the site of infection. Eleven cases (7.1%) were caused by opportunistic infections of the site, and E. coli and Pseudomonas aeruginosa were the pathogens isolated. Those bacteria were resistant to many antibiotics but showed susceptibility to aminoglycosides, imipenem, quinolones, and polymyxin B. In conclusion, veterinary patients with cancer or those under treatment for tumors develop infections by commonly encountered bacteria in the different sites of the body, with a susceptibility to antibiotics that is not out of line from what is expected. A small subset of cases developed opportunistic infections, with microbes that were more resistant to many classes of antibiotics.
Collapse
Affiliation(s)
- Katie Curran
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (K.C.); (H.L.)
| | - Haley Leeper
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (K.C.); (H.L.)
| | - Kathy O′Reilly
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA;
- Oregon Veterinary Diagnostic Laboratory, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA;
| | - Joelle Jacob
- Oregon Veterinary Diagnostic Laboratory, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA;
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA;
- Department of Microbiology, College of Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Correspondence:
| |
Collapse
|
21
|
Small C, Beatty N, El Helou G. Staphylococcus pseudintermedius Bacteremia in a Lung Transplant Recipient Exposed to Domestic Pets. Cureus 2021; 13:e14895. [PMID: 34109083 PMCID: PMC8180354 DOI: 10.7759/cureus.14895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Staphylococcus pseudintermedius commonly colonizes companion animals, including canines. This microbe is a major opportunistic pathogen responsible for pyogenic and necrotizing skin and soft tissue infection in canines. Infection with S. pseudintermedius is increasingly being recognized in humans, especially in those who are immunocompromised. This microbe is quite similar to Staphylococcus aureus, expressing several analogous virulence factors and a variety of toxins. Furthermore, S. pseudintermedius has variants that display multi-drug resistance comparable to methicillin-resistant S. aureus. We report a 50-year-old female with bilateral lung transplant on immunosuppression who presents with signs of sepsis and pneumonia. Initial blood cultures grew Gram-positive cocci that were not initially identified via molecular diagnostics as Staphylococcus species but were later confirmed as S. pseudintermedius through mass spectrometry. Antimicrobial susceptibility testing demonstrated multi-drug resistance, including methicillin. Despite aggressive medical and antimicrobial treatment, our patients succumbed to the infection. The source of infection likely came from her companion canine at home as no other source could be identified; however, cultures were unable to be obtained from the companion canine. Those who are immunosuppressed, such as with solid organ transplants, should take caution with exposure to companion animals due to the potential for S. pseudintermedius infection.
Collapse
Affiliation(s)
- Coulter Small
- Division of Infectious Diseases and Global Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, USA
| | - Norman Beatty
- Division of Infectious Diseases and Global Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, USA
| | - Guy El Helou
- Division of Infectious Diseases and Global Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, USA
| |
Collapse
|
22
|
Bünsow D, Tantawy E, Ostermeier T, Bähre H, Garbe A, Larsen J, Winstel V. Methicillin-resistant Staphylococcus pseudintermedius synthesizes deoxyadenosine to cause persistent infection. Virulence 2021; 12:989-1002. [PMID: 33779509 PMCID: PMC8018352 DOI: 10.1080/21505594.2021.1903691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Methicillin-resistant Staphylococcus pseudintermedius (MRSP) is an emerging zoonotic pathogen of canine origin that causes an array of fatal diseases, including bacteremia and endocarditis. Despite large-scale genome sequencing projects have gained substantial insights into the genomic landscape of MRSP, current knowledge on virulence determinants that contribute to S. pseudintermedius pathogenesis during human or canine infection is very limited. Using a panel of genetically engineered MRSP variants and a mouse abscess model, we here identified the major secreted nuclease of S. pseudintermedius designated NucB and adenosine synthase A (AdsA) as two synergistically acting enzymes required for MRSP pathogenesis. Similar to Staphylococcus aureus, S. pseudintermedius requires nuclease secretion along with the activity of AdsA to degrade mammalian DNA for subsequent biosynthesis of cytotoxic deoxyadenosine. In this manner, S. pseudintermedius selectively kills macrophages during abscess formation thereby antagonizing crucial host immune cell responses. Ultimately, bioinformatics analyses revealed that NucB and AdsA are widespread in the global S. pseudintermedius population. Together, these data suggest that S. pseudintermedius deploys the canonical Nuc/AdsA pathway to persist during invasive disease and may aid in the development of new therapeutic strategies to combat infections caused by MRSP.
Collapse
Affiliation(s)
- Dorothea Bünsow
- Research Group Pathogenesis of Bacterial Infections; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.,Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Eshraq Tantawy
- Research Group Pathogenesis of Bacterial Infections; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.,Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Tjorven Ostermeier
- Research Group Pathogenesis of Bacterial Infections; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.,Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Heike Bähre
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Annette Garbe
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Jesper Larsen
- Department of Bacteria, Parasites, and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Volker Winstel
- Research Group Pathogenesis of Bacterial Infections; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.,Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
23
|
González-Martín M, Corbera JA, Suárez-Bonnet A, Tejedor-Junco MT. Virulence factors in coagulase-positive staphylococci of veterinary interest other than Staphylococcus aureus. Vet Q 2021; 40:118-131. [PMID: 32223696 PMCID: PMC7178840 DOI: 10.1080/01652176.2020.1748253] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Coagulase-positive Staphylococci (CoPS) can exist as commensals in humans, companion and food-producing animals, but can cause severe or even lethal diseases. Exchange of these bacteria between humans and animals has been described. Special attention has been focused on Methicillin-Resistant Staphylococcus aureus, but other CoPS can also represent an important threat. In addition to significant antimicrobial resistance, these bacteria may carry a plethora of virulence factors - molecules that allow bacteria to establish on or within a host and increase their ability to cause disease. These virulence factors have been widely described in S. aureus but information about other species of CoPS is scarce. The aim of this paper is to review the recent literature about the virulence factors of non-aureus CoPS of animal origin. Their possible effects on human health are also described. The role and prevalence of different virulence factors including leukocidins, hemolysins, adhesins, enterotoxins, exfoliative and toxic shock syndrome toxins as well as superantigen-like proteins are addressed. The effect of these virulence factors on human health is also described. The possibility of misdiagnosis of species of CoPS has been demonstrated in human clinical samples. Prevalence of zoonotic infections could be higher than thought and medical laboratories should be aware of these other staphylococcal species. In keeping with the ‘One Health’ approach to animal and human disease, medical professionals, veterinarians and health workers should be aware of the risks derived from exposure to these bacteria in people in close contact with animals, including pet owners, farmers and veterinarians themselves.
Collapse
Affiliation(s)
- Margarita González-Martín
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Juan Alberto Corbera
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Alejandro Suárez-Bonnet
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, United Kingdom
| | - María Teresa Tejedor-Junco
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|
24
|
Silva V, Oliveira A, Manageiro V, Caniça M, Contente D, Capita R, Alonso-Calleja C, Carvalho I, Capelo JL, Igrejas G, Poeta P. Clonal Diversity and Antimicrobial Resistance of Methicillin-Resistant Staphylococcus pseudintermedius Isolated from Canine Pyoderma. Microorganisms 2021; 9:microorganisms9030482. [PMID: 33668916 PMCID: PMC7996521 DOI: 10.3390/microorganisms9030482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 01/08/2023] Open
Abstract
The emergence of methicillin-resistant Staphylococcus pseudintermedius (MRSP) antimicrobial resistance and epidemic genetic lineages is posing a challenge in veterinary medicine due to the limited therapeutical options. MRSP has been identified as an important canine pyoderma pathogen. Thus, we aimed to characterize the antimicrobial resistance and clonal lineages of MRSP isolated from canine cutaneous pyoderma. Thirty-one MRSP isolates recovered from pyoderma were further characterized. The antimicrobial susceptibility testing of the isolates was performed by the Kirby-Bauer disc diffusion method against 14 antimicrobial agents. The presence of antimicrobial and virulence genes was carried out by PCR. Multilocus sequence typing was performed in all isolates. All strains had a multidrug-resistant profile showing resistance mainly to penicillin, macrolides and lincosamides, aminoglycosides, tetracycline and trimethoprim-sulfamethoxazole, which was encoded by the blaZ, ermB, msr(A/B), aac(6')-Ie-aph(2'')-Ia, aph(3')-IIIa, ant(4')-Ia, tetM, tetK and dfrG genes. All isolates harbored the lukS-I/lukF-I virulence factors. Isolates were ascribed to nine previously described sequence types (STs): ST123, ST339, ST727, ST71, ST537, ST45, ST1029, ST118 and ST1468; and to five STs first described in this study: ST2024, ST2025, ST2026, ST2027 and ST2028. In this study, most isolates belonged to ST123 (n = 16), which belongs to CC71 and is the most common clone in Europe. All isolates were multidrug-resistant, which may impose a serious threat to animal health.
Collapse
Affiliation(s)
- Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (V.S.); (D.C.); (I.C.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, Lisboa, 2825-466 Caparica, Portugal
| | - Ana Oliveira
- Faculty of Veterinary Medicine, University Lusófona de Humanidades e Tecnologias, 1749-024 Lisboa, Portugal;
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal; (V.M.); (M.C.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal; (V.M.); (M.C.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - Diogo Contente
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (V.S.); (D.C.); (I.C.)
| | - Rosa Capita
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain; (R.C.); (C.A.-C.)
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Carlos Alonso-Calleja
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain; (R.C.); (C.A.-C.)
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Isabel Carvalho
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (V.S.); (D.C.); (I.C.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, Lisboa, 2825-466 Caparica, Portugal
| | - José L. Capelo
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, NOVA University of Lisbon, 2825-466 Almada, Portugal;
- Proteomass Scientific Society, 2825-466 Costa de Caparica, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, Lisboa, 2825-466 Caparica, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (V.S.); (D.C.); (I.C.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, Lisboa, 2825-466 Caparica, Portugal
- Correspondence: ; Tel.: +351-259350466
| |
Collapse
|
25
|
Nakaminami H, Okamura Y, Tanaka S, Wajima T, Murayama N, Noguchi N. Prevalence of antimicrobial-resistant staphylococci in nares and affected sites of pet dogs with superficial pyoderma. J Vet Med Sci 2020; 83:214-219. [PMID: 33342967 PMCID: PMC7972875 DOI: 10.1292/jvms.20-0439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Currently, antimicrobial-resistant staphylococci, particularly methicillin-resistant
Staphylococcus pseudintermedius (MRSP), are frequently isolated from
canine superficial pyoderma in Japan. However, little is known regarding the nasal
prevalence of MRSP in pet dogs. Here, we determined the prevalence of
antimicrobial-resistant staphylococci in nares and affected sites of pet dogs with
superficial pyoderma. Of the 125 nares and 108 affected sites of pet dogs with superficial
pyoderma, 107 (13 species) and 110 (eight species) staphylococci strains, respectively,
were isolated. The isolation rate of S. pseudintermedius from pyoderma
sites (82/110 strains, 74.5%) was significantly higher than that from nares (57/107
strains, 53.3%) (P<0.01). Notably, the prevalence of MRSP (18/57
strains, 31.6%) in nares was equivalent to that in pyoderma sites (28/82 strains, 34.1%).
Furthermore, the phenotypes and genotypes of antimicrobial resistance in MRSP strains from
nares were similar to those from pyoderma sites. Our findings revealed that the prevalence
of antimicrobial-resistant staphylococci in the nares of pet dogs with superficial
pyoderma is the same level as that in affected sites. Therefore, considerable attention
should be paid to the antimicrobial resistance of commensal staphylococci in companion
animals.
Collapse
Affiliation(s)
- Hidemasa Nakaminami
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yuu Okamura
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Satomi Tanaka
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Takeaki Wajima
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Nobuo Murayama
- Dermatology Services for Dogs and Cats, 2-11-14 Hirano, Koto-ku, Tokyo 135-0023, Japan
| | - Norihisa Noguchi
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
26
|
Antibacterial and Antivirulence Activity of Manuka Honey against Genetically Diverse Staphylococcus pseudintermedius Strains. Appl Environ Microbiol 2020; 86:AEM.01768-20. [PMID: 32801179 PMCID: PMC7531947 DOI: 10.1128/aem.01768-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus pseudintermedius is an important member of the skin microbial community in animals and can cause opportunistic infections in both pets and their owners. The high incidence of antimicrobial resistance in S. pseudintermedius highlights that this opportunistic zoonotic pathogen can cause infections which require prolonged and intensive treatment to resolve. Manuka honey has proven efficacy against many bacterial pathogens and is an accepted topical treatment for infections in both veterinary and clinical practice, and so it is a particularly appropriate antimicrobial for use with zoonotic pathogens such as S. pseudintermedius. Here, we demonstrate that not only is manuka honey highly potent against novel multidrug-resistant S. pseudintermedius isolates, it also acts synergistically with clinically relevant antibiotics. In addition, manuka honey modulates S. pseudintermedius virulence activity, even at subinhibitory concentrations. In a clinical setting, these attributes may assist in controlling infection, allowing a more rapid resolution and reducing antibiotic use. Staphylococcus pseudintermedius causes opportunistic infections in dogs. It also has significant zoonotic potential, with the emergence of multidrug resistance leading to difficulty treating both animal and human infections. Manuka honey has previously been reported to inhibit many bacterial pathogens, including methicillin-resistant Staphylococcus aureus, and is successfully utilized in both clinical and veterinary practice. Here, we evaluated the ability of manuka honey to inhibit strains of S. pseudintermedius grown alone and in combination with antibiotics, as well as its capacity to modulate virulence within multiple S. pseudintermedius isolates. All 18 of the genetically diverse S. pseudintermedius strains sequenced and tested were inhibited by ≤12% (wt/vol) medical-grade manuka honey, although tolerance to five clinically relevant antibiotics was observed. The susceptibility of the isolates to four of these antibiotics was significantly increased (P ≤ 0.05) when combined with sublethal concentrations of honey, although sensitivity to oxacillin was decreased. Virulence factor (DNase, protease, and hemolysin) activity was also significantly reduced (P ≤ 0.05) in over half of isolates when cultured with sublethal concentrations of honey (13, 9, and 10 isolates, respectively). These findings highlight the potential for manuka honey to be utilized against S. pseudintermedius infections. IMPORTANCEStaphylococcus pseudintermedius is an important member of the skin microbial community in animals and can cause opportunistic infections in both pets and their owners. The high incidence of antimicrobial resistance in S. pseudintermedius highlights that this opportunistic zoonotic pathogen can cause infections which require prolonged and intensive treatment to resolve. Manuka honey has proven efficacy against many bacterial pathogens and is an accepted topical treatment for infections in both veterinary and clinical practice, and so it is a particularly appropriate antimicrobial for use with zoonotic pathogens such as S. pseudintermedius. Here, we demonstrate that not only is manuka honey highly potent against novel multidrug-resistant S. pseudintermedius isolates, it also acts synergistically with clinically relevant antibiotics. In addition, manuka honey modulates S. pseudintermedius virulence activity, even at subinhibitory concentrations. In a clinical setting, these attributes may assist in controlling infection, allowing a more rapid resolution and reducing antibiotic use.
Collapse
|
27
|
Maali Y, Journo C, Mahieux R, Dutartre H. Microbial Biofilms: Human T-cell Leukemia Virus Type 1 First in Line for Viral Biofilm but Far Behind Bacterial Biofilms. Front Microbiol 2020; 11:2041. [PMID: 33042035 PMCID: PMC7523422 DOI: 10.3389/fmicb.2020.02041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/03/2020] [Indexed: 12/25/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus associated with adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). To date, it is the unique published example of a virus able to form a biofilm at the surface of infected cells. Deeply studied in bacteria, bacterial biofilms represent multicellular assemblies of bacteria in contact with a surface and shielded by the extracellular matrix (ECM). Microbial lifestyle in biofilms, either viral or bacterial, is opposed structurally and physiologically to an isolated lifestyle, in which viruses or bacteria freely float in their environment. HTLV-1 biofilm formation is believed to be promoted by viral proteins, mainly Tax, through remodeling of the ECM of the infected cells. HTLV-1 biofilm has been linked to cell-to-cell transmission of the virus. However, in comparison to bacterial biofilms, very little is known on kinetics of viral biofilm formation or dissemination, but also on its pathophysiological roles, such as escape from immune detection or therapeutic strategies, as well as promotion of leukemogenesis. The switch between production of cell-free isolated virions and cell-associated viral biofilm, although not fully apprehended yet, remains a key step to understand HTLV-1 infection and pathogenesis.
Collapse
Affiliation(s)
- Yousef Maali
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Chloé Journo
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Renaud Mahieux
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Hélène Dutartre
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| |
Collapse
|
28
|
Smith JT, Amador S, McGonagle CJ, Needle D, Gibson R, Andam CP. Population genomics of Staphylococcus pseudintermedius in companion animals in the United States. Commun Biol 2020; 3:282. [PMID: 32503984 PMCID: PMC7275049 DOI: 10.1038/s42003-020-1009-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 05/15/2020] [Indexed: 01/08/2023] Open
Abstract
Staphylococcus pseudintermedius is a commensal bacterium and a major opportunistic pathogen of dogs. The emergence of methicillin-resistant S. pseudintermedius (MRSP) is also becoming a serious concern. We carried out a population genomics study of 130 clinical S. pseudintermedius isolates from dogs and cats in the New England region of the United States. Results revealed the co-circulation of phylogenetically diverse lineages that have access to a large pool of accessory genes. Many MRSP and multidrug-resistant clones have emerged through multiple independent, horizontal acquisition of resistance determinants and frequent genetic exchange that disseminate DNA to the broader population. When compared to a Texas population, we found evidence of clonal expansion of MRSP lineages that have disseminated over large distances. These findings provide unprecedented insight into the diversification of a common cutaneous colonizer of man's oldest companion animal and the widespread circulation of multiple high-risk resistant clones.
Collapse
Affiliation(s)
- Joshua T Smith
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, Durham, NH, 03824, USA
| | - Sharlene Amador
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, Durham, NH, 03824, USA
| | - Colin J McGonagle
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, Durham, NH, 03824, USA
| | - David Needle
- New Hampshire Veterinary Diagnostic Laboratory, Durham, NH, 03824, USA
| | - Robert Gibson
- New Hampshire Veterinary Diagnostic Laboratory, Durham, NH, 03824, USA
| | - Cheryl P Andam
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, Durham, NH, 03824, USA.
| |
Collapse
|
29
|
Luqman A, Muttaqin MZ, Yulaipi S, Ebner P, Matsuo M, Zabel S, Tribelli PM, Nieselt K, Hidayati D, Götz F. Trace amines produced by skin bacteria accelerate wound healing in mice. Commun Biol 2020; 3:277. [PMID: 32483173 PMCID: PMC7264277 DOI: 10.1038/s42003-020-1000-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/08/2020] [Indexed: 12/20/2022] Open
Abstract
Certain skin bacteria are able to convert aromatic amino acids (AAA) into trace amines (TA) that act as neuromodulators. Since the human skin and sweat contain a comparatively high content of AAA one can expect that such bacteria are able to produce TA on our skin. Here we show that TA-producing Staphylococcus epidermidis strains expressing SadA are predominant on human skin and that TA accelerate wound healing. In wounded skin, keratinocytes produce epinephrine (EPI) that leads to cell motility inhibition by β2-adrenergic receptor (β2-AR) activation thus delay wound healing. As β2-AR antagonists, TA and dopamine (DOP) abrogate the effect of EPI thus accelerating wound healing both in vitro and in a mouse model. In the mouse model, the S. epidermidis wild type strain accelerates wound healing compared to its ΔsadA mutant. Our study demonstrates that TA-producing S. epidermidis strains present on our skin might be beneficial for wound healing.
Collapse
Affiliation(s)
- Arif Luqman
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, D-72076, Tübingen, Germany
- Biology Department, Institut Teknologi Sepuluh Nopember, 60111, Surabaya, Indonesia
- Generasi Biologi Indonesia (Genbinesia) Foundation, 61171, Gresik, Indonesia
| | - Muhammad Zainul Muttaqin
- Generasi Biologi Indonesia (Genbinesia) Foundation, 61171, Gresik, Indonesia
- Aquaculture Department, Universitas Muhammadiyah Gresik, 61121, Gresik, Indonesia
| | - Sumah Yulaipi
- Biology Department, Institut Teknologi Sepuluh Nopember, 60111, Surabaya, Indonesia
| | - Patrick Ebner
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, D-72076, Tübingen, Germany
| | - Miki Matsuo
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, D-72076, Tübingen, Germany
| | - Susanne Zabel
- Center for Bioinformatics Tübingen, University of Tübingen, Sand 14, D-72076, Tübingen, Germany
| | - Paula Maria Tribelli
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, D-72076, Tübingen, Germany
- Departamento de Química Biológica, FCEyN-UBA, Buenos Aires, Argentina
- IQUIBICEN, CONICET, Buenos Aires, Argentina
| | - Kay Nieselt
- Aquaculture Department, Universitas Muhammadiyah Gresik, 61121, Gresik, Indonesia
| | - Dewi Hidayati
- Biology Department, Institut Teknologi Sepuluh Nopember, 60111, Surabaya, Indonesia.
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, D-72076, Tübingen, Germany.
| |
Collapse
|
30
|
Niche specialization and spread of Staphylococcus capitis involved in neonatal sepsis. Nat Microbiol 2020; 5:735-745. [PMID: 32341568 DOI: 10.1038/s41564-020-0676-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/28/2020] [Indexed: 12/14/2022]
Abstract
The multidrug-resistant Staphylococcus capitis NRCS-A clone is responsible for sepsis in preterm infants in neonatal intensive care units (NICUs) worldwide. Here, to retrace the spread of this clone and to identify drivers of its specific success, we investigated a representative collection of 250 S. capitis isolates from adults and newborns. Bayesian analyses confirmed the spread of the NRCS-A clone and enabled us to date its emergence in the late 1960s and its expansion during the 1980s, coinciding with the establishment of NICUs and the increasing use of vancomycin in these units, respectively. This dynamic was accompanied by the acquisition of mutations in antimicrobial resistance- and bacteriocin-encoding genes. Furthermore, combined statistical tools and a genome-wide association study convergently point to vancomycin resistance as a major driver of NRCS-A success. We also identified another S. capitis subclade (alpha clade) that emerged independently, showing parallel evolution towards NICU specialization and non-susceptibility to vancomycin, indicating convergent evolution in NICU-associated pathogens. These findings illustrate how the broad use of antibiotics can repeatedly lead initially commensal drug-susceptible bacteria to evolve into multidrug-resistant clones that are able to successfully spread worldwide and become pathogenic for highly vulnerable patients.
Collapse
|
31
|
Rossi CC, Pereira MF, Giambiagi-deMarval M. Underrated Staphylococcus species and their role in antimicrobial resistance spreading. Genet Mol Biol 2020; 43:e20190065. [PMID: 32052827 PMCID: PMC7198029 DOI: 10.1590/1678-4685-gmb-2019-0065] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/06/2019] [Indexed: 01/06/2023] Open
Abstract
The increasing threat of antimicrobial resistance has shed light on the interconnection between humans, animals, the environment, and their roles in the exchange and spreading of resistance genes. In this review, we present evidences that show that Staphylococcus species, usually referred to as harmless or opportunistic pathogens, represent a threat to human and animal health for acting as reservoirs of antimicrobial resistance genes. The capacity of genetic exchange between isolates of different sources and species of the Staphylococcus genus is discussed with emphasis on mobile genetic elements, the contribution of biofilm formation, and evidences obtained either experimentally or through genome analyses. We also discuss the involvement of CRISPR-Cas systems in the limitation of horizontal gene transfer and its suitability as a molecular clock to describe the history of genetic exchange between staphylococci.
Collapse
Affiliation(s)
- Ciro César Rossi
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Laboratório de Microbiologia Molecular, Rio de Janeiro, RJ, Brazil
| | | | - Marcia Giambiagi-deMarval
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Laboratório de Microbiologia Molecular, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
32
|
Development of a sprayable hydrogel formulation for the skin application of therapeutic antibodies. Eur J Pharm Biopharm 2019; 142:123-132. [PMID: 31207297 DOI: 10.1016/j.ejpb.2019.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 06/04/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022]
Abstract
A formulation of an antibody with antibacterial properties for topical use on Staphylococcal skin infections was developed and characterized. The best formulation was obtained with 1.5% (w/v) sodium carboxymethylcellulose containing 10 mg/ml immunoglobulin. Spraying forces and rheological behavior were measured in order to characterize the hydrogel formulation. The percentage of antibody aggregates in gel as well as the antibody release, folding and target binding properties of the released antibody were analyzed to proof an acceptable shelf life and no significant changes in the activity of the antibody over time. No microbial contamination was observed in the chosen non-airless application container. Functional testing of the topical skin formulation was performed with an ex vivo biopsy culture model of dog skin. Histological analysis indicated efficacy in protection from Staphylococcus mediated skin damage and antibody delivery restricted to the epidermal surface. The results demonstrate that this hydrogel is suitable for cutaneous antibody applications in the medical field.
Collapse
|