1
|
An F, Jia X, Shi Y, Xiao X, Yang F, Su J, Peng X, Geng G, Yan C. The ultimate microbial composition for correcting Th17/Treg cell imbalance and lipid metabolism disorders in osteoporosis. Int Immunopharmacol 2025; 144:113613. [PMID: 39571271 DOI: 10.1016/j.intimp.2024.113613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 12/15/2024]
Abstract
Osteoporosis is a systemic bone disease characterised by decreased bone mass and a deteriorated bone microstructure, leading to increased bone fragility and fracture risk. Disorders of the intestinal microbiota may be key inducers of osteoporosis. Furthermore, such disorders may contribute to osteoporosis by influencing immune function and lipid metabolism. Therefore, in this review, we aimed to summarise the molecular mechanisms through which the intestinal microbiota affect the onset and development of osteoporosis by regulating Th17/Treg imbalance and lipid metabolism disorders. We also discussed the regulatory mechanisms underlying the effect of intestinal microbiota-related modulators on Th17/Treg imbalance and lipid metabolism disorders in osteoporosis, to explore new molecular targets for its treatment and provide a theoretical basis for clinical management.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China.
| | - Xueru Jia
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Yangyang Shi
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Xiaolong Xiao
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Fan Yang
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Junchang Su
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Xia Peng
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Guangqin Geng
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Chunlu Yan
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China.
| |
Collapse
|
2
|
Ticinesi A, Siniscalchi C, Meschi T, Nouvenne A. Gut microbiome and bone health: update on mechanisms, clinical correlations, and possible treatment strategies. Osteoporos Int 2024:10.1007/s00198-024-07320-0. [PMID: 39643654 DOI: 10.1007/s00198-024-07320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/12/2024] [Indexed: 12/09/2024]
Abstract
The intestinal microbiome is increasingly regarded as a relevant modulator of the pathophysiology of several age-related conditions, including frailty, sarcopenia, and cognitive decline. Aging is in fact associated with alteration of the equilibrium between symbiotic bacteria and opportunistic pathogens, leading to dysbiosis. The microbiome is able to regulate intestinal permeability and systemic inflammation, has a central role in intestinal amino acid metabolism, and produces a large number of metabolites and byproducts, with either beneficial or detrimental consequences for the host physiology. Recent evidence, from both preclinical animal models and clinical studies, suggests that these microbiome-centered pathways could contribute to bone homeostasis, regulating the balance between osteoblast and osteoclast function. In this systematic review, we provide an overview of the mechanisms involved in the gut-bone axis, with a particular focus on microbiome function and microbiome-derived mediators including short-chain fatty acids. We also review the current evidence linking gut microbiota dysbiosis with osteopenia and osteoporosis, and the results of the intervention studies on pre-, pro-, or post-biotics targeting bone mineral density loss in both animal models and human beings, indicating knowledge gaps and highlighting possible avenues for future research.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy.
- Microbiome Research Hub, University of Parma, Parma, Italy.
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy.
| | - Carmine Siniscalchi
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy
| | - Antonio Nouvenne
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy
| |
Collapse
|
3
|
Chen T, Wang N, Hao Y, Fu L. Fecal microbiota transplantation from postmenopausal osteoporosis human donors accelerated bone mass loss in mice. Front Cell Infect Microbiol 2024; 14:1488017. [PMID: 39703374 PMCID: PMC11655470 DOI: 10.3389/fcimb.2024.1488017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/13/2024] [Indexed: 12/21/2024] Open
Abstract
Objectives To investigate the effect of gut microbiota from postmenopausal osteoporosis patients on bone mass in mice. Methods Fecal samples were collected from postmenopausal women with normal bone mass (Con, n=5) and postmenopausal women with osteoporosis (Op, n=5). Microbial composition was identified by shallow shotgun sequencing. Then fecal samples were transplanted into pseudo-sterile mice previously treated with antibiotics for 4 weeks. These mice were categorized into two groups: the Vehicle group (n=7) received fecal samples from individuals with normal bone mass, and the FMT group (n=7) received fecal samples from individuals with osteoporosis. After 8 weeks, bone mass, intestinal microbial composition, intestinal permeability and inflammation were assessed, followed by a correlation analysis. Results The bone mass was significantly reduced in the FMT group. Microbiota sequencing showed that Shannon index (p < 0.05) and Simpson index (p < 0.05) were significantly increased in Op groups, and β diversity showed significant differences. the recipient mice were similar. linear discriminant analysis effect size (LEfSe) analysis of mice showed that Halobiforma, Enterorhabdus, Alistipes, and Butyricimonas were significantly enriched in the FMT group. Lachnospiraceae and Oscillibacter were significantly enriched in the Vehicle group. H&E staining of intestinal tissues showed obvious intestinal mucosal injury in mice. Intestinal immunohistochemistry showed that the expression of Claudin and ZO-1 in the intestinal tissue of the FMT group mice was decreased. The FITC-Dextran (FD-4) absorption rate and serum soluble CD14 (sCD14) content were increased in FMT mice. Correlation analysis showed that these dominant genera were significantly associated with bone metabolism and intestinal permeability, and were associated with the enrichment of specific enzymes. Serum and bone tissue inflammatory cytokines detection showed that the expression of TNF-α and IL-17A in the FMT group were significantly increased. Conclusion Overall, our findings suggested gut microbiota from postmenopausal osteoporosis patients accelerate bone mass loss in mice. Aberrant gut microbiota might play a causal role in the process of bone mass loss mediated by inflammation after the destruction of the intestinal barrier.
Collapse
Affiliation(s)
- Tinglong Chen
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Innovative Orthopaedic Instruments and Personalized Medicine, Clinical and Translational Research Center for 3D Printing Technology, Shanghai, China
| | - Ning Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Innovative Orthopaedic Instruments and Personalized Medicine, Clinical and Translational Research Center for 3D Printing Technology, Shanghai, China
| | - Yongqiang Hao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Innovative Orthopaedic Instruments and Personalized Medicine, Clinical and Translational Research Center for 3D Printing Technology, Shanghai, China
| | - Lingjie Fu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Innovative Orthopaedic Instruments and Personalized Medicine, Clinical and Translational Research Center for 3D Printing Technology, Shanghai, China
| |
Collapse
|
4
|
Aboushaala K, Chee AV, Adnan D, Toro SJ, Singh H, Savoia A, Dhillon ES, Yuh C, Dourdourekas J, Patel IK, Vucicevic R, Espinoza‐Orias AA, Martin JT, Oh C, Keshavarzian A, Albert HB, Karppinen J, Kocak M, Wong AYL, Goldberg EJ, Phillips FM, Colman MW, Williams FMK, Borgia JA, Naqib A, Green SJ, Forsyth CB, An HS, Samartzis D. Gut microbiome dysbiosis is associated with lumbar degenerative spondylolisthesis in symptomatic patients. JOR Spine 2024; 7:e70005. [PMID: 39398942 PMCID: PMC11467165 DOI: 10.1002/jsp2.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024] Open
Abstract
Background Lumbar degenerative spondylolisthesis (LDS), characterized as degeneration of the intervertebral disc and structural changes of the facet joints, is a condition with varying degrees of instability that may lead to pain, canal stenosis, and subsequent surgical intervention. However, the etiology of LDS remains inconclusive. Gut microbiome dysbiosis may stimulate systemic inflammation in various disorders. However, the role of such dysbiosis upon spine health remains under-studied. The current study assessed the association of gut microbiome dysbiosis in symptomatic patients with or without LDS. Methods A cross-sectional analysis within the framework of a prospective study was performed. DNA was extracted from fecal samples collected from adult symptomatic patients with (n = 21) and without LDS (n = 12). Alpha and beta diversity assessed differences in fecal microbial community between groups. Taxon-by-taxon analysis identified microbial features with differential relative abundance between groups. Subject demographics and imaging parameters were also assessed. Results There was no significant group differences in age, sex, race, body mass index, smoking/alcohol history, pain profiles, spinopelvic alignment, and Modic changes (p >0.05). LDS subjects had significantly higher disc degeneration severity (p = 0.018) and alpha diversity levels compared to non-LDS subjects (p = 0.002-0.003). Significant differences in gut microbial community structure were observed between groups (p = 0.046). Subjects with LDS exhibited distinct differences at the phylum level, with a significantly higher Firmicutes to Bacteroidota ratio compared to non-LDS (p = 0.003). Differential relative abundance analysis identified six taxa with significant differences between the two groups, with LDS demonstrating an increase in putative pro-inflammatory bacteria (Dialister, CAG-352) and a decrease in anti-inflammatory bacteria (Slackia, Escherichia-Shigella). Conclusion This study is the first to report a significant association of gut microbiome dysbiosis and LDS in symptomatic patients, noting pro-inflammatory bacterial taxa. This work provides a foundation for future studies addressing the role of the gut microbiome in association with spine health and disease.
Collapse
Affiliation(s)
- Khaled Aboushaala
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Ana V. Chee
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Darbaz Adnan
- Center for Integrated Microbiome & Chronobiology Research, Rush Medical College, Rush University Medical CenterChicagoIllinoisUSA
| | - Sheila J. Toro
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Harmanjeet Singh
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Andrew Savoia
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Ekamjeet S. Dhillon
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Catherine Yuh
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Jake Dourdourekas
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Ishani K. Patel
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Rajko Vucicevic
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | | | - John T. Martin
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Chundo Oh
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Ali Keshavarzian
- Department of Internal MedicineRush University Medical CenterChicagoIllinoisUSA
| | - Hanne B. Albert
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Jaro Karppinen
- Research Unit of Health Sciences and TechnologyUniversity of OuluOuluFinland
| | - Mehmet Kocak
- Department of Radiology & Nuclear MedicineRush University Medical CenterChicagoIllinoisUSA
| | - Arnold Y. L. Wong
- Department of Rehabilitation SciencesThe Hong Kong Polytechnic UniversityHong KongChina
| | - Edward J. Goldberg
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Frank M. Phillips
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Matthew W. Colman
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Frances M. K. Williams
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
- Department of Twins Research and Genetic EpidemiologyKing's CollegeLondonUK
| | - Jeffrey A. Borgia
- Departments of Anatomy & Cell Biology and PathologyRush University Medical CenterChicagoIllinoisUSA
| | - Ankur Naqib
- Department of Internal MedicineRush University Medical CenterChicagoIllinoisUSA
| | - Stefan J. Green
- Department of Internal MedicineRush University Medical CenterChicagoIllinoisUSA
| | | | - Howard S. An
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Dino Samartzis
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| |
Collapse
|
5
|
Yu S, Huang F, Huang Y, Yan F, Li Y, Xu S, Zhao Y, Zhang X, Chen R, Chen X, Zhang P. Deciphering the influence of gut and oral microbiomes on menopause for healthy aging. J Genet Genomics 2024:S1673-8527(24)00311-4. [PMID: 39577767 DOI: 10.1016/j.jgg.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Menopause is characterized by the cessation of menstruation and a decline in reproductive function, which is an intrinsic component of the aging process; however, it has been a frequently overlooked field of women's health. The oral and gut microbiota, constituting the largest ecosystem within the human body, are important for maintaining human health and notably contribute to the healthy aging of menopausal women. Thus, a comprehensive review elucidating the impact of the gut and oral microbiota on menopause for healthy aging is of paramount importance. This paper presents the current understanding of the microbiome during menopause, with a particular focus on alterations in the oral and gut microbiota. Our study elucidates the complex interplay between the microbiome and sex hormone levels, explores microbial crosstalk dynamics, and investigates the associations between the microbiome and diseases linked to menopause. Additionally, this review explores the potential of microbiome-targeting therapies for managing menopause-related diseases. Given that menopause can last for approximately 30 years, gaining insights into how the microbiome and menopause interact could pave the way for innovative interventions, which may result in symptomatic relief from menopause and an increase in quality of life in women.
Collapse
Affiliation(s)
- Shuting Yu
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Feiling Huang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing 100730, China
| | - Yixuan Huang
- Beijing ClouDNA Technology Co., Ltd., Beijing 101407, China
| | - Fangxu Yan
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yi Li
- Hunan Agriculture University, Changsha, Hunan 410128, CHINA
| | - Shenglong Xu
- Beijing Tongren Hospital, Capital Medical University, Beijing 100730, CHINA
| | - Yao Zhao
- Beijing Tongren Hospital, Capital Medical University, Beijing 100730, CHINA
| | - Xinlei Zhang
- Beijing ClouDNA Technology Co., Ltd., Beijing 101407, China
| | - Rong Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing 100730, China.
| | - Xingming Chen
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Rare Disease Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.
| |
Collapse
|
6
|
Li C, Kou R, Jia Y, Fan X, Shi Y, Chen Q. Dynamics and biodiversity of microbial community among seasons in Shanxi mature vinegar fermentation by semisolid-solid process. Microbiol Spectr 2024; 12:e0023124. [PMID: 39535179 PMCID: PMC11619342 DOI: 10.1128/spectrum.00231-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
The dynamic succession and seasonal characteristics of microbiota throughout the Shanxi mature vinegar (SMV) fermentation by the semisolid-solid process were explored using high-throughput sequencing techniques. The results showed that the richness and diversity of fungi were higher than those of bacteria in a complete seasonal SMV fermentation cycle, and the microbial community was dominated by 11 taxa of bacteria and 16 taxa of fungi. In all four seasons, lactic acid bacteria and acetic acid bacteria were the dominant bacteria, while the dominant fungi varied. Saccharomyces and Pichia played an important role in spring. Aspergillus and Issatchenkia were enriched in the summer. Kazachstania was the dominant microorganism in autumn. While Mesenteroides and Meyerozyma were enriched in winter. Unweighted pair group method with arithmetic mean (UPGMA) cluster analysis demonstrated that seasonality had a more decisive impact on microbiota composition than the fermentation stage within a season, and the microbiota structure in summer was significantly different from that in the other three seasons. Combined with the highest operational taxonomic units (OTUs) percentage (37%) of summer fungi in the Venn diagrams, it is speculated that the specific fungi may be the root cause for the relatively low SMV quality in summer. This work provided critical insights into the dynamic succession of the microbial community in SMV fermentation from a seasonality view, and the results could enrich our understanding of the microbiota involved in SMV fermentation and guide process control. IMPORTANCE Understanding the changes in microbial communities across different seasons is crucial for ensuring the quality of Shanxi mature vinegar (SMV) by the semisolid-solid process. In a complete seasonal cycle, the richness and diversity of fungi were higher than those of bacteria. The microbial community in summer fermentation was significantly different compared to the other three seasons. For example, the dominant microorganisms such as Acetobacter and Lactobacillus decreased in summer. Screening or modifying this group of bacteria to enhance their tolerance to high fermentation temperature is an approach to improve industrial SMV fermentation. Through co-occurrence network analysis, eight highly connected genera were identified, which may play important roles in ecosystem stability. These results also lay a theoretical foundation for the further development of multi-microbial co-fermentation. This work provides an understanding of SMV fermentation from a seasonal perspective and offers new guidance for the process control of grain vinegar brewing.
Collapse
Affiliation(s)
- Chen Li
- School of Life Science, Shanxi University, Taiyuan, China
| | - Rong Kou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, China
- Shanxi Xinghuacun Fenjiu Group Co., Ltd., Fenyang, China
| | - Yingying Jia
- School of Life Science, Shanxi University, Taiyuan, China
| | - Xiaojun Fan
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, China
| | - Ying Shi
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Gao N, Zhuang Y, Zheng Y, Li Y, Wang Y, Zhu S, Fan M, Tian W, Jiang Y, Wang Y, Cui M, Suo C, Zhang T, Jin L, Chen X, Xu K. Investigating the link between gut microbiome and bone mineral density: The role of genetic factors. Bone 2024; 188:117239. [PMID: 39179139 DOI: 10.1016/j.bone.2024.117239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/19/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024]
Abstract
Osteoporosis is a complex metabolic bone disease that severely undermines the quality of life and overall health of the elderly. While previous studies have established a close relationship between gut microbiome and host bone metabolism, the role of genetic factors has received less scrutiny. This research aims to identify potential taxa associated with various bone mineral density states, incorporating assessments of genetic factors. Fecal microbiome profiles from 605 individuals (334 females and 271 males) aged 55-65 from the Taizhou Imaging Study with osteopenia (n = 270, 170 women) or osteoporosis (n = 94, 85 women) or normal (n = 241, 79 women) were determined using shotgun metagenomic sequencing. The linear discriminant analysis was employed to identify differentially enriched taxa. Utilizing the Kyoto Encyclopedia of Genes and Genomes for annotation, functional pathway analysis was conducted to identify differentially metabolic pathways. Polygenic risk score for osteoporosis was estimated to represent genetic susceptibility to osteoporosis, followed by stratification and interaction analyses. Gut flora diversity did not show significant differences among various bone mineral groups. After multivariable adjustment, certain species, such as Clostridium leptum, Fusicatenibacter saccharivorans and Roseburia hominis, were enriched in osteoporosis patients. Statistically significant interactions between the polygenic risk score and taxa Roseburia faecis, Megasphaera elsdenii were observed (P for interaction = 0.005, 0.018, respectively). Stratified analyses revealed a significantly negative association between Roseburia faecis and bone mineral density in the low-genetic-risk group (β = -0.045, P < 0.05), while Turicimonas muris was positively associated with bone mineral density in the high-genetic-risk group (β = 4.177, P < 0.05) after multivariable adjustments. Functional predictions of the gut microbiome indicated an increase in pathways related to structural proteins in high-genetic-risk patients, while low-genetic-risk patients exhibited enrichment in enzyme-related pathways. This study emphasizes the association between gut microbes and bone mass, offering new insights into the interaction between genetic background and gut microbiome.
Collapse
Affiliation(s)
- Ningxin Gao
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Yue Zhuang
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Yi Zheng
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yucan Li
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yawen Wang
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Sibo Zhu
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Min Fan
- Taixing Disease Control and Prevention Center, Taizhou, Jiangsu, China
| | - Weizhong Tian
- Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu, China
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Yingzhe Wang
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Mei Cui
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China; Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Suo
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Tiejun Zhang
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, China.
| | - Kelin Xu
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China.
| |
Collapse
|
8
|
Jiang X, Wang M, Liu B, Yang H, Ren J, Chen S, Ye D, Yang S, Mao Y. Gut microbiota and risk of ankylosing spondylitis. Clin Rheumatol 2024; 43:3351-3360. [PMID: 39243281 DOI: 10.1007/s10067-024-07102-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/13/2024] [Accepted: 08/04/2024] [Indexed: 09/09/2024]
Abstract
OBJECTIVE Observational studies have established a connection between gut microbiota and ankylosing spondylitis (AS) risk; however, whether the observed associations are causal remains unclear. Therefore, we conducted a two-sample Mendelian randomization (MR) analysis to assess the potential causal associations of gut microbiota with AS risk. METHODS Instrumental variants of gut microbiota were obtained from the MiBioGen consortium (n = 18,340) and the Dutch Microbiome Project (n = 7738). The FinnGen consortium provided genetic association summary statistics for AS, encompassing 2860 cases and 270,964 controls. We used the inverse-variance weighted (IVW) method as the primary analysis, supplemented with the weighted median method, maximum likelihood-based method, MR pleiotropy residual sum and outlier test, and MR-Egger regression. In addition, we conducted a reverse MR analysis to assess the likelihood of reverse causality. RESULTS After the Bonferroni correction, species Bacteroides vulgatus remained statistically significantly associated with AS risk (odds ratio (OR) 1.55, 95% confidence interval (CI) 1.22-1.95, P = 2.55 × 10-4). Suggestive evidence of associations of eleven bacterial traits with AS risk was also observed (P < 0.05 by IVW). Among them, eight were associated with an elevated AS risk (OR 1.37, 95% CI 1.07-1.74, P = 0.011 for phylum Verrucomicrobia; OR 1.31, 95% CI 1.03-1.65, P = 0.026 for class Verrucomicrobiae; OR 1.17, 95% CI 1.01-1.36, P = 0.035 for order Bacillales; OR 1.31, 95% CI 1.03-1.65, P = 0.026 for order Verrucomicrobiales; OR 1.43, 95% CI 1.13-1.82, P = 0.003 for family Alcaligenaceae; OR 1.31, 95% CI 1.03-1.65, P = 0.026 for family Verrucomicrobiaceae; OR 1.31, 95% CI 1.03-1.65, P = 0.026 for genus Akkermansia; OR 1.55, 95% CI 1.19-2.02, P = 0.001 for species Sutterella wadsworthensis). Three traits exhibited a negative association with AS risk (OR 0.68, 95% CI 0.53-0.88, P = 0.003 for genus Dialister; OR 0.84, 95% CI 0.72-0.97, P = 0.020 for genus Howardella; OR 0.75, 95% CI 0.59-0.97, P = 0.026 for genus Oscillospira). Consistent associations were observed when employing alternate MR methods. In the reverse MR, no statistically significant correlations were detected between AS and these bacterial traits. CONCLUSION Our results revealed the associations of several gut bacterial traits with AS risk, suggesting a potential causal role of gut microbiota in AS development. Nevertheless, additional research is required to clarify the mechanisms by which these bacteria influence AS risk. Key Points • The association of gut microbiota with AS risk in observational studies is unclear. • This MR analysis revealed associations of 12 gut bacterial traits with AS risk.
Collapse
Affiliation(s)
- Xiaofang Jiang
- Nursing Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Manli Wang
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Bin Liu
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Hong Yang
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- The Third Hospital of Nanchang, Nanchang, China
| | - Jiadong Ren
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Shuhui Chen
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Ding Ye
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Shaoxue Yang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
| | - Yingying Mao
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
9
|
Nosal BM, Thornton SN, Darooghegi Mofrad M, Sakaki JR, Mahoney KJ, Macdonald Z, Daddi L, Tran TDB, Weinstock G, Zhou Y, Lee ECH, Chun OK. Blackcurrants shape gut microbiota profile and reduce risk of postmenopausal osteoporosis via the gut-bone axis: Evidence from a pilot randomized controlled trial. J Nutr Biochem 2024; 133:109701. [PMID: 39019119 DOI: 10.1016/j.jnutbio.2024.109701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
This study aimed to investigate the effects of blackcurrant (BC) on gut microbiota abundance and composition, inflammatory and immune responses, and their relationship with bone mass changes. The effects of BC on bone mineral density (BMD), gut microbiota, and blood inflammatory and immune biomarkers were evaluated using DXA, stool and fasting blood collected from a pilot three-arm, randomized, double-blind, placebo-controlled clinical trial. Fifty-one peri- and early postmenopausal women aged 45-60 years were randomly assigned into one of three treatment groups for 6 months: control, low BC (392 mg/day) and high BC (784 mg/day); and 40 women completed the trial. BC supplementation for 6 months effectively mitigated the loss of whole-body BMD (P<.05). Six-month changes (%) in peripheral IL-1β (P=.056) and RANKL (P=.052) for the high BC group were marginally significantly lower than the control group. Six-month changes in whole-body BMD were inversely correlated with changes in RANKL (P<.01). In proteome analysis, four plasma proteins showed increased expression in the high BC group: IGFBP4, tetranectin, fetuin-B, and vitamin K-dependent protein S. BC dose-dependently increased the relative abundance of Ruminococcus 2 (P<.05), one of six bacteria correlated with BMD changes in the high BC group (P<.05), suggesting it might be the key bacteria that drove bone protective effects. Daily BC consumption for 6 months mitigated bone loss in this population potentially through modulating the gut microbiota composition and suppressing osteoclastogenic cytokines. Larger-scale clinical trials on the potential benefits of BC and connection of Ruminococcus 2 with BMD maintenance in postmenopausal women are warranted. Trial Registration: NCT04431960, https://classic.clinicaltrials.gov/ct2/show/NCT04431960.
Collapse
Affiliation(s)
- Briana M Nosal
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Staci N Thornton
- Department of Kinesiology, University of Connecticut, Storrs, CT
| | | | - Junichi R Sakaki
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Kyle J Mahoney
- Department of Kinesiology, University of Connecticut, Storrs, CT
| | | | - Lauren Daddi
- Department of Medicine, University of Connecticut Health, Farmington, CT
| | | | | | - Yanjiao Zhou
- Department of Medicine, University of Connecticut Health, Farmington, CT
| | | | - Ock K Chun
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT.
| |
Collapse
|
10
|
Nosal BM, Thornton SN, Melnik AV, Lotfi A, Mofrad MD, Aksenov A, Lee ECH, Chun OK. Blackcurrant Anthocyanins Attenuate Estrogen -Deficiency-Induced Bone Loss through Modulating Microbial-Derived Short-Chain Carboxylic Acids and Phytoestrogen Metabolites in Peri- and Early Postmenopausal Women. Metabolites 2024; 14:541. [PMID: 39452922 PMCID: PMC11509583 DOI: 10.3390/metabo14100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
OBJECTIVES The present study aimed to assess the effects of blackcurrant (BC) anthocyanins on concentrations of microbial-derived short-chain carboxylic acids (SCCAs) and metabolites of phytoestrogens. We then examined their associations with six-month changes in whole-body bone mineral density (BMD) and biomarkers of bone metabolism. METHODS Fecal and blood samples from a pilot randomized controlled trial were collected and analyzed from 37 eligible peri- and early postmenopausal women aged 45-60 years who were randomized into one of three treatment groups consuming one placebo capsule (control), 392 mg BC (low BC) or 784 mg BC (high BC) daily for six months. RESULTS Significant differences were observed between groups at baseline in acetic, propionic, valeric, caproic and heptanoic acids (p < 0.05). Isobutyric acid significantly decreased from baseline (0 months) to six months in the control group (p < 0.05) and the high BC group had a significantly greater concentration than the control group at six months (p < 0.05). Butyric acid was significantly greater in the high BC group than low BC at six months (p < 0.05). Six-month changes in caproic and isobutyric acids showed weak correlations with changes in whole-body BMD (r = 0.3519, p < 0.05 and r = 0.3465, p < 0.05, respectively). Isovaleric and valeric acids displayed weak correlations with BALP (r = 0.3361, p < 0.05) and OPG (r = 0.3593, p < 0.05), respectively. Enterodiol was positively correlated with BALP (r = 0.6056, p < 0.01) while enterolactone was positively correlated with osteocalcin (r = 0.5902, p < 0.001) and negatively correlated with sclerostin (r = -0.3485, p < 0.05). CONCLUSIONS The results suggest that BC may be a potential dietary agent to reduce postmenopausal bone loss through modulating microbially-derived SCCAs and phytoestrogen metabolites.
Collapse
Affiliation(s)
- Briana M. Nosal
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (B.M.N.); (M.D.M.)
| | - Staci N. Thornton
- Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA; (S.N.T.); (E.C.-H.L.)
| | - Alexey V. Melnik
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA; (A.V.M.); (A.L.); (A.A.)
- Arome Science Inc., Farmington, CT 06032, USA
| | - Ali Lotfi
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA; (A.V.M.); (A.L.); (A.A.)
| | - Manije Darooghegi Mofrad
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (B.M.N.); (M.D.M.)
| | - Alexander Aksenov
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA; (A.V.M.); (A.L.); (A.A.)
- Arome Science Inc., Farmington, CT 06032, USA
| | - Elaine Choung-Hee Lee
- Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA; (S.N.T.); (E.C.-H.L.)
| | - Ock K. Chun
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (B.M.N.); (M.D.M.)
| |
Collapse
|
11
|
Chen T, Meng F, Wang N, Hao Y, Fu L. The Characteristics of Gut Microbiota and Its Relation with Diet in Postmenopausal Osteoporosis. Calcif Tissue Int 2024; 115:393-404. [PMID: 39060403 DOI: 10.1007/s00223-024-01260-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
The gut microbiome is linked to osteoporosis. Previous clinical studies showed inconsistent results. This study aimed to characterize the gut microbiota feature and reveal its relation with diet in postmenopausal osteoporosis. Fifty-five postmenopausal women with osteoporosis (Op group) and forty-four age-matched postmenopausal women (normal bone mineral density, Con group) were included in this study. Fecal microbiota was collected and analyzed by shallow shotgun sequencing. Food frequency questionnaires were collected from both groups, and Spearman analysis was used to clarify its correlation with gut microbiota. A total of 2671 species from 29 phyla, 292 families, 152 orders, 80 classes were detected in the study. The two groups had no significant difference in the α and β diversity (p > 0.05). At the genus level, Anaerostipes was enriched in Op group (p < 0.05). At species level, Methanobrevibacter smithii, Bifidobacterium animalis, Rhodococcus defluvii, Lactobacillus plantarum, and Carnobacterium mobile were enriched in the Op group, while Bacillus luciferensis, Acetivibrio cellulolyticus, Citrobacter amalonaticus, and Bifidobacterium breve were differentially enriched in the Con group. Food frequency questionnaire showed that postmenopausal women with osteoporosis intaked more red meat, beer, white and red wine (p < 0.05), and the Con group had more yogurt, fruit, and tea consumption. Red meat consumption had a significant negative correlation with Streptosporangiales (p < 0.01) and Actinomadura (p < 0.05). Fruits intake negatively correlated with Nocardiaceae, Rhodococcus, and Rhodococcus defluvii (p < 0.05). More yogurt intake was consistently correlated with a greater abundance of Streptosporangiales. This study suggests that gut microbiota is significantly altered in the postmenopausal osteoporosis population at genus and species levels, and specific dietary intake might relate to these changes.
Collapse
Affiliation(s)
- Tinglong Chen
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Fan Meng
- Shanghai Huangpu District Waitan Community Health Service Center, Shanghai, 200011, China
| | - Ning Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yongqiang Hao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Lingjie Fu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
12
|
Jang D, Shin J, Shim E, Ohtani N, Jeon OH. The connection between aging, cellular senescence and gut microbiome alterations: A comprehensive review. Aging Cell 2024; 23:e14315. [PMID: 39148278 PMCID: PMC11464129 DOI: 10.1111/acel.14315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024] Open
Abstract
The intricate interplay between cellular senescence and alterations in the gut microbiome emerges as a pivotal axis in the aging process, increasingly recognized for its contribution to systemic inflammation, physiological decline, and predisposition to age-associated diseases. Cellular senescence, characterized by a cessation of cell division in response to various stressors, induces morphological and functional changes within tissues. The complexity and heterogeneity of senescent cells, alongside the secretion of senescence-associated secretory phenotype, exacerbate the aging process through pro-inflammatory pathways and influence the microenvironment and immune system. Concurrently, aging-associated changes in gut microbiome diversity and composition contribute to dysbiosis, further exacerbating systemic inflammation and undermining the integrity of various bodily functions. This review encapsulates the burgeoning research on the reciprocal relationship between cellular senescence and gut dysbiosis, highlighting their collective impact on age-related musculoskeletal diseases, including osteoporosis, sarcopenia, and osteoarthritis. It also explores the potential of modulating the gut microbiome and targeting cellular senescence as innovative strategies for healthy aging and mitigating the progression of aging-related conditions. By exploring targeted interventions, including the development of senotherapeutic drugs and probiotic therapies, this review aims to shed light on novel therapeutic avenues. These strategies leverage the connection between cellular senescence and gut microbiome alterations to advance aging research and development of interventions aimed at extending health span and improving the quality of life in the older population.
Collapse
Affiliation(s)
- Dong‐Hyun Jang
- Department of Biomedical SciencesKorea University College of MedicineSeoulRepublic of Korea
| | - Ji‐Won Shin
- Department of Biomedical SciencesKorea University College of MedicineSeoulRepublic of Korea
| | - Eunha Shim
- Department of Biomedical SciencesKorea University College of MedicineSeoulRepublic of Korea
| | - Naoko Ohtani
- Department of PathophysiologyOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Ok Hee Jeon
- Department of Biomedical SciencesKorea University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
13
|
Gioitta Iachino S, Scaggiante F, Mazzarisi C, Schaller C. The Role of Next-Generation Sequencing (NGS) in the Relationship between the Intestinal Microbiome and Periprosthetic Joint Infections: A Perspective. Antibiotics (Basel) 2024; 13:931. [PMID: 39452200 PMCID: PMC11505334 DOI: 10.3390/antibiotics13100931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 10/26/2024] Open
Abstract
Periprosthetic joint infections are still a challenge in orthopedics and traumatology. Nowadays, genomics comes to the aid of diagnosis and treatment, in addition to traditional methods. Recently, a key role of the intestinal microbiota has been postulated, and great efforts are aimed at discovering its interconnection, which shows to be at different levels. Firstly, the gut microbiome influences the immune system through the gut-associated lymphoid tissue (GALT). A balanced microbiome promotes a strong immune response, which is essential to prevent all local and systemic infections, including PJI. Thus, a dysbiosis, i.e., the disruption of this system, leads to an imbalance between the various strains of microorganisms co-existing in the gut microbiome, which can result in a weakened immune system, increasing susceptibility to infections, including PJI. Additionally, the dysbiosis can result in the production of pro-inflammatory mediators that enter the systemic circulation, creating a state of chronic inflammation that can compromise the immune system's ability to fend off infections. Furthermore, the microbiome maintains the integrity of the gut barrier, preventing the translocation of harmful bacteria and endotoxins into the bloodstream; dysbiosis can compromise this protective "wall". In addition, the gut microbiome may harbor antibiotic-resistance genes; during antibiotic treatment for other infections or prophylaxis, these genes may be transferred to pathogenic bacteria, making the treatment of PJI more difficult. In this complex landscape, next-generation sequencing (NGS) technology can play a key role; indeed, it has revolutionized the study of the microbiome, allowing for detailed and comprehensive analysis of microbial communities. It offers insights into the functional potential and metabolic capabilities of the microbiome, studies the collective genome of the microbiome directly from environmental samples sequencing DNA without isolating individual organisms, analyzes the RNA transcripts to understand gene expression and functional activity of the microbiome, analyzes the RNA transcripts to understand gene expression and functional activity of the microbiome, investigates the metabolites produced by the microbiome and studies the entire set of proteins produced by the microbiome. NGS technology, the study of the micromyoma and its implications in the field of orthopedic trauma are innovative topics on which few publications are yet to be found in the international scientific literature. The costs are still high, the focus of research is maximum, and it will certainly change our approach to infections. Our study is an up-to-date review of the hot topic application of NGS in the study and investigation of periprosthetic infections and the microbiome.
Collapse
Affiliation(s)
- Salvatore Gioitta Iachino
- Department of Orthopaedics and Traumatology, Hospital of Brixen, Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, Südtiroler Sanitätsbetrieb (SABES-ASDAA), 39042 Brixen, Italy;
| | - Federica Scaggiante
- Laboratory of Clinical Pathology, Hospital of Brixen, Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, Südtiroler Sanitätsbetrieb (SABES-ASDAA), 39042 Brixen, Italy;
| | - Claudia Mazzarisi
- Department of Internal Medicine, Hospital of Brixen, Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, Südtiroler Sanitätsbetrieb (SABES-ASDAA), 39042 Brixen, Italy;
| | - Christian Schaller
- Department of Orthopaedics and Traumatology, Hospital of Brixen, Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, Südtiroler Sanitätsbetrieb (SABES-ASDAA), 39042 Brixen, Italy;
| |
Collapse
|
14
|
Hao L, Yan Y, Huang G, Li H. From gut to bone: deciphering the impact of gut microbiota on osteoporosis pathogenesis and management. Front Cell Infect Microbiol 2024; 14:1416739. [PMID: 39386168 PMCID: PMC11461468 DOI: 10.3389/fcimb.2024.1416739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Osteoporosis (OP) is characterized by decreased bone mineral density (BMD) and increased fracture risk, poses a significant global health burden. Recent research has shed light on the bidirectional relationship between gut microbiota (GM) and bone health, presenting a novel avenue for understanding OP pathogenesis and developing targeted therapeutic interventions. This review provides a comprehensive overview of the GM-bone axis, exploring the impact of GM on OP development and management. We elucidate established risk factors and pathogenesis of OP, delve into the diversity and functional changes of GM in OP. Furthermore, we examine experimental evidence and clinical observations linking alterations in GM composition or function with variations in BMD and fracture risk. Mechanistic insights into microbial mediators of bone health, such as microbial metabolites and products, are discussed. Therapeutic implications, including GM-targeted interventions and dietary strategies, are also explored. Finally, we identify future research directions and challenges in translating these findings into clinical practice.
Collapse
Affiliation(s)
- Linjie Hao
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yuzhu Yan
- Clinical Laboratory of Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Guilin Huang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Hui Li
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
15
|
Lai J, Gong L, Liu Y, Zhang X, Liu W, Han M, Zhou D, Shi S. Associations between gut microbiota and osteoporosis or osteopenia in a cohort of Chinese Han youth. Sci Rep 2024; 14:20948. [PMID: 39251661 PMCID: PMC11385745 DOI: 10.1038/s41598-024-71731-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Osteoporosis (OP) is a common metabolic bone disease characterized by low bone mass and microstructural deterioration of bone. Changes in the composition and structure of gut microbiota (GM) are related to changes of bone mass and bone microstructure. However, the relationship between GM and bone mineral density (BMD) is complex, and data are especially scarce for Chinese Han youth. Therefore, 62 Chinese Han youth participants were recruited. Furthermore, according to the T-score evaluation criteria of the World Health Organization (WHO), we divided the BMD levels of participants into three groups: osteoporosis\BDL, osteopenia\BDM, normal bone density\BDH, and the associations between GM community and BMD groups were conducted. According to alpha and beta diversity analysis, significant differences were found in the microbial richness and composition between groups. The dominant phyla of GM in a cohort of Chinese Han youth were Bacteroidota (50.6%) and Firmicutes (41.6%). Anaerobic microorganisms, such as g_Faecalibacterium and g_Megamonas, account for the largest proportion in the gut, which were mainly Firmicutes phylum. The dominant genera and species in the three BMD groups were g_Prevotella, g_Bacteroides, g_Faecalibacterium, g_Megamonas, s_Prevotella copri, s_unclassified_g_Faecalibacterium, s_unclassified_g_Prevotella, s_unclassified_g_Bacteroides and s_Bacteroides plebeius. g_Faecalibacterium, g_Bacteroides and g_Ruminococcus differed between the BDH and BDL groups as well as between the BDH and BDM groups. LEfSe showed three genus communities and eight species communities were enriched in the three BMD groups, respectively. The associations between microbial relative abundance and T-score was not statistically significant by Spearman and regression analysis. In conclusion, the alpha diversity indexes in the BDH group were higher than in the BDL group, and several taxa were identified that may be the targets for diagnosis and therapy of OP.
Collapse
Affiliation(s)
- Junren Lai
- Anhui Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui College of Life Sciences, Anqing Normal University, 246133, Anqing, Anhui, People's Republic of China
| | - Li Gong
- Anhui Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui College of Life Sciences, Anqing Normal University, 246133, Anqing, Anhui, People's Republic of China
| | - Yan Liu
- Anhui Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui College of Life Sciences, Anqing Normal University, 246133, Anqing, Anhui, People's Republic of China
| | - Xuelian Zhang
- Anhui Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui College of Life Sciences, Anqing Normal University, 246133, Anqing, Anhui, People's Republic of China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 14430, Urumqi, Xinjiang, People's Republic of China
| | - Wenqi Liu
- Anhui Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui College of Life Sciences, Anqing Normal University, 246133, Anqing, Anhui, People's Republic of China
| | - Meng Han
- Anhui Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui College of Life Sciences, Anqing Normal University, 246133, Anqing, Anhui, People's Republic of China
| | - Duoqi Zhou
- Anhui Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui College of Life Sciences, Anqing Normal University, 246133, Anqing, Anhui, People's Republic of China.
- School of Life Sciences, 1318 North jixian Road, 246133, Anqing, Anhui, People's Republic of China.
| | - Shuiqin Shi
- Anhui Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui College of Life Sciences, Anqing Normal University, 246133, Anqing, Anhui, People's Republic of China.
- School of Life Sciences, 1318 North jixian Road, 246133, Anqing, Anhui, People's Republic of China.
| |
Collapse
|
16
|
Chen L, Zhou X, Tian Y, Hu H, Hong S, Wu S, Wei Z, Wang K, Li T, Hua Z, Xia Q, Huang Y, Lv Z, Lv L. Analysis of the causal relationship between gut microbiota and bone remodeling growth factor from the gene association. Microb Pathog 2024; 194:106790. [PMID: 39009103 DOI: 10.1016/j.micpath.2024.106790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND A growing body of evidence indicates a close association between the gut microbiota (GM) and the bone remodeling (BR) process, raising suspicions that the GM may actively participate in BR by modulating the levels of growth factors. However, the precise causal relationship between them remains unclear. Due to many confounding factors, many microorganisms related to BR growth factors have not been identified. We aimed to elucidate the causal relationship between the GM and BR growth factors. METHODS We evaluated the genome-wide association study (GWAS) summary statistics for GM and five common growth factors associated with BR: namely, bone morphogenetic proteins (BMP), transforming growth factors(TGF), insulin growth factors (IGFs), epidermal growth factors (EGFs), and fibroblast growth factors (FGF). The causal relationship between the GM and BR growth factors was studied by double-sample Mendelian randomized analysis. We used five Mendelian randomization (MR) methods, including inverse variance-weighted (IVW), MR-Egger, simple mode, weighted median, and weighted model methods. RESULTS Through MR analysis, a total of 56 bacterial genera were co-identified as associated with BMP, TGF, IGF, EGF, and FGF. Among them, eight genera were found to have a causal relationship with multiple growth factors: Marvinbryantia was causally associated with BMP-6 (P = 0.018, OR = 1.355) and TGF-β2 (P = 0.002, OR = 1.475); Lachnoclostridium, BMP-7 (P = 0.021, OR = 0.73) and IGF-1 (P = 0.046, OR = 0.804); Terrisporobacter, TGF-β (P = 0.02, OR = 1.726) and FGF-23 levels (P = 0.016, OR = 1.76); Ruminiclostridium5, TGF-β levels (P = 0.024, OR = 0.525) and FGFR-2 (P = 0.003, OR = 0.681); Erysipelatoclostridium, TGF-β2 (P = 0.001, OR = 0.739) and EGF and its receptor (EGFR) (P = 0.012, OR = 0.795); Eubacterium_brachy_group, FGFR-2 (P = 0.045, OR = 1.153) and EGF (P = 0.013, OR = 0.7); Prevotella9 with EGFR (P = 0.022, OR = 0.818) and FGFR-2 (P = 0.011, OR = 1.233) and Faecalibacterium with FGF-23 (P = 0.02, OR = 2.053) and IGF-1 (P = 0.005, OR = 0.843). CONCLUSION We confirmed the causal relationship between the GM and growth factors related to BR, which provides a new perspective for the study of BR, through targeted regulation of specific bacteria to prevent and treat diseases and growth factor-mediated BR disorders.
Collapse
Affiliation(s)
- Longhao Chen
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Research Institute of Tuina (Spinal disease), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xingchen Zhou
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Research Institute of Tuina (Spinal disease), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yu Tian
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Research Institute of Tuina (Spinal disease), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Huijie Hu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shuangwei Hong
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shuang Wu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zicheng Wei
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Kaizheng Wang
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Tao Li
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zihan Hua
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qiong Xia
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuanshen Huang
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhizhen Lv
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Research Institute of Tuina (Spinal disease), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Lijiang Lv
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Research Institute of Tuina (Spinal disease), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
17
|
Cao Y, Gao Y, Huang J. Perturbations in gut microbiota composition in osteoporosis: a systematic review and meta-analysis. J Bone Miner Metab 2024; 42:551-563. [PMID: 38864923 DOI: 10.1007/s00774-024-01517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 05/08/2024] [Indexed: 06/13/2024]
Abstract
INTRODUCTION Osteoporosis (OP) is a chronic bone metabolic disease, which causes a great social and economic burden. The gut microbiota (GM) has become a recent topic of interest in the role of many disease states. Changes in the GM are correlated with the maintenance of bone mass and bone quality. However, research results in this field remain highly controversial. We performed a mate-analysis to explore and compare the alterations of GM in OP patients. MATERIALS AND METHODS According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), we comprehensively searched the databases of PubMed, Web of Science, Embase, Cochrane Library, CNKI, VIP, CBM, and Wanfang. In addition, we applied the Stata 17.0 software for data analysis. Bias controls were evaluated with the Newcastle-Ottawa scale (NOS), funnel plot analysis, and Egger's and Begg's tests. RESULTS This research ultimately considered 16 studies, which included the fecal GM data of 2340 people (664 with OP and 1676 healthy controls). The pooled estimate showed an increase of borderline significance on ACE index in patients with OP compared with control participants (SMD = 1.05; 95% CI 0.00-2.10; P = 0.05). There were no significant differences in Chao1, Shannon and Simpson indices. At the phylum level, no significant differences were observed between the OP patients and HCs in the overall analysis. At the genus level, the relative abundance of Blautia presented a decrease of borderline significance between OP and the control group (SMD = - 0.32, 95% CI - 0.65 to - 0.00, P = 0.05). CONCLUSION This systematic review and meta-analysis suggests that patients with OP may exhibit dysbiosis in their gut microbiota, characterized by a reduction in certain anti-inflammatory butyrate-producing bacteria and an enrichment of pro-inflammatory bacterial populations.
Collapse
Affiliation(s)
- Yun Cao
- Department of Traditional Chinese Medicine, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Yemei Gao
- Department of Traditional Chinese Medicine, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Jiaqin Huang
- Department of Traditional Chinese Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
18
|
Teng K, Li X, Huang T, Zhang S, Zhang Q, Rousitemu N, Lan T, Wen Y. Characterization of gut microbiota in the Uyghur osteopenia population. Sci Rep 2024; 14:20208. [PMID: 39215072 PMCID: PMC11364662 DOI: 10.1038/s41598-024-71077-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
The objectives of this study were to investigate the composition of gut microbiota and its relationship with bone loss in the Uyghur osteopenia population, identify potential disease-related taxa and collect information for the prevention and treatment of osteopenia in different people by regulating gut microbiota. We selected Uyghur residents, measured their heel BMD, collected faeces and general information, grouped them by BMD level, obtained faecal 16S rRNA sequences, and compared and analysed the differences between the groups. This study showed that the numbers of OTUs and species in the gut microbiota in the osteopenia group were higher than those in the control. At the phylum level, Erysipelotrichia was more abundant in the osteopenia group. At the genus level, Phascolarctobacterium was less abundant, and Ruminiclostridium_5 was more abundant in the osteopenia group compared to the control. Phascolarctobacterium and Z-score were positively correlated, and Ruminiclostridium_5 was negatively correlated with T and Z score. The different composition of the gut microbiota in Uyghur osteopenia patients and controls found in this study fills a knowledge gap in this ethnic group. The relationship between Uyghur osteopenia and BMD-associated bacterial genera deserves further exploration.
Collapse
Affiliation(s)
- Kunchen Teng
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Xin Li
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Ting Huang
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Shuang Zhang
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Qiuxi Zhang
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Namuna Rousitemu
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Ting Lan
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Youfeng Wen
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
19
|
Grahnemo L, Kambur O, Lahti L, Jousilahti P, Niiranen T, Knight R, Salomaa V, Havulinna AS, Ohlsson C. Associations between gut microbiota and incident fractures in the FINRISK cohort. NPJ Biofilms Microbiomes 2024; 10:69. [PMID: 39143108 PMCID: PMC11324742 DOI: 10.1038/s41522-024-00530-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
The gut microbiota (GM) can regulate bone mass, but its association with incident fractures is unknown. We used Cox regression models to determine whether the GM composition is associated with incident fractures in the large FINRISK 2002 cohort (n = 7043, 1092 incident fracture cases, median follow-up time 18 years) with information on GM composition and functionality from shotgun metagenome sequencing. Higher alpha diversity was associated with decreased fracture risk (hazard ratio [HR] 0.92 per standard deviation increase in Shannon index, 95% confidence interval 0.87-0.96). For beta diversity, the first principal component was associated with fracture risk (Aitchison distance, HR 0.90, 0.85-0.96). In predefined phyla analyses, we observed that the relative abundance of Proteobacteria was associated with increased fracture risk (HR 1.14, 1.07-1.20), while the relative abundance of Tenericutes was associated with decreased fracture risk (HR 0.90, 0.85-0.96). Explorative sub-analyses within the Proteobacteria phylum showed that higher relative abundance of Gammaproteobacteria was associated with increased fracture risk. Functionality analyses showed that pathways related to amino acid metabolism and lipopolysaccharide biosynthesis associated with fracture risk. The relative abundance of Proteobacteria correlated with pathways for amino acid metabolism, while the relative abundance of Tenericutes correlated with pathways for butyrate synthesis. In conclusion, the overall GM composition was associated with incident fractures. The relative abundance of Proteobacteria, especially Gammaproteobacteria, was associated with increased fracture risk, while the relative abundance of Tenericutes was associated with decreased fracture risk. Functionality analyses demonstrated that pathways known to regulate bone health may underlie these associations.
Collapse
Affiliation(s)
- Louise Grahnemo
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Oleg Kambur
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Pekka Jousilahti
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Teemu Niiranen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Internal Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, Joan and Irwin Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Aki S Havulinna
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Drug Treatment, Gothenburg, Sweden.
| |
Collapse
|
20
|
Feng R, Wang Q, Yu T, Hu H, Wu G, Duan X, Jiang R, Xu Y, Huang Y. Quercetin ameliorates bone loss in OVX rats by modulating the intestinal flora-SCFAs-inflammatory signaling axis. Int Immunopharmacol 2024; 136:112341. [PMID: 38810309 DOI: 10.1016/j.intimp.2024.112341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Osteoporosis (OP) is a common systemic skeletal disorder characterized by an imbalance in bone homeostasis, involving increased osteoclastic bone formation and decreased osteoblastic bone resorption. Quercetin is a plant polyphenol that has been found to exhibit various biological activities, including antioxidant, anti-inflammatory, and antimicrobial effects. Previous studies have demonstrated its potential to improve postmenopausal OP, although the exact mechanism remains unclear. This study aims to investigate the anti-osteoporotic mechanism of quercetin based on the "intestinal flora - short-chain fatty acids (SCFAs) - inflammatory" signaling axis. METHODS In this study, we established an ovariectomized (OVX)-induced rat model, quercetin intervention and evaluated the effects on rats following antibiotic (ABX) treatment and fecal microbiota transplantation (FMT). After 6 weeks of intervention, the rats were euthanized, and samples from their femur, tibia, lumbar spine, serum, colon and feces were collected, and bone strength, intestinal flora structure, SCFAs levels and cytokine levels were assessed. RESULTS Quercetin modulates the intestinal flora by increasing potentially probiotic bacteria (i.e., Lactobacillales, Prevotellaceae, and Blautia) and decreasing potentially pathogenic bacteria (Desulfobacterota, Erysipelotrichales, Romboutsia, and Butyricoccaceae). It also increases SCFAs content and reduces colonic permeability by enhancing tight junction proteins (ZO-1, Occludin). Furthermore, quercetin lowers proinflammatory cytokine levels (LPS, IL-1β, and TNF-α), which enhances bone strength and prevents OVX-induced bone loss. CONCLUSIONS Quercetin may effectively reduce bone loss in OVX rats via the "intestinal flora - SCFAs - inflammatory" signaling pathway.
Collapse
Affiliation(s)
- Ruibing Feng
- Department of Spine Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei Province 430074, PR China
| | - Qing Wang
- School of Sports Medicine, Wuhan Institute of Physical Education, Wuhan City, Hubei Province 430079, PR China
| | - Tiantian Yu
- Hubei University of Traditional Chinese Medicine, Wuhan, Hubei Province 430060, PR China
| | - Hao Hu
- Department of Spine Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei Province 430074, PR China; School of Sports Medicine, Wuhan Institute of Physical Education, Wuhan City, Hubei Province 430079, PR China; Hubei University of Traditional Chinese Medicine, Wuhan, Hubei Province 430060, PR China
| | - Gang Wu
- Department of Spine Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei Province 430074, PR China; School of Sports Medicine, Wuhan Institute of Physical Education, Wuhan City, Hubei Province 430079, PR China; Hubei University of Traditional Chinese Medicine, Wuhan, Hubei Province 430060, PR China
| | - Xiaofeng Duan
- Department of Spine Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei Province 430074, PR China
| | - Ruixuan Jiang
- Hubei University of Traditional Chinese Medicine, Wuhan, Hubei Province 430060, PR China
| | - Yifan Xu
- School of Sports Medicine, Wuhan Institute of Physical Education, Wuhan City, Hubei Province 430079, PR China
| | - Yong Huang
- Department of Spine Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei Province 430074, PR China; School of Sports Medicine, Wuhan Institute of Physical Education, Wuhan City, Hubei Province 430079, PR China; Hubei University of Traditional Chinese Medicine, Wuhan, Hubei Province 430060, PR China.
| |
Collapse
|
21
|
Lu Y, Cai X, Shi B, Gong H. Gut microbiota, plasma metabolites, and osteoporosis: unraveling links via Mendelian randomization. Front Microbiol 2024; 15:1433892. [PMID: 39077745 PMCID: PMC11284117 DOI: 10.3389/fmicb.2024.1433892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Objective Osteoporosis, characterized by reduced bone density and heightened fracture risk, is influenced by genetic and environmental factors. This study investigates the interplay between gut microbiota, plasma metabolomics, and osteoporosis, identifying potential causal relationships mediated by plasma metabolites. Methods Utilizing aggregated genome-wide association studies (GWAS) data, a comprehensive two-sample Mendelian Randomization (MR) analysis was performed involving 196 gut microbiota taxa, 1,400 plasma metabolites, and osteoporosis indicators. Causal relationships between gut microbiota, plasma metabolites, and osteoporosis were explored. Results The MR analyses revealed ten gut microbiota taxa associated with osteoporosis, with five taxa positively linked to increased risk and five negatively associated. Additionally, 96 plasma metabolites exhibited potential causal relationships with osteoporosis, with 49 showing positive associations and 47 displaying negative associations. Mediation analyses identified six causal pathways connecting gut microbiota to osteoporosis through ten mediating relationships involving seven distinct plasma metabolites, two of which demonstrated suppression effects. Conclusion This study provides suggestive evidence of genetic correlations and causal links between gut microbiota, plasma metabolites, and osteoporosis. The findings underscore the complex, multifactorial nature of osteoporosis and suggest the potential of gut microbiota and plasma metabolite profiles as biomarkers or therapeutic targets in the management of osteoporosis.
Collapse
|
22
|
Meyer C, Brockmueller A, Ruiz de Porras V, Shakibaei M. Microbiota and Resveratrol: How Are They Linked to Osteoporosis? Cells 2024; 13:1145. [PMID: 38994996 PMCID: PMC11240679 DOI: 10.3390/cells13131145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/18/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024] Open
Abstract
Osteoporosis (OP), which is characterized by a decrease in bone density and increased susceptibility to fractures, is closely linked to the gut microbiota (GM). It is increasingly realized that the GM plays a key role in the maintenance of the functioning of multiple organs, including bone, by producing bioactive metabolites such as short-chain fatty acids (SCFA). Consequently, imbalances in the GM, referred to as dysbiosis, have been identified with a significant reduction in beneficial metabolites, such as decreased SCFA associated with increased chronic inflammatory processes, including the activation of NF-κB at the epigenetic level, which is recognized as the main cause of many chronic diseases, including OP. Furthermore, regular or long-term medications such as antibiotics and many non-antibiotics such as proton pump inhibitors, chemotherapy, and NSAIDs, have been found to contribute to the development of dysbiosis, highlighting an urgent need for new treatment approaches. A promising preventive and adjuvant approach is to combat dysbiosis with natural polyphenols such as resveratrol, which have prebiotic functions and ensure an optimal microenvironment for beneficial GM. Resveratrol offers a range of benefits, including anti-inflammatory, anti-oxidant, analgesic, and prebiotic effects. In particular, the GM has been shown to convert resveratrol, into highly metabolically active molecules with even more potent beneficial properties, supporting a synergistic polyphenol-GM axis. This review addresses the question of how the GM can enhance the effects of resveratrol and how resveratrol, as an epigenetic modulator, can promote the growth and diversity of beneficial GM, thus providing important insights for the prevention and co-treatment of OP.
Collapse
Affiliation(s)
- Christine Meyer
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany
| | - Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany
| | - Vicenç Ruiz de Porras
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, s/n, Badalona, 08916 Barcelona, Spain
- Badalona Applied Research Group in Oncology (B⋅ARGO), Catalan Institute of Oncology, Camí de les Escoles, s/n, Badalona, 08916 Barcelona, Spain
- GRET and Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany
| |
Collapse
|
23
|
Hansdah K, Lui JC. Emerging Insights into the Endocrine Regulation of Bone Homeostasis by Gut Microbiome. J Endocr Soc 2024; 8:bvae117. [PMID: 38957653 PMCID: PMC11215793 DOI: 10.1210/jendso/bvae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Indexed: 07/04/2024] Open
Abstract
Gut microbiota plays an important role in the regulation of bone homeostasis and bone health. Recent studies showed that these effects could be mediated through microbial metabolites released by the microbiota like short-chain fatty acids, metabolism of endogenous molecules such as bile acids, or a complex interplay between microbiota, the endocrine system, and the immune system. Importantly, some studies showed a reciprocal relationship between the endocrine system and gut microbiota. For instance, postmenopausal estrogen deficiency could lead to dysbiosis of the gut microbiota, which could in turn affect various immune response and bone remodeling. In addition, evidence showed that shift in the indigenous gut microbiota caused by antibiotics treatment may also impact normal skeletal growth and maturation. In this mini-review, we describe recent findings on the role of microbiome in bone homeostasis, with a particular focus on molecular mechanisms and their interactions with the endocrine and immune system. We will also discuss the recent findings on estrogen deficiency and microbiota dysbiosis, and the clinical implications for the development of new therapeutic strategies for osteoporosis and other bone disorders.
Collapse
Affiliation(s)
- Kirtal Hansdah
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julian C Lui
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
24
|
Ji J, Gu Z, Li N, Dong X, Wang X, Yao Q, Zhang Z, Zhang L, Cao L. Gut microbiota alterations in postmenopausal women with osteoporosis and osteopenia from Shanghai, China. PeerJ 2024; 12:e17416. [PMID: 38832037 PMCID: PMC11146318 DOI: 10.7717/peerj.17416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/28/2024] [Indexed: 06/05/2024] Open
Abstract
Background The importance of the gut microbiota in maintaining bone homeostasis has been increasingly emphasized by recent research. This study aimed to identify whether and how the gut microbiome of postmenopausal women with osteoporosis and osteopenia may differ from that of healthy individuals. Methods Fecal samples were collected from 27 individuals with osteoporosis (OP), 44 individuals with osteopenia (ON), and 23 normal controls (NC). The composition of the gut microbial community was analyzed by 16S rRNA gene sequencing. Results No significant difference was found in the microbial composition between the three groups according to alpha and beta diversity. At the phylum level, Proteobacteria and Fusobacteriota were significantly higher and Synergistota was significantly lower in the ON group than in the NC group. At the genus level, Roseburia, Clostridia_UCG.014, Agathobacter, Dialister and Lactobacillus differed between the OP and NC groups as well as between the ON and NC groups (p < 0.05). Linear discriminant effect size (LEfSe) analysis results showed that one phylum community and eighteen genus communities were enriched in the NC, ON and OP groups, respectively. Spearman correlation analysis showed that the abundance of the Dialister genus was positively correlated with BMD and T score at the lumbar spine (p < 0.05). Functional predictions revealed that pathways relevant to amino acid biosynthesis, vitamin biosynthesis, and nucleotide metabolism were enriched in the NC group. On the other hand, pathways relevant to metabolites degradation and carbohydrate metabolism were mainly enriched in the ON and OP groups respectively. Conclusions Our findings provide new epidemiologic evidence regarding the relationship between the gut microbiota and postmenopausal bone loss, laying a foundation for further exploration of therapeutic targets for the prevention and treatment of postmenopausal osteoporosis (PMO).
Collapse
Affiliation(s)
- Jiaqing Ji
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhengrong Gu
- Department of Orthopedics, Luodian Hospital, Baoshan District, Shanghai, China
| | - Na Li
- School of Medicine, Shanghai University, Shanghai, China
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai, China
| | - Xiong Wang
- Department of Orthopedics, Luodian Hospital, Baoshan District, Shanghai, China
| | - Qiang Yao
- Department of Orthopedics, Luodian Hospital, Baoshan District, Shanghai, China
| | - Zhongxiao Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhang
- Department of Orthopedics, Luodian Hospital, Baoshan District, Shanghai, China
| | - Liehu Cao
- Department of Orthopedics, Luodian Hospital, Baoshan District, Shanghai, China
| |
Collapse
|
25
|
Han D, Wang W, Gong J, Ma Y, Li Y. Microbiota metabolites in bone: Shaping health and Confronting disease. Heliyon 2024; 10:e28435. [PMID: 38560225 PMCID: PMC10979239 DOI: 10.1016/j.heliyon.2024.e28435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/16/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
The intricate interplay between the gut microbiota and bone health has become increasingly recognized as a fundamental determinant of skeletal well-being. Microbiota-derived metabolites play a crucial role in dynamic interaction, specifically in bone homeostasis. In this sense, short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate, indirectly promote bone formation by regulating insulin-like growth factor-1 (IGF-1). Trimethylamine N-oxide (TMAO) has been found to increase the expression of osteoblast genes, such as Runt-related transcription factor 2 (RUNX2) and bone morphogenetic protein-2 (BMP2), thus enhancing osteogenic differentiation and bone quality through BMP/SMADs and Wnt signaling pathways. Remarkably, in the context of bone infections, the role of microbiota metabolites in immune modulation and host defense mechanisms potentially affects susceptibility to infections such as osteomyelitis. Furthermore, ongoing research elucidates the precise mechanisms through which microbiota-derived metabolites influence bone cells, such as osteoblasts and osteoclasts. Understanding the multifaceted influence of microbiota metabolites on bone, from regulating homeostasis to modulating susceptibility to infections, has the potential to revolutionize our approach to bone health and disease management. This review offers a comprehensive exploration of this evolving field, providing a holistic perspective on the impact of microbiota metabolites on bone health and diseases.
Collapse
Affiliation(s)
- Dong Han
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Weijiao Wang
- Department of Otolaryngology, Yantaishan Hospital, Yantai 264000, China
| | - Jinpeng Gong
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Yupeng Ma
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Yu Li
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| |
Collapse
|
26
|
Dong J, Shu G, Yang J, Wang B, Chen L, Gong Z, Zhang X. Mechanistic study on the alleviation of postmenopausal osteoporosis by Lactobacillus acidophilus through butyrate-mediated inhibition of osteoclast activity. Sci Rep 2024; 14:7042. [PMID: 38528074 DOI: 10.1038/s41598-024-57122-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/14/2024] [Indexed: 03/27/2024] Open
Abstract
In China, traditional medications for osteoporosis have significant side effects, low compliance, and high costs, making it urgent to explore new treatment options. Probiotics have demonstrated superiority in the treatment of various chronic diseases, and the reduction of bone mass in postmenopausal osteoporosis (PMOP) is closely related to the degradation and metabolism of intestinal probiotics. It is crucial to explore the role and molecular mechanisms of probiotics in alleviating PMOP through their metabolites, as well as their therapeutic effects. We aim to identify key probiotics and their metabolites that affect bone loss in PMOP through 16srDNA sequencing combined with non-targeted metabolomics sequencing, and explore the impact and possible mechanisms of key probiotics and their metabolites on the progression of PMOP in the context of osteoporosis caused by estrogen deficiency. The sequencing results showed a significant decrease in Lactobacillus acidophilus and butyrate in PMOP patients. In vivo experiments confirmed that the intervention of L. acidophilus and butyrate significantly inhibited osteoclast formation and bone resorption activity, improved intestinal barrier permeability, suppressed B cells, and the production of RANKL on B cells, effectively reduced systemic bone loss induced by oophorectomy, with butyric acid levels regulated by L. acidophilus. Consistently, in vitro experiments have confirmed that butyrate can directly inhibit the formation of osteoclasts and bone resorption activity. The above research results indicate that there are various pathways through which L. acidophilus inhibits osteoclast formation and bone resorption activity through butyrate. Intervention with L. acidophilus may be a safe and promising treatment strategy for osteoclast related bone diseases, such as PMOP.
Collapse
Affiliation(s)
- Junjie Dong
- The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Guizhao Shu
- The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jin Yang
- The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bing Wang
- The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lingqiang Chen
- The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhiqiang Gong
- The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaofeng Zhang
- The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
27
|
Kamel M, Aleya S, Alsubih M, Aleya L. Microbiome Dynamics: A Paradigm Shift in Combatting Infectious Diseases. J Pers Med 2024; 14:217. [PMID: 38392650 PMCID: PMC10890469 DOI: 10.3390/jpm14020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Infectious diseases have long posed a significant threat to global health and require constant innovation in treatment approaches. However, recent groundbreaking research has shed light on a previously overlooked player in the pathogenesis of disease-the human microbiome. This review article addresses the intricate relationship between the microbiome and infectious diseases and unravels its role as a crucial mediator of host-pathogen interactions. We explore the remarkable potential of harnessing this dynamic ecosystem to develop innovative treatment strategies that could revolutionize the management of infectious diseases. By exploring the latest advances and emerging trends, this review aims to provide a new perspective on combating infectious diseases by targeting the microbiome.
Collapse
Affiliation(s)
- Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 11221, Egypt
| | - Sami Aleya
- Faculty of Medecine, Université de Bourgogne Franche-Comté, Hauts-du-Chazal, 25030 Besançon, France;
| | - Majed Alsubih
- Department of Civil Engineering, King Khalid University, Guraiger, Abha 62529, Saudi Arabia;
| | - Lotfi Aleya
- Laboratoire de Chrono-Environnement, Université de Bourgogne Franche-Comté, UMR CNRS 6249, La Bouloie, 25030 Besançon, France;
| |
Collapse
|
28
|
Li Z, Wang Q, Huang X, Wu Y, Shan D. Microbiome's role in musculoskeletal health through the gut-bone axis insights. Gut Microbes 2024; 16:2410478. [PMID: 39387683 PMCID: PMC11469435 DOI: 10.1080/19490976.2024.2410478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/06/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
The interplay between the human microbiome and the musculoskeletal system represents a burgeoning field of research with profound implications for understanding and treating musculoskeletal disorders. This review articulates the pivotal role of the microbiome in modulating bone health, highlighting the gut-bone axis as a critical nexus for potential therapeutic intervention. Through a meticulous analysis of recent clinical research, we underscore the microbiome's influence on osteoporosis, sarcopenia, osteoarthritis, and rheumatoid arthritis, delineating both the direct and indirect mechanisms by which microbiota could impact musculoskeletal integrity and function. Our investigation reveals novel insights into the microbiota's contribution to bone density regulation, hormone production, immune modulation, and nutrient absorption, laying the groundwork for innovative microbiome-based strategies in musculoskeletal disease management. Significantly, we identify the challenges hindering the translation of research into clinical practice, including the limitations of current microbial sequencing techniques and the need for standardized methodologies in microbiome studies. Furthermore, we highlight promising directions for future research, particularly in the realm of personalized medicine, where the microbiome's variability offers unique opportunities for tailored treatment approaches. This review sets a new agenda for leveraging gut microbiota in the diagnosis, prevention, and treatment of musculoskeletal conditions, marking a pivotal step toward integrating microbiome science into clinical musculoskeletal care.
Collapse
Affiliation(s)
- Zhengrui Li
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Wang
- Jiangsu University, Zhenjiang, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Yinteng Wu
- Department of Orthopedic and Trauma Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Dan Shan
- Faculty of Health and Medicine, Lancaster University, Lancaster, UK
- Department of Biobehavioral Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
29
|
Waldbaum JD, Xhumari J, Akinsuyi OS, Arjmandi B, Anton S, Roesch LFW. Association between Dysbiosis in the Gut Microbiota of Primary Osteoporosis Patients and Bone Loss. Aging Dis 2023; 14:2081-2095. [PMID: 37199579 PMCID: PMC10676803 DOI: 10.14336/ad.2023.0425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023] Open
Abstract
In recent decades, gut microbiome research has experienced significant growth, driven by technological advances that enable quantifying bacterial taxa with greater precision. Age, diet, and living environment have emerged as three key factors influencing gut microbes. Dysbiosis, resulting from alterations in these factors, may lead to changes in bacterial metabolites that regulate pro- and anti-inflammatory processes and consequently impact bone health. Restoration of a healthy microbiome signature could mitigate inflammation and potentially reduce bone loss associated with osteoporosis or experienced by astronauts during spaceflight. However, current research is hindered by contradictory findings, insufficient sample sizes, and inconsistency in experimental conditions and controls. Despite progress in sequencing technology, defining a healthy gut microbiome across global populations remains elusive. Challenges persist in identifying accurate gut bacterial metabolics, specific taxa, and their effects on host physiology. We suggest greater attention be directed towards this issue in Western countries as the cost of treating osteoporosis in the United States reaches billions of dollars annually, with expenses projected to continue rising.
Collapse
Affiliation(s)
- Julien D.H. Waldbaum
- Department of Microbiology and Cell Science, College of Agriculture and Life Sciences, University of Florida, Florida, USA.
| | - Jessica Xhumari
- Department of Microbiology and Cell Science, College of Agriculture and Life Sciences, University of Florida, Florida, USA.
| | - Oluwamayowa S. Akinsuyi
- Department of Microbiology and Cell Science, College of Agriculture and Life Sciences, University of Florida, Florida, USA.
| | - Bahram Arjmandi
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Florida, USA.
| | - Stephen Anton
- Department of Physiology and Aging, College of Public Health and Health Professions, College of Medicine, University of Florida, Florida, USA.
| | - Luiz Fernando Wurdig Roesch
- Department of Microbiology and Cell Science, College of Agriculture and Life Sciences, University of Florida, Florida, USA.
| |
Collapse
|
30
|
Wang Y, Li Y, Bo L, Zhou E, Chen Y, Naranmandakh S, Xie W, Ru Q, Chen L, Zhu Z, Ding C, Wu Y. Progress of linking gut microbiota and musculoskeletal health: casualty, mechanisms, and translational values. Gut Microbes 2023; 15:2263207. [PMID: 37800576 PMCID: PMC10561578 DOI: 10.1080/19490976.2023.2263207] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023] Open
Abstract
The musculoskeletal system is important for balancing metabolic activity and maintaining health. Recent studies have shown that distortions in homeostasis of the intestinal microbiota are correlated with or may even contribute to abnormalities in musculoskeletal system function. Research has also shown that the intestinal flora and its secondary metabolites can impact the musculoskeletal system by regulating various phenomena, such as inflammation and immune and metabolic activities. Most of the existing literature supports that reasonable nutritional intervention helps to improve and maintain the homeostasis of intestinal microbiota, and may have a positive impact on musculoskeletal health. The purpose of organizing, summarizing and discussing the existing literature is to explore whether the intervention methods, including nutritional supplement and moderate exercise, can affect the muscle and bone health by regulating the microecology of the intestinal flora. More in-depth efficacy verification experiments will be helpful for clinical applications.
Collapse
Affiliation(s)
- Yu Wang
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Bo
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Enyuan Zhou
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Yanyan Chen
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Shinen Naranmandakh
- School of Arts and Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qin Ru
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Lin Chen
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Zhaohua Zhu
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Changhai Ding
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Yuxiang Wu
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| |
Collapse
|
31
|
Xiao X, Cui Y, Lu H, Wang J, Yang J, Liu L, Liu Z, Peng X, Cao H, Liu X, Wei X. Strontium ranelate enriched Ruminococcus albus in the gut microbiome of Sprague-Dawley rats with postmenopausal osteoporosis. BMC Microbiol 2023; 23:365. [PMID: 38008735 PMCID: PMC10680188 DOI: 10.1186/s12866-023-03109-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 11/03/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Gut microbiome is critical to our human health and is related to postmenopausal osteoporosis (PMO). Strontium ranelate (SrR) is an anti-osteoporosis oral drug that can promote osteoblast formation and inhibit osteoclast formation. However, the effect of SrR on gut microbiome has been rarely studied. Therefore, we investigated the effect of oral SrR on gut microbiome and metabolic profiles. RESULTS In this study, we used ovariectomized (OVX) Sprague-Dawley rats to construct a PMO model and applied oral SrR for 6 weeks. The relative abundance of intestinal microbiome was investigated by 16S rRNA metagenomic sequencing. Ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) was used to analyze changes in metabolites of intestinal contents. Results demonstrated that 6-week oral SrR alleviated osteoporosis and significantly changed the composition of the gut microbiome and metabolic profiles of OVX rats. Ruminococcus, Akkermansia and Oscillospira were significantly enriched in the gut of OVX rats after 6-week oral SrR. Especially, the species R. albus showed the greatest importance by a random forest classifier between OVX and OVX_Sr group. The enrichment of R. albus in the gut was positively correlated with bone mineral density and the accumulation of lycopene and glutaric acid, which also significantly elevated after oral SrR. CONCLUSIONS We discovered that oral SrR can improve bone health while stimulate the accumulation of gut microbe R. albus and metabolites (lycopene and glutaric acid). The results suggested possible connections between oral SrR and the gut-bone axis, which may provide new insight into the treatment/prevention of osteoporosis.
Collapse
Affiliation(s)
- Xiao Xiao
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Yuanyuan Cui
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Huigai Lu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Jiaqi Wang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Jing Yang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Long Liu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Zhixin Liu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Xiaohong Peng
- Key Laboratory of Pathogenic Biology, Guilin Medical University, Guilin, Guangxi, PR China
| | - Hong Cao
- Department of Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Xinghui Liu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, PR China.
| | - Xiuli Wei
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, PR China.
| |
Collapse
|
32
|
Akhiiarova K, Khusainova R, Minniakhmetov I, Mokrysheva N, Tyurin A. Peak Bone Mass Formation: Modern View of the Problem. Biomedicines 2023; 11:2982. [PMID: 38001982 PMCID: PMC10669090 DOI: 10.3390/biomedicines11112982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Peak bone mass is the amount of bone tissue that is formed when a stable skeletal state is achieved at a young age. To date, there are no established peak bone mass standards nor clear data on the age at which peak bone mass occurs. At the same time, the level of peak bone mass at a young age is an important predictor of the onset of primary osteoporosis. The purpose of this review is to analyze the results of studies of levels of peak bone mass in general, the age of its onset, as well as factors influencing its formation. Factors such as hormonal levels, body composition, physical activity, nutrition, heredity, smoking, lifestyle, prenatal predictors, intestinal microbiota, and vitamin and micronutrient status were considered, and a comprehensive scheme of the influence of these factors on the level of peak bone mass was created. Determining the standards and timing of the formation of peak bone mass, and the factors affecting it, will help in the development of measures to prevent its shortage and the consequent prevention of osteoporosis and concomitant diseases.
Collapse
Affiliation(s)
- Karina Akhiiarova
- Internal Medicine Department, Bashkir State Medical University, 450008 Ufa, Russia;
| | - Rita Khusainova
- Medical Genetics Department, Bashkir State Medical University, 450008 Ufa, Russia;
- Endocrinology Research Centre, Dmitriya Ulianova Street, 11, 117036 Moscow, Russia; (I.M.); (N.M.)
| | - Ildar Minniakhmetov
- Endocrinology Research Centre, Dmitriya Ulianova Street, 11, 117036 Moscow, Russia; (I.M.); (N.M.)
| | - Natalia Mokrysheva
- Endocrinology Research Centre, Dmitriya Ulianova Street, 11, 117036 Moscow, Russia; (I.M.); (N.M.)
| | - Anton Tyurin
- Internal Medicine Department, Bashkir State Medical University, 450008 Ufa, Russia;
| |
Collapse
|
33
|
Aboushaala K, Wong AYL, Barajas JN, Lim P, Al-Harthi L, Chee A, Forsyth CB, Oh CD, Toro SJ, Williams FMK, An HS, Samartzis D. The Human Microbiome and Its Role in Musculoskeletal Disorders. Genes (Basel) 2023; 14:1937. [PMID: 37895286 PMCID: PMC10606932 DOI: 10.3390/genes14101937] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Musculoskeletal diseases (MSDs) are characterized as injuries and illnesses that affect the musculoskeletal system. MSDs affect every population worldwide and are associated with substantial global burden. Variations in the makeup of the gut microbiota may be related to chronic MSDs. There is growing interest in exploring potential connections between chronic MSDs and variations in the composition of gut microbiota. The human microbiota is a complex community consisting of viruses, archaea, bacteria, and eukaryotes, both inside and outside of the human body. These microorganisms play crucial roles in influencing human physiology, impacting metabolic and immunological systems in health and disease. Different body areas host specific types of microorganisms, with facultative anaerobes dominating the gastrointestinal tract (able to thrive with or without oxygen), while strict aerobes prevail in the nasal cavity, respiratory tract, and skin surfaces (requiring oxygen for development). Together with the immune system, these bacteria have coevolved throughout time, forming complex biological relationships. Changes in the microbial ecology of the gut may have a big impact on health and can help illnesses develop. These changes are frequently impacted by lifestyle choices and underlying medical disorders. The potential for safety, expenses, and efficacy of microbiota-based medicines, even with occasional delivery, has attracted interest. They are, therefore, a desirable candidate for treating MSDs that are chronic and that may have variable progression patterns. As such, the following is a narrative review to address the role of the human microbiome as it relates to MSDs.
Collapse
Affiliation(s)
- Khaled Aboushaala
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Arnold Y. L. Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China;
| | - Juan Nicolas Barajas
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Perry Lim
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Ana Chee
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Christopher B. Forsyth
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Chun-do Oh
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sheila J. Toro
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | | | - Howard S. An
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Dino Samartzis
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
34
|
Merrill LC, Mangano KM. Racial and Ethnic Differences in Studies of the Gut Microbiome and Osteoporosis. Curr Osteoporos Rep 2023; 21:578-591. [PMID: 37597104 DOI: 10.1007/s11914-023-00813-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2023] [Indexed: 08/21/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the scientific evidence published in the past 5 years examining the epidemiology of bone health as it relates to the gut microbiome, across race and ethnicity groups. RECENT FINDINGS The link between the gut microbiome and bone health is well established and is supported by numerous biological mechanisms. However, human study research in this field is dominated by studies of older adults residing in Asian countries. A limited number of epidemiological and randomized controlled trials have been conducted with individuals in other countries; however, they are marked by their racial and ethnic homogeneity, use varied measures of the gut microbiome, and different interventions (where applicable), making comparisons across race and ethnic groups difficult. As the global prevalence of osteoporosis increases, the need for lifestyle interventions is critical. Existing data suggest that racial and ethnic differences in gut microbiome exist. Studies examining the relation between bone health and gut microbial structure and function across diverse racial and ethnic groups are needed to determine appropriate microbiome-based interventions.
Collapse
Affiliation(s)
- Lisa C Merrill
- Department of Public Health, University of Massachusetts Lowell, 61 Wilder Street, O'Leary 540, Lowell, MA, 01854, USA
| | - Kelsey M Mangano
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, 3 Solomont Way, Suite 4, Lowell, MA, 01854, USA.
| |
Collapse
|
35
|
Fu Z, Chen X, Xu C, Li G, Wu Y, Liu Q, Weng Z, Yan Q, Wang G, Gu A. Association of gut microbiota composition and craniosynostosis. Transl Pediatr 2023; 12:1464-1475. [PMID: 37692543 PMCID: PMC10485648 DOI: 10.21037/tp-23-76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/28/2023] [Indexed: 09/12/2023] Open
Abstract
Background Gut microbiota has been reported to be associated with a series of metabolic diseases including metabolic bone disease. However, study about gut microbiota and craniosynostosis (CS) is very rare. We aim to investigate the gut microbiota composition in CS patients and assess the possible relationship. Methods A total of 30 infants with CS and 30 infants with non-CS treated in Children's Hospital of Nanjing Medical University of Jiangsu Province from June 2021 to March 2022 were finally included in this study. All processing and analysis are carried out using 16S ribosomal RNA (rRNA) high-throughput gene sequencing. Results The CS group have significantly lower levels of family, genus, and species than non-CS group (all P<0.05). Furthermore, Staphylococcales and Lactobacillales at the order level, Enterococcaceae and Staphylococcaceae at the family level, and Enterococcus and Staphylococcus at the genus level were significantly enriched in the CS group (all P<0.05). Additionally, functional prediction showed that six metabolic pathways significantly differed between the two groups (all P<0.05). Of those, pathways involving polycyclic aromatic hydrocarbon degradation (P=0.030) and penicillin and cephalosporin biosynthesis (P=0.027) were more abundant in CS group than in non-CS group. Conclusions Gut microbiota was statistically associated with the development of CS, and several taxa and specific functional pathways with significantly altered abundance have been identified in CS patients. These findings can provide clues for the study on the mechanism and early diagnosis of CS.
Collapse
Affiliation(s)
- Zuqiang Fu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
- School of Public Health, Southeast University, Nanjing, China
| | - Xiu Chen
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Cheng Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Guang Li
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yuying Wu
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Zhenkun Weng
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Qing Yan
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Gang Wang
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
- School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
36
|
Chen S, Han H, Sun X, Zhou G, Zhou Q, Li Z. Causal effects of specific gut microbiota on musculoskeletal diseases: a bidirectional two-sample Mendelian randomization study. Front Microbiol 2023; 14:1238800. [PMID: 37664120 PMCID: PMC10469765 DOI: 10.3389/fmicb.2023.1238800] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Background Recent observational studies and clinical trials demonstrated an association between gut microbiota and musculoskeletal (MSK) diseases. Nonetheless, whether the gut microbiota composition has a causal effect on the risk of MSK diseases remains unclear. Methods Based on large-scale genome-wide association studies (GWAS), we performed a two-sample Mendelian randomization (MR) analysis to investigate the causal relationship between gut microbiota and six MSK diseases, namely osteoporosis (OP), fracture, sarcopenia, low back pain (LBP), rheumatoid arthritis (RA), and ankylosing spondylitis (AS). Instrumental variables for 211 gut microbiota taxa were obtained from the largest available GWAS meta-analysis (n = 18,340) conducted by the MiBioGen consortium. And the summary-level data for six MSK diseases were derived from published GWAS. The inverse-variance weighted (IVW) method was conducted as a primary analysis to estimate the causal effect, and the robustness of the results was tested via sensitivity analyses using multiple methods. The Bonferroni-corrected test was used to determine the strength of the causal relationship between gut microbiota and various MSK diseases. Finally, a reverse MR analysis was applied to evaluate reverse causality. Results According to the IVW method, we found 57 suggestive causal relationships and 3 significant causal relationships between gut microbiota and MSK diseases. Among them, Genus Bifidobacterium (β: 0.035, 95% CI: 0.013-0.058, p = 0.0002) was associated with increased left handgrip strength, Genus Oxalobacter (OR: 1.151, 95% CI: 1.065-1.245, p = 0.0003) was correlated with an increased risk of LBP, and Family Oxalobacteraceae (OR: 0.792, 95% CI: 0.698-0.899, p = 0.0003) was linked with a decreased risk of RA. Subsequently, sensitivity analyses revealed no heterogeneity, directional pleiotropy, or outliers for the causal effect of specific gut microbiota on MSK diseases (p > 0.05). Reverse MR analysis showed fracture may result in a higher abundance of Family Bacteroidales (p = 0.030) and sarcopenia may lead to a higher abundance of Genus Sellimonas (p = 0.032). Conclusion Genetic evidence suggested a causal relationship between specific bacteria taxa and six MSK diseases, which highlights the association of the "gut-bone/muscle" axis. Further exploration of the potential microbiota-related mechanisms of bone and muscle metabolism might provide novel insights into the prevention and treatment of MSK diseases.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Huawei Han
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaohe Sun
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Guowei Zhou
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qing Zhou
- Department of Ophthalmology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiwei Li
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
37
|
Chen S, Zhou G, Han H, Jin J, Li Z. Causal effects of specific gut microbiota on bone mineral density: a two-sample Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1178831. [PMID: 37645419 PMCID: PMC10461557 DOI: 10.3389/fendo.2023.1178831] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/13/2023] [Indexed: 08/31/2023] Open
Abstract
Background Recent studies have reported that the gut microbiota is essential for preventing and delaying the progression of osteoporosis. Nonetheless, the causal relationship between the gut microbiota and the risk of osteoporosis has not been fully revealed. Methods A two-sample Mendelian randomization (MR) analysis based on a large-scale genome-wide association study (GWAS) was conducted to investigate the causal relationship between the gut microbiota and bone mineral density (BMD). Instrumental variables for 211 gut microbiota taxa were obtained from the available GWAS meta-analysis (n = 18,340) conducted by the MiBioGen consortium. The summary-level data for BMD were from the Genetic Factors for Osteoporosis (GEFOS) Consortium, which involved a total of 32,735 individuals of European ancestry. The inverse variance-weighted (IVW) method was performed as a primary analysis to estimate the causal effect, and the robustness of the results was tested via sensitivity analyses by using multiple methods. Finally, a reverse MR analysis was applied to evaluate reverse causality. Results According to the IVW method, we found that nine, six, and eight genetically predicted gut microbiota were associated with lumbar spine (LS) BMD, forearm (FA) BMD, and femoral neck (FN) BMD, respectively. Among them, the higher genetically predicted Genus Prevotella9 level was correlated with increased LS-BMD [β = 0.125, 95% confidence interval (CI): 0.050-0.200, P = 0.001] and FA-BMD (β = 0.129, 95% CI: 0.007-0.251, P = 0.039). The higher level of genetically predicted Family Prevotellaceae was associated with increased FA-BMD (β = 0.154, 95% CI: 0.020-0.288, P = 0.025) and FN-BMD (β = 0.080, 95% CI: 0.015-0.145, P = 0.016). Consistent directional effects for all analyses were observed in both the MR-Egger and weighted median methods. Subsequently, sensitivity analyses revealed no heterogeneity, directional pleiotropy, or outliers for the causal effect of specific gut microbiota on BMD (P > 0.05). In reverse MR analysis, there was no evidence of reverse causality between LS-BMD, FA-BMD, and FN-BMD and gut microbiota (P > 0.05). Conclusion Genetic evidence suggested a causal relationship between the gut microbiota and BMD and identified specific bacterial taxa that regulate bone mass variation. Further exploration of the potential microbiota-related mechanisms of bone metabolism might provide new approaches for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Guowei Zhou
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Huawei Han
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Jin
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiwei Li
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
38
|
Liang Z, Hao Y, Yang L, Yuan P, Kang W, Liang T, Gu B, Dong B. The potential of Klebsiella and Escherichia-Shigella and amino acids metabolism to monitor patients with postmenopausal osteoporosis in northwest China. BMC Microbiol 2023; 23:199. [PMID: 37495941 PMCID: PMC10373412 DOI: 10.1186/s12866-023-02927-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Intestinal flora has been proposed to mediate the occurrence of postmenopausal osteoporosis (PMO). However, the mechanism by which microbes and their metabolites interactively promote PMO remains unknown. METHODS This study aimed to investigate changes in the intestinal flora and associated metabolites, and their role in PMO. 16S rRNA gene sequencing and metabolomics were performed to obtain postmenopausal women with osteopenia (lower bone mass, LBM), postmenopausal women with osteoporosis (OST), and healthy women as the control group. RESULTS We identified taxa-specific and metabolite differences in the intestinal flora of the participants of this study. The pathogenic bacteria Klebsiella (0.59% and 0.71%, respectively) and Escherichia-Shigella (2.72% and 4.30%, respectively) were enriched in the LBM and OST groups (p < 0.05). Some short-chain fatty acid (SCFAs) producing bacteria, Lactobacillus, Akkermansia, Prevotella, Alistipes, and Butyricicoccus, were reduced in patients with LBM and OST compared to the control. Moreover, fecal metabolomic analyses suggested that the metabolites of indole-3-acetic acid and 7-ketodeoxycholic acid were altered in the LBM and OST groups compared to the control (p < 0.05). Enrichment analysis suggested that valine, leucine, and isoleucine biosynthesis; aromatic amino acid biosynthesis; and phenylalanine metabolism were significantly associated with the identified microbiota biomarkers and OST. Moreover, metabolite marker signatures distinguished patients in the OST from those in the control group with an area under the curve (AUC) of 0.978 and 1.00 in the negative and positive ion modes, respectively. Finally, we also found that the fecal level of interleukin-10 (IL-10) in the OST group was significantly lower than that in the control group and LBM group (p < 0.05), while tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were significantly higher in the OST group than that in the control group (p < 0.05). CONCLUSIONS This study provides robust evidence connecting the intestinal flora and fecal metabolomics with PMO. Integrated metabolite and microbiota analyses demonstrated that in addition to dysregulated bacteria, indole-3-acetic acid, 7-ketodeoxycholic acid, and other metabolites can be used for the distinguish of LBM and PMO.
Collapse
Affiliation(s)
- Zhuang Liang
- Department of Rehabilitation Hospital Pain Ward, Xi'an Jiaotong University Affiliated Honghui Hospital, Xi'an, Shaanxi, 710054, China
| | - Yuqi Hao
- Department of Internal Medicine, Ordos Traditional Chinese Medicine Hospital, Ordos, 017000, Inner Mongolia, China
| | - Lei Yang
- Department of Rehabilitation Hospital Pain Ward, Xi'an Jiaotong University Affiliated Honghui Hospital, Xi'an, Shaanxi, 710054, China
| | - Puwei Yuan
- Department of Rehabilitation Hospital Pain Ward, Xi'an Jiaotong University Affiliated Honghui Hospital, Xi'an, Shaanxi, 710054, China
| | - Wulin Kang
- Department of Rehabilitation Hospital Pain Ward, Xi'an Jiaotong University Affiliated Honghui Hospital, Xi'an, Shaanxi, 710054, China
| | - Tingting Liang
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, Guangdong, China.
| | - Bing Gu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, Guangdong, China.
| | - Bo Dong
- Department of Rehabilitation Hospital Pain Ward, Xi'an Jiaotong University Affiliated Honghui Hospital, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
39
|
Zhang RK, Yan K, Chen HF, Zhang Y, Li GJ, Chen XG, Ge LP, Cheng F, Chen ZN, Yao XM. Anti-osteoporotic drugs affect the pathogenesis of gut microbiota and its metabolites: a clinical study. Front Cell Infect Microbiol 2023; 13:1091083. [PMID: 37475958 PMCID: PMC10354646 DOI: 10.3389/fcimb.2023.1091083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 05/22/2023] [Indexed: 07/22/2023] Open
Abstract
Background Disordered gut microbiota (GM) structure and function may contribute to osteoporosis (OP). This study explores how traditional Chinese medicine (TCM) intervention affects the structure and function of the GM in patients with OP. Method In a 3-month clinical study, 43 patients were randomly divided into two groups receiving conventional treatment and combined TCM (Yigu decoction, YGD) treatment. The correlation between the intestinal flora and its metabolites was analyzed using 16S rDNA and untargeted metabolomics and the combination of the two. Results After three months of treatment, patients in the treatment group had better bone mineral density (BMD) than those in the control group (P < 0.05). Patients in the treatment group had obvious abundance changes in GM microbes, such as Bacteroides, Escherichia-Shigella, Faecalibacterium, Megamonas, Blautia, Klebsiella, Romboutsia, Akkermansia, and Prevotella_9. The functional changes observed in the GM mainly involved changes in metabolic function, genetic information processing and cellular processes. The metabolites for which major changes were observed were capsazepine, Phe-Tyr, dichlorprop, D-pyroglutamic acid and tamsulosin. These metabolites may act through metabolic pathways, the citrate cycle (TCA cycle) and beta alanine metabolism. Combined analysis showed that the main acting metabolites were dichlorprop, capsazepine, D-pyroglutamic acid and tamsulosin. Conclusion This study showed that TCM influenced the structure and function of the GM in patients with OP, which may be one mechanism by which TCM promotes the rehabilitation of patients with OP through the GM.
Collapse
Affiliation(s)
- Rui-kun Zhang
- The Third Clinical Medical College of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Kun Yan
- Department of Orthopedics, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hai-feng Chen
- The Third Clinical Medical College of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yang Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Gui-jin Li
- Department of Orthopedics, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiao-gang Chen
- Department of Orthopedics, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lin-pu Ge
- Department of Orthopedics, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Feng Cheng
- Department of Orthopedics, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhi-neng Chen
- Department of Orthopedics, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xin-miao Yao
- Department of Orthopedics, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
40
|
Akinsuyi OS, Roesch LFW. Meta-Analysis Reveals Compositional and Functional Microbial Changes Associated with Osteoporosis. Microbiol Spectr 2023; 11:e0032223. [PMID: 37042756 PMCID: PMC10269714 DOI: 10.1128/spectrum.00322-23] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
Over the past decade, the role of the gut microbiota in many disease states has gained a great deal of attention. Mounting evidence from case-control and observational studies has linked changes in the gut microbiota to the pathophysiology of osteoporosis (OP). Nonetheless, the results of these studies contain discrepancies, leaving the literature without a consensus on osteoporosis-associated microbial signatures. Here, we conducted a comprehensive meta-analysis combining and reexamining five publicly available 16S rRNA partial sequence data sets to identify gut bacteria consistently associated with osteoporosis across different cohorts. After adjusting for the batch effect associated with technical variation and heterogeneity of studies, we observed a significant shift in the microbiota composition in the osteoporosis group. An increase in the relative abundance of opportunistic pathogens Clostridium sensu stricto, Bacteroides, and Intestinibacter was observed in the OP group. Moreover, short-chain-fatty-acid (SCFA) producers, including members of the genera Collinsella, Megasphaera, Agathobaculum, Mediterraneibacter, Clostridium XIV, and Dorea, were depleted in the OP group relative to the healthy control (HC) group. Lactic acid-producing bacteria, including Limosilactobacillus, were significantly increased in the OP group. The random forest algorithm further confirmed that these bacteria differentiate the two groups. Furthermore, functional prediction revealed depletion of the SCFA biosynthesis pathway (glycolysis, tricarboxylic acid [TCA] cycle, and Wood-Ljungdahl pathway) and amino acid biosynthesis pathway (methionine, histidine, and arginine) in the OP group relative to the HC group. This study uncovered OP-associated compositional and functional microbial alterations, providing robust insight into OP pathogenesis and aiding the possible development of a therapeutic intervention to manage the disease. IMPORTANCE Osteoporosis is the most common metabolic bone disease associated with aging. Mounting evidence has linked changes in the gut microbiota to the pathophysiology of osteoporosis. However, which microbes are associated with dysbiosis and their impact on bone density and inflammation remain largely unknown due to inconsistent results in the literature. Here, we present a meta-analysis with a standard workflow, robust statistical approaches, and machine learning algorithms to identify notable microbial compositional changes influencing osteoporosis.
Collapse
Affiliation(s)
- Oluwamayowa S. Akinsuyi
- Institute of Food and Agriculture, Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Luiz F. W. Roesch
- Institute of Food and Agriculture, Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
41
|
Wang J, Chen G, Chen H, Chen J, Su Q, Zhuang W. Exploring the characteristics of gut microbiome in patients of Southern Fujian with hypocitraturia urolithiasis and constructing clinical diagnostic models. Int Urol Nephrol 2023:10.1007/s11255-023-03662-6. [PMID: 37294502 DOI: 10.1007/s11255-023-03662-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/04/2023] [Indexed: 06/10/2023]
Abstract
PURPOSE Hypocitraturia is an important cause of urolithiasis. Exploring the characteristics of the gut microbiome (GMB) of hypocitriuria urolithiasis (HCU) patients can provide new ideas for the treatment and prevention of urolithiasis. METHODS The 24 h urinary citric acid excretion of 19 urolithiasis patients was measured, and patients were divided into the HCU group and the normal citrate urolithiasis (NCU) group. The 16 s ribosomal RNA (rRNA) was used to detect GMB composition differences and construct operational taxonomic units (OTUs) coexistence networks. The key bacterial community was determined by Lefse analysis, Metastats analysis and RandomForest analysis. Redundancy analysis (RDA) and Pearson correlation analysis visualized the correlation between key OTUs and clinical features and then established the disease diagnosis model of microbial-clinical indicators. Finally, PICRUSt2 was used to explore the metabolic pathway of related GMB in HCU patients. RESULTS The alpha diversity of GMB in HCU group was increased and Beta diversity analysis suggested significant differences between HCU and NCU groups, which was related to renal function damage and urinary tract infection. Ruminococcaceae_ge and Turicibacter are the characteristic bacterial groups of HCU. Correlation analysis showed that the characteristic bacterial groups were significantly associated with various clinical features. Based on this, the diagnostic models of microbiome-clinical indicators in HCU patients were constructed with the areas under the curve (AUC) of 0.923 and 0.897, respectively. Genetic and metabolic processes of HCU are affected by changes in GMB abundance. CONCLUSION GMB disorder may be involved in the occurrence and clinical characteristics of HCU by influencing genetic and metabolic pathways. The new microbiome-clinical indicator diagnostic model is effective.
Collapse
Affiliation(s)
- Jialiang Wang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Licheng District Zhongshan North Road, Quanzhou, 362000, Fujian, China
| | - Guofeng Chen
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Licheng District Zhongshan North Road, Quanzhou, 362000, Fujian, China
| | - Heyi Chen
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Licheng District Zhongshan North Road, Quanzhou, 362000, Fujian, China
| | - Jiabi Chen
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Licheng District Zhongshan North Road, Quanzhou, 362000, Fujian, China
| | - Qingfu Su
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Licheng District Zhongshan North Road, Quanzhou, 362000, Fujian, China.
| | - Wei Zhuang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Licheng District Zhongshan North Road, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
42
|
Yang J, Wu J. Discovery of potential biomarkers for osteoporosis diagnosis by individual omics and multi-omics technologies. Expert Rev Mol Diagn 2023:1-16. [PMID: 37140363 DOI: 10.1080/14737159.2023.2208750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
INTRODUCTION Global aging has made osteoporosis an increasingly serious public health problem. Osteoporotic fractures seriously affect the quality of life of patients and increase disability and mortality rates. Early diagnosis is important for timely intervention. The continuous development of individual- and multi-omics methods is helpful for the exploration and discovery of biomarkers for the diagnosis of osteoporosis. AREAS COVERED In this review, we first introduce the epidemiological status of osteoporosis and then describe the pathogenesis of osteoporosis. Furthermore, the latest progress in individual- and multi-omics technologies for exploring biomarkers for osteoporosis diagnosis is summarized. Moreover, we clarify the advantages and disadvantages of the application of osteoporosis biomarkers obtained using the omics method. Finally, we put forward valuable views on the future research direction of diagnostic biomarkers of osteoporosis. EXPERT OPINION Omics methods undoubtedly provide greatly contribute to the exploration of diagnostic biomarkers of osteoporosis; however, in the future, the clinical validity and clinical utility of the obtained potential biomarkers should be thoroughly examined. In addition, the improvement and optimization of the detection methods for different types of biomarkers and standardization of the detection process guarantee the reliability and accuracy of the detection results.
Collapse
Affiliation(s)
- Jing Yang
- Department of Clinical Laboratory Medicine, Beijing Jishuitan Hospital, Peking University, Beijing, China
| | - Jun Wu
- Department of Clinical Laboratory Medicine, Beijing Jishuitan Hospital, Peking University, Beijing, China
| |
Collapse
|
43
|
Chen Y, Yang C, Dai Q, Tan J, Dou C, Luo F. Gold-nanosphere mitigates osteoporosis through regulating TMAO metabolism in a gut microbiota-dependent manner. J Nanobiotechnology 2023; 21:125. [PMID: 37041523 PMCID: PMC10088181 DOI: 10.1186/s12951-023-01872-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
Osteoporosis (OP) is a metabolic bone disease characterized by decreased bone mass and increased bone fragility. The imbalance of bone homeostasis modulated by osteoclasts and osteoblasts is the most crucial pathological change in osteoporosis. As a novel treatment strategy, nanomedicine has been applied in drug delivery and targeted therapy due to its high efficiency, precision, and fewer side effects. Gold nanospheres (GNS), as a common kind of gold nanoparticles (GNPs), possess significant antimicrobial and anti-inflammatory activity, which have been applied for the treatment of eye diseases and rheumatoid arthritis. However, the effect of GNS on osteoporosis remains elusive. In this study, we found that GNS significantly prevented ovariectomy (OVX)-induced osteoporosis in a gut microbiota-dependent manner. 16S rDNA gene sequencing demonstrated GNS markedly altered the gut microbial diversity and flora composition. In addition, GNS reduced the abundance of TMAO-related metabolites in OVX mice. Low TMAO levels might alleviate the bone loss phenomenon by reducing the inflammation response. Therefore, we investigated the alteration of cytokine profiles in OVX mice. GNS inhibited the release of pro-osteoclastogenic or proinflammatory cytokines including tumor necrosis factor α (TNF-α), interleukin (IL)-6, and granulocyte colony-stimulating factor (G-CSF) in the serum. In conclusion, GNS suppressed estrogen deficiency-induced bone loss by regulating the destroyed homeostasis of gut microbiota so as to reduce its relevant TMAO metabolism and restrain the release of proinflammatory cytokines. These results demonstrated the protective effects of GNS on osteoporosis as a gut microbiota modulator and offered novel insights into the regulation of the "gut-bone" axis.
Collapse
Affiliation(s)
- Yueqi Chen
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
| | - Chuan Yang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Qijie Dai
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Jiulin Tan
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Ce Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
| |
Collapse
|
44
|
Huang D, Wang J, Zeng Y, Li Q, Wang Y. Identifying microbial signatures for patients with postmenopausal osteoporosis using gut microbiota analyses and feature selection approaches. Front Microbiol 2023; 14:1113174. [PMID: 37077242 PMCID: PMC10106639 DOI: 10.3389/fmicb.2023.1113174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/15/2023] [Indexed: 04/05/2023] Open
Abstract
Osteoporosis (OP) is a metabolic bone disorder characterized by low bone mass and deterioration of micro-architectural bone tissue. The most common type of OP is postmenopausal osteoporosis (PMOP), with fragility fractures becoming a global burden for women. Recently, the gut microbiota has been connected to bone metabolism. The aim of this study was to characterize the gut microbiota signatures in PMOP patients and controls. Fecal samples from 21 PMOP patients and 37 controls were collected and analyzed using amplicon sequencing of the V3-V4 regions of the 16S rRNA gene. The bone mineral density (BMD) measurement and laboratory biochemical test were performed on all participants. Two feature selection algorithms, maximal information coefficient (MIC) and XGBoost, were employed to identify the PMOP-related microbial features. Results showed that the composition of gut microbiota changed in PMOP patients, and microbial abundances were more correlated with total hip BMD/T-score than lumbar spine BMD/T-score. Using the MIC and XGBoost methods, we identified a set of PMOP-related microbes; a logistic regression model revealed that two microbial markers (Fusobacteria and Lactobacillaceae) had significant abilities in disease classification between the PMOP and control groups. Taken together, the findings of this study provide new insights into the etiology of OP/PMOP, as well as modulating gut microbiota as a therapeutic target in the diseases. We also highlight the application of feature selection approaches in biological data mining and data analysis, which may improve the research in medical and life sciences.
Collapse
Affiliation(s)
- Dageng Huang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Jihan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Yuhong Zeng
- Department of Osteoporosis, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Qingmei Li
- Department of Osteoporosis, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Qingmei Li,
| | - Yangyang Wang
- School of Electronics and Information, Northwestern Polytechnical University, Xi’an, China
- Yangyang Wang,
| |
Collapse
|
45
|
Mena-Vázquez N, Ruiz-Limón P, Moreno-Indias I, Manrique-Arija S, Lisbona-Montañez JM, Rioja J, Mucientes A, Martin-Núñez GM, Cano-García L, Tinahones FJ, Fernández-Nebro A. Adiposity is associated with expansion of the genus Dialister in rheumatoid arthritis patients. Biomed Pharmacother 2023; 160:114388. [PMID: 36773522 DOI: 10.1016/j.biopha.2023.114388] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
OBJECTIVE To analyze the intestinal microbiota of patients with rheumatoid arthritis (RA) and obesity and a higher percentage of fatty tissue. METHODS Nested case-control study of 80 RA patients and 80 age and sex-matched controls. Obesity was defined as a body mass index ≥ 30, and body composition using dual-energy x-ray absorptiometry. The gut microbiota was analyzed using 16 S rRNA gene sequencing; bioinformatics analysis was performed using QIIME2 and PICRUSt. Other variables included averaged 28-joint Disease Activity Score (DAS28-ESR), cytokines and adipokines. Two multivariate were constructed with obesity and fat mass index (FMI). RESULTS Obesity was more frequent in RA patients than in controls (36.3 % vs 25.1 %; p = 0.026), as was a higher FMI value (mean [SE]=11.6 [3.9] vs 10.2 [3.9]; p = 0.032). Alpha and beta diversity analysis revealed differences in gut microbiota between RA patients with and without obesity. Dialister and Odoribacter were more abundant in RA patients with obesity than in RA patients without obesity, while the genus Clostridium was more abundant in RA patients without obesity. The factors associated with obesity in RA patients were age (OR [95 % CI], 1.09 [1.02-1.17]), mean DAS28-ESR (OR [95 % CI], 1.46 [1.12-1.67]), leptin levels (OR [95 % CI], 1.06 [1.01-1.10]), the genus Dialister (OR [95 % CI], 1.03 [1.01-1.07]), and the genus Clostridium (OR [95 % CI], 0.013 [0.00-0.36]). The associations observed for FMI were similar. CONCLUSIONS In patients with RA, obesity, and a higher percentage of fatty tissue, intestinal microbiota differed from that of controls and of the other patients. The genus Dialister was associated with obesity and FMI.
Collapse
Affiliation(s)
- Natalia Mena-Vázquez
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), 29590 Málaga, Spain; UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
| | - Patricia Ruiz-Limón
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), 29590 Málaga, Spain; Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Clínico Virgen de la Victoria, 29010 Málaga, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Isabel Moreno-Indias
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), 29590 Málaga, Spain; Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Clínico Virgen de la Victoria, 29010 Málaga, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Sara Manrique-Arija
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), 29590 Málaga, Spain; UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain; Departamento de Medicina. Universidad de Málaga, 29010 Málaga, Spain
| | - Jose Manuel Lisbona-Montañez
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), 29590 Málaga, Spain; UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain; Departamento de Medicina. Universidad de Málaga, 29010 Málaga, Spain
| | - José Rioja
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), 29590 Málaga, Spain; Departamento de Medicina. Universidad de Málaga, 29010 Málaga, Spain
| | - Arkaitz Mucientes
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), 29590 Málaga, Spain; UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
| | - Gracia María Martin-Núñez
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), 29590 Málaga, Spain; UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain; Departamento de Medicina. Universidad de Málaga, 29010 Málaga, Spain
| | - Laura Cano-García
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), 29590 Málaga, Spain; UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
| | - Francisco J Tinahones
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), 29590 Málaga, Spain; Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Clínico Virgen de la Victoria, 29010 Málaga, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Departamento de Medicina. Universidad de Málaga, 29010 Málaga, Spain
| | - Antonio Fernández-Nebro
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), 29590 Málaga, Spain; UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain; Departamento de Medicina. Universidad de Málaga, 29010 Málaga, Spain
| |
Collapse
|
46
|
Zhou RX, Zhang YW, Cao MM, Liu CH, Rui YF, Li YJ. Linking the relation between gut microbiota and glucocorticoid-induced osteoporosis. J Bone Miner Metab 2023; 41:145-162. [PMID: 36912997 PMCID: PMC10010237 DOI: 10.1007/s00774-023-01415-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/27/2023] [Indexed: 03/14/2023]
Abstract
Osteoporosis (OP) is the most prevalent metabolic bone disease, characterized by the low bone mass and microarchitectural deterioration of bone tissue. Glucocorticoid (GC) clinically acts as one of the anti-inflammatory, immune-modulating, and therapeutic drugs, whereas the long-term use of GC may cause rapid bone resorption, followed by prolonged and profound suppression of bone formation, resulting in the GC-induced OP (GIOP). GIOP ranks the first among secondary OP and is a pivotal risk for fracture, as well as high disability rate and mortality, at both societal and personal levels, vital costs. Gut microbiota (GM), known as the "second gene pool" of human body, is highly correlated with maintaining the bone mass and bone quality, and the relation between GM and bone metabolism has gradually become a research hotspot. Herein, combined with recent studies and based on the cross-linking relationship between GM and OP, this review is aimed to discuss the potential mechanisms of GM and its metabolites on the OP, as well as the moderating effects of GC on GM, thereby providing an emerging thought for prevention and treatment of GIOP.
Collapse
Affiliation(s)
- Rui-Xin Zhou
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yuan-Wei Zhang
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing , Jiangsu, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China
| | - Mu-Min Cao
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing , Jiangsu, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China
| | - Cun-Hao Liu
- School of Architecture, Southeast University, Nanjing, Jiangsu, China
| | - Yun-Feng Rui
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing , Jiangsu, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China
| | - Ying-Juan Li
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, People's Republic of China.
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
47
|
Madel MB, Halper J, Ibáñez L, Claire L, Rouleau M, Boutin A, Mahler A, Pontier-Bres R, Ciucci T, Topi M, Hue C, Amiaud J, Iborra S, Sancho D, Heymann D, Garchon HJ, Czerucka D, Apparailly F, Duroux-Richard I, Wakkach A, Blin-Wakkach C. Specific targeting of inflammatory osteoclastogenesis by the probiotic yeast S. boulardii CNCM I-745 reduces bone loss in osteoporosis. eLife 2023; 12:e82037. [PMID: 36848406 PMCID: PMC9977286 DOI: 10.7554/elife.82037] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/12/2023] [Indexed: 03/01/2023] Open
Abstract
Bone destruction is a hallmark of chronic inflammation, and bone-resorbing osteoclasts arising under such a condition differ from steady-state ones. However, osteoclast diversity remains poorly explored. Here, we combined transcriptomic profiling, differentiation assays and in vivo analysis in mouse to decipher specific traits for inflammatory and steady-state osteoclasts. We identified and validated the pattern-recognition receptors (PRR) Tlr2, Dectin-1, and Mincle, all involved in yeast recognition as major regulators of inflammatory osteoclasts. We showed that administration of the yeast probiotic Saccharomyces boulardii CNCM I-745 (Sb) in vivo reduced bone loss in ovariectomized but not sham mice by reducing inflammatory osteoclastogenesis. This beneficial impact of Sb is mediated by the regulation of the inflammatory environment required for the generation of inflammatory osteoclasts. We also showed that Sb derivatives as well as agonists of Tlr2, Dectin-1, and Mincle specifically inhibited directly the differentiation of inflammatory but not steady-state osteoclasts in vitro. These findings demonstrate a preferential use of the PRR-associated costimulatory differentiation pathway by inflammatory osteoclasts, thus enabling their specific inhibition, which opens new therapeutic perspectives for inflammatory bone loss.
Collapse
Affiliation(s)
- Maria-Bernadette Madel
- Université Côte d’Azur, CNRS, LP2MNiceFrance
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
| | - Julia Halper
- Université Côte d’Azur, CNRS, LP2MNiceFrance
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
| | - Lidia Ibáñez
- Department of Pharmacy, Cardenal Herrera-CEU UniversityValenciaSpain
| | | | - Matthieu Rouleau
- Université Côte d’Azur, CNRS, LP2MNiceFrance
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
| | - Antoine Boutin
- Université Côte d’Azur, CNRS, LP2MNiceFrance
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
| | - Adrien Mahler
- Université Côte d’Azur, CNRS, LP2MNiceFrance
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
| | - Rodolphe Pontier-Bres
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
- Centre Scientifiquede MonacoMonaco
| | - Thomas Ciucci
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesdaUnited States
| | - Majlinda Topi
- Université Côte d’Azur, CNRS, LP2MNiceFrance
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
| | - Christophe Hue
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammationMontigny-Le-BretonneuxFrance
| | | | - Salvador Iborra
- Department of Immunology, Ophthalmology and ENT. School of Medicine, Universidad Complutense de MadridMadridSpain
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Dominique Heymann
- Université de Nantes, Institut de Cancérologie de l’OuestSaint HerblainFrance
| | - Henri-Jean Garchon
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammationMontigny-Le-BretonneuxFrance
- Genetics Division, Ambroise Paré Hospital, AP-HPBoulogne-BillancourtFrance
| | - Dorota Czerucka
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
- Centre Scientifiquede MonacoMonaco
| | | | | | - Abdelilah Wakkach
- Université Côte d’Azur, CNRS, LP2MNiceFrance
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
| | - Claudine Blin-Wakkach
- Université Côte d’Azur, CNRS, LP2MNiceFrance
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
| |
Collapse
|
48
|
Inchingolo AM, Patano A, Di Pede C, Inchingolo AD, Palmieri G, de Ruvo E, Campanelli M, Buongiorno S, Carpentiere V, Piras F, Settanni V, Viapiano F, Hazballa D, Rapone B, Mancini A, Di Venere D, Inchingolo F, Fatone MC, Palermo A, Minetti E, Lorusso F, Scarano A, Sauro S, Tartaglia GM, Bordea IR, Dipalma G, Malcangi G. Autologous Tooth Graft: Innovative Biomaterial for Bone Regeneration. Tooth Transformer® and the Role of Microbiota in Regenerative Dentistry. A Systematic Review. J Funct Biomater 2023; 14:jfb14030132. [PMID: 36976056 PMCID: PMC10058341 DOI: 10.3390/jfb14030132] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
Different biomaterials, from synthetic products to autologous or heterologous grafts, have been suggested for the preservation and regeneration of bone. The aim of this study is to evaluate the effectiveness of autologous tooth as a grafting material and examine the properties of this material and its interactions with bone metabolism. PubMed, Scopus, Cochrane Library, and Web of Science were searched to find articles addressing our topic published from 1 January 2012 up to 22 November 2022, and a total of 1516 studies were identified. Eighteen papers in all were considered in this review for qualitative analysis. Demineralized dentin can be used as a graft material, since it shows high cell compatibility and promotes rapid bone regeneration by striking an ideal balance between bone resorption and production; it also has several benefits, such as quick recovery times, high-quality newly formed bone, low costs, no risk of disease transmission, the ability to be performed as an outpatient procedure, and no donor-related postoperative complications. Demineralization is a crucial step in the tooth treatment process, which includes cleaning, grinding, and demineralization. Since the presence of hydroxyapatite crystals prevents the release of growth factors, demineralization is essential for effective regenerative surgery. Even though the relationship between the bone system and dysbiosis has not yet been fully explored, this study highlights an association between bone and gut microbes. The creation of additional scientific studies to build upon and enhance the findings of this study should be a future objective of scientific research.
Collapse
Affiliation(s)
| | - Assunta Patano
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Chiara Di Pede
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | | | - Giulia Palmieri
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Elisabetta de Ruvo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Merigrazia Campanelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Silvio Buongiorno
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Vincenzo Carpentiere
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Fabio Piras
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Vito Settanni
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Fabio Viapiano
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Denisa Hazballa
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Daniela Di Venere
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Correspondence: (F.I.); (M.C.F.); Tel.: +39-331-211-1104 (F.I.); +39-3479914635 (M.C.F.)
| | - Maria Celeste Fatone
- PTA Trani-ASL BT, Viale Padre Pio, 76125 Trani, Italy
- Correspondence: (F.I.); (M.C.F.); Tel.: +39-331-211-1104 (F.I.); +39-3479914635 (M.C.F.)
| | - Andrea Palermo
- College of Medicine and Dentistry Birmingham, University of Birmingham, Birmingham B4 6BN, UK
| | - Elio Minetti
- Department of Biomedical, Surgical, and Dental Science, Università Degli Studi di Milano, 20122 Milan, Italy
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Salvatore Sauro
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Dental Biomaterials and Minimally Invasive Dentistry, Department of Dentistry, Cardenal Herrera-CEU University, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain
| | - Gianluca Martino Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20100 Milan, Italy
- UOC Maxillo-Facial Surgery and Dentistry Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
49
|
Cui X, Liu X, Wang F, Lou K, Hong J, Bai H, Chen R, Yang Y, Liu Q. Determination of the synergistic anti-influenza effect of Huangqin Su tablet and Oseltamivir and investigation of mechanism of the tablet based on gut microbiota and network pharmacology. BMC Complement Med Ther 2023; 23:36. [PMID: 36739385 PMCID: PMC9898901 DOI: 10.1186/s12906-023-03858-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/23/2023] [Indexed: 02/06/2023] Open
Abstract
Huangqin Su (HQS) tablet is mainly composed of baicalein which has been evaluated for its ability to inhibit influenza. The present study aimed to investigate the effect of HQS and oseltamivir phosphate (OS) (single or combination therapy) on influenza-induced acute pneumonia in male and female ICR mice. The regulatory effect of HQS on gut microbiota was also studied by using 16 s rDNA sequencing, and the targets and mechanisms of HQS against influenza were comprehensively analyzed by network pharmacology. Pharmacodynamic results, including lung index and pathological changes, showed that HQS exhibited significant anti-influenza efficacy and could improve the efficacy of low-dose OS (P < 0.05 and P < 0.01, respectively). The results of 16 s rDNA sequencing revealed that HQS modulated the gut microbiota and remarkably enriched the abundance of Lactobacillus. The findings of network pharmacology research suggested that the anti-influenza mechanism of HQS was related to TLRs, MAPK, and other signal transduction pathways. Taken together, this study identified the possibility of the combined use of HQS and OS and demonstrated the role of HQS in modulating the gut microbiota of mice against influenza. Network pharmacology studies also suggested that the anti-influenza effect of HQS was related to TLRs, MAPK, TNF, and other signaling pathways.
Collapse
Affiliation(s)
- Xuran Cui
- grid.24696.3f0000 0004 0369 153XBeijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010 China ,Beijing Institute of Chinese Medicine, Beijing, China ,Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine On Infectious Diseases, Beijing, China
| | - Xibao Liu
- CSPC ZhongQi Pharmaceutical Technology Co., Ltd, Shijiazhuang, China
| | - Feng Wang
- CSPC ZhongQi Pharmaceutical Technology Co., Ltd, Shijiazhuang, China
| | - Kun Lou
- CSPC ZhongQi Pharmaceutical Technology Co., Ltd, Shijiazhuang, China
| | - Junping Hong
- CSPC ZhongQi Pharmaceutical Technology Co., Ltd, Shijiazhuang, China
| | - Hequn Bai
- CSPC ZhongQi Pharmaceutical Technology Co., Ltd, Shijiazhuang, China
| | - Rongchu Chen
- CSPC ZhongQi Pharmaceutical Technology Co., Ltd, Shijiazhuang, China
| | - Yang Yang
- CSPC ZhongQi Pharmaceutical Technology Co., Ltd, Shijiazhuang, China
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China. .,Beijing Institute of Chinese Medicine, Beijing, China. .,Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine On Infectious Diseases, Beijing, China.
| |
Collapse
|
50
|
Kuo YJ, Chen CJ, Hussain B, Tsai HC, Hsu GJ, Chen JS, Asif A, Fan CW, Hsu BM. Inferring Bacterial Community Interactions and Functionalities Associated with Osteopenia and Osteoporosis in Taiwanese Postmenopausal Women. Microorganisms 2023; 11:234. [PMID: 36838199 PMCID: PMC9959971 DOI: 10.3390/microorganisms11020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/30/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Growing evidence suggests that the gut microbiota and their metabolites are associated with bone homeostasis and fragility. However, this association is limited to microbial taxonomic differences. This study aimed to explore whether gut bacterial community associations, composition, and functions are associated with osteopenia and osteoporosis. We compared the gut bacterial community composition and interactions of healthy postmenopausal women with normal bone density (n = 8) with those of postmenopausal women with osteopenia (n = 18) and osteoporosis (n = 21) through 16S rRNA sequencing coupled with network biology and statistical analyses. The results of this study showed reduced alpha diversity in patients with osteoporosis, followed by that in patients with osteopenia, then in healthy controls. Taxonomic analysis revealed that significantly enriched bacterial genera with higher abundance was observed in patients with osteoporosis and osteopenia than in healthy subjects. Additionally, a co-occurrence network revealed that, compared to healthy controls, bacterial interactions were higher in patients with osteoporosis, followed by those with osteopenia. Further, NetShift analysis showed that a higher number of bacteria drove changes in the microbial community structure of patients with osteoporosis than osteopenia. Correlation analysis revealed that most of these driver bacteria had a significant positive relationship with several significant metabolic pathways. Further, ordination analysis revealed that height and T-score were the primary variables influencing the gut microbial community structure. Taken together, this study evaluated that microbial community interaction is more important than the taxonomic differences in knowing the critical role of gut microbiota in postmenopausal women associated with osteopenia and osteoporosis. Additionally, the significantly enriched bacteria and functional pathways might be potential biomarkers for the prognosis and treatment of postmenopausal women with osteopenia and osteoporosis.
Collapse
Affiliation(s)
- Yi-Jie Kuo
- Department of Orthopedic Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Chia-Jung Chen
- Department of Chinese Medicine, Dalin Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Chiayi 622, Taiwan
| | - Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 621, Taiwan
| | - Hsin-Chi Tsai
- Department of Psychiatry, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Department of Psychiatry, Tzu-Chi General Hospital, Hualien 970, Taiwan
| | - Gwo-Jong Hsu
- Division of Infectious Disease, Department of Internal Medicine, Chia-Yi Christian Hospital, Chiayi 621, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan
| | - Aslia Asif
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan
- Doctoral Program in Science, Technology, Environment and Mathematics, National Chung Cheng University, Chiayi 621, Taiwan
| | - Cheng-Wei Fan
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan
| |
Collapse
|