1
|
Song BPC, Lai JY, Choong YS, Khanbabaei N, Latz A, Lim TS. Isolation of anti-Ancylostoma-secreted protein 5 (ASP5) antibody from a naïve antibody phage library. J Immunol Methods 2024; 535:113776. [PMID: 39551437 DOI: 10.1016/j.jim.2024.113776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
Ancylostoma species are parasitic nematodes that release a multitude of proteins to manipulate host immune responses to facilitate their survival. Among the released proteins, Ancylostoma-secreted protein 5 (ASP5) plays a pivotal role in mediating host-parasite interactions, making it a promising target for interventions against canine hookworm infections caused by Ancylostoma species. Antibody phage display, a widely used method for generating human monoclonal antibodies was employed in this study. A bacterial expression system was used to produce ASP5 for biopanning. A single-chain fragment variable (scFv) monoclonal antibody against ASP5 was generated from the naïve Human AntibodY LibrarY (HAYLY). The resulting scFv antibody was characterized to elucidate its antigen-binding properties. The identified monoclonal antibody showed good specificity and binding characteristics which highlights its potential for diagnostic applications for hookworm infections.
Collapse
Affiliation(s)
- Brenda Pei Chui Song
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | | | - Andreas Latz
- Gold Standard Diagnostics Frankfurt GmbH, Dietzenbach, Germany
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
2
|
Saleem MZ, Jahangir GZ, Saleem A, Zulfiqar A, Khan KA, Ercisli S, Ali B, Saleem MH, Saleem A. Production Technologies for Recombinant Antibodies: Insights into Eukaryotic, Prokaryotic, and Transgenic Expression Systems. Biochem Genet 2024:10.1007/s10528-024-10911-5. [PMID: 39287779 DOI: 10.1007/s10528-024-10911-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Recombinant antibodies, a prominent class of recombinant proteins, are witnessing substantial growth in research and diagnostics. Recombinant antibodies are being produced employing diverse hosts ranging from highly complex eukaryotes, for instance, mammalian cell lines (and insects, fungi, yeast, etc.) to unicellular prokaryotic models like gram-positive and gram-negative bacteria. This review delves into these production methods, highlighting approaches like antibody phage display that employs bacteriophages for gene library creation. Recent studies emphasize monoclonal antibody generation through hybridoma technology, utilizing hybridoma cells from myeloma and B-lymphocytes. Transgenic plants and animals have emerged as sources for polyclonal and monoclonal antibodies, with transgenic animals preferred due to their human-like post-translational modifications and reduced immunogenicity risk. Chloroplast expression offers environmental safety by preventing transgene contamination in pollen. Diverse production technologies, such as stable cell pools and clonal cell lines, are available, followed by purification via techniques like affinity chromatography. The burgeoning applications of recombinant antibodies in medicine have led to their large-scale industrial production.
Collapse
Affiliation(s)
| | | | - Ammara Saleem
- Institute of Botany, University of the Punjab, Lahore, Pakistan.
| | - Asma Zulfiqar
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Agricultural Faculty, Ataturk University, 25240, Erzurum, Türkiye
- HGF Agro, Ata Teknokent, 25240, Erzurum, Türkiye
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- School of Science, Western Sydney University, Penrith, 2751, Australia
| | - Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, 2713, Doha, Qatar
| | - Aroona Saleem
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.
- Department of Microbiology, Dr. Ikram-Ul-Haq Institute of Industrial Biotechnology (IIIB), Government College University, Lahore, 54000, Pakistan.
| |
Collapse
|
3
|
Ruschig M, Nerlich J, Becker M, Meier D, Polten S, Cervantes-Luevano K, Kuhn P, Licea-Navarro AF, Hallermann S, Dübel S, Schubert M, Brown J, Hust M. Human antibodies neutralizing the alpha-latrotoxin of the European black widow. Front Immunol 2024; 15:1407398. [PMID: 38933276 PMCID: PMC11199383 DOI: 10.3389/fimmu.2024.1407398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/29/2024] [Indexed: 06/28/2024] Open
Abstract
Poisoning by widow-spider (genus Latrodectus) bites occurs worldwide. The illness, termed latrodectism, can cause severe and persistent pain and can lead to muscle rigidity, respiratory complications, and cardiac problems. It is a global health challenge especially in developing countries. Equine serum-derived polyclonal anti-sera are commercially available as a medication for patients with latrodectism, but the use of sera imposes potential inherent risks related to its animal origin. The treatment may cause allergic reactions in humans (serum sickness), including anaphylactic shock. Furthermore, equine-derived antivenom is observed to have batch-to-batch variability and poor specificity, as it is always an undefined mix of antibodies. Because latrodectism can be extremely painful but is rarely fatal, the use of antivenom is controversial and only a small fraction of patients is treated. In this work, recombinant human antibodies were selected against alpha-latrotoxin of the European black widow (Latrodectus tredecimguttatus) by phage display from a naïve antibody gene library. Alpha-Latrotoxin (α-LTX) binding scFv were recloned and produced as fully human IgG. A novel alamarBlue assay for venom neutralization was developed and used to select neutralizing IgGs. The human antibodies showed in vitro neutralization efficacy both as single antibodies and antibody combinations. This was also confirmed by electrophysiological measurements of neuronal activity in cell culture. The best neutralizing antibodies showed nanomolar affinities. Antibody MRU44-4-A1 showed outstanding neutralization efficacy and affinity to L. tredecimguttatus α-LTX. Interestingly, only two of the neutralizing antibodies showed cross-neutralization of the venom of the Southern black widow (Latrodectus mactans). This was unexpected, because in the current literature the alpha-latrotoxins are described as highly conserved. The here-engineered antibodies are candidates for future development as potential therapeutics and diagnostic tools, as they for the first time would provide unlimited supply of a chemically completely defined drug of constant quality and efficacy, which is also made without the use of animals.
Collapse
Affiliation(s)
- Maximilian Ruschig
- Departments of Biotechnology and Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jana Nerlich
- Faculty of Medicine, Carl-Ludwig-Institute of Physiology, Leipzig University, Leipzig, Germany
| | - Marlies Becker
- Departments of Biotechnology and Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Doris Meier
- Departments of Biotechnology and Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Saskia Polten
- Departments of Biotechnology and Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Karla Cervantes-Luevano
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Mexico
| | | | - Alexei Fedorovish Licea-Navarro
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Mexico
| | - Stefan Hallermann
- Faculty of Medicine, Carl-Ludwig-Institute of Physiology, Leipzig University, Leipzig, Germany
| | - Stefan Dübel
- Departments of Biotechnology and Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maren Schubert
- Departments of Biotechnology and Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jeffrey Brown
- PETA Science Consortium International e.V., Stuttgart, Germany
| | - Michael Hust
- Departments of Biotechnology and Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
4
|
Wahid B, Tiwana MS. Bacteriophage-based bioassays: an expected paradigm shift in microbial diagnostics. Future Microbiol 2024; 19:811-824. [PMID: 38900594 PMCID: PMC11290765 DOI: 10.2217/fmb-2023-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/01/2024] [Indexed: 06/22/2024] Open
Abstract
Bacteriophages, as abundant and specific agents, hold significant promise as a solution to combat the growing threat of antimicrobial resistance. Their unique ability to selectively lyse bacterial cells without harming humans makes them a compelling alternative to traditional antibiotics and point-of-care diagnostics. The article reviews the current landscape of diagnostic technologies, identify gaps and highlight emerging possibilities demonstrates a comprehensive approach to advancing clinical diagnosis of microbial pathogens and covers an overview of existing phage-based bioassays. Overall, the provided data in this review effectively communicates the potential of bacteriophages in transforming therapeutic and diagnostic paradigms, offering a holistic perspective on the benefits and opportunities they present in combating microbial infections and enhancing public health.
Collapse
Affiliation(s)
- Braira Wahid
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton VIC Australia
| | | |
Collapse
|
5
|
Hu J, Chen J, Nie Y, Zhou C, Hou Q, Yan X. Characterizing the gut phageome and phage-borne antimicrobial resistance genes in pigs. MICROBIOME 2024; 12:102. [PMID: 38840247 DOI: 10.1186/s40168-024-01818-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/18/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Mammalian intestine harbors a mass of phages that play important roles in maintaining gut microbial ecosystem and host health. Pig has become a common model for biomedical research and provides a large amount of meat for human consumption. However, the knowledge of gut phages in pigs is still limited. RESULTS Here, we investigated the gut phageome in 112 pigs from seven pig breeds using PhaBOX strategy based on the metagenomic data. A total of 174,897 non-redundant gut phage genomes were assembled from 112 metagenomes. A total of 33,487 gut phage genomes were classified and these phages mainly belonged to phage families such as Ackermannviridae, Straboviridae, Peduoviridae, Zierdtviridae, Drexlerviridae, and Herelleviridae. The gut phages in seven pig breeds exhibited distinct communities and the gut phage communities changed with the age of pig. These gut phages were predicted to infect a broad range of 212 genera of prokaryotes, such as Candidatus Hamiltonella, Mycoplasma, Colwellia, and Lactobacillus. The data indicated that broad KEGG and CAZy functions were also enriched in gut phages of pigs. The gut phages also carried the antimicrobial resistance genes (ARGs) and the most abundant antimicrobial resistance genotype was diaminopyrimidine resistance. CONCLUSIONS Our research delineates a landscape for gut phages in seven pig breeds and reveals that gut phages serve as a key reservoir of ARGs in pigs. Video Abstract.
Collapse
Affiliation(s)
- Jun Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei, 430070, China
| | - Jianwei Chen
- BGI Research, Qingdao, Shandong, 266555, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Yangfan Nie
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | | | - Qiliang Hou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei, 430070, China
| | - Xianghua Yan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China.
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei, 430070, China.
| |
Collapse
|
6
|
Jahandar-Lashaki S, Farajnia S, Faraji-Barhagh A, Hosseini Z, Bakhtiyari N, Rahbarnia L. Phage Display as a Medium for Target Therapy Based Drug Discovery, Review and Update. Mol Biotechnol 2024:10.1007/s12033-024-01195-6. [PMID: 38822912 DOI: 10.1007/s12033-024-01195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Phage libraries are now amongst the most prominent approaches for the identification of high-affinity antibodies/peptides from billions of displayed phages in a specific library through the biopanning process. Due to its ability to discover potential therapeutic candidates that bind specifically to targets, phage display has gained considerable attention in targeted therapy. Using this approach, peptides with high-affinity and specificity can be identified for potential therapeutic or diagnostic use. Furthermore, phage libraries can be used to rapidly screen and identify novel antibodies to develop immunotherapeutics. The Food and Drug Administration (FDA) has approved several phage display-derived peptides and antibodies for the treatment of different diseases. In the current review, we provided a comprehensive insight into the role of phage display-derived peptides and antibodies in the treatment of different diseases including cancers, infectious diseases and neurological disorders. We also explored the applications of phage display in targeted drug delivery, gene therapy, and CAR T-cell.
Collapse
Affiliation(s)
- Samaneh Jahandar-Lashaki
- Medical Biotechnology Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Aref Faraji-Barhagh
- Medical Biotechnology Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Hosseini
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Nasim Bakhtiyari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Mustafa MI, Mohammed A. Developing recombinant antibodies by phage display technology to neutralize viral infectious diseases. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100140. [PMID: 38182043 DOI: 10.1016/j.slasd.2024.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
The use of recombinant antibodies developed through phage display technology offers a promising approach for combating viral infectious diseases. By specifically targeting antigens on viral surfaces, these antibodies have the potential to reduce the severity of infections or even prevent them altogether. With the emergence of new and more virulent strains of viruses, it is crucial to develop innovative methods to counteract them. Phage display technology has proven successful in generating recombinant antibodies capable of targeting specific viral antigens, thereby providing a powerful tool to fight viral infections. In this mini-review article, we examine the development of these antibodies using phage display technology, and discuss the associated challenges and opportunities in developing novel treatments for viral infectious diseases. Furthermore, we provide an overview of phage display technology. As these methods continue to evolve and improve, novel and sophisticated tools based on phage display and peptide display systems are constantly emerging, offering exciting prospects for solving scientific, medical, and technological problems related to viral infectious diseases in the near future.
Collapse
Affiliation(s)
- Mujahed I Mustafa
- Department of Biotechnology, College of Applied and Industrial Sciences, University of Bahri, Khartoum, Sudan.
| | - Ahmed Mohammed
- Department of Biotechnology, School of Life Sciences and Technology, Omdurman Islamic university, Omdurman, Sudan
| |
Collapse
|
8
|
Dübel S. Can antibodies be "vegan"? A guide through the maze of today's antibody generation methods. MAbs 2024; 16:2343499. [PMID: 38634488 PMCID: PMC11028021 DOI: 10.1080/19420862.2024.2343499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
There is no doubt that today's life sciences would look very different without the availability of millions of research antibody products. Nevertheless, the use of antibody reagents that are poorly characterized has led to the publication of false or misleading results. The use of laboratory animals to produce research antibodies has also been criticized. Surprisingly, both problems can be addressed with the same technology. This review charts today's maze of different antibody formats and the various methods for antibody production and their interconnections, ultimately concluding that sequence-defined recombinant antibodies offer a clear path to both improved quality of experimental data and reduced use of animals.
Collapse
Affiliation(s)
- Stefan Dübel
- Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
9
|
Manoutcharian K, Gevorkian G. Recombinant Antibody Fragments for Neurological Disorders: An Update. Curr Neuropharmacol 2024; 22:2157-2167. [PMID: 37646225 PMCID: PMC11337690 DOI: 10.2174/1570159x21666230830142554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/15/2023] [Accepted: 07/13/2023] [Indexed: 09/01/2023] Open
Abstract
Recombinant antibody fragments are promising alternatives to full-length immunoglobulins, creating big opportunities for the pharmaceutical industry. Nowadays, antibody fragments such as antigen-binding fragments (Fab), single-chain fragment variable (scFv), single-domain antibodies (sdAbs), and bispecific antibodies (bsAbs) are being evaluated as diagnostics or therapeutics in preclinical models and in clinical trials. Immunotherapy approaches, including passive transfer of protective antibodies, have shown therapeutic efficacy in several animal models of Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal dementia (FTD), Huntington's disease (HD), transmissible spongiform encephalopathies (TSEs) and multiple sclerosis (MS). There are various antibodies approved by the Food and Drug Administration (FDA) for treating multiple sclerosis and two amyloid beta-specific humanized antibodies, Aducanumab and Lecanemab, for AD. Our previous review summarized data on recombinant antibodies evaluated in pre-clinical models for immunotherapy of neurodegenerative diseases. Here, we explore recent studies in this fascinating research field, give an update on new preventive and therapeutic applications of recombinant antibody fragments for neurological disorders and discuss the potential of antibody fragments for developing novel approaches for crossing the blood-brain barrier (BBB) and targeting cells and molecules of interest in the brain.
Collapse
Affiliation(s)
- Karen Manoutcharian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), CDMX, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), CDMX, Mexico
| |
Collapse
|
10
|
Zhang P, Wang K, Hu T, Xu M, You X, Chen M, Tang X, Hu H, Jiang Y, Zhao W, Tan S. A novel fully human anti-NT-ANGPTL3 antibody from phage display library exhibits potent ApoB, TG, and LDL-C lowering activities in hyperlipidemia mice. FASEB J 2024; 38:e23399. [PMID: 38174870 DOI: 10.1096/fj.202301564rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
Dyslipidemia is characterized by elevated plasma levels of low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), and TG-rich lipoprotein (TGRLs) in circulation, and is closely associated with the incidence and development of cardiovascular disease. Angiopoietin-like protein 3 (ANGPTL3) deficiency has been identified as a cause of familial combined hypolipidemia in humans, which allows it to be an important therapeutic target for reducing plasma lipids. Here, we report the discovery and characterization of a novel fully human antibody F1519-D95aA against N-terminal ANGPTL3 (NT-ANGPTL3), which potently inhibits NT-ANGPTL3 with a KD as low as 9.21 nM. In hyperlipidemic mice, F1519-D95aA shows higher apolipoprotein B (ApoB) and TG-lowering, and similar LDL-C reducing activity as compared to positive control Evinacumab (56.50% vs 26.01% decrease in serum ApoB levels, 30.84% vs 25.28% decrease in serum TG levels, 23.32% vs 22.52% decrease in serum LDLC levels, relative to vehicle group). Molecular docking and binding energy calculations reveal that the F1519-D95aA-ANGPTL3 complex (10 hydrogen bonds, -65.51 kcal/mol) is more stable than the Evinacumab-ANGPTL3 complex (4 hydrogen bonds, -63.76 kcal/mol). Importantly, F1519-D95aA binds to ANGPTL3 with different residues in ANGPTL3 from Evinacumab, suggesting that F1519-D95aA may be useful for the treatment of patients resistant to Evinacumab. In conclusion, F1519-D95aA is a novel fully human anti-NT-ANGPTL3 antibody with potent plasma ApoB, TG, and LDL-C lowering activities, which can potentially serve as a therapeutic agent for hyperlipidemia and relevant cardiovascular diseases.
Collapse
Affiliation(s)
- Panpan Zhang
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Ke Wang
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Tuo Hu
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Menglong Xu
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Xiangyan You
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Manman Chen
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Xuan Tang
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Huajing Hu
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Yiwei Jiang
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Wenfeng Zhao
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Shuhua Tan
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|
11
|
Pérez-Amill L, Bataller À, Delgado J, Esteve J, Juan M, Klein-González N. Advancing CART therapy for acute myeloid leukemia: recent breakthroughs and strategies for future development. Front Immunol 2023; 14:1260470. [PMID: 38098489 PMCID: PMC10720337 DOI: 10.3389/fimmu.2023.1260470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
Chimeric antigen receptor (CAR) T therapies are being developed for acute myeloid leukemia (AML) on the basis of the results obtained for other haematological malignancies and the need of new treatments for relapsed and refractory AML. The biggest challenge of CART therapy for AML is to identify a specific target antigen, since antigens expressed in AML cells are usually shared with healthy haematopoietic stem cells (HSC). The concomitant expression of the target antigen on both tumour and HSC may lead to on-target/off-tumour toxicity. In this review, we guide researchers to design, develop, and translate to the clinic CART therapies for the treatment of AML. Specifically, we describe what issues have to be considered to design these therapies; what in vitro and in vivo assays can be used to prove their efficacy and safety; and what expertise and facilities are needed to treat and manage patients at the hospital.
Collapse
Affiliation(s)
- Lorena Pérez-Amill
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Gyala Therapeutics S.L, Barcelona, Spain
- Department of Immunology, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Àlex Bataller
- Department of Haematology, Institut Clínic de Malalties Hematològiques i Oncològiques (ICHMO), Hospital Clínic de Barcelona, Barcelona, Spain
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Julio Delgado
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Haematology, Institut Clínic de Malalties Hematològiques i Oncològiques (ICHMO), Hospital Clínic de Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Jordi Esteve
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Haematology, Institut Clínic de Malalties Hematològiques i Oncològiques (ICHMO), Hospital Clínic de Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Manel Juan
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Immunology, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
- Hospital Sant Joan de Déu, Universidad de Barcelona, Barcelona, Spain
| | - Nela Klein-González
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Gyala Therapeutics S.L, Barcelona, Spain
- Department of Immunology, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Islam MS, Fan J, Pan F. The power of phages: revolutionizing cancer treatment. Front Oncol 2023; 13:1290296. [PMID: 38033486 PMCID: PMC10684691 DOI: 10.3389/fonc.2023.1290296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Cancer is a devastating disease with a high global mortality rate and is projected to increase further in the coming years. Current treatment options, such as chemotherapy and radiation therapy, have limitations including side effects, variable effectiveness, high costs, and limited availability. There is a growing need for alternative treatments that can target cancer cells specifically with fewer side effects. Phages, that infect bacteria but not eukaryotic cells, have emerged as promising cancer therapeutics due to their unique properties, including specificity and ease of genetic modification. Engineered phages can transform cancer treatment by targeting cancer cells while sparing healthy ones. Phages exhibit versatility as nanocarriers, capable of delivering therapeutic agents like gene therapy, immunotherapy, and vaccines. Phages are extensively used in vaccine development, with filamentous, tailed, and icosahedral phages explored for different antigen expression possibilities. Engineered filamentous phages bring benefits such as built in adjuvant properties, cost-effectiveness, versatility in multivalent formulations, feasibility of oral administration, and stability. Phage-based vaccines stimulate the innate immune system by engaging pattern recognition receptors on antigen-presenting cells, enhancing phage peptide antigen presentation to B-cells and T-cells. This review presents recent phage therapy advances and challenges in cancer therapy, exploring its versatile tools and vaccine potential.
Collapse
Affiliation(s)
- Md. Sharifull Islam
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jie Fan
- Department of Cardiology, Handan Central Hospital, Handan, Hebei, China
| | - Fan Pan
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
13
|
França RKA, Studart IC, Bezerra MRL, Pontes LQ, Barbosa AMA, Brigido MM, Furtado GP, Maranhão AQ. Progress on Phage Display Technology: Tailoring Antibodies for Cancer Immunotherapy. Viruses 2023; 15:1903. [PMID: 37766309 PMCID: PMC10536222 DOI: 10.3390/v15091903] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The search for innovative anti-cancer drugs remains a challenge. Over the past three decades, antibodies have emerged as an essential asset in successful cancer therapy. The major obstacle in developing anti-cancer antibodies is the need for non-immunogenic antibodies against human antigens. This unique requirement highlights a disadvantage to using traditional hybridoma technology and thus demands alternative approaches, such as humanizing murine monoclonal antibodies. To overcome these hurdles, human monoclonal antibodies can be obtained directly from Phage Display libraries, a groundbreaking tool for antibody selection. These libraries consist of genetically engineered viruses, or phages, which can exhibit antibody fragments, such as scFv or Fab on their capsid. This innovation allows the in vitro selection of novel molecules directed towards cancer antigens. As foreseen when Phage Display was first described, nowadays, several Phage Display-derived antibodies have entered clinical settings or are undergoing clinical evaluation. This comprehensive review unveils the remarkable progress in this field and the possibilities of using clever strategies for phage selection and tailoring the refinement of antibodies aimed at increasingly specific targets. Moreover, the use of selected antibodies in cutting-edge formats is discussed, such as CAR (chimeric antigen receptor) in CAR T-cell therapy or ADC (antibody drug conjugate), amplifying the spectrum of potential therapeutic avenues.
Collapse
Affiliation(s)
- Renato Kaylan Alves França
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
- Graduate Program in Molecular Pathology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Igor Cabral Studart
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Marcus Rafael Lobo Bezerra
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Larissa Queiroz Pontes
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Antonio Marcos Aires Barbosa
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Applied Informatics, University of Fortaleza, Fortaleza 60811-905, Brazil
| | - Marcelo Macedo Brigido
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
| | - Gilvan Pessoa Furtado
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Andréa Queiroz Maranhão
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
| |
Collapse
|
14
|
Hwangpo TA, Schroeder HW. Study of stereotyped, allergen-specific IgE sequences from specific immunotherapy participants yields new insight into mechanisms of allergy suppression. J Allergy Clin Immunol 2023; 152:604-606. [PMID: 37343844 DOI: 10.1016/j.jaci.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Affiliation(s)
- Tracy A Hwangpo
- Division of Clinical Immunology and Rheumatology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Ala
| | - Harry W Schroeder
- Division of Clinical Immunology and Rheumatology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Ala.
| |
Collapse
|
15
|
Quintero-Campos P, Gozalbo-Rovira R, Rodríguez-Díaz J, Maquieira Á, Morais S. Standardizing In Vitro β-Lactam Antibiotic Allergy Testing with Synthetic IgE. Anal Chem 2023; 95:12113-12121. [PMID: 37545056 PMCID: PMC10859892 DOI: 10.1021/acs.analchem.3c02284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
The global prevalence of β-lactam allergy poses a major challenge in administering first-line antibiotics, such as penicillins, to a significant portion of the population. The lack of β-lactam IgE antibody pools with defined selectivity hampers the standardization and validation of in vitro assays for β-lactam allergy testing. To address this limitation, this study introduces a synthetic IgE specific to β-lactam antibiotics as a valuable tool for drug allergy research and diagnostic tests. Using phage display technology, we constructed a library of human single-chain antibody fragments (scFv) to target the primary determinant of amoxicillin, a widely used β-lactam antibiotic. Subsequently, we produced a complete human synthetic IgE molecule using the highly efficient baculovirus expression vector system. This synthetic IgE molecule served as a standard in an in vitro chemiluminescence immunoassay for β-lactam antibiotic allergy testing. Our results demonstrated a detection limit of 0.05 IU/mL (0.63 pM), excellent specificity (100%), and a four-fold higher clinical sensitivity (73%) compared to the in vitro reference assay when testing a cohort of 150 serum samples. These findings have significant implications for reliable interlaboratory comparison studies, accurate labeling of allergic patients, and combating the global public health threat of antimicrobial resistance. Furthermore, by serving as a valuable trueness control material, the synthetic IgE facilitates the standardization of diagnostic tests for β-lactam allergy and demonstrates the potential of utilizing this synthetic strategy as a promising approach for generating reference materials in drug allergy research and diagnostics.
Collapse
Affiliation(s)
- Pedro Quintero-Campos
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València-Universitat de València, 46022 Valencia, Spain
| | - Roberto Gozalbo-Rovira
- Departamento
de Microbiología, Facultad de Medicina, Universidad de València, Av. Blasco Ibáñez 17, 46010 València, Spain
- Hospital
Clínico Universitario de Valencia, Instituto de Investigación INCLIVA, 46010 Valencia, Spain
| | - Jesús Rodríguez-Díaz
- Departamento
de Microbiología, Facultad de Medicina, Universidad de València, Av. Blasco Ibáñez 17, 46010 València, Spain
- Hospital
Clínico Universitario de Valencia, Instituto de Investigación INCLIVA, 46010 Valencia, Spain
| | - Ángel Maquieira
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València-Universitat de València, 46022 Valencia, Spain
- Unidad
Mixta UPV-La Fe, Nanomedicine and Sensors, IIS La Fe, Av. de Fernando Abril Martorell,
106, 46026 València, Spain
- Departamento
de Química, Universitat Politècnica
de València, Camino
de Vera s/n, 46022 Valencia, Spain
| | - Sergi Morais
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València-Universitat de València, 46022 Valencia, Spain
- Unidad
Mixta UPV-La Fe, Nanomedicine and Sensors, IIS La Fe, Av. de Fernando Abril Martorell,
106, 46026 València, Spain
- Departamento
de Química, Universitat Politècnica
de València, Camino
de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
16
|
Shang J, Peng C, Liao H, Tang X, Sun Y. PhaBOX: a web server for identifying and characterizing phage contigs in metagenomic data. BIOINFORMATICS ADVANCES 2023; 3:vbad101. [PMID: 37641717 PMCID: PMC10460485 DOI: 10.1093/bioadv/vbad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023]
Abstract
Motivation There is accumulating evidence showing the important roles of bacteriophages (phages) in regulating the structure and functions of the microbiome. However, lacking an easy-to-use and integrated phage analysis software hampers microbiome-related research from incorporating phages in the analysis. Results In this work, we developed a web server, PhaBOX, which can comprehensively identify and analyze phage contigs in metagenomic data. It supports integrated phage analysis, including phage contig identification from the metagenomic assembly, lifestyle prediction, taxonomic classification, and host prediction. Instead of treating the algorithms as a black box, PhaBOX also supports visualization of the essential features for making predictions. The web server is designed with a user-friendly graphical interface that enables both informatics-trained and nonspecialist users to analyze phages in microbiome data with ease. Availability and implementation The web server of PhaBOX is available via: https://phage.ee.cityu.edu.hk. The source code of PhaBOX is available at: https://github.com/KennthShang/PhaBOX.
Collapse
Affiliation(s)
- Jiayu Shang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong (SAR), China
| | - Cheng Peng
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong (SAR), China
| | - Herui Liao
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong (SAR), China
| | - Xubo Tang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong (SAR), China
| | - Yanni Sun
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong (SAR), China
| |
Collapse
|
17
|
Nejad HR, Mehrabadi JF, Saeedi P, Zanganeh S. Phage display technology for fabricating a recombinant monoclonal ScFv antibody against tetanus toxin. Toxicol Res (Camb) 2023; 12:591-598. [PMID: 37663798 PMCID: PMC10470330 DOI: 10.1093/toxres/tfad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 09/05/2023] Open
Abstract
Tetanus is a specific infectious disease, often associated with lower immunization in developing countries and catastrophic events (such as earthquakes). Millions of people, especially children, die every year from tetanus disease. Therefore, it is necessary to devise a rapid and sensitive detection method for tetanus toxin to ensure an early diagnosis and clinical treatment of tetanus. The current study looks at developing a novel, high specific, low-cost, and sensitive ScFv antibody. It is capable of tetanus detection immunoassays in clinical diagnosis, suspicious foods, and water monitoring. For this regard, a high-quality phage display antibody library (8.7 × 107 PFU/ml) was constructed. Tetanus-specific antibodies with high affinity retrieved from libraries. After phage rescue and four rounds of biopanning, clone screening was performed by phage ELISA. Recombinant antibodies expressed from the AC8 clone showed the highest affinity for tetanus. SDS-PAGE and western blotting confirmed the presence of a high-quality, pure ScFv band at 32 kDa. ELISA was used to determine the affinity value, estimated to be around 10-8 M. The results suggest that the proposed detection method by ScFv antibodies is an alternative diagnostic tool enabling rapid and specific detection of the tetanus toxin.
Collapse
Affiliation(s)
- Hamideh Rouhani Nejad
- Faculty of Science, Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Pardis Saeedi
- Faculty of Science, Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Saeed Zanganeh
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
18
|
Guliy OI, Evstigneeva SS, Khanadeev VA, Dykman LA. Antibody Phage Display Technology for Sensor-Based Virus Detection: Current Status and Future Prospects. BIOSENSORS 2023; 13:640. [PMID: 37367005 DOI: 10.3390/bios13060640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
Viruses are widespread in the environment, and many of them are major pathogens of serious plant, animal, and human diseases. The risk of pathogenicity, together with the capacity for constant mutation, emphasizes the need for measures to rapidly detect viruses. The need for highly sensitive bioanalytical methods to diagnose and monitor socially significant viral diseases has increased in the past few years. This is due, on the one hand, to the increased incidence of viral diseases in general (including the unprecedented spread of a new coronavirus infection, SARS-CoV-2), and, on the other hand, to the need to overcome the limitations of modern biomedical diagnostic methods. Phage display technology antibodies as nano-bio-engineered macromolecules can be used for sensor-based virus detection. This review analyzes the commonly used virus detection methods and approaches and shows the prospects for the use of antibodies prepared by phage display technology as sensing elements for sensor-based virus detection.
Collapse
Affiliation(s)
- Olga I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
| | - Stella S Evstigneeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
| | - Vitaly A Khanadeev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
| | - Lev A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
| |
Collapse
|
19
|
Li Z, Zhang H, Yu X, Zhang Y, Chen L. Construction of a Hantaan Virus Phage Antibody Library and Screening for Potential Neutralizing Activity. Viruses 2023; 15:v15051034. [PMID: 37243121 DOI: 10.3390/v15051034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
China is one of the main epidemic areas for hemorrhagic fever with renal syndrome (HFRS). Currently, there is no human antibody specific to Hantaan virus (HTNV) for the emergency prevention and treatment of HFRS. To prepare human antibodies with neutralizing activity, we established an anti-HTNV phage antibody library using phage display technology by transforming peripheral blood mononuclear cells (PBMCs) of patients with HFRS into B lymphoblastoid cell lines (BLCLs) and extracting cDNA from BLCLs that secreted neutralizing antibodies. Based on the phage antibody library, we screened HTNV-specific Fab antibodies with neutralizing activities. Our study provides a potential way forward for the emergency prevention of HTNV and specific treatment of HFRS.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
- Department of Medical Laboratory Technology, Xi'an Health School, Xi'an 710054, China
| | - Huiyuan Zhang
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
- Department of Immunology, Medicine School, Yan'an University, Yan'an 716000, China
| | - Xiaxia Yu
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
- Department of Immunology, Medicine School, Yan'an University, Yan'an 716000, China
| | - Yusi Zhang
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Lihua Chen
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| |
Collapse
|
20
|
Phage Display-Derived Peptides and Antibodies for Bacterial Infectious Diseases Therapy and Diagnosis. Molecules 2023; 28:molecules28062621. [PMID: 36985593 PMCID: PMC10052323 DOI: 10.3390/molecules28062621] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
The emergence of antibiotic-resistant-bacteria is a serious public health threat, which prompts us to speed up the discovery of novel antibacterial agents. Phage display technology has great potential to screen peptides or antibodies with high binding capacities for a wide range of targets. This property is significant in the rapid search for new antibacterial agents for the control of bacterial resistance. In this paper, we not only summarized the recent progress of phage display for the discovery of novel therapeutic agents, identification of action sites of bacterial target proteins, and rapid detection of different pathogens, but also discussed several problems of this technology that must be solved. Breakthrough in these problems may further promote the development and application of phage display technology in the biomedical field in the future.
Collapse
|
21
|
Romero-Moreno JA, Serrano-Posada H, Olamendi-Portugal T, Possani LD, Becerril B, Riaño-Umbarila L. Development of a human antibody fragment cross-neutralizing scorpion toxins. Mol Immunol 2023; 155:165-174. [PMID: 36812764 DOI: 10.1016/j.molimm.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Previously, it was demonstrated that from the single chain fragment variable (scFv) 3F it is possible to generate variants capable of neutralizing the Cn2 and Css2 toxins, as well as their respective venoms (Centruroides noxius and Centruroides suffusus). Despite this success, it has not been easy to modify the recognition of this family of scFvs toward other dangerous scorpion toxins. The analysis of toxin-scFv interactions and in vitro maturation strategies allowed us to propose a new maturation pathway for scFv 3F to broaden recognition toward other Mexican scorpion toxins. From maturation processes against toxins CeII9 from C. elegans and Ct1a from C. tecomanus, the scFv RAS27 was developed. This scFv showed an increased affinity and cross-reactivity for at least 9 different toxins while maintaining recognition for its original target, the Cn2 toxin. In addition, it was confirmed that it can neutralize at least three different toxins. These results constitute an important advance since it was possible to improve the cross-reactivity and neutralizing capacity of the scFv 3F family of antibodies.
Collapse
Affiliation(s)
- José Alberto Romero-Moreno
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Mexico
| | - Hugo Serrano-Posada
- Investigador por México, CONACyT-Laboratorio de Biología Sintética, Estructural y Molecular, Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera Los Limones-Loma de Juárez, Colima 28627, Mexico
| | - Timoteo Olamendi-Portugal
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Mexico
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Mexico
| | - Baltazar Becerril
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Mexico.
| | - Lidia Riaño-Umbarila
- Investigadora por México, CONACyT-Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Mexico.
| |
Collapse
|
22
|
Hayrapetyan H, Tran T, Tellez-Corrales E, Madiraju C. Enzyme-Linked Immunosorbent Assay: Types and Applications. Methods Mol Biol 2023; 2612:1-17. [PMID: 36795355 DOI: 10.1007/978-1-0716-2903-1_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Enzyme-linked immunosorbent assay (ELISA) is an immunological assay widely used in basic science research, clinical application studies, and diagnostics. The ELISA technique relies on the interaction between the antigen (i.e., the target protein) versus the primary antibody against the antigen of interest. The presence of the antigen is confirmed through the enzyme-linked antibody catalysis of the added substrate, the products of which are either qualitatively detected by visual inspection or quantitatively using readouts from either a luminometer or a spectrophotometer. ELISA techniques are broadly classified into direct, indirect, sandwich, and competitive ELISA-all of which vary based on the antigens, antibodies, substrates, and experimental conditions. Direct ELISA relies on the binding of the enzyme-conjugated primary antibodies to the antigen-coated plates. Indirect ELISA introduces enzyme-linked secondary antibodies specific to the primary antibodies bound to the antigen-coated plates. Competitive ELISA involves a competition between the sample antigen and the plate-coated antigen for the primary antibody, followed by the binding of enzyme-linked secondary antibodies. Sandwich ELISA technique includes a sample antigen introduced to the antibody-precoated plate, followed by sequential binding of detection and enzyme-linked secondary antibodies to the recognition sites on the antigen. This review describes ELISA methodology, the types of ELISA, their advantages and disadvantages, and a listing of some multifaceted applications both in clinical and research settings, including screening for drug use, pregnancy testing, diagnosing disease, detecting biomarkers, blood typing, and detecting SARS-CoV-2 that causes coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Hovhannes Hayrapetyan
- Marshall B. Ketchum University, Fullerton, CA, USA.,Wayne State University, School of Medicine, Detroit, MI, USA
| | - Thao Tran
- Marshall B. Ketchum University, Fullerton, CA, USA
| | | | | |
Collapse
|
23
|
Recombinant antibodies by phage display for bioanalytical applications. Biosens Bioelectron 2023; 222:114909. [PMID: 36462427 DOI: 10.1016/j.bios.2022.114909] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Antibody phage display, aimed at preparing antibodies to defined antigens, is a useful replacement for hybridoma technology. The phage system replaces all work stages that follow animal immunization with simple procedures for manipulating DNA and bacteria. It enables the time needed to generate stable antibody-producing clones to be shortened considerably, making the process noticeably cheaper. Antibodies prepared by phage display undergo several affinity selection steps and can be used as selective receptors in biosensors. This article briefly describes the techniques used in the making of phage antibodies to various antigens. The possibilities and prospects are discussed of using phage antibodies as selective agents in analytical systems, including biosensors.
Collapse
|
24
|
Gómez-Ramírez IV, Corrales-García LL, Possani LD, Riaño-Umbarila L, Becerril B. Expression in Pichia pastoris of human antibody fragments that neutralize venoms of Mexican scorpions. Toxicon 2023; 223:107012. [PMID: 36592762 DOI: 10.1016/j.toxicon.2022.107012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
The methylotrophic yeast Pichia pastoris has been one of the most widely used organisms in recent years as an expression system for a wide variety of recombinant proteins with therapeutic potential. Its popularity as an alternative system to Escherichia coli is mainly due to the easy genetic manipulation and the ability to produce high levels of heterologous proteins, either intracellularly or extracellularly. Being a eukaryotic organism, P. pastoris carries out post-translational modifications that allow it to produce soluble and correctly folded recombinant proteins. This work, evaluated the expression capacity in P. pastoris of two single-chain variable fragments (scFvs) of human origin, 10FG2 and LR. These scFvs were previously obtained by directed evolution against scorpion venom toxins and are able to neutralize different toxins and venoms of Mexican species. The yield obtained in P. pastoris was higher than that obtained in bacterial periplasm (E. coli), and most importantly, biochemical and functional properties were not modified. These results confirm that P. pastoris yeast can be a good expression system for the production of antibody fragments of a new recombinant antivenom.
Collapse
Affiliation(s)
- Ilse V Gómez-Ramírez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico
| | - Ligia Luz Corrales-García
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico; Departamento de Alimentos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, AA 1226, Medellín, 050010, Colombia
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico
| | - Lidia Riaño-Umbarila
- Investigadora por México, CONACyT, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico.
| | - Baltazar Becerril
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico.
| |
Collapse
|
25
|
Wang F, Zhang Q, Zhang F, Zhang E, Li M, Ma S, Guo J, Yang Z, Zhu J. Adenovirus vector-mediated single chain variable fragments target the nucleocapsid protein of porcine epidemic diarrhea virus and protect against viral infection in piglets. Front Immunol 2023; 14:1058327. [PMID: 36761768 PMCID: PMC9902916 DOI: 10.3389/fimmu.2023.1058327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) mainly infects the intestinal epithelial cells of pigs, causing porcine epidemic diarrhea (PED). In particular, the virus causes severe diarrhea, dehydration, and death in neonatal piglets. Maternal immunity effectively protects neonatal piglets from PEDV infection; however, maternal antibodies can only prevent PEDV attachment and entry into target cells, but have no effects on intracellular viruses. Intracellular antibodies targeting virus-encoded proteins are effective in preventing viral infection. We previously identified four single chain variable fragments (scFvs), ZW1-16, ZW3-21, ZW1-41, and ZW4-16, which specifically targeted the PEDV N protein and significantly inhibited PEDV replication and up-regulated interferon-λ1 (IFN-λ1) expression in host cells. In our current study, the four scFvs were subcloned into replication-defective adenovirus vectors to generate recombinant adenoviruses rAdV-ZW1-16, rAdV-ZW3-21, rAdV-ZW1-41, and rAdV-ZW4-16. ScFvs were successfully expressed in Human Embryonic Kidney 293 (HEK293) cells and intestinal porcine epithelial cell line J2 (IPEC-J2) and were biosafe for piglets as indicated by body temperature and weight, scFv excretion in feces, IFN-γ and interleukin-4 (IL-4) expression in jejunum, and pathological changes in porcine tissue after oral administration. Western blotting, immunofluorescence, and immunohistochemical analyses showed that scFvs were expressed in porcine jejunum. The prophylactic effects of rAdV-ZW, a cocktail of the four rAdV-scFvs, on piglet diarrhea caused by PEDV was investigated. Clinical symptoms in piglets orally challenged with PEDV, following a two-time treatment with rAdV-ZW, were significantly reduced when compared with PEDV-infected piglets treated with phosphate buffered saline (PBS) or rAdV-wild-type. Also, no death and jejunal lesions were observed. ScFv co-localization with the PEDV N protein in vivo was also observed. Next, the expression of pro-inflammatory serum cytokines such as tumor necrosis factor-α (TNF-α), IL-6, IL-8, IL-12, and IFN-λ was assessed by enzyme-linked immunosorbent assay (ELISA), which showed that scFvs significantly suppressed PEDV-induced pro-inflammatory cytokine expression and restored PEDV-inhibited IFN-λ expression. Therefore, our study supported a promising role for intracellular scFvs targeting the PEDV N protein to prevent and treat diarrhea in PEDV-infected piglets.
Collapse
Affiliation(s)
- Fengqing Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China,Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Zhang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Qing Zhang, ; Jianguo Zhu,
| | - Fanqing Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - En Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Mei Li
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiwei Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianming Guo
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhibiao Yang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianguo Zhu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Qing Zhang, ; Jianguo Zhu,
| |
Collapse
|
26
|
Abstract
Phage display has been applied successfully for the rapid isolation of monoclonal antibodies against various targets including infectious diseases, autoantigens, cancer markers, and even small molecules. The main component in any phage display experiment is the availability of an antibody library to carry out the selection process of target-specific antibodies through an iterative process termed as biopanning. To generate human antibody libraries, the antibody repertoire can be obtained from human peripheral blood mononuclear cell (PBMC) or directly from cell-sorted B-cell populations. The choice of antibody isotype is dictated by the nature of the library. Naïve libraries would utilize IgM repertoires, whereas the IgG repertoire is commonly used for immune libraries. Antibody genes are amplified through polymerase chain reaction (PCR) and paired in a combinatorial fashion to expand the diversity of the cloned library repertoire. The protocol here describes the use of a two-step cloning method that can be applied for the construction of either a naïve or immune human antibody library in Fab format followed by the subsequent panning.
Collapse
Affiliation(s)
- Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia.
| |
Collapse
|
27
|
Ch'ng ACW, Konthur Z, Lim TS. Magnetic Nanoparticle-Based Semi-automated Panning for High-Throughput Antibody Selection. Methods Mol Biol 2023; 2702:291-313. [PMID: 37679626 DOI: 10.1007/978-1-0716-3381-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Bio-panning is a common process involved in recombinant antibody selection against defined targets. The biopanning process aims to isolate specific antibodies against an antigen via affinity selection from a phage display library. In general, antigens are immobilized on solid surfaces such as polystyrene plastic, magnetic beads, and nitrocellulose. For high-throughput selection, semi-automated panning selection allows simultaneous panning against multiple target antigens adapting automated particle processing systems such as the KingFisher Flex. The system setup allows for minimal human intervention for pre- and post-panning steps such as antigen immobilization, phage rescue, and amplification. In addition, the platform is also adaptable to perform polyclonal and monoclonal ELISA for the evaluation process. This chapter will detail the protocols involved from the selection stage until the monoclonal ELISA evaluation with important notes attached at the end of this chapter for optimization and troubleshooting purposes.
Collapse
Affiliation(s)
- Angela Chiew Wen Ch'ng
- Institute for Reseach in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Zoltán Konthur
- Department of Analytical Chemistry, Reference Materials, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
| | - Theam Soon Lim
- Institute for Reseach in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia.
| |
Collapse
|
28
|
Huh H, Chen DW, Foldvari M, Slavcev R, Blay J. EGFR-targeted bacteriophage lambda penetrates model stromal and colorectal carcinoma tissues, is taken up into carcinoma cells, and interferes with 3-dimensional tumor formation. Front Immunol 2022; 13:957233. [PMID: 36591314 PMCID: PMC9800840 DOI: 10.3389/fimmu.2022.957233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Colorectal cancer and other adult solid cancers pose a significant challenge for successful treatment because the tumor microenvironment both hinders the action of conventional therapeutics and suppresses the immune activities of infiltrating leukocytes. The immune suppression is largely the effect of enhanced local mediators such as purine nucleosides and eicosanoids. Genetic approaches have the promise of interfering with these mechanisms of local immunosuppression to allow both intrinsic and therapeutic immunological anticancer processes. Bacterial phages offer a novel means of enabling access into tissues for therapeutic genetic manipulations. Methods We generated spheroids of fibroblastic and CRC cancer cells to model the 3-dimensional stromal and parenchymal components of colorectal tumours. We used these to examine the access and effects of both wildtype (WT) and epidermal growth factor (EGF)-presenting bacteriophage λ (WT- λ and EGF-λ) as a means of delivery of targeted genetic interventions in solid cancers. We used both confocal microscopy of spheroids exposed to AF488-tagged phages, and the recovery of viable phages as measured by plaque-forming assays to evaluate access; and measures of mitochondrial enzyme activity and cellular ATP to evaluate the outcome on the constituent cells. Results Using flourescence-tagged derivatives of these bacteriophages (AF488-WT-λ and AF488-EGF-λ) we showed that phage entry into these tumour microenvironments was possible and that the EGF ligand enabled efficient and persistent uptake into the cancer cell mass. EGF-λ became localized in the intracellular portion of cancer cells and was subjected to subsequent cellular processing. The targeted λ phage had no independent effect upon mature tumour spheroids, but interfered with the early formation and growth of cancer tissues without the need for addition of a toxic payload, suggesting that it might have beneficial effects by itself in addition to any genetic intervention delivered to the tumour. Interference with spheroid formation persisted over the duration of culture. Discussion We conclude that targeted phage technology is a feasible strategy to facilitate delivery into colorectal cancer tumour tissue (and by extension other solid carcinomas) and provides an appropriate delivery vehicle for a gene therapeutic that can reduce local immunosuppression and/or deliver an additional direct anticancer activity.
Collapse
Affiliation(s)
- Haein Huh
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Ding-Wen Chen
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | | | - Roderick Slavcev
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada,*Correspondence: Jonathan Blay, ; Roderick Slavcev,
| | - Jonathan Blay
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada,Department of Pathology, Dalhousie University, Halifax, NS, Canada,*Correspondence: Jonathan Blay, ; Roderick Slavcev,
| |
Collapse
|
29
|
Testing of Diamond Electrodes as Biosensor for Antibody-Based Detection of Immunoglobulin Protein with Electrochemical Impedance Spectroscopy. Mol Vis 2022. [DOI: 10.3390/c8040074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To control the increasing virus pandemics, virus detection methods are essential. Today’s standard virus detections methods are fast (immune assays) or precise (PCR). A method that is both fast and precise would enable more efficient mitigation measures and better life comfort. According to recent papers, electrochemical impedance spectroscopy (EIS) has proven to detect viruses fast and precise. Boron-doped diamond (BDD) was used as a high-performance electrode material in these works. The aim of this work was to perform an initial test of BDD-based EIS for biosensing. As an easily available standard biomaterial, human immunoglobulin G (IgG) was used as analyte. Niobium plates were coated via hot-filament activated chemical vapor deposition with polycrystalline diamond, and doped with boron for electrical conductivity. An anti-human IgG antibody was immobilised on the BDD electrodes as a biosensing component. Four different analyte concentrations up to 1.1 µg per litre were tested. During EIS measurements, both impedance over frequency curves and Nyquist plot demonstrated no clear sign of a change of the charge transfer resistance. Thus, no positive statement about a successful biosensing could be made so far. It is assumed that these issues need to be investigated and improved, including the relation of BDD electrode size to electrolyte volume, termination of the BDD electrodes (H, O) for a successful functionalisation and EIS frequency range. The work will be continued concerning these improvement issues in order to finally use virus materials as analyte.
Collapse
|
30
|
Guliy OI, Evstigneeva SS, Dykman LA. The Use of Phage Antibodies for Microbial Cell Detection. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822100076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
31
|
Di Mambro T, Vanzolini T, Bianchi M, Crinelli R, Canonico B, Tasini F, Menotta M, Magnani M. Development and in vitro characterization of a humanized scFv against fungal infections. PLoS One 2022; 17:e0276786. [PMID: 36315567 PMCID: PMC9621433 DOI: 10.1371/journal.pone.0276786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/14/2022] [Indexed: 01/24/2023] Open
Abstract
The resistance and the birth of new intrinsic and multidrug-resistant pathogenic species like C. auris is creating great concern in the antifungal world. Given the limited drug arsenal and the lack of effectiveness of the available compounds, there is an urgent need for innovative approaches. The murine mAb 2G8 was humanized and engineered in silico to develop a single-chain fragment variable (hscFv) antibody against β-1,3-glucans which was then expressed in E. coli. Among the recombinant proteins developed, a soluble candidate with high stability and affinity was obtained. This selected protein is VL-linker-VH oriented, and it is characterized by the presence of two ubiquitin monomers at the N-terminus and a His tag at the C-terminus. This construct, Ub2-hscFv-His, guaranteed stability, solubility, efficient purification and satisfactory recovery of the recombinant product. HscFv can bind β-1,3-glucans both as coated antigens and on C. auris and C. albicans cells similarly to its murine parental and showed long stability and retention of binding ability when stored at 4°, -20° and -80° C. Furthermore, it was efficient in enhancing the antifungal activity of drugs caspofungin and amphotericin B against C. auris. The use of biological drugs as antifungals is limited; here we present a promising hscFv which has the potential to be useful in combination with currently available antifungal drugs.
Collapse
Affiliation(s)
| | - Tania Vanzolini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
- * E-mail:
| | - Marzia Bianchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Rita Crinelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Filippo Tasini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Michele Menotta
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Mauro Magnani
- Diatheva s.r.l., Cartoceto, Italy
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
32
|
Soezi M, Piri-Gavgani S, Ghanei M, Omrani MD, Soltanmohammadi B, Bagheri KP, Cohan RA, Vaziri F, Siadat SD, Fateh A, Khatami S, Azizi M, Rahimi-Jamnani F. Identification of a novel fully human anti-toxic shock syndrome toxin (TSST)-1 single-chain variable fragment antibody averting TSST-1-induced mitogenesis and cytokine secretion. BMC Biotechnol 2022; 22:31. [PMID: 36307814 PMCID: PMC9617332 DOI: 10.1186/s12896-022-00760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/18/2022] [Accepted: 10/07/2022] [Indexed: 12/05/2022] Open
Abstract
Background Staphylococcal superantigens are virulence factors that help the pathogen escape the immune system and develop an infection. Toxic shock syndrome toxin (TSST)-1 is one of the most studied superantigens whose role in toxic shock syndrome and some particular disorders have been demonstrated. Inhibiting TSST-1 production with antibiotics and targeting TSST-1 with monoclonal antibodies might be one of the best strategies to prevent TSST-1-induced cytokines storm followed by lethality. Results A novel single-chain variable fragment (scFv), MS473, against TSST-1 was identified by selecting an scFv phage library on the TSST-1 protein. The MS473 scFv showed high affinity and specificity for TSST-1. Moreover, MS473 could significantly prevent TSST-1-induced mitogenicity (the IC50 value: 1.5 µM) and cytokine production. Conclusion Using traditional antibiotics with an anti-TSST-1 scFv as a safe and effective agent leads to deleting the infection source and preventing the detrimental effects of the toxin disseminated into the whole body. Supplementary information The online version contains supplementary material available at 10.1186/s12896-022-00760-8.
Collapse
|
33
|
Piri-Gavgani S, Ghanei M, Fateh A, Siadat SD, Nematollahi L, Rahimi-Jamnani F. Identification of two neutralizing human single-chain variable fragment antibodies targeting Staphylococcus aureus alpha-hemolysin. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1207-1214. [PMID: 36311199 PMCID: PMC9588317 DOI: 10.22038/ijbms.2022.64103.14253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/06/2022] [Indexed: 01/24/2023]
Abstract
Objectives The inability of the host immune system to defeat Staphylococcus aureus is due to various secreted virulent factors such as leukocidins, superantigens, and hemolysins, which interrupt the function of immune components. Alpha-hemolysin is one of the most studied cytolysins due to its pronounced effect on developing staphylococcal infections. Alpha-hemolysin-neutralizing antibodies are among the best candidates for blocking the toxin activity and preventing S. aureus pathogenesis. Materials and Methods A human single-chain variable fragment (scFv) phage display library was biopanned against alpha-hemolysin. The selected phage clones were assessed based on their binding ability to alpha-hemolysin. The binding specificity and affinity of two scFvs (designated SP192 and SP220) to alpha-hemolysin were determined by enzyme-linked immunosorbent assay. Furthermore, the neutralizing activity of SP192 and SP220 was examined by concurrent incubation of rabbit red blood cells (RBCs) with alpha-hemolysin and scFvs. Results SP192 and SP220 showed significant binding to alpha-hemolysin compared with the control proteins, including bovine serum albumin, human adiponectin, and toxic shock syndrome toxin-1. Besides, both scFvs showed high-affinity binding to alpha-hemolysin in the nanomolar range (Kaff: 0.9 and 0.7 nM-1, respectively), leading to marked inhibition of alpha-hemolysin-mediated lysis of rabbit RBCs (73% and 84% inhibition; respectively). Conclusion SP192 and SP220 scFvs can potentially be used as alpha-hemolysin-neutralizing agents in conjunction with conventional antibiotics to combat S. aureus infections.
Collapse
Affiliation(s)
- Somayeh Piri-Gavgani
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Leila Nematollahi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Rahimi-Jamnani
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
34
|
Wang T, Xu J, Wang B, Wang Y, Zhao W, Xiang B, Xue Y, Yuan Q, Wang Y. Receptor-binding domain-anchored peptides block binding of severe acute respiratory syndrome coronavirus 2 spike proteins with cell surface angiotensin-converting enzyme 2. Front Microbiol 2022; 13:910343. [PMID: 36177466 PMCID: PMC9513850 DOI: 10.3389/fmicb.2022.910343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022] Open
Abstract
Background The COVID-19 pandemic has killed over 6 million people worldwide. Despite the accumulation of knowledge about the causative pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the pathogenesis of this disease, cures remain to be discovered. We searched for certain peptides that might interfere with spike protein (S protein)-angiotensin-converting enzyme 2 (ACE2) interactions. Methods Phage display (PhD)-12 peptide library was screened against recombinant spike trimer (S-trimer) or receptor-binding domain (S-RBD) proteins. The resulting enriched peptide sequences were obtained, and their potential binding sites on S-trimer and S-RBD 3D structure models were searched. Synthetic peptides corresponding to these and other reference sequences were tested for their efficacy in blocking the binding of S-trimer protein onto recombinant ACE2 proteins or ACE2-overexpressing cells. Results After three rounds of phage selections, two peptide sequences (C2, DHAQRYGAGHSG; C6, HWKAVNWLKPWT) were enriched by S-RBD, but only C2 was present in S-trimer selected phages. When the 3D structures of static monomeric S-RBD (6M17) and S-trimer (6ZGE, 6ZGG, 7CAI, and 7CAK, each with different status of S-RBDs in the three monomer S proteins) were scanned for potential binding sites of C2 and C6 peptides, C6 opt to bind the saddle of S-RBD in both 6M17 and erected S-RBD in S-trimers, but C2 failed to cluster there in the S-trimers. In the competitive S-trimer-ACE2-binding experiments, synthetic C2 and C6 peptides inhibited S-trimer binding onto 293T-ACE2hR cells at high concentrations (50 μM) but not at lower concentrations (10 μM and below), neither for the settings of S-trimer binding onto recombinant ACE2 proteins. Conclusion Using PhD methodology, two peptides were generated bearing potentials to interfere with S protein-ACE2 interaction, which might be further exploited to produce peptidomimetics that block the attachment of SARS-CoV-2 virus onto host cells, hence diminishing the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Ting Wang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jie Xu
- Central Laboratory, Xiang’an Hospital of Xiamen University, Xiang’an University Medical Center, Xiamen University, Xiamen, Fujian, China
- Eye Institute of Xiamen University, Medical College, Xiamen University, Xiamen, Fujian, China
| | - Beibei Wang
- Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong, China
| | - Yulian Wang
- Eye Institute of Xiamen University, Medical College, Xiamen University, Xiamen, Fujian, China
| | - Wei Zhao
- Eye Institute of Xiamen University, Medical College, Xiamen University, Xiamen, Fujian, China
| | - Bin Xiang
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Yuhua Xue
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Yiqiang Wang
- Central Laboratory, Xiang’an Hospital of Xiamen University, Xiang’an University Medical Center, Xiamen University, Xiamen, Fujian, China
- Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
- *Correspondence: Yiqiang Wang,
| |
Collapse
|
35
|
Li L, Wu S, Si Y, Li H, Yin X, Peng D. Single-chain fragment variable produced by phage display technology: Construction, selection, mutation, expression, and recent applications in food safety. Compr Rev Food Sci Food Saf 2022; 21:4354-4377. [PMID: 35904244 DOI: 10.1111/1541-4337.13018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 01/28/2023]
Abstract
Immunoassays are reliable, efficient, and accurate methods for the analysis of small-molecule harmful substances (such as pesticides, veterinary drugs, and biological toxins) that may be present in food. However, traditional polyclonal and monoclonal antibodies are limited by animal hosts and hinder further development of immunoassays. With the gradual application of phage display technology as an efficient in vitro selection technology, the single-chain fragment variable (scFv) now provides an exciting alternative to traditional antibodies. Efficiently constructed scFv source libraries and specifically designed biopanning schemes can now yield scFvs possessing specific recognition capabilities. A rational mutation strategy further enhances the affinity of scFv, and allows it to reach a level that cannot be achieved by immunization. Finally, appropriate prokaryotic expression measures ensure stable and efficient production of scFv. Therefore, when developing excellent scFvs, it is necessary to focus on three key aspects of this process that include screening, mutation, and expression. In this review, we analyze in detail the preparation and affinity improvement process for scFv and provide insights into the research progress and development trend of scFv-based immunoassay methods for monitoring small-molecule harmful substances.
Collapse
Affiliation(s)
- Long Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuangmin Wu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yu Si
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huaming Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaoyang Yin
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China.,Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, China.,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
36
|
Raeisi H, Azimirad M, Nabavi-Rad A, Asadzadeh Aghdaei H, Yadegar A, Zali MR. Application of recombinant antibodies for treatment of Clostridioides difficile infection: Current status and future perspective. Front Immunol 2022; 13:972930. [PMID: 36081500 PMCID: PMC9445313 DOI: 10.3389/fimmu.2022.972930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Clostridioides difficile (C. difficile), known as the major cause of antibiotic-associated diarrhea, is regarded as one of the most common healthcare-associated bacterial infections worldwide. Due to the emergence of hypervirulent strains, development of new therapeutic methods for C. difficile infection (CDI) has become crucially important. In this context, antibodies have been introduced as valuable tools in the research and clinical environments, as far as the effectiveness of antibody therapy for CDI was reported in several clinical investigations. Hence, production of high-performance antibodies for treatment of CDI would be precious. Traditional approaches of antibody generation are based on hybridoma technology. Today, application of in vitro technologies for generating recombinant antibodies, like phage display, is considered as an appropriate alternative to hybridoma technology. These techniques can circumvent the limitations of the immune system and they can be exploited for production of antibodies against different types of biomolecules in particular active toxins. Additionally, DNA encoding antibodies is directly accessible in in vitro technologies, which enables the application of antibody engineering in order to increase their sensitivity and specificity. Here, we review the application of antibodies for CDI treatment with an emphasis on recombinant fragment antibodies. Also, this review highlights the current and future prospects of the aforementioned approaches for antibody-mediated therapy of CDI.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Rosenfeld R, Alcalay R, Zvi A, Ben-David A, Noy-Porat T, Chitlaru T, Epstein E, Israeli O, Lazar S, Caspi N, Barnea A, Dor E, Chomsky I, Pitel S, Makdasi E, Zichel R, Mazor O. Centaur antibodies: Engineered chimeric equine-human recombinant antibodies. Front Immunol 2022; 13:942317. [PMID: 36059507 PMCID: PMC9437483 DOI: 10.3389/fimmu.2022.942317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/28/2022] [Indexed: 11/27/2022] Open
Abstract
Hyper-immune antisera from large mammals, in particular horses, are routinely used for life-saving anti-intoxication intervention. While highly efficient, the use of these immunotherapeutics is complicated by possible recipient reactogenicity and limited availability. Accordingly, there is an urgent need for alternative improved next-generation immunotherapies to respond to this issue of high public health priority. Here, we document the development of previously unavailable tools for equine antibody engineering. A novel primer set, EquPD v2020, based on equine V-gene data, was designed for efficient and accurate amplification of rearranged horse antibody V-segments. The primer set served for generation of immune phage display libraries, representing highly diverse V-gene repertoires of horses immunized against botulinum A or B neurotoxins. Highly specific scFv clones were selected and expressed as full-length antibodies, carrying equine V-genes and human Gamma1/Lambda constant genes, to be referred as “Centaur antibodies”. Preliminary assessment in a murine model of botulism established their therapeutic potential. The experimental approach detailed in the current report, represents a valuable tool for isolation and engineering of therapeutic equine antibodies.
Collapse
Affiliation(s)
- Ronit Rosenfeld
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
- *Correspondence: Ronit Rosenfeld, ; Ohad Mazor,
| | - Ron Alcalay
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Anat Zvi
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Alon Ben-David
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Tal Noy-Porat
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Eyal Epstein
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ofir Israeli
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Shirley Lazar
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Noa Caspi
- Veterinary Center for Preclinical Research, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ada Barnea
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Eyal Dor
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Inbar Chomsky
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Shani Pitel
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Efi Makdasi
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ran Zichel
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ohad Mazor
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
- *Correspondence: Ronit Rosenfeld, ; Ohad Mazor,
| |
Collapse
|
38
|
Ch'ng ACW, Schepergerdes L, Choong YS, Hust M, Lim TS. Antimicrobial antibodies by phage display: Identification of antibody-based inhibitor against mycobacterium tuberculosis isocitrate lyase. Mol Immunol 2022; 150:47-57. [PMID: 35987135 DOI: 10.1016/j.molimm.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/23/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
The increasing incidence reports of antibiotic resistance highlights the need for alternative approaches to deal with bacterial infections. This brought about the idea of utilizing monoclonal antibodies as an alternative antibacterial treatment. Majority of the studies are focused on developing antibodies to bacterial surface antigens, with little emphasis on antibodies that inhibit the growth mechanisms of a bacteria host. Isocitrate lyase (ICL) is an important enzyme for the growth and survival of Mycobacterium tuberculosis (MTB) during latent infection as a result of its involvement in the mycobacterial glyoxylate and methylisocitrate cycles. It is postulated that the inhibition of ICL can disrupt the life cycle of MTB. To this extent, we utilized antibody phage display to identify a single chain fragment variable (scFv) antibody against the recombinant ICL protein from MTB. The soluble a-ICL-C6 scFv clone exhibited good binding characteristics with high specificity against ICL. More importantly, the clone exhibited in vitro inhibitory effect with an enzymatic assay resulting in a decrease of ICL enzymatic activity. In silico analysis showed that the scFv-ICL interactions are driven by 23 hydrogen bonds and 13 salt bridges that might disrupt the formation of ICL subunits for the tertiary structure or the formation of active site β domain. However, further validation is necessary to confirm if the isolated clone is indeed a good inhibitor against ICL for application against MTB.
Collapse
Affiliation(s)
- Angela Chiew Wen Ch'ng
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Lena Schepergerdes
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, 38106 Braunschweig
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, 38106 Braunschweig
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
39
|
Piekarowicz A, Kłyż A, Stein DC. A New Vaccination Method Based on Phage NgoΦ6 and Its Phagemid Derivatives. Front Microbiol 2022; 13:793205. [PMID: 35572628 PMCID: PMC9096494 DOI: 10.3389/fmicb.2022.793205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
Phagemid particles based on the Neisseria gonorrhoeae filamentous phage NgoΦ6 were used as a vaccine delivery system. We demonstrate that the host proteins incorporated into/associated with these particles can be encoded by chromosomal genes of the host bacterium or from plasmids able to replicate as an autonomous entity in the phagemid host. Phagemid particles were prepared from three types of cells, namely, Salmonella enterica ser. Typhimurium [pBSKS::Φ6fm(ST)] containing phagemid genome as an autonomous plasmid, Haemophilus influenzae Rd containing phagemid [pBSKS::Φ6fm(Hin)] integrated into the chromosome, and S. enterica ser. Typhimurium [pMPMT6::Φ6fm(ST)] containing an additional plasmid, pE1 HCV, encoding the Hepatitis C virus envelope glycoprotein E1. Approximately 200 μg of purified phage particles was used to immunize rabbits. The phagemid particles prepared from these three strains all elicited a large amount of IgG antibodies that were able to recognize bacterial host cells and proteins, as determined by ELISA and FACS analysis. The amount of specific anti-S. enterica ser. Typhimurium, anti-H. influenzae, and anti-E1 HCV antibodies elicited by vaccination was 170 μg/ml for anti-Salmonella, 80 μg/ml for anti-H. influenzae, and 65 μg/ml for anti-E1 HCV. Taken in toto, these data suggest that classical phage display methods have underestimated the potential for filamentous phage as a novel immunogen delivery system.
Collapse
Affiliation(s)
- Andrzej Piekarowicz
- Department of Virology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Aneta Kłyż
- Department of Virology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Daniel C. Stein
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, College Park, MD, United States
| |
Collapse
|
40
|
Moreira GMSG, Gronow S, Dübel S, Mendonça M, Moreira ÂN, Conceição FR, Hust M. Phage Display-Derived Monoclonal Antibodies Against Internalins A and B Allow Specific Detection of Listeria monocytogenes. Front Public Health 2022; 10:712657. [PMID: 35372200 PMCID: PMC8964528 DOI: 10.3389/fpubh.2022.712657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 02/14/2022] [Indexed: 01/22/2023] Open
Abstract
Listeria monocytogenes is the causative agent of listeriosis, a highly lethal disease initiated after the ingestion of Listeria-contaminated food. This species comprises different serovars, from which 4b, 1/2a, and 1/2b cause most of the infections. Among the different proteins involved in pathogenesis, the internalins A (InlA) and B (InlB) are the best characterized, since they play a major role in the enterocyte entry of Listeria cells during early infection. Due to their covalent attachment to the cell wall and location on the bacterial surface, along with their exclusive presence in the pathogenic L. monocytogenes, these proteins are also used as detection targets for this species. Even though huge advancements were achieved in the enrichment steps for subsequent Listeria detection, few studies have focused on the improvement of the antibodies for immunodetection. In the present study, recombinant InlA and InlB produced in Escherichia coli were used as targets to generate antibodies via phage display using the human naïve antibody libraries HAL9 and HAL10. A set of five recombinant antibodies (four against InlA, and one against InlB) were produced in scFv-Fc format and tested in indirect ELISA against a panel of 19 Listeria strains (17 species; including the three main serovars of L. monocytogenes) and 16 non-Listeria species. All five antibodies were able to recognize L. monocytogenes with 100% sensitivity (CI 29.24–100.0) and specificity (CI 88.78–100.0) in all three analyzed antibody concentrations. These findings show that phage display-derived antibodies can improve the biological tools to develop better immunodiagnostics for L. monocytogenes.
Collapse
Affiliation(s)
| | - Sabine Gronow
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Stefan Dübel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Marcelo Mendonça
- Universidade Federal do Agreste de Pernambuco, Curso de Medicina Veterinária, Garanhuns, Brazil
| | - Ângela Nunes Moreira
- Laboratório de Imunologia Aplicada, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Fabricio Rochedo Conceição
- Laboratório de Imunologia Aplicada, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| |
Collapse
|
41
|
Abas AH, Marfuah S, Idroes R, Kusumawaty D, Fatimawali, Park MN, Siyadatpanah A, Alhumaydhi FA, Mahmud S, Tallei TE, Emran TB, Kim B. Can the SARS-CoV-2 Omicron Variant Confer Natural Immunity against COVID-19? Molecules 2022; 27:2221. [PMID: 35408618 PMCID: PMC9000495 DOI: 10.3390/molecules27072221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is still ongoing, with no signs of abatement in sight. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative agent of this pandemic and has claimed over 5 million lives, is still mutating, resulting in numerous variants. One of the newest variants is Omicron, which shows an increase in its transmissibility, but also reportedly reduces hospitalization rates and shows milder symptoms, such as in those who have been vaccinated. As a result, many believe that Omicron provides a natural vaccination, which is the first step toward ending the COVID-19 pandemic. Based on published research and scientific evidence, we review and discuss how the end of this pandemic is predicted to occur as a result of Omicron variants being surpassed in the community. In light of the findings of our research, we believe that it is most likely true that the Omicron variant is a natural way of vaccinating the masses and slowing the spread of this deadly pandemic. While the mutation that causes the Omicron variant is encouraging, subsequent mutations do not guarantee that the disease it causes will be less severe. As the virus continues to evolve, humans must constantly adapt by increasing their immunity through vaccination.
Collapse
Affiliation(s)
- Abdul Hawil Abas
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia; (A.H.A.); (S.M.)
| | - Siti Marfuah
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia; (A.H.A.); (S.M.)
| | - Rinaldi Idroes
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Aceh, Indonesia;
| | - Diah Kusumawaty
- Department of Biology, Faculty of Mathematics and Natural Sciences Education, Universitas Pendidikan Indonesia, Bandung 40154, West Java, Indonesia;
| | - Fatimawali
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia;
| | - Moon Nyeo Park
- College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Korea;
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand 97178-53577, Iran;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Shafi Mahmud
- Department of Genome Science, John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia;
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia; (A.H.A.); (S.M.)
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Korea;
| |
Collapse
|
42
|
Ye W, Liu X, He R, Gou L, Lu M, Yang G, Wen J, Wang X, Liu F, Ma S, Qian W, Jia S, Ding T, Sun L, Gao W. Improving antibody affinity through <i>in vitro</i> mutagenesis in complementarity determining regions. J Biomed Res 2022; 36:155-166. [PMID: 35545451 PMCID: PMC9179109 DOI: 10.7555/jbr.36.20220003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
High-affinity antibodies are widely used in diagnostics and for the treatment of human diseases. However, most antibodies are isolated from semi-synthetic libraries by phage display and do not possess in vivo affinity maturation, which is triggered by antigen immunization. It is therefore necessary to engineer the affinity of these antibodies by way of in vitro assaying. In this study, we optimized the affinity of two human monoclonal antibodies which were isolated by phage display in a previous related study. For the 42A1 antibody, which targets the liver cancer antigen glypican-3, the variant T57H in the second complementarity-determining region of the heavy chain (CDR-H2) exhibited a 2.6-fold improvement in affinity, as well as enhanced cell-binding activity. For the I4A3 antibody to severe acute respiratory syndrome coronavirus 2, beneficial single mutations in CDR-H2 and CDR-H3 were randomly combined to select the best synergistic mutations. Among these, the mutation S53P-S98T improved binding affinity (about 3.7 fold) and the neutralizing activity (about 12 fold) compared to the parent antibody. Taken together, single mutations of key residues in antibody CDRs were enough to increase binding affinity with improved antibody functions. The mutagenic combination of key residues in different CDRs creates additive enhancements. Therefore, this study provides a safe and effective in vitro strategy for optimizing antibody affinity.
Collapse
Affiliation(s)
- Wei Ye
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoyu Liu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ruiting He
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Liming Gou
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ming Lu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Gang Yang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jiaqi Wen
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xufei Wang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Fang Liu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Sujuan Ma
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Weifeng Qian
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215001, China
| | - Shaochang Jia
- Department of Biotherapy, Nanjing Jinling Hospital, Nanjing, Jiangsu 210002, China
| | - Tong Ding
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Luan Sun
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Wei Gao and Luan Sun, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166, China. Tel/Fax: +86-25-86869471/+86-25-86869471, E-mails:
and
| | - Wei Gao
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Wei Gao and Luan Sun, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166, China. Tel/Fax: +86-25-86869471/+86-25-86869471, E-mails:
and
| |
Collapse
|
43
|
Yeoh SG, Sum JS, Lai JY, W Isa WYH, Lim TS. Potential of Phage Display Antibody Technology for Cardiovascular Disease Immunotherapy. J Cardiovasc Transl Res 2021; 15:360-380. [PMID: 34467463 DOI: 10.1007/s12265-021-10169-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/22/2021] [Indexed: 11/26/2022]
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death worldwide. CVD includes coronary artery diseases such as angina, myocardial infarction, and stroke. "Lipid hypothesis" which is also known as the cholesterol hypothesis proposes the linkage of plasma cholesterol level with the risk of developing CVD. Conventional management involves the use of statins to reduce the serum cholesterol levels as means for CVD prevention or treatment. The regulation of serum cholesterol levels can potentially be regulated with biological interventions like monoclonal antibodies. Phage display is a powerful tool for the development of therapeutic antibodies with successes over the recent decade. Although mainly for oncology, the application of monoclonal antibodies as immunotherapeutic agents could potentially be expanded to CVD. This review focuses on the concept of phage display for antibody development and discusses the potential target antigens that could potentially be beneficial for serum cholesterol management.
Collapse
Affiliation(s)
- Soo Ghee Yeoh
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Jia Siang Sum
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - W Y Haniff W Isa
- School of Medical Sciences, Department of Medicine, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|