1
|
Tipu JH, Miah R, Islam O, Rahman MM, Talukdar L, Miah R, Hussain MS, Islam MA, Ahsan MI, Raquib A, Noor M. Molecular and Seroprevalence of Mycoplasma gallisepticum in Turkeys in Sylhet District of Bangladesh. Vet Med Sci 2025; 11:e70227. [PMID: 39999283 PMCID: PMC11855371 DOI: 10.1002/vms3.70227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
Mycoplasma gallisepticum (MG) poses a significant threat to Bangladesh's poultry industry, causing substantial economic losses every year. This study aimed to determine the prevalence of MG infection in turkeys using serum plate agglutination (SPA), enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) in Sylhet, Bangladesh from December 2019 to November 2020. In addition, we evaluated the diagnostic accuracy of these tests and identified potential risk factors associated with MG infection. A total of 250 blood samples and 250 tracheal swabs were collected from suspected turkeys across 25 farms from three sub-districts of Sylhet namely Sylhet Sadar, Golapganj and Beanibazar. Blood samples were tested with SPA and ELISA, while tracheal swabs were analysed by PCR targeting the 16S rRNA gene of MG. The overall prevalence of MG was 35.2%, 29.2% and 25.6% for SPA, ELISA and PCR respectively. Higher infection rates were observed in turkeys aged 0-4 months (SPA 57.1%, ELISA 52%, PCR 42.8%), during winter (SPA 43.1%, ELISA 37.8%, PCR 30%) and among female turkeys (SPA 54.5%, ELISA 49.5%, PCR 45.5%). Geographically, the Beanibazar had the highest prevalence (SPA 54.2%, ELISA 48.6%, PCR 41.4%), compared to the Sylhet Sadar and Golapganj sub-districts. Both SPA and ELISA tests showed 100% sensitivity, with specificity of 87.1% and 95.2%, respectively using PCR as a gold standard. Overall, these findings provide valuable insights for developing effective control measures for MG infections in the poultry industry of Bangladesh.
Collapse
Affiliation(s)
- Jahid Hasan Tipu
- Centre for International Health, Department of Global Public Health and Primary Care, Faculty of MedicineUniversity of BergenBergenNorway
- Department of Pathology, Faculty of Veterinary, Animal and Biomedical SciencesSylhet Agricultural UniversitySylhetBangladesh
| | - Rijon Miah
- Department of Pathology, Faculty of Veterinary, Animal and Biomedical SciencesSylhet Agricultural UniversitySylhetBangladesh
| | - Obaidul Islam
- Laboratory of Veterinary Epidemiology, College of Veterinary MedicineChungbuk National UniversityChungbukSouth Korea
| | - Md. Mukidur Rahman
- Department of Pathology, Faculty of Veterinary, Animal and Biomedical SciencesSylhet Agricultural UniversitySylhetBangladesh
| | - Lucky Talukdar
- Department of Pathology, Faculty of Veterinary, Animal and Biomedical SciencesSylhet Agricultural UniversitySylhetBangladesh
| | - Rubel Miah
- Department of Veterinary SciencesChonnam National UniversityGwangjuSouth Korea
| | - Md. Safwan Hussain
- School of Public HealthUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Md. Ashraful Islam
- Laboratory of Veterinary Laboratory Medicine, College of Veterinary MedicineChungbuk National UniversityChungbukSouth Korea
| | - Md. Irtija Ahsan
- School of Life SciencesUniversity of WarwickCoventryUK
- Department of Epidemiology and Public Health, Faculty of Veterinary, Animal and Biomedical SciencesSylhet Agricultural UniversitySylhetBangladesh
| | - Ahsan Raquib
- Department of Health Management, Atlantic Veterinary CollegeUniversity of Prince Edward IslandCharlottetownCanada
| | - Monira Noor
- Department of Pathology, Faculty of Veterinary, Animal and Biomedical SciencesSylhet Agricultural UniversitySylhetBangladesh
| |
Collapse
|
2
|
Maya-Rodríguez LM, Gómez-Verduzco G, Trigo-Tavera FJ, Moreno-Fierros L, Rojas-Trejo V, Miranda-Morales RE. A comparative in silico analysis of the vlhA gene regions of Mycoplasma gallisepticum and Mycoplasma synoviae isolates from commercial hen farms in Mexico. Access Microbiol 2025; 7:000760.v4. [PMID: 39990596 PMCID: PMC11845793 DOI: 10.1099/acmi.0.000760.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/16/2024] [Indexed: 02/25/2025] Open
Abstract
Avian mycoplasmosis, caused by Mycoplasma synoviae and Mycoplasma gallisepticum, poses significant economic challenges due to respiratory issues, reduced egg production and soft eggshells. The variable lipoprotein haemagglutinin (VlhA) protein, crucial for pathogenicity, comprises conserved (MSPB) and variable (MSPA) regions. The aim of this study was to identify the conserved region of vlhA gene sequences in field strain. We examined vlhA sequences from field strains collected in central Mexico (Jalisco and Mexico City). Specifically, we analysed 124 deformed eggs and 10 laying hens from 9 farms with Hy-line and Bovans breeds. Using PCR targeting the mgc2 and 16S rRNA genes, we characterized 24 field strains, 4 of which were Myc. synoviae and 20 of which were Myc. gallisepticum. We analysed the vlhA regions, based on the AF035624.1 reference sequence, with American Type Culture Collection strains as positive controls. Additionally, we validated the PCR with 20 negative samples from Mycoplasma isolation without the need for cultivation. We identified two amplification regions: MSPB and MSPA. Bioanalysis revealed relationships between our field samples and avian Mycoplasma sequences in GenBank, alongside similarities with lipoproteins present in Acholeplasma laidlawii PG8 and Escherichia coli. Given the significance of the VlhA protein in pathogenicity and immune evasion, the identified conserved sequences hold potential as therapeutic targets and for phylogenetic studies.
Collapse
Affiliation(s)
- Linda M. Maya-Rodríguez
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Ciudad Universitaria, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Gabriela Gómez-Verduzco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Ciudad Universitaria, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Francisco J. Trigo-Tavera
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Ciudad Universitaria, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Leticia Moreno-Fierros
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina (UBIMED), Los Reyes Ixtacala, Universidad Nacional Autónoma de México, Tlanepantla de Baz, 54090, Mexico
| | - Verónica Rojas-Trejo
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Ciudad Universitaria, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Rosa Elena Miranda-Morales
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Ciudad Universitaria, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| |
Collapse
|
3
|
Li S, Yang L, Guo Y, Feng X, Ye L, Li K. Sternal wound infection caused by Mycoplasma hominis in an adult patient: a case report and literature review. BMC Infect Dis 2025; 25:212. [PMID: 39948467 PMCID: PMC11827189 DOI: 10.1186/s12879-025-10607-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/06/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Mycoplasma hominis is a part of the microflora of the urogenital tract; however, extra-urogenital infections due to M. hominis are rare. Herein, we present a case study of a patient who successfully recovered from a sternal wound infection caused by M. hominis. CASE PRESENTATION We report a case of sternal wound infection caused by M. hominis following tricuspid valvuloplasty. The patient developed a severe infection despite postoperative antimicrobial therapy. Wound sample cultures grew pinpoint-sized colonies on blood agar plates, which were identified as M. hominis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Based on the results of the antibiotic susceptibility test, effective infection management was achieved using a combination of moxifloxacin and doxycycline. CONCLUSIONS The potential role of M. hominis as a causative agent of postoperative infections after thoracotomy may be underestimated. M. hominis should be highly suspected when patients have an indwelling catheter or when perioperative wound samples show numerous leukocytes with no visible bacteria, and are unresponsive to standard empirical treatment for postoperative infections.
Collapse
Affiliation(s)
- Shuang Li
- Department of Clinical Laboratory Medicine, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Lili Yang
- Department of Clinical Laboratory Medicine, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yuanbiao Guo
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xiaoyan Feng
- Department of Clinical Laboratory Medicine, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Ling Ye
- Department of Emergency, Traditional Chinese Medicine Hospital of Meishan, Meishan, China.
| | - Ke Li
- Department of Clinical Laboratory Medicine, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Zhu LN, Shen WB, Zou XY, Zuo JC, Xiao N. Chronic osteomyelitis with pathological fracture induced by Mycoplasma hominis infection: a case report and review of the literature. Front Med (Lausanne) 2025; 12:1510753. [PMID: 39931564 PMCID: PMC11807816 DOI: 10.3389/fmed.2025.1510753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
Mycoplasma hominis, commonly residing in the genitourinary tract, can cause rare extragenital infections, especially in immunocompromised individuals. This report details a case of chronic osteomyelitis with a pathological femur fracture in a 79-year-old woman. Despite a history of bone tuberculosis, the infection was identified as Mycoplasma hominis through culture and mass spectrometry, highlighting the diagnostic challenges due to the organism's lack of a cell wall. This case underscores the necessity for advanced diagnostic methods and awareness of Mycoplasma hominis in non-urogenital infections.
Collapse
Affiliation(s)
| | | | | | - Jiang-Cheng Zuo
- Yiling People’s Hospital of Yichang City, Yichang, Hubei, China
| | - Ning Xiao
- Yiling People’s Hospital of Yichang City, Yichang, Hubei, China
| |
Collapse
|
5
|
D'Bastiani E, Anglister N, Lysnyansky I, Mikula I, Acácio M, Vaadia G, Gahm K, Spiegel O, Pinter-Wollman N. Social interactions do not affect mycoplasma infection in griffon vultures. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240500. [PMID: 39665089 PMCID: PMC11632193 DOI: 10.1098/rsos.240500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/22/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024]
Abstract
Uncovering the ways in which pathogens spread has important implications for population health and management. Pathogen transmission is influenced by various factors, including patterns of social interactions and shared use of space. We aim to understand how the social behaviour of griffon vultures (Gyps fulvus), a species of conservation interest, influences the presence or absence of mycoplasma, a group of bacteria known to cause respiratory diseases in birds. We investigated how direct and indirect social interactions of griffon vultures in the wild, in different social situations, impacted the mycoplasma infection status. We inferred interactions from high-resolution global positioning system (GPS) tracking data. Specifically, we assessed how social behaviour affects infection status when vultures share feeding and roosting locations, either at the same time (direct interactions) or subsequently, when space use is asynchronous (indirect interactions). We did not detect a significant effect of any social situation and type of interaction on infection status. However, we observed a high population prevalence of mycoplasma, suggesting that other factors might be more important than social interactions in determining the transmission of this bacteria in the Israeli vulture population. Uncovering the mechanisms that underlie infection status in wildlife is crucial for maintaining viable populations, designing containment management actions and gaining insights into the ecological mechanisms that drive infectious disease dynamics.
Collapse
Affiliation(s)
- Elvira D'Bastiani
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Nili Anglister
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inna Lysnyansky
- Mycoplasma unit, Department of Avian Diseases, Kimron Veterinary Institute (KVI), Beit Dagan, Israel
| | - Inna Mikula
- Mycoplasma unit, Department of Avian Diseases, Kimron Veterinary Institute (KVI), Beit Dagan, Israel
| | - Marta Acácio
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gideon Vaadia
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Kaija Gahm
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Orr Spiegel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
6
|
Zhao Y, Ma H, Wang Q, He X, Xing X, Wu X, Quan G, Bao S. Mycoplasma synoviae elongation factor thermo stable is an adhesion-associated protein that enters cells by endocytosis and stimulates DF-1 cell proliferation. BMC Vet Res 2024; 20:522. [PMID: 39558348 PMCID: PMC11575130 DOI: 10.1186/s12917-024-04374-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024] Open
Abstract
Mycoplasma synoviae is an important avian pathogen that causes respiratory infections and arthritis symptoms in chickens and turkeys, resulting in significant economic damage to the poultry farming industry worldwide. Cell adhesion is a vital stage of Mycoplasma infection, and the proteins associated with this process play an important role in its pathogenesis. Elongation factor thermo stable (EF-Ts) is an important factor in prokaryotic biosynthesis that serves as a guanosine exchange factor for elongation factor thermo unstable (EF-Tu). To date, little is known about the role of EF-Ts in Mycoplasma infection. In this study, we identified EF-Ts as an immunogenic protein in M. synoviae through liquid chromatography with tandem mass spectrometry (LC-MS/MS) screening. We constructed an E. coli recombinant expression vector and prepared a highly efficient rabbit antiserum. Immunoblot analysis and suspension immunofluorescence revealed that the EF-Ts is located in both the cell membrane and cytoplasm. The prepared rabbit EF-Ts antiserum exhibited complement-dependent Mycoplasma-killing activity and inhibited the adhesion of rEF-Ts and M. synoviae to DF-1 cells. An in-vitro binding assay showed that EF-Ts could bind to fibronectin (Fn) and chicken plasminogen (cPlg) in a dose-dependent manner. In addition, EF-Ts could internalize into cells through lipid rafts and clathrin-dependent endocytosis and induce DF-1 cell proliferation. In conclusion, our studies demonstrated that MS EF-Ts is a potentially immunogenic, novel adhesion protein that acts as a critical virulence factor in M. synoviae adhesion to host cells during infection. These studies further deepen our understanding of the pathogenic mechanism of M. synoviae.
Collapse
Affiliation(s)
- Yunhai Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Haiyun Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Qing Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Xiaoxiao He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Xiaoyong Xing
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Xiaochun Wu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Guomei Quan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Shijun Bao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, 730070, China.
| |
Collapse
|
7
|
Xie N. Application of Protein Expression in Mycoplasma Study. SCIENTIFICA 2024; 2024:4142663. [PMID: 39435316 PMCID: PMC11493480 DOI: 10.1155/2024/4142663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/28/2024] [Indexed: 10/23/2024]
Abstract
Mycoplasma is a kind of pathogenic microorganism, and its survival and replication need to be parasitic inside the host cell. Therefore, studies on the metabolic pathway, protein composition, and biological characteristics of Mycoplasma require the use of protein expression techniques. In this paper, the application of protein expression in Mycoplasma research was reviewed, including commonly used protein expression systems, optimization strategy of protein expression, protein omics analysis, and protein function research, and the future development direction has been prospected.
Collapse
Affiliation(s)
- Nian Xie
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton 3168, VIC, Australia
| |
Collapse
|
8
|
Suhadolc Scholten S, Slavec B, Klinc P, Tozon N, Papić B, Koprivec S. Association of Mycoplasma canis with Fertility Disorders in Dogs: A Case Study Supported by Clinical Examination, PCR, 16S Microbiota Profiling, and Serology. Pathogens 2024; 13:391. [PMID: 38787243 PMCID: PMC11123722 DOI: 10.3390/pathogens13050391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
The role of Mycoplasma canis in canine fertility disorders is still poorly understood. As infection is often asymptomatic, there is an increasing need for appropriate diagnostic methods and treatment plans that would allow the reliable detection of M. canis infection and rapid alleviation of infection symptoms in affected dogs. In this study, we included 14 dogs with fertility problems and 16 dogs without fertility disorder signs. We compared clinical examination data and selected laboratory parameters (hematology and biochemistry) between the groups. We performed PCR-based detection of M. canis and 16S rRNA gene-based microbiota profiling of DNA isolated from vaginal and preputial swabs. Dog sera were tested for the presence of M. canis-specific antibodies. Hematological and selected biochemical parameters showed no differences between groups. PCR-based detection of M. canis in the samples was consistent with the results of 16S microbiota profiling. Several other bacterial taxa were also identified that could potentially be involved in different fertility disorders. Serological methods were not accurate enough since high cross-reactivity rates were observed. In the future, more accurate and efficient methods will be needed to determine the role of M. canis and its true role in the pathogenesis of specific fertility disorders in dogs.
Collapse
Affiliation(s)
- Sara Suhadolc Scholten
- Small Animal Clinic, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (S.S.S.); (N.T.)
| | - Brigita Slavec
- Institute of Poultry, Birds, Small Mammals, and Reptiles, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia;
| | - Primož Klinc
- Clinic for Reproduction and Large Animals, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Nataša Tozon
- Small Animal Clinic, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (S.S.S.); (N.T.)
| | - Bojan Papić
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Saša Koprivec
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
Pan Q, Zhang Y, Liu T, Xu Q, Wu Q, Xin J. Mycoplasma glycine cleavage system key subunit GcvH is an apoptosis inhibitor targeting host endoplasmic reticulum. PLoS Pathog 2024; 20:e1012266. [PMID: 38787906 PMCID: PMC11156438 DOI: 10.1371/journal.ppat.1012266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/06/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Mycoplasmas are minimal but notorious bacteria that infect humans and animals. These genome-reduced organisms have evolved strategies to overcome host apoptotic defense and establish persistent infection. Here, using Mycoplasma bovis as a model, we demonstrate that mycoplasma glycine cleavage system (GCS) H protein (GcvH) targets the endoplasmic reticulum (ER) to hijack host apoptosis facilitating bacterial infection. Mechanically, GcvH interacts with the ER-resident kinase Brsk2 and stabilizes it by blocking its autophagic degradation. Brsk2 subsequently disturbs unfolded protein response (UPR) signaling, thereby inhibiting the key apoptotic molecule CHOP expression and ER-mediated intrinsic apoptotic pathway. CHOP mediates a cross-talk between ER- and mitochondria-mediated intrinsic apoptosis. The GcvH N-terminal amino acid 31-35 region is necessary for GcvH interaction with Brsk2, as well as for GcvH to exert anti-apoptotic and potentially pro-infective functions. Notably, targeting Brsk2 to dampen apoptosis may be a conserved strategy for GCS-containing mycoplasmas. Our study reveals a novel role for the conserved metabolic route protein GcvH in Mycoplasma species. It also sheds light on how genome-reduced bacteria exploit a limited number of genomic proteins to resist host cell apoptosis thereby facilitating pathogenesis.
Collapse
Affiliation(s)
- Qiao Pan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yujuan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tong Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qingyuan Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Xinjiang, China
| | - Qi Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jiuqing Xin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
10
|
Rosales RS, Risco D, García-Nicolás O, Pallarés FJ, Ramírez AS, Poveda JB, Nicholas RAJ, Salguero FJ. Differential Gene Expression in Porcine Lung Compartments after Experimental Infection with Mycoplasma hyopneumoniae. Animals (Basel) 2024; 14:1290. [PMID: 38731294 PMCID: PMC11083927 DOI: 10.3390/ani14091290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/20/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Mycoplasma hyopneumoniae (Mhyo) is the causative agent of porcine enzootic pneumonia (EP), as well as one of the main pathogens involved in the porcine respiratory disease complex. The host-pathogen interaction between Mhyo and infected pigs is complex and not completely understood; however, improving the understanding of these intricacies is essential for the development of effective control strategies of EP. In order to improve our knowledge about this interaction, laser-capture microdissection was used to collect bronchi, bronchi-associated lymphoid tissue, and lung parenchyma from animals infected with different strains of Mhyo, and mRNA expression levels of different molecules involved in Mhyo infection (ICAM1, IL-8, IL-10, IL-23, IFN-α, IFN-γ, TGF-β, and TNF-α) were analyzed by qPCR. In addition, the quantification of Mhyo load in the different lung compartments and the scoring of macroscopic and microscopic lung lesions were also performed. Strain-associated differences in virulence were observed, as well as the presence of significant differences in expression levels of cytokines among lung compartments. IL-8 and IL-10 presented the highest upregulation, with limited differences between strains and lung compartments. IFN-α was strongly downregulated in BALT, implying a relevant role for this cytokine in the immunomodulation associated with Mhyo infections. IL-23 was also upregulated in all lung compartments, suggesting the potential involvement of a Th17-mediated immune response in Mhyo infections. Our findings highlight the relevance of Th1 and Th2 immune response in cases of EP, shedding light on the gene expression levels of key cytokines in the lung of pigs at a microscopic level.
Collapse
Affiliation(s)
- Rubén S. Rosales
- Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Veterinary Faculty, University of Las Palmas de Gran Canaria, Trasmontaña s/n, 35416 Arucas, Spain; (R.S.R.); (A.S.R.); (J.B.P.)
| | - David Risco
- Unidad de Histología y Anatomía Patológica, Departamento de Medicina Animal, Veterinary Faculty, University of Extremadura, Avenida de la Universidad, s/n, 10003 Cáceres, Spain
| | - Obdulio García-Nicolás
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland;
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Francisco J. Pallarés
- Pathology and Immunology Group (UCO-PIG), Department of Anatomy and Comparative Pathology and Toxicology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, International Excellence Agrifood Campus “CeiA3”, 14001 Córdoba, Spain;
| | - Ana S. Ramírez
- Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Veterinary Faculty, University of Las Palmas de Gran Canaria, Trasmontaña s/n, 35416 Arucas, Spain; (R.S.R.); (A.S.R.); (J.B.P.)
| | - José B. Poveda
- Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Veterinary Faculty, University of Las Palmas de Gran Canaria, Trasmontaña s/n, 35416 Arucas, Spain; (R.S.R.); (A.S.R.); (J.B.P.)
| | | | - Francisco J. Salguero
- School of Veterinary Medicine, University of Surrey, Daphne Jackson Rd, Guildford GU2 7AL, UK;
| |
Collapse
|
11
|
Algharib SA, Dawood AS, Huang L, Guo A, Zhao G, Zhou K, Li C, Liu J, Gao X, Luo W, Xie S. Basic concepts, recent advances, and future perspectives in the diagnosis of bovine mastitis. J Vet Sci 2024; 25:e18. [PMID: 38311330 PMCID: PMC10839174 DOI: 10.4142/jvs.23147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 02/07/2024] Open
Abstract
Mastitis is one of the most widespread infectious diseases that adversely affects the profitability of the dairy industry worldwide. Accurate diagnosis and identification of pathogens early to cull infected animals and minimize the spread of infection in herds is critical for improving treatment effects and dairy farm welfare. The major pathogens causing mastitis and pathogenesis are assessed first. The most recent and advanced strategies for detecting mastitis, including genomics and proteomics approaches, are then evaluated . Finally, the advantages and disadvantages of each technique, potential research directions, and future perspectives are reported. This review provides a theoretical basis to help veterinarians select the most sensitive, specific, and cost-effective approach for detecting bovine mastitis early.
Collapse
Affiliation(s)
- Samah Attia Algharib
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
- Key Laboratory of Tarim Animal Husbandry & Science Technology of Xinjiang Production & Construction Corps., Alar, Xinjiang 843300, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, QG, Egypt
| | - Ali Sobhy Dawood
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, Hubei 430070, China
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Lingli Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, Hubei 430070, China
| | - Gang Zhao
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Kaixiang Zhou
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Chao Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Jinhuan Liu
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Xin Gao
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Lu Zhou, Sichuan 646000, China
| | - Wanhe Luo
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
- Key Laboratory of Tarim Animal Husbandry & Science Technology of Xinjiang Production & Construction Corps., Alar, Xinjiang 843300, China.
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, Hubei 430070, China.
| |
Collapse
|
12
|
Dawood AS, Zhao G, He Y, Lu D, Wang S, Zhang H, Chen Y, Hu C, Chen H, Schieck E, Guo A. Comparative Proteomic Analysis of Secretory Proteins of Mycoplasma bovis and Mycoplasma mycoides subsp. mycoides Investigates Virulence and Discovers Important Diagnostic Biomarkers. Vet Sci 2023; 10:685. [PMID: 38133236 PMCID: PMC10748157 DOI: 10.3390/vetsci10120685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
The most important pathogenic Mycoplasma species in bovines are Mycoplasma bovis (M. bovis) and Mycoplasma mycoides subsp. mycoides (Mmm). Mmm causes contagious bovine pleuropneumonia (CBPP), which is a severe respiratory disease widespread in sub-Saharan Africa but eradicated in several countries, including China. M. bovis is an important cause of the bovine respiratory disease complex (BRD), characterized worldwide by pneumonia, arthritis, and mastitis. Secreted proteins of bacteria are generally considered virulence factors because they can act as toxins, adhesins, and virulent enzymes in infection. Therefore, this study performed a comparative proteomic analysis of the secreted proteins of M. bovis and Mmm in order to find some virulence-related factors as well as discover differential diagnostic biomarkers for these bovine mycoplasmas. The secretome was extracted from both species, and liquid chromatography-tandem mass spectrometry was used, which revealed 55 unique secreted proteins of M. bovis, 44 unique secreted proteins of Mmm, and 4 homologous proteins. In the M. bovis secretome, 19 proteins were predicted to be virulence factors, while 4 putative virulence factors were identified in the Mmm secretome. In addition, five unique secreted proteins of Mmm were expressed and purified, and their antigenicity was confirmed by Western blotting assay and indirect ELISA. Among them, Ts1133 and Ts0085 were verified as potential candidates for distinguishing Mmm infection from M. bovis infection.
Collapse
Affiliation(s)
- Ali Sobhy Dawood
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.S.D.); (Y.H.); (D.L.); (S.W.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Gang Zhao
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China;
| | - Yujia He
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.S.D.); (Y.H.); (D.L.); (S.W.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Doukun Lu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.S.D.); (Y.H.); (D.L.); (S.W.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shujuan Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.S.D.); (Y.H.); (D.L.); (S.W.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.S.D.); (Y.H.); (D.L.); (S.W.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingyu Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.S.D.); (Y.H.); (D.L.); (S.W.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Changmin Hu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.S.D.); (Y.H.); (D.L.); (S.W.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.S.D.); (Y.H.); (D.L.); (S.W.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Elise Schieck
- International Livestock Research Institute, Nairobi 00100, Kenya
| | - Aizhen Guo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.S.D.); (Y.H.); (D.L.); (S.W.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
13
|
Duarte-Benvenuto A, Sacristán C, Ewbank AC, Zamana-Ramblas R, Lial HC, Silva SC, Arias Lugo MA, Keid LB, Pessi CF, Sabbadini JR, Ribeiro VL, do Valle RDR, Bertozzi CP, Colosio AC, Ramos HDCG, Sánchez-Sarmiento AM, Ferioli RB, Pavanelli L, Ikeda JMP, Carvalho VL, Catardo Gonçalves FA, Ibáñez-Porras P, Sacristán I, Catão-Dias JL. Molecular Detection and Characterization of Mycoplasma spp. in Marine Mammals, Brazil. Emerg Infect Dis 2023; 29:2471-2481. [PMID: 37987585 PMCID: PMC10683811 DOI: 10.3201/eid2912.230903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023] Open
Abstract
Mycoplasma spp. are wall-less bacteria able to infect mammals and are classified as hemotropic (hemoplasma) and nonhemotropic. In aquatic mammals, hemoplasma have been reported in California sea lions (Zalophus californianus) and river dolphins (Inia spp.). We investigated Mycoplasma spp. in blood samples of West Indian manatees (Trichechus manatus), pinnipeds (5 species), and marine cetaceans (18 species) that stranded or were undergoing rehabilitation in Brazil during 2002-2022. We detected Mycoplasma in blood of 18/130 (14.8%) cetaceans and 3/18 (16.6%) pinnipeds. All tested manatees were PCR-negative for Mycoplasma. Our findings indicate that >2 different hemoplasma species are circulating in cetaceans. The sequences from pinnipeds were similar to previously described sequences. We also detected a nonhemotropic Mycoplasma in 2 Franciscana dolphins (Pontoporia blainvillei) that might be associated with microscopic lesions. Because certain hemoplasmas can cause disease and death in immunosuppressed mammals, the bacteria could have conservation implications for already endangered aquatic mammals.
Collapse
|
14
|
Ahamad A, Zervou FN, Aguero-Rosenfeld ME. Extra-urogenital infection by Mycoplasma hominis in transplant patients: two case reports and literature review. BMC Infect Dis 2023; 23:601. [PMID: 37710154 PMCID: PMC10503128 DOI: 10.1186/s12879-023-08593-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/09/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Mycoplasma hominis is a facultative anaerobic bacterium commonly present in the urogenital tract. In recent years, M. hominis has increasingly been associated with extra-urogenital tract infections, particularly in immunosuppressed patients. Detecting M. hominis in a diagnostic laboratory can be challenging due to its slow growth rate, absence of a cell wall, and the requirements of specialized media and conditions for optimal growth. Consequently, it is necessary to establish guidelines for the detection of this microorganism and to request the appropriate microbiological work-up of immunosuppressed patients. CASE PRESENTATION We hereby present two cases of solid organ transplant patients who developed M. hominis infection. Microscopic examination of the bronchial lavage and pleural fluid showed no microorganisms. However, upon inoculating the specimens onto routine microbiology media, the organism was successfully identified and confirmation was performed using 16S rDNA sequencing. Both patients received appropriate treatment resulting in the resolution of M. hominis infection. CONCLUSIONS The prompt detection of M. hominis in a clinical specimen can have a significant impact on patient care by allowing for early intervention and ultimately resulting in more favorable clinical outcomes, especially in transplant patients.
Collapse
Affiliation(s)
- Afrinash Ahamad
- Clinical Laboratory Sciences Program, School of Health Profession, Stony Brook University, Stony Brook, NY, USA.
- Department of Neuroscience and Behavior, Stony Brook University, Stony Brook, NY, USA.
- Department of Pathology, Clinical Microbiology Laboratory, NYU Langone Health, New York, NY, USA.
| | | | - Maria E Aguero-Rosenfeld
- Department of Pathology, Clinical Microbiology Laboratory, NYU Langone Health, New York, NY, USA
- Department of Medicine, NYU Langone Health, New York, NY, USA
| |
Collapse
|
15
|
Ren Q, Luo W, Chi H, Zhang L, Chen W. Down-regulation of β-lactam antibiotics resistance and biofilm formation by Staphylococcus epidermidis is associated with isookanin. Front Cell Infect Microbiol 2023; 13:1139796. [PMID: 37234778 PMCID: PMC10206261 DOI: 10.3389/fcimb.2023.1139796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Introduction Biofilm formation is the major pathogenicity of Staphylococcus epidermidis (S. epidermidis), which enhances bacterial resistance to antibiotics. Isookanin has potential inhibitory activity on biofilm. Method The inhibiting mechanisms of isookanin against biofilm formation through surface hydrophobicity assay, exopolysaccharides, eDNA, gene expression analysis, microscopic visualization, and molecular docking were explored. Additionally, the combination of isookanin and β-lactam antibiotics were evaluated by the broth micro-checkerboard assay. Results The results showed that isookanin could decrease the biofilm formation of S. epidermidis by ≥85% at 250 μg/mL. The exopolysaccharides, eDNA and surface hydrophobicity were reduced after treatment with isookanin. Microscopic visualization analysis showed that there were fewer bacteria on the surface of the microscopic coverslip and the bacterial cell membrane was damaged after treatment with isookanin. The down-regulation of icaB and up-regulation of icaR were observed after treatment with isookanin. Additionally, the RNAIII gene was significantly up-regulated (p < 0.0001) at the mRNA level. Molecular docking showed that isookanin could bind to biofilm-related proteins. This indicated that isookanin can affect biofilm formation at the initial attachment phase and the aggregation phase. The FICI index showed that the combination of isookanin and β-lactam antibiotics were synergistic and could reduce doses of antibiotics by inhibiting biofilm formation. Discussion This study improved the antibiotic susceptibility of S. epidermidis through inhibition of the biofilm formation, and provided a guidance for the treatment of antibiotic resistance caused by biofilm.
Collapse
Affiliation(s)
- Qiang Ren
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction Corps, College of Life Sciences and Technology, Tarim University, Alar, Xinjiang, China
| | - Wanhe Luo
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Haoming Chi
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Lili Zhang
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction Corps, College of Life Sciences and Technology, Tarim University, Alar, Xinjiang, China
| | - Wei Chen
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction Corps, College of Life Sciences and Technology, Tarim University, Alar, Xinjiang, China
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| |
Collapse
|
16
|
Noaman EA, Nayel M, Salama A, Mahmoud MA, El-Kattan AM, Dawood AS, Abd El-Hamid IS, Elsify A, Mousa W, Elkhtam A, Zaghawa A. Enteric protozoal infections in camels: Etiology, epidemiology, and future perspectives. GERMAN JOURNAL OF VETERINARY RESEARCH 2023; 3:1-17. [DOI: 10.51585/gjvr.2023.1.0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Camels have great potential as a safety valve for current and future food security for pastoralists, agropastoralists, and urban populations. Enteric protozoal diseases are important causes of economic losses in camels; however, they are poorly concerned globally. The most common members of enteric protozoa are Balantidium, Eimeria, Giardia, and Cryptosporidium. Some of them threaten human health as humans can be infected by consuming food or water contaminated with camel feces, particularly in poor communities with inadequate sanitation and low-quality healthcare facilities. For these reasons, a comprehensive and careful investigation was conducted on some enteric protozoal diseases of camels to present an updated insight into the etiology, epidemiology, and future trends in diagnosing and controlling camel enteric protozoa. Future studies on the camel enteric protozoa should be carried out to develop advanced diagnostic approaches in diverse farm animal species. Moreover, the protozoan zoonotic potential should be considered to secure human health.
Collapse
|
17
|
Intelligent-Responsive Enrofloxacin-Loaded Chitosan Oligosaccharide-Sodium Alginate Composite Core-Shell Nanogels for On-Demand Release in the Intestine. Animals (Basel) 2022; 12:ani12192701. [PMID: 36230443 PMCID: PMC9559476 DOI: 10.3390/ani12192701] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022] Open
Abstract
Simple Summary Novel pharmaceutical formulations are attracting interest in their potential to overcome the poor palatability and strong gastric irritation of enrofloxacin. To overcome the difficulty of treating intestinal Escherichia coli infections, an oral intelligent-responsive chitosan-oligosaccharide (COS)–sodium alginate (SA) composite core-shell nanogel loaded with enrofloxacin was designed and systematically evaluated. Scanning electron microscopy images revealed that enrofloxacin nanogels were incorporated into the nano-sized cross-linked networks. The physical state and molecular interaction among the components of the nanogel and the enrofloxacin were evaluated by Fourier transform infrared spectroscopy. Furthermore, their biocompatible structure, high drug loading efficacy, ideal stability, “on-demand” release at the target site, and antibacterial activity were confirmed. Thus, the present study may serve as a fruitful platform to explore nanogel to resolve the challenge of enrofloxacin formulation development and the fight against intestinal bacterial infections. Abstract Enrofloxacin has a poor palatability and causes strong gastric irritation; the oral formulation of enrofloxacin is unavailable, which limits the treatment of Escherichia coli (E. coli) infections via oral administration. To overcome the difficulty in treating intestinal E. coli infections, an oral intelligent-responsive chitosan-oligosaccharide (COS)–sodium alginate (SA) composite core-shell nanogel loaded with enrofloxacin was explored. The formulation screening, characteristics, pH-responsive performance in gastric juice and the intestinal tract, antibacterial effects, therapeutic effects, and biosafety level of the enrofloxacin composite nanogels were investigated. The optimized concentrations of COS, SA, CaCl2, and enrofloxacin were 8, 8, 0.2, and 5 mg/mL, respectively. The encapsulation efficiency, size, loading capacity, zeta potential, and polydispersity index of the optimized formulation were 72.4 ± 0.8%, 143.5 ± 2.6 nm, 26.6 ± 0.5%, −37.5 ± 1.5 mV, and 0.12 ± 0.07, respectively. Scanning electron microscopy images revealed that enrofloxacin-loaded nanogels were incorporated into the nano-sized cross-linked networks. Fourier transform infrared spectroscopy showed that the nanogels were prepared by the electrostatic interaction of the differently charged groups (positive amino groups (-NH3+) of COS and the negative phenolic hydroxyl groups (-COO−) of SA). In vitro, pH-responsive release performances revealed effective pH-responsive performances, which can help facilitate targeted “on-demand” release at the target site and ensure that the enrofloxacin has an ideal stability in the stomach and a responsive release in the intestinal tract. The antibacterial activity study demonstrated that more effective bactericidal activity against E. coli could have a better treatment effect than the enrofloxacin solution. Furthermore, the enrofloxacin composite nanogels had great biocompatibility. Thus, the enrofloxacin composite core-shell nanogels might be an oral intelligent-responsive preparation to overcome the difficulty in treating intestinal bacterial infections.
Collapse
|