1
|
Alves PT, de Souza AG, Bastos VAF, Miguel EL, Ramos ACS, Cameron LC, Goulart LR, Cunha TM. The Modulation of Septic Shock: A Proteomic Approach. Int J Mol Sci 2024; 25:10641. [PMID: 39408970 PMCID: PMC11476436 DOI: 10.3390/ijms251910641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Sepsis poses a significant challenge due its lethality, involving multiple organ dysfunction and impaired immune responses. Among several factors affecting sepsis, monocytes play a crucial role; however, their phenotype, proteomic profile, and function in septic shock remain unclear. Our aim was to fully characterize the subpopulations and proteomic profiles of monocytes seen in septic shock cases and discuss their possible impact on the disease. Peripheral blood monocyte subpopulations were phenotype based on CD14/CD16 expression by flow cytometry, and proteins were extracted from the monocytes of individuals with septic shock and healthy controls to identify changes in the global protein expression in these cells. Analysis using 2D-nanoUPLC-UDMSE identified 67 differentially expressed proteins in shock patients compared to controls, in which 44 were upregulated and 23 downregulated. These proteins are involved in monocyte reprogramming, immune dysfunction, severe hypotension, hypo-responsiveness to vasoconstrictors, vasodilation, endothelial dysfunction, vascular injury, and blood clotting, elucidating the disease severity and therapeutic challenges of septic shock. This study identified critical biological targets in monocytes that could serve as potential biomarkers for the diagnosis, prognosis, and treatment of septic shock, providing new insights into the pathophysiology of the disease.
Collapse
Affiliation(s)
- Patrícia Terra Alves
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38402-022, MG, Brazil (T.M.C.)
| | - Aline Gomes de Souza
- Department of Medical Imaging, Hematology and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto 14040-900, SP, Brazil;
| | - Victor Alexandre F. Bastos
- Laboratory of Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38408-100, MG, Brazil;
| | - Eduarda L. Miguel
- School of Medicine, Federal University of Uberlândia, Uberlândia 38408-100, MG, Brazil; (E.L.M.); (A.C.S.R.)
| | - Augusto César S. Ramos
- School of Medicine, Federal University of Uberlândia, Uberlândia 38408-100, MG, Brazil; (E.L.M.); (A.C.S.R.)
| | - L. C. Cameron
- Arthritis Program, Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada;
- Lorraine Protein Biochemistry Group, Graduate Program in Neurology, Gaffrée e Guinle University Hospital, Rio de Janeiro 20270-004, RJ, Brazil
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38402-022, MG, Brazil (T.M.C.)
| | - Thúlio M. Cunha
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38402-022, MG, Brazil (T.M.C.)
- School of Medicine, Federal University of Uberlândia, Uberlândia 38408-100, MG, Brazil; (E.L.M.); (A.C.S.R.)
| |
Collapse
|
2
|
Ahrazoglu T, Kluczny JI, Kleimann P, Irschfeld LM, Nienhaus FT, Bönner F, Gerdes N, Temme S. Design of a Robust Flow Cytometric Approach for Phenotypical and Functional Analysis of Human Monocyte Subsets in Health and Disease. Biomolecules 2024; 14:1251. [PMID: 39456184 PMCID: PMC11506830 DOI: 10.3390/biom14101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Human monocytes can be subdivided into phenotypically and functionally different classical, intermediate and non-classical monocytes according to the cell surface expression of CD14 and CD16. A precise identification and characterisation of monocyte subsets is necessary to unravel their role in inflammatory diseases. Here, we compared three different flow cytometric strategies (A-C) and found that strategy C, which included staining against CD11b, HLA-DR, CD14 and CD16, followed by several gating steps, most reliably identified monocyte subtypes in blood samples from healthy volunteers and from patients with stable coronary heart disease (CHD) or ST-elevation myocardial infarction (STEMI). Additionally, we established a fixation and permeabilisation protocol to enable the analysis of intracellular markers. We investigated the phagocytosis of lipid nanoparticles, the uptake of 2-NBD-glucose and the intracellular levels of CD74 and HLA-DM. This revealed that classical and intermediate monocytes from patients with STEMI showed the highest uptake of 2-NBD-glucose, whereas classical and intermediate monocytes from patients with CHD took up the largest amounts of lipid nanoparticles. Interestingly, intermediate monocytes had the highest expression level of HLA-DM. Taken together, we present a robust flow cytometric approach for the identification and functional characterisation of monocyte subtypes in healthy humans and patients with diseases.
Collapse
Affiliation(s)
- Talia Ahrazoglu
- Department of Anesthesiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (T.A.); (J.I.K.)
| | - Jennifer Isabel Kluczny
- Department of Anesthesiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (T.A.); (J.I.K.)
| | - Patricia Kleimann
- Institute of Molecular Cardiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Lisa-Marie Irschfeld
- Department of Radiation Oncology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Fabian Theodor Nienhaus
- Department of Cardiology, Pulmonology and Vascular Medicine, Faculty of Medicine, University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (F.T.N.); (F.B.); (N.G.)
| | - Florian Bönner
- Department of Cardiology, Pulmonology and Vascular Medicine, Faculty of Medicine, University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (F.T.N.); (F.B.); (N.G.)
| | - Norbert Gerdes
- Department of Cardiology, Pulmonology and Vascular Medicine, Faculty of Medicine, University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (F.T.N.); (F.B.); (N.G.)
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Sebastian Temme
- Department of Anesthesiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (T.A.); (J.I.K.)
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Ashbery D, Baez HC, Kanarr RE, Kunala K, Power D, Chu CJ, Schallek J, McGregor JE. In Vivo Visualization of Intravascular Patrolling Immune Cells in the Primate Eye. Invest Ophthalmol Vis Sci 2024; 65:23. [PMID: 39283618 PMCID: PMC11407476 DOI: 10.1167/iovs.65.11.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Purpose Insight into the immune status of the living eye is essential as we seek to understand ocular disease and develop new treatments. The nonhuman primate (NHP) is the gold standard preclinical model for therapeutic development in ophthalmology, owing to the similar visual system and immune landscape in the NHP relative to the human. Here, we demonstrate the utility of phase-contrast adaptive optics scanning light ophthalmoscope (AOSLO) to visualize immune cell dynamics on the cellular scale, label-free in the NHP. Methods Phase-contrast AOSLO was used to image preselected areas of retinal vasculature in five NHP eyes. Images were registered to correct for eye motion, temporally averaged, and analyzed for immune cell activity. Cell counts, dimensions, velocities, and frequency per vessel were determined manually and compared between retinal arterioles and venules. Based on cell appearance and circularity index, cells were divided into three morphologies: ovoid, semicircular, and flattened. Results Immune cells were observed migrating along vascular endothelium with and against blood flow. Cell velocity did not significantly differ between morphology or vessel type and was independent of blow flood. Venules had a significantly higher cell frequency than arterioles. A higher proportion of cells resembled "flattened" morphology in arterioles. Based on cell speeds, morphologies, and behaviors, we identified these cells as nonclassical patrolling monocytes (NCPMs). Conclusions Phase-contrast AOSLO has the potential to reveal the once hidden behaviors of single immune cells in retinal circulation and can do so without the requirement of added contrast agents that may disrupt immune cell behavior.
Collapse
Affiliation(s)
- Drew Ashbery
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Hector C Baez
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States
| | - Rye E Kanarr
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Karteek Kunala
- Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Derek Power
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Colin J Chu
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Jesse Schallek
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States
- Department of Neuroscience, University of Rochester, Rochester, New York, United States
| | - Juliette E McGregor
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
| |
Collapse
|
4
|
Goreke U, Gonzales A, Shipley B, Tincher M, Sharma O, Wulftange WJ, Man Y, An R, Hinczewski M, Gurkan UA. Motion blur microscopy: in vitro imaging of cell adhesion dynamics in whole blood flow. Nat Commun 2024; 15:7058. [PMID: 39152149 PMCID: PMC11329636 DOI: 10.1038/s41467-024-51014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 07/26/2024] [Indexed: 08/19/2024] Open
Abstract
Imaging and characterizing the dynamics of cellular adhesion in blood samples is of fundamental importance in understanding biological function. In vitro microscopy methods are widely used for this task but typically require diluting the blood with a buffer to allow for transmission of light. However, whole blood provides crucial signaling cues that influence adhesion dynamics, which means that conventional approaches lack the full physiological complexity of living microvasculature. We can reliably image cell interactions in microfluidic channels during whole blood flow by motion blur microscopy (MBM) in vitro and automate image analysis using machine learning. MBM provides a low cost, easy to implement alternative to intravital microscopy, for rapid data generation where understanding cell interactions, adhesion, and motility is crucial. MBM is generalizable to studies of various diseases, including cancer, blood disorders, thrombosis, inflammatory and autoimmune diseases, as well as providing rich datasets for theoretical modeling of adhesion dynamics.
Collapse
Affiliation(s)
- Utku Goreke
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Ayesha Gonzales
- Department of Physics, Case Western Reserve University, Cleveland, OH, USA
| | - Brandon Shipley
- Department of Physics, Case Western Reserve University, Cleveland, OH, USA
| | - Madeleine Tincher
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Oshin Sharma
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - William J Wulftange
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Yuncheng Man
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Ran An
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Michael Hinczewski
- Department of Physics, Case Western Reserve University, Cleveland, OH, USA.
| | - Umut A Gurkan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA.
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
5
|
Goreke U, Gonzales A, Shipley B, Tincher M, Sharma O, Wulftange W, Man Y, An R, Hinczewski M, Gurkan UA. Motion Blur Microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.08.561435. [PMID: 37873474 PMCID: PMC10592665 DOI: 10.1101/2023.10.08.561435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Imaging and characterizing the dynamics of cellular adhesion in blood samples is of fundamental importance in understanding biological function. In vitro microscopy methods are widely used for this task, but typically require diluting the blood with a buffer to allow for transmission of light. However whole blood provides crucial mechanical and chemical signaling cues that influence adhesion dynamics, which means that conventional approaches lack the full physiological complexity of living microvasculature. We propose to overcome this challenge by a new in vitro imaging method which we call motion blur microscopy (MBM). By decreasing the source light intensity and increasing the integration time during imaging, flowing cells are blurred, allowing us to identify adhered cells. Combined with an automated analysis using machine learning, we can for the first time reliably image cell interactions in microfluidic channels during whole blood flow. MBM provides a low cost, easy to implement alternative to intravital microscopy, the in vivo approach for studying how the whole blood environment shapes adhesion dynamics. We demonstrate the method's reproducibility and accuracy in two example systems where understanding cell interactions, adhesion, and motility is crucial-sickle red blood cells adhering to laminin, and CAR-T cells adhering to E-selectin. We illustrate the wide range of data types that can be extracted from this approach, including distributions of cell size and eccentricity, adhesion durations, trajectories and velocities of adhered cells moving on a functionalized surface, as well as correlations among these different features at the single cell level. In all cases MBM allows for rapid collection and processing of large data sets, ranging from thousands to hundreds of thousands of individual adhesion events. The method is generalizable to study adhesion mechanisms in a variety of diseases, including cancer, blood disorders, thrombosis, inflammatory and autoimmune diseases, as well as providing rich datasets for theoretical modeling of adhesion dynamics.
Collapse
Affiliation(s)
- Utku Goreke
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH
| | - Ayesha Gonzales
- Department of Physics, Case Western Reserve University, Cleveland, OH
| | - Brandon Shipley
- Department of Physics, Case Western Reserve University, Cleveland, OH
| | - Madeleine Tincher
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH
| | - Oshin Sharma
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH
| | - William Wulftange
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH
| | - Yuncheng Man
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH
| | - Ran An
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH
| | | | - Umut A. Gurkan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
6
|
Hu Y, Hao F, An Q, Jiang W. Immune cell signatures and inflammatory mediators: unraveling their genetic impact on chronic kidney disease through Mendelian randomization. Clin Exp Med 2024; 24:94. [PMID: 38703294 PMCID: PMC11069478 DOI: 10.1007/s10238-024-01341-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/27/2024] [Indexed: 05/06/2024]
Abstract
Prior research has established associations between immune cells, inflammatory proteins, and chronic kidney disease (CKD). Our Mendelian randomization study aims to elucidate the genetic causal relationships among these factors and CKD. We applied Mendelian randomization using genetic variants associated with CKD from a large genome-wide association study (GWAS) and inflammatory markers from a comprehensive GWAS summary. The causal links between exposures (immune cell subtypes and inflammatory proteins) and CKD were primarily analyzed using the inverse variance-weighted, supplemented by sensitivity analyses, including MR-Egger, weighted median, weighted mode, and MR-PRESSO. Our analysis identified both absolute and relative counts of CD28 + CD45RA + CD8 + T cell (OR = 1.01; 95% CI = 1.01-1.02; p < 0.001, FDR = 0.018) (OR = 1.01; 95% CI = 1.00-1.01; p < 0.001, FDR = 0.002), CD28 on CD39 + CD8 + T cell(OR = 0.97; 95% CI = 0.96-0.99; p < 0.001, FDR = 0.006), CD16 on CD14-CD16 + monocyte (OR = 1.02; 95% CI = 1.01-1.03; p < 0.001, FDR = 0.004) and cytokines, such as IL-17A(OR = 1.11, 95% CI = 1.06-1.16, p < 0.001, FDR = 0.001), and LIF-R(OR = 1.06, 95% CI = 1.02-1.10, p = 0.005, FDR = 0.043) that are genetically predisposed to influence the risk of CKD. Moreover, the study discovered that CKD itself may causatively lead to alterations in certain proteins, including CST5(OR = 1.16, 95% CI = 1.09-1.24, p < 0.001, FDR = 0.001). No evidence of reverse causality was found for any single biomarker and CKD. This comprehensive MR investigation supports a genetic causal nexus between certain immune cell subtypes, inflammatory proteins, and CKD. These findings enhance the understanding of CKD's immunological underpinnings and open avenues for targeted treatments.
Collapse
Affiliation(s)
- Yongzheng Hu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fengyun Hao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qian An
- Department of Nephrology, Qingdao Central Hospital, Qingdao, Shandong, China
| | - Wei Jiang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
7
|
Salnikova DI, Nikiforov NG, Postnov AY, Orekhov AN. Target Role of Monocytes as Key Cells of Innate Immunity in Rheumatoid Arthritis. Diseases 2024; 12:81. [PMID: 38785736 PMCID: PMC11119903 DOI: 10.3390/diseases12050081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic, and inflammatory autoimmune condition characterized by synovitis, pannus formation (with adjacent bone erosion), and joint destruction. In the perpetuation of RA, fibroblast-like synoviocytes (FLSs), macrophages, B cells, and CD4+ T-cells-specifically Th1 and Th17 cells-play crucial roles. Additionally, dendritic cells, neutrophils, mast cells, and monocytes contribute to the disease progression. Monocytes, circulating cells primarily derived from the bone marrow, participate in RA pathogenesis. Notably, CCR2 interacts with CCL2, and CX3CR1 (expressed by monocytes) cooperates with CX3CL1 (produced by FLSs), facilitating the migration involved in RA. Canonical "classical" monocytes predominantly acquire the phenotype of an "intermediate" subset, which differentially expresses proinflammatory cytokines (IL-1β, IL-6, and TNF) and surface markers (CD14, CD16, HLA-DR, TLRs, and β1- and β2-integrins). However, classical monocytes have greater potential to differentiate into osteoclasts, which contribute to bone resorption in the inflammatory milieu; in RA, Th17 cells stimulate FLSs to produce RANKL, triggering osteoclastogenesis. This review aims to explore the monocyte heterogeneity, plasticity, antigenic expression, and their differentiation into macrophages and osteoclasts. Additionally, we investigate the monocyte migration into the synovium and the role of their cytokines in RA.
Collapse
Affiliation(s)
- Diana I. Salnikova
- Laboratory of Oncoproteomics, Department of Experimental Tumor Biology, Institute of Carcinogenesis, Blokhin N.N. National Medical Research Center of Oncology, 24 Kashirskoe Highway, 115522 Moscow, Russia
| | - Nikita G. Nikiforov
- Laboratory of Angiopathology, The Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia; (N.G.N.); (A.N.O.)
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 3 Tsyurupa Street, 117418 Moscow, Russia;
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, 119334 Moscow, Russia
| | - Anton Y. Postnov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 3 Tsyurupa Street, 117418 Moscow, Russia;
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, The Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia; (N.G.N.); (A.N.O.)
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 3 Tsyurupa Street, 117418 Moscow, Russia;
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, 121609 Moscow, Russia
| |
Collapse
|
8
|
Tiwari A, Haj N, Elgrably B, Berihu M, Laskov V, Barash S, Zigron S, Sason H, Shamay Y, Karni-Ashkenazi S, Holdengreber M, Saar G, Vandoorne K. Cross-Modal Imaging Reveals Nanoparticle Uptake Dynamics in Hematopoietic Bone Marrow during Inflammation. ACS NANO 2024; 18:7098-7113. [PMID: 38343099 PMCID: PMC10919094 DOI: 10.1021/acsnano.3c11201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 03/06/2024]
Abstract
Nanoparticles have been employed to elucidate the innate immune cell biology and trace cells accumulating at inflammation sites. Inflammation prompts innate immune cells, the initial responders, to undergo rapid turnover and replenishment within the hematopoietic bone marrow. Yet, we currently lack a precise understanding of how inflammation affects cellular nanoparticle uptake at the level of progenitors of innate immune cells in the hematopoietic marrow. To bridge this gap, we aimed to develop imaging tools to explore the uptake dynamics of fluorescently labeled cross-linked iron oxide nanoparticles in the bone marrow niche under varying degrees of inflammation. The inflammatory models included mice that received intramuscular lipopolysaccharide injections to induce moderate inflammation and streptozotocin-induced diabetic mice with additional intramuscular lipopolysaccharide injections to intensify inflammation. In vivo magnetic resonance imaging (MRI) and fluorescence imaging revealed an elevated level of nanoparticle uptake at the bone marrow as the levels of inflammation increased. The heightened uptake of nanoparticles within the inflamed marrow was attributed to enhanced permeability and retention with increased nanoparticle intake by hematopoietic progenitor cells. Moreover, intravital microscopy showed increased colocalization of nanoparticles within slowly patrolling monocytes in these inflamed hematopoietic marrow niches. Our discoveries unveil a previously unknown role of the inflamed hematopoietic marrow in enhanced storage and rapid deployment of nanoparticles, which can specifically target innate immune cells at their production site during inflammation. These insights underscore the critical function of the hematopoietic bone marrow in distributing iron nanoparticles to innate immune cells during inflammation. Our findings offer diagnostic and prognostic value, identifying the hematopoietic bone marrow as an imaging biomarker for early detection in inflammation imaging, advancing personalized clinical care.
Collapse
Affiliation(s)
- Ashish Tiwari
- Faculty
of Biomedical Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
| | - Narmeen Haj
- Faculty
of Biomedical Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
| | - Betsalel Elgrably
- Faculty
of Biomedical Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
| | - Maria Berihu
- Faculty
of Biomedical Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
| | - Viktor Laskov
- Faculty
of Biomedical Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
- Third
Faculty of Medicine, Charles University, Prague 100 00, Czech Republic
| | - Sivan Barash
- Faculty
of Biomedical Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
| | - Shachar Zigron
- Faculty
of Biomedical Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
| | - Hagit Sason
- Faculty
of Biomedical Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
| | - Yosi Shamay
- Faculty
of Biomedical Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
| | - Shiri Karni-Ashkenazi
- Faculty
of Biomedical Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
| | - Maya Holdengreber
- Biomedical
Core Facility, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Galit Saar
- Biomedical
Core Facility, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Katrien Vandoorne
- Faculty
of Biomedical Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
9
|
Wang J, Dong D, Zhao W, Wang J. Intravital microscopy visualizes innate immune crosstalk and function in tissue microenvironment. Eur J Immunol 2024; 54:e2350458. [PMID: 37830252 DOI: 10.1002/eji.202350458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/14/2023]
Abstract
Significant advances have been made in the field of intravital microscopy (IVM) on myeloid cells due to the growing number of validated fluorescent probes and reporter mice. IVM provides a visualization platform to directly observe cell behavior and deepen our understanding of cellular dynamics, heterogeneity, plasticity, and cell-cell communication in native tissue environments. This review outlines the current studies on the dynamic interaction and function of innate immune cells with a focus on those that are studied with IVM and covers the advances in data analysis with emerging artificial intelligence-based algorithms. Finally, the prospects of IVM on innate immune cells are discussed.
Collapse
Affiliation(s)
- Jin Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong Dong
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenying Zhao
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Immune-related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Hammad R, Abdel Wahab MA, Farouk N, Zakaria MY, Eldosoky MA, Elmadbouly AA, Tahoun SA, Mahmoud E, Khirala SK, Mohammed AR, Emam WA, Abo Elqasem AA, Kotb FM, Abd Elghany RAE. Non-classical monocytes frequency and serum vitamin D 3 levels are linked to diabetic foot ulcer associated with peripheral artery disease. J Diabetes Investig 2023; 14:1192-1201. [PMID: 37394883 PMCID: PMC10512914 DOI: 10.1111/jdi.14048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/26/2023] [Accepted: 06/15/2023] [Indexed: 07/04/2023] Open
Abstract
AIMS/INTRODUCTION Peripheral artery disease (PAD) serves as a risk factor for diabetic foot ulcers (DFUs). PAD pathology involves atherosclerosis and impaired immunity. Non-classical monocytes are believed to have an anti-inflammatory role. 1,25-Dihydroxy vitamin D (vitamin D3 ) is claimed to have immune-modulating and lipid-regulating roles. Vitamin D receptor is expressed on monocytes. We aimed to investigate if circulating non-classical monocytes and vitamin D3 were implicated in DFUs associated with PAD. MATERIALS AND METHODS There were two groups of DFU patients: group 1 (n = 40) included patients with first-degree DFUs not associated with PAD, and group 2 (n = 50) included patients with DFU with PAD. The monocyte phenotypes were detected using flow cytometry. Vitamin D3 was assessed by enzyme-linked immunosorbent assay. RESULTS DFU patients with PAD showed a significant reduction in the frequency of non-classical monocytes and vitamin D3 levels, when compared with DFU patients without PAD. The percentage of non-classical monocytes positively correlated with vitamin D3 level (r = 0.4, P < 0.01) and high-density lipoprotein (r = 0.5, P < 0.001), whereas it was negatively correlated with cholesterol (r = -0.5, P < 0.001). Vitamin D3 was negatively correlated with triglyceride/high-density lipoprotein (r = -0.4, P < 0.01). Regression analysis showed that a high vitamin D3 serum level was a protective factor against PAD occurrence. CONCLUSIONS Non-classical monocytes frequency and vitamin D3 levels were significantly reduced in DFU patients with PAD. Non-classical monocytes frequency was associated with vitamin D3 in DFUs patients, and both parameters were linked to lipid profile. Vitamin D3 upregulation was a risk-reducing factor for PAD occurrence.
Collapse
Affiliation(s)
- Reham Hammad
- Clinical Pathology Department, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Maisa A Abdel Wahab
- Vascular Surgery, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Nehal Farouk
- Vascular Surgery, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | | | - Mona A Eldosoky
- Clinical Pathology Department, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Asmaa A Elmadbouly
- Clinical Pathology Department, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Sara A Tahoun
- Clinical Pathology Department, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Eman Mahmoud
- Endocrinology and Metabolism Department, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Seham K Khirala
- Medical Microbiology and Immunology, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Amena Rezk Mohammed
- Biochemistry Department, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Wafaa Abdelaziz Emam
- Biochemistry Department, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Asmaa A Abo Elqasem
- Immunology, Zoology and Entomology Department, Faculty of Science (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Fatma M Kotb
- Internal Medicine Department, Faculty of Medicine (Girls)Al‐Azhar UniversityCairoEgypt
| | | |
Collapse
|
11
|
Ruder AV, Wetzels SMW, Temmerman L, Biessen EAL, Goossens P. Monocyte heterogeneity in cardiovascular disease. Cardiovasc Res 2023; 119:2033-2045. [PMID: 37161473 PMCID: PMC10478755 DOI: 10.1093/cvr/cvad069] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/07/2023] [Accepted: 02/21/2023] [Indexed: 05/11/2023] Open
Abstract
Monocytes circulate the vasculature at steady state and are recruited to sites of inflammation where they differentiate into macrophages (MФ) to replenish tissue-resident MФ populations and engage in the development of cardiovascular disease (CVD). Monocytes display considerable heterogeneity, currently reflected by a nomenclature based on their expression of cluster of differentiation (CD) 14 and CD16, distinguishing CD14++CD16- classical (cMo), CD14++CD16+ intermediate (intMo) and CD14+CD16++ non-classical (ncMo) monocytes. Several reports point to shifted subset distributions in the context of CVD, with significant association of intMo numbers with atherosclerosis, myocardial infarction, and heart failure. However, clear indications of their causal involvement as well as their predictive value for CVD are lacking. As recent high-parameter cytometry and single-cell RNA sequencing (scRNA-Seq) studies suggest an even higher degree of heterogeneity, better understanding of the functionalities of these subsets is pivotal. Considering their high heterogeneity, surprisingly little is known about functional differences between MФ originating from monocytes belonging to different subsets, and implications thereof for CVD pathogenesis. This paper provides an overview of recent findings on monocyte heterogeneity in the context of homeostasis and disease as well as functional differences between the subsets and their potential to differentiate into MФ, focusing on their role in vessels and the heart. The emerging paradigm of monocyte heterogeneity transcending the current tripartite subset division argues for an updated nomenclature and functional studies to substantiate marker-based subdivision and to clarify subset-specific implications for CVD.
Collapse
Affiliation(s)
- Adele V Ruder
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Suzan M W Wetzels
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Lieve Temmerman
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Erik A L Biessen
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Pieter Goossens
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
12
|
Todd BP, Luo Z, Gilkes N, Chimenti MS, Peterson Z, Mix MR, Harty JT, Nickl-Jockschat T, Ferguson PJ, Bassuk AG, Newell EA. Selective neuroimmune modulation by type I interferon drives neuropathology and neurologic dysfunction following traumatic brain injury. Acta Neuropathol Commun 2023; 11:134. [PMID: 37596685 PMCID: PMC10436463 DOI: 10.1186/s40478-023-01635-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/05/2023] [Indexed: 08/20/2023] Open
Abstract
Accumulating evidence suggests that type I interferon (IFN-I) signaling is a key contributor to immune cell-mediated neuropathology in neurodegenerative diseases. Recently, we demonstrated a robust upregulation of type I interferon-stimulated genes in microglia and astrocytes following experimental traumatic brain injury (TBI). The specific molecular and cellular mechanisms by which IFN-I signaling impacts the neuroimmune response and neuropathology following TBI remains unknown. Using the lateral fluid percussion injury model (FPI) in adult male mice, we demonstrated that IFN α/β receptor (IFNAR) deficiency resulted in selective and sustained blockade of type I interferon-stimulated genes following TBI as well as decreased microgliosis and monocyte infiltration. Molecular alteration of reactive microglia also occurred with diminished expression of genes needed for MHC class I antigen processing and presentation following TBI. This was associated with decreased accumulation of cytotoxic T cells in the brain. The IFNAR-dependent modulation of the neuroimmune response was accompanied by protection from secondary neuronal death, white matter disruption, and neurobehavioral dysfunction. These data support further efforts to leverage the IFN-I pathway for novel, targeted therapy of TBI.
Collapse
Affiliation(s)
- Brittany P Todd
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, USA
| | - Zili Luo
- Department of Pediatrics, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Noah Gilkes
- Department of Pediatrics, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Michael S Chimenti
- Bioinformatics Division, Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA
| | - Zeru Peterson
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Madison R Mix
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
- Department of Pathology and Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - John T Harty
- Department of Pathology and Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - Thomas Nickl-Jockschat
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Polly J Ferguson
- Department of Pediatrics, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Alexander G Bassuk
- Department of Pediatrics, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Elizabeth A Newell
- Department of Pediatrics, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA.
| |
Collapse
|
13
|
Todd BP, Luo Z, Gilkes N, Chimenti MS, Peterson Z, Mix M, Harty JT, Nickl-Jockschat T, Ferguson PJ, Bassuk AG, Newell EA. Selective neuroimmune modulation by type I interferon drives neuropathology and neurologic dysfunction following traumatic brain injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543774. [PMID: 37333385 PMCID: PMC10274693 DOI: 10.1101/2023.06.06.543774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Accumulating evidence suggests that type I interferon (IFN-I) signaling is a key contributor to immune cell-mediated neuropathology in neurodegenerative diseases. Recently, we demonstrated a robust upregulation of type I interferon-stimulated genes in microglia and astrocytes following experimental traumatic brain injury (TBI). The specific molecular and cellular mechanisms by which IFN-I signaling impacts the neuroimmune response and neuropathology following TBI remains unknown. Using the lateral fluid percussion injury model (FPI) in adult male mice, we demonstrated that IFN α/β receptor (IFNAR) deficiency resulted in selective and sustained blockade of type I interferon-stimulated genes following TBI as well as decreased microgliosis and monocyte infiltration. Phenotypic alteration of reactive microglia also occurred with diminished expression of molecules needed for MHC class I antigen processing and presentation following TBI. This was associated with decreased accumulation of cytotoxic T cells in the brain. The IFNAR-dependent modulation of the neuroimmune response was accompanied by protection from secondary neuronal death, white matter disruption, and neurobehavioral dysfunction. These data support further efforts to leverage the IFN-I pathway for novel, targeted therapy of TBI.
Collapse
|
14
|
de Almeida SM, Beltrame MP, Tang B, Rotta I, Abramson I, Vaida F, Schrier R, Ellis RJ. Cerebrospinal fluid CD14 ++CD16 + monocytes in HIV-1 subtype C compared with subtype B. J Neurovirol 2023; 29:308-324. [PMID: 37219809 PMCID: PMC10769008 DOI: 10.1007/s13365-023-01137-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/17/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023]
Abstract
CD14++CD16+ monocytes are susceptible to HIV-1 infection, and cross the blood-brain barrier. HIV-1 subtype C (HIV-1C) shows reduced Tat protein chemoattractant activity compared to HIV-1B, which might influence monocyte trafficking into the CNS. We hypothesized that the proportion of monocytes in CSF in HIV-1C is lower than HIV-1B group. We sought to assess differences in monocyte proportions in cerebrospinal fluid (CSF) and peripheral blood (PB) between people with HIV (PWH) and without HIV (PWoH), and by HIV-1B and -C subtypes. Immunophenotyping was performed by flow cytometry, monocytes were analyzed within CD45 + and CD64 + gated regions and classified in classical (CD14++CD16-), intermediate (CD14++CD16+), and non-classical (CD14lowCD16+). Among PWH, the median [IQR] CD4 nadir was 219 [32-531] cell/mm3; plasma HIV RNA (log10) was 1.60 [1.60-3.21], and 68% were on antiretroviral therapy (ART). Participants with HIV-1C and -B were comparable in terms of age, duration of infection, CD4 nadir, plasma HIV RNA, and ART. The proportion of CSF CD14++CD16+ monocytes was higher in participants with HIV-1C than those with HIV-1B [2.00(0.00-2.80) vs. 0.00(0.00-0.60) respectively, p = 0.03 after BH correction p = 0.10]. Despite viral suppression, the proportion of total monocytes in PB increased in PWH, due to the increase in CD14++CD16+ and CD14lowCD16+ monocytes. The HIV-1C Tat substitution (C30S31) did not interfere with the migration of CD14++CD16+ monocytes to the CNS. This is the first study to evaluate these monocytes in the CSF and PB and compare their proportions according to HIV subtype.
Collapse
Affiliation(s)
- Sergio M de Almeida
- Complexo Hospital de Clínicas-UFPR, Seção de Virologia, Setor Análises Clínicas, Rua Padre Camargo, 280, Curitiba, PR, 80060-240, Brazil.
| | | | - Bin Tang
- HIV Neurobehavioral Research Center (HNRC), UCSD, San Diego, CA, USA
| | - Indianara Rotta
- Complexo Hospital de Clínicas-UFPR, Seção de Virologia, Setor Análises Clínicas, Rua Padre Camargo, 280, Curitiba, PR, 80060-240, Brazil
| | - Ian Abramson
- HIV Neurobehavioral Research Center (HNRC), UCSD, San Diego, CA, USA
| | - Florin Vaida
- HIV Neurobehavioral Research Center (HNRC), UCSD, San Diego, CA, USA
| | - Rachel Schrier
- HIV Neurobehavioral Research Center (HNRC), UCSD, San Diego, CA, USA
| | - Ronald J Ellis
- HIV Neurobehavioral Research Center (HNRC), UCSD, San Diego, CA, USA
| |
Collapse
|
15
|
Lin J, Ehinger E, Hanna DB, Qi Q, Wang T, Ghosheh Y, Mueller K, Anastos K, Lazar JM, Mack WJ, Tien PC, Berman JW, Cohen MH, Ofotokun I, Gange S, Liu C, Heath SL, Tracy RP, Hodis HN, Landay AL, Ley K, Kaplan RC. HIV infection and cardiovascular disease have both shared and distinct monocyte gene expression features: Women's Interagency HIV study. PLoS One 2023; 18:e0285926. [PMID: 37205656 PMCID: PMC10198505 DOI: 10.1371/journal.pone.0285926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023] Open
Abstract
Persistent inflammation contributes to the development of cardiovascular disease (CVD) as an HIV-associated comorbidity. Innate immune cells such as monocytes are major drivers of inflammation in men and women with HIV. The study objectives are to examine the contribution of circulating non-classical monocytes (NCM, CD14dimCD16+) and intermediate monocytes (IM, CD14+CD16+) to the host response to long-term HIV infection and HIV-associated CVD. Women with and without chronic HIV infection (H) were studied. Subclinical CVD (C) was detected as plaques imaged by B-mode carotid artery ultrasound. The study included H-C-, H+C-, H-C+, and H+C+ participants (23 of each, matched on race/ethnicity, age and smoking status), selected from among enrollees in the Women's Interagency HIV Study. We assessed transcriptomic features associated with HIV or CVD alone or comorbid HIV/CVD comparing to healthy (H-C-) participants in IM and NCM isolated from peripheral blood mononuclear cells. IM gene expression was little affected by HIV alone or CVD alone. In IM, coexisting HIV and CVD produced a measurable gene transcription signature, which was abolished by lipid-lowering treatment. In NCM, versus non-HIV controls, women with HIV had altered gene expression, irrespective of whether or not they had comorbid CVD. The largest set of differentially expressed genes was found in NCM among women with both HIV and CVD. Genes upregulated in association with HIV included several potential targets of drug therapies, including LAG3 (CD223). In conclusion, circulating monocytes from patients with well controlled HIV infection demonstrate an extensive gene expression signature which may be consistent with the ability of these cells to serve as potential viral reservoirs. Gene transcriptional changes in HIV patients were further magnified in the presence of subclinical CVD.
Collapse
Affiliation(s)
- Juan Lin
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Erik Ehinger
- Department of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
| | - David B. Hanna
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Tao Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Yanal Ghosheh
- Department of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
| | - Karin Mueller
- Department of Cardiology, Eberhard Karls University, Tuebingen University Hospital, Tuebingen, Germany
| | - Kathryn Anastos
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Jason M. Lazar
- Department of Medicine, Downstate Medical Center, State University of New York, Brooklyn, NY, United States of America
| | - Wendy J. Mack
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Phyllis C. Tien
- Department of Medicine, and Department of Veterans Affairs, Medical Center, University of California, San Francisco, San Francisco, CA, United States of America
| | - Joan W. Berman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Mardge H. Cohen
- Department of Medicine, John Stroger Hospital and Rush University, Chicago, IL, United States of America
| | - Igho Ofotokun
- Department of Medicine, Infectious Disease Division and Grady Health Care System, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Stephen Gange
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Chenglong Liu
- Department of Medicine, Georgetown University Medical Center, Washington, DC, United States of America
| | - Sonya L. Heath
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Russell P. Tracy
- Department of Pathology & Laboratory Medicine and Biochemistry, University of Vermont Larner College of Medicine, Colchester, VT, United States of America
| | - Howard N. Hodis
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Alan L. Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States of America
| | - Klaus Ley
- Department of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
- Department of Bioengineering, University of California San Diego, San Diego, CA, United States of America
| | - Robert C. Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States of America
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, United States of America
| |
Collapse
|
16
|
Robinson ML, Glass DR, Duran V, Agudelo Rojas OL, Sanz AM, Consuegra M, Sahoo MK, Hartmann FJ, Bosse M, Gelvez RM, Bueno N, Pinsky BA, Montoya JG, Maecker H, Estupiñan Cardenas MI, Villar Centeno LA, Garrido EMR, Rosso F, Bendall SC, Einav S. Magnitude and kinetics of the human immune cell response associated with severe dengue progression by single-cell proteomics. SCIENCE ADVANCES 2023; 9:eade7702. [PMID: 36961888 PMCID: PMC10038348 DOI: 10.1126/sciadv.ade7702] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/21/2023] [Indexed: 06/17/2023]
Abstract
Approximately 5 million dengue virus-infected patients progress to a potentially life-threatening severe dengue (SD) infection annually. To identify the immune features and temporal dynamics underlying SD progression, we performed deep immune profiling by mass cytometry of PBMCs collected longitudinally from SD progressors (SDp) and uncomplicated dengue (D) patients. While D is characterized by early activation of innate immune responses, in SDp there is rapid expansion and activation of IgG-secreting plasma cells and memory and regulatory T cells. Concurrently, SDp, particularly children, demonstrate increased proinflammatory NK cells, inadequate expansion of CD16+ monocytes, and high expression of the FcγR CD64 on myeloid cells, yet a signature of diminished antigen presentation. Syndrome-specific determinants include suppressed dendritic cell abundance in shock/hemorrhage versus enriched plasma cell expansion in organ impairment. This study reveals uncoordinated immune responses in SDp and provides insights into SD pathogenesis in humans with potential implications for prediction and treatment.
Collapse
Affiliation(s)
- Makeda L. Robinson
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - David R. Glass
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Veronica Duran
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, 499 Illinois St., 4th Floor, San Francisco, CA 94158, USA
| | | | - Ana Maria Sanz
- Clinical Research Center, Fundación Valle del Lili, Cali, Colombia
| | - Monika Consuegra
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Fundación INFOVIDA, Bucaramanga, Colombia
| | - Malaya Kumar Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Felix J. Hartmann
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marc Bosse
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rosa Margarita Gelvez
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Fundación INFOVIDA, Bucaramanga, Colombia
| | - Nathalia Bueno
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Fundación INFOVIDA, Bucaramanga, Colombia
| | - Benjamin A. Pinsky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jose G. Montoya
- Palo Alto Medical Foundation, Dr. Jack S. Remington Laboratory for Specialty Diagnostics, Palo Alto, CA, USA
| | - Holden Maecker
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Luis Angel Villar Centeno
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Fundación INFOVIDA, Bucaramanga, Colombia
| | - Elsa Marina Rojas Garrido
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Fundación INFOVIDA, Bucaramanga, Colombia
| | - Fernando Rosso
- Clinical Research Center, Fundación Valle del Lili, Cali, Colombia
- Department of Internal Medicine, Division of Infectious Diseases, Fundación Valle del Lili, Cali, Colombia
| | - Sean C. Bendall
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shirit Einav
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, 499 Illinois St., 4th Floor, San Francisco, CA 94158, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
17
|
Langnau C, Janing H, Kocaman H, Gekeler S, Günter M, Petersen-Uribe Á, Jaeger P, Koch B, Kreisselmeier KP, Castor T, Rath D, Gawaz MP, Autenrieth SE, Mueller KAL. Recovery of systemic hyperinflammation in patients with severe SARS-CoV-2 infection. Biomarkers 2023; 28:97-110. [PMID: 36377411 DOI: 10.1080/1354750x.2022.2148745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Patients with cardiovascular disease (CVD) and acute SARS-CoV-2 infection might show an altered immune response during COVID-19. MATERIAL AND METHODS Twenty-three patients with CVD and SARS-CoV-2 infection were prospectively enrolled and received a cardiological assessment at study entry and during follow-up visit. Inclusion criteria of our study were age older than 18 years, presence of CVD, and acute SARS-CoV-2 infection. The median age of the patient cohort was 69 (IQR 55-79) years. 12 (52.2%) patients were men. Peripheral monocytes and chemokine/cytokine profiles were analysed. RESULTS Numbers of classical and non-classical monocytes were significantly decreased during acute SARS-CoV-2 infection compared to 3-month recovery. While classical monocytes reached the expected level in peripheral blood after 3 months, the number of non-classical monocytes remained significantly reduced. DISCUSSION All three monocyte subsets exhibited changes of established adhesion and activation markers. Interestingly, they also expressed higher levels of pro-inflammatory cytokines like macrophage migration inhibitory factor (MIF) at the time of recovery, although MIF was only slightly increased during the acute phase. CONCLUSION Changes of monocyte phenotypes and increased MIF expression after 3-month recovery from acute SARS-CoV-2 infection may indicate persistent, possibly long-lasting, pro-inflammatory monocyte function in CVD patients.
Collapse
Affiliation(s)
- Carolin Langnau
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| | - Henrik Janing
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| | - Hüseyin Kocaman
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| | - Sarah Gekeler
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| | - Manina Günter
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany.,Department of Dendritic Cells in Infection and Cancer, German Cancer Research Centre, Heidelberg, Germany
| | - Álvaro Petersen-Uribe
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| | - Philippa Jaeger
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| | - Barbara Koch
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| | - Klaus-Peter Kreisselmeier
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| | - Tatsiana Castor
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| | - Dominik Rath
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| | - Meinrad Paul Gawaz
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| | - Stella E Autenrieth
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany.,Department of Dendritic Cells in Infection and Cancer, German Cancer Research Centre, Heidelberg, Germany
| | - Karin Anne Lydia Mueller
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
18
|
Analysis of Monocyte Recruitment During Inflammation by Intravital Imaging. Methods Mol Biol 2023; 2608:451-467. [PMID: 36653722 DOI: 10.1007/978-1-0716-2887-4_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Monocytes play essential roles in the inflammatory and anti-inflammatory processes that take place during an immune response, acting both within the vascular network and interstitially. Monocytes are activated, mobilized, and recruited in response to an inflammatory stimulus or different forms of tissue injury. The recruitment of circulating monocytes to the inflamed tissue is essential to resolving the injury.Monocyte recruitment is a multistep process that begins with a decrease in rolling velocity, is followed by adhesion to the endothelium and crawling over the luminal vessel surface, and culminates in monocyte transmigration into the surrounding tissue. Intravital microscopy is a powerful visualization tool for the study of leukocyte behavior and function, intercellular interactions, cell trafficking, and recruitment in pathological and physiological conditions. This modality is therefore widely used for the detailed analysis of the immune response to multiple insults and the molecular mechanisms underlying monocyte interactions within the vascular system in vivo. This chapter describes a protocol for the use of intravital microscopy to analyze monocyte recruitment from the blood vessel to the inflammatory site.
Collapse
|
19
|
Lovatt D, Tamburino A, Krasowska-Zoladek A, Sanoja R, Li L, Peterson V, Wang X, Uslaner J. scRNA-seq generates a molecular map of emerging cell subtypes after sciatic nerve injury in rats. Commun Biol 2022; 5:1105. [PMID: 36261573 PMCID: PMC9581950 DOI: 10.1038/s42003-022-03970-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/09/2022] [Indexed: 01/10/2023] Open
Abstract
Patients with peripheral nerve injury, viral infection or metabolic disorder often suffer neuropathic pain due to inadequate pharmacological options for relief. Developing novel therapies has been challenged by incomplete mechanistic understanding of the cellular microenvironment in sensory nerve that trigger the emergence and persistence of pain. In this study, we report a high resolution transcriptomics map of the cellular heterogeneity of naïve and injured rat sensory nerve covering more than 110,000 individual cells. Annotation reveals distinguishing molecular features of multiple major cell types totaling 45 different subtypes in naïve nerve and an additional 23 subtypes emerging after injury. Ligand-receptor analysis revealed a myriad of potential targets for pharmacological intervention. This work forms a comprehensive resource and unprecedented window into the cellular milieu underlying neuropathic pain and demonstrates that nerve injury is a dynamic process orchestrated by multiple cell types in both the endoneurial and epineurial nerve compartments.
Collapse
Affiliation(s)
- Ditte Lovatt
- Department of Neuroscience, Merck & Co., Inc, West Point, PA, USA.
| | - Alex Tamburino
- Department of Data and Genome Sciences, Merck & Co., Inc, West Point, PA, USA
| | | | - Raul Sanoja
- Department of Neuroscience, Merck & Co., Inc, West Point, PA, USA.,Biomarkers & Imaging, Vertex Pharmaceuticals, Boston, USA
| | - Lixia Li
- Department of Genome and Biomarker Science, Merck & Co., Inc, Boston, MA, USA
| | - Vanessa Peterson
- Department of Genome and Biomarker Science, Merck & Co., Inc, Boston, MA, USA
| | - Xiaohai Wang
- Department of Neuroscience, Merck & Co., Inc, West Point, PA, USA
| | - Jason Uslaner
- Department of Neuroscience, Merck & Co., Inc, West Point, PA, USA
| |
Collapse
|
20
|
Muramyl Dipeptide Administration Delays Alzheimer’s Disease Physiopathology via NOD2 Receptors. Cells 2022; 11:cells11142241. [PMID: 35883683 PMCID: PMC9321587 DOI: 10.3390/cells11142241] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 01/27/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia in the world. The prevalence is steadily increasing due to an aging population and the lack of effective treatments. However, modulation of innate immune cells is a new therapeutic avenue, which is quite effective at delaying disease onset and improving cognitive decline. Methods: We studied the effect of the NOD2 receptor ligand muramyl dipeptide (MDP) on the modulation of the innate immune cells, namely patrolling monocytes and microglia. We administrated MDP once a week for 3 months in an APPswe/PS1 mouse model in both sexes. We started the treatment at 3 months before plaque formation and evaluated its effects at 6 months. Results: We showed that the MDP injections delay cognitive decline in both sexes via different mechanisms and protect the blood brain barrier (BBB). In males, MDP triggers the sink effect from the BBB, leading to a diminution in the amyloid load in the brain. This phenomenon is underlined by the increased expression of phagocytosis markers such as TREM2, CD68, and LAMP2 and a higher expression of ABCB1 and LRP1 at the BBB level. The beneficial effect seems more restricted to the brain in females treated with MDP, where microglia surround amyloid plaques and prevent the spreading of amyloid peptides. This phenomenon is also associated with an increase in TREM2 expression. Interestingly, both treated groups showed an increase in Arg-1 expression compared to controls, suggesting that MDP modulates the inflammatory response. Conclusion: These results indicate that stimulation of the NOD2 receptor in innate immune cells is a promising therapeutic avenue with potential different mechanisms between males and females.
Collapse
|
21
|
A cardioimmunologist's toolkit: genetic tools to dissect immune cells in cardiac disease. Nat Rev Cardiol 2022; 19:395-413. [PMID: 35523863 DOI: 10.1038/s41569-022-00701-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
Cardioimmunology is a field that encompasses the immune cells and pathways that modulate cardiac function in homeostasis and regulate the temporal balance between tissue injury and repair in disease. Over the past two decades, genetic fate mapping and high-dimensional sequencing techniques have defined increasing functional heterogeneity of innate and adaptive immune cell populations in the heart and other organs, revealing a complexity not previously appreciated and challenging established frameworks for the immune system. Given these rapid advances, understanding how to use these tools has become crucial. However, cardiovascular biologists without immunological expertise might not be aware of the strengths and caveats of immune-related tools and how they can be applied to examine the pathogenesis of myocardial diseases. In this Review, we guide readers through case-based examples to demonstrate how tool selection can affect data quality and interpretation and we provide critical analysis of the experimental tools that are currently available, focusing on their use in models of ischaemic heart injury and heart failure. The goal is to increase the use of relevant immunological tools and strategies among cardiovascular researchers to improve the precision, translatability and consistency of future studies of immune cells in cardiac disease.
Collapse
|
22
|
Pizzagalli DU, Pulfer A, Thelen M, Krause R, Gonzalez SF. In Vivo Motility Patterns Displayed by Immune Cells Under Inflammatory Conditions. Front Immunol 2022; 12:804159. [PMID: 35046959 PMCID: PMC8762290 DOI: 10.3389/fimmu.2021.804159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
The migration of immune cells plays a key role in inflammation. This is evident in the fact that inflammatory stimuli elicit a broad range of migration patterns in immune cells. Since these patterns are pivotal for initiating the immune response, their dysregulation is associated with life-threatening conditions including organ failure, chronic inflammation, autoimmunity, and cancer, amongst others. Over the last two decades, thanks to advancements in the intravital microscopy technology, it has become possible to visualize cell migration in living organisms with unprecedented resolution, helping to deconstruct hitherto unexplored aspects of the immune response associated with the dynamism of cells. However, a comprehensive classification of the main motility patterns of immune cells observed in vivo, along with their relevance to the inflammatory process, is still lacking. In this review we defined cell actions as motility patterns displayed by immune cells, which are associated with a specific role during the immune response. In this regard, we summarize the main actions performed by immune cells during intravital microscopy studies. For each of these actions, we provide a consensus name, a definition based on morphodynamic properties, and the biological contexts in which it was reported. Moreover, we provide an overview of the computational methods that were employed for the quantification, fostering an interdisciplinary approach to study the immune system from imaging data.
Collapse
Affiliation(s)
- Diego Ulisse Pizzagalli
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
- Euler institute, Università della Svizzera italiana, Lugano-Viganello, Switzerland
| | - Alain Pulfer
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology Zurich (ETHZ) Zürich, Zürich, Switzerland
| | - Marcus Thelen
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
| | - Rolf Krause
- Euler institute, Università della Svizzera italiana, Lugano-Viganello, Switzerland
| | - Santiago F. Gonzalez
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
| |
Collapse
|
23
|
Bai R, Li Z, Lv S, Wang R, Hua W, Wu H, Dai L. Persistent Inflammation and Non-AIDS Comorbidities During ART: Coming of the Age of Monocytes. Front Immunol 2022; 13:820480. [PMID: 35479083 PMCID: PMC9035604 DOI: 10.3389/fimmu.2022.820480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
Monocytes are innate immune cells that serve as the first line of defense against pathogens by engulfing and destroying pathogens or by processing and presenting antigens to initiate adaptive immunity and stimulate immunological responses. Monocytes are classified into three types: classical, intermediate, and non-classical monocytes, each of which plays a particular function in response to pathogens. Human immunodeficiency virus type 1 (HIV-1) infection disrupts the balance of monocyte subsets, and the quantity and function of monocytes will not fully recover even with long-term antiretroviral therapy (ART). Monocytes are vital for the establishment and maintenance of HIV-1 latent viral reservoirs and are closely related to immune dysfunction even after ART. Therefore, the present review focuses on the phenotypic function of monocytes and their functions in HIV-1 infection to elucidate their roles in HIV patients.
Collapse
Affiliation(s)
- Ruojing Bai
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhen Li
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shiyun Lv
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ran Wang
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wei Hua
- Travel Clinic, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Lili Dai
- Travel Clinic, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Gallo CG, Fiorino S, Posabella G, Antonacci D, Tropeano A, Pausini E, Pausini C, Guarniero T, Hong W, Giampieri E, Corazza I, Federico L, de Biase D, Zippi M, Zancanaro M. COVID-19, what could sepsis, severe acute pancreatitis, gender differences, and aging teach us? Cytokine 2021; 148:155628. [PMID: 34411989 PMCID: PMC8343368 DOI: 10.1016/j.cyto.2021.155628] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/02/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a potentially life-threatening disease, defined as Coronavirus Disease 19 (COVID-19). The most common signs and symptoms of this pathological condition include cough, fever, shortness of breath, and sudden onset of anosmia, ageusia, or dysgeusia. The course of COVID-19 is mild or moderate in more than 80% of cases, but it is severe or critical in about 14% and 5% of infected subjects respectively, with a significant risk of mortality. SARS-CoV-2 related infection is characterized by some pathogenetic events, resembling those detectable in other pathological conditions, such as sepsis and severe acute pancreatitis. All these syndromes are characterized by some similar features, including the coexistence of an exuberant inflammatory- as well as an anti-inflammatory-response with immune depression. Based on current knowledge concerning the onset and the development of acute pancreatitis and sepsis, we have considered these syndromes as a very interesting paradigm for improving our understanding of pathogenetic events detectable in patients with COVID-19. The aim of our review is: 1)to examine the pathogenetic mechanisms acting during the emergence of inflammatory and anti-inflammatory processes in human pathology; 2)to examine inflammatory and anti-inflammatory events in sepsis, acute pancreatitis, and SARS-CoV-2 infection and clinical manifestations detectable in patients suffering from these syndromes also according to the age and gender of these individuals; as well as to analyze the possible common and different features among these pathological conditions; 3)to obtain insights into our knowledge concerning COVID-19 pathogenesis. This approach may improve the management of patients suffering from this disease and it may suggest more effective diagnostic approaches and schedules of therapy, depending on the different phases and/or on the severity of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Claudio G Gallo
- Emilian Physiolaser Therapy Center, Castel S. Pietro Terme, Bologna, Italy.
| | - Sirio Fiorino
- Internal Medicine Unit, Budrio Hospital Azienda USL, Bologna, Italy
| | | | - Donato Antonacci
- Medical Science Department, "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo (FG), Italy
| | | | | | | | | | - Wandong Hong
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang, The People's Republic of China
| | - Enrico Giampieri
- Experimental, Diagnostic and Specialty Medicine Department, University of Bologna, Bologna, Italy
| | - Ivan Corazza
- Experimental, Diagnostic and Specialty Medicine Department, University of Bologna, Bologna, Italy
| | - Lari Federico
- Internal Medicine Unit, Budrio Hospital Azienda USL, Bologna, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Maddalena Zippi
- Unit of Gastroenterology and Digestive Endoscopy, Sandro Pertini Hospital, Rome, Italy
| | | |
Collapse
|
25
|
Moreno-Cañadas R, Luque-Martín L, Arroyo AG. Intravascular Crawling of Patrolling Monocytes: A Lèvy-Like Motility for Unique Search Functions? Front Immunol 2021; 12:730835. [PMID: 34603307 PMCID: PMC8485030 DOI: 10.3389/fimmu.2021.730835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
Patrolling monocytes (PMo) are the organism’s preeminent intravascular guardians by their continuous search of damaged endothelial cells and harmful microparticles for their removal and to restore homeostasis. This surveillance is accomplished by PMo crawling on the apical side of the endothelium through regulated interactions of integrins and chemokine receptors with their endothelial ligands. We propose that the search mode governs the intravascular motility of PMo in vivo in a similar way to T cells looking for antigen in tissues. Signs of damage to the luminal side of the endothelium (local death, oxidized LDL, amyloid deposits, tumor cells, pathogens, abnormal red cells, etc.) will change the diffusive random towards a Lèvy-like crawling enhancing their recognition and clearance by PMo damage receptors as the integrin αMβ2 and CD36. This new perspective can help identify new actors to promote unique PMo intravascular actions aimed at maintaining endothelial fitness and combating harmful microparticles involved in diseases as lung metastasis, Alzheimer’s angiopathy, vaso-occlusive disorders, and sepsis.
Collapse
Affiliation(s)
- Rocío Moreno-Cañadas
- Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Laura Luque-Martín
- Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Alicia G Arroyo
- Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| |
Collapse
|
26
|
Piec PA, Pons V, Rivest S. Triggering Innate Immune Receptors as New Therapies in Alzheimer's Disease and Multiple Sclerosis. Cells 2021; 10:cells10082164. [PMID: 34440933 PMCID: PMC8393987 DOI: 10.3390/cells10082164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis and Alzheimer's disease are two complex neurodegenerative diseases involving the immune system. So far, available treatments provide at best mild improvements to patients' conditions. For decades now, a new set of molecules have been used to modulate and regulate the innate immunity in these pathologies. Most studies have been carried out in rodents and some of them have reported tremendous beneficial effects on the disease course. The modulation of innate immune cells is of great interest since it provides new hope for patients. In this review, we will briefly overview the therapeutic potential of some molecules and receptors in multiple sclerosis and Alzheimer's disease and how they could be used to exploit new therapeutic avenues.
Collapse
|
27
|
The Evolving Roles of Cardiac Macrophages in Homeostasis, Regeneration, and Repair. Int J Mol Sci 2021; 22:ijms22157923. [PMID: 34360689 PMCID: PMC8347787 DOI: 10.3390/ijms22157923] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Macrophages were first described as phagocytic immune cells responsible for maintaining tissue homeostasis by the removal of pathogens that disturb normal function. Historically, macrophages have been viewed as terminally differentiated monocyte-derived cells that originated through hematopoiesis and infiltrated multiple tissues in the presence of inflammation or during turnover in normal homeostasis. However, improved cell detection and fate-mapping strategies have elucidated the various lineages of tissue-resident macrophages, which can derive from embryonic origins independent of hematopoiesis and monocyte infiltration. The role of resident macrophages in organs such as the skin, liver, and the lungs have been well characterized, revealing functions well beyond a pure phagocytic and immunological role. In the heart, recent research has begun to decipher the functional roles of various tissue-resident macrophage populations through fate mapping and genetic depletion studies. Several of these studies have elucidated the novel and unexpected roles of cardiac-resident macrophages in homeostasis, including maintaining mitochondrial function, facilitating cardiac conduction, coronary development, and lymphangiogenesis, among others. Additionally, following cardiac injury, cardiac-resident macrophages adopt diverse functions such as the clearance of necrotic and apoptotic cells and debris, a reduction in the inflammatory monocyte infiltration, promotion of angiogenesis, amelioration of inflammation, and hypertrophy in the remaining myocardium, overall limiting damage extension. The present review discusses the origin, development, characterization, and function of cardiac macrophages in homeostasis, cardiac regeneration, and after cardiac injury or stress.
Collapse
|
28
|
Veenhuis RT, Williams DW, Shirk EN, Abreu CM, Ferreira EA, Coughlin JM, Brown TT, Maki PM, Anastos K, Berman JW, Clements JE, Rubin LH. Higher circulating intermediate monocytes are associated with cognitive function in women with HIV. JCI Insight 2021; 6:146215. [PMID: 33914710 PMCID: PMC8262276 DOI: 10.1172/jci.insight.146215] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/28/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Identifying a quantitative biomarker of neuropsychiatric dysfunction in people with HIV (PWH) remains a significant challenge in the neuroHIV field. The strongest evidence to date implicates the role of monocytes in central nervous system (CNS) dysfunction in HIV, yet no study has examined monocyte subsets in blood as a correlate and/or predictor of neuropsychiatric function in virally suppressed PWH. METHODS In 2 independent cohorts of virologically suppressed women with HIV (vsWWH; n = 25 and n = 18), whole blood samples were obtained either in conjunction with neuropsychiatric assessments (neuropsychological [NP] test battery, self-report depression and stress-related symptom questionnaires) or 1 year prior to assessments. Immune cell subsets were assessed by flow cytometry. RESULTS A higher proportion of intermediate monocytes (CD14+CD16+) was associated with lower global NP function when assessing monocytes concurrently and approximately 1 year before (predictive) NP testing. The same pattern was seen for executive function (mental flexibility) and processing speed. Conversely, there were no associations with monocyte subsets and depression or stress-related symptoms. Additionally, we found that a higher proportion of classical monocytes was associated with better cognition. CONCLUSION Although it is widely accepted that lentiviral infection of the CNS targets cells of monocyte-macrophage-microglial lineage and is associated with an increase in intermediate monocytes in the blood and monocyte migration into the brain, the percentage of intermediate monocytes in blood of vsWWH has not been associated with neuropsychiatric outcomes. Our findings provide evidence for a new, easily measured, blood-based cognitive biomarker in vsWWH. FUNDING R01-MH113512, R01-MH113512-S, P30-AI094189, R01-MH112391, R01-AI127142, R00-DA044838, U01-AI35004, and P30-MH075673
Collapse
Affiliation(s)
| | - Dionna W Williams
- Department of Molecular and Comparative Biology.,Division of Clinical Pharmacology
| | | | | | | | | | - Todd T Brown
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Pauline M Maki
- Department of Psychiatry, College of Medicine, and Department of Psychology, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kathryn Anastos
- Department of Medicine and Epidemiology & Population Health, and
| | - Joan W Berman
- Department of Pathology and Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Janice E Clements
- Department of Molecular and Comparative Biology.,Department of Pathology and.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Leah H Rubin
- Department of Psychiatry and Behavioral Sciences, and.,Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
29
|
Dounousi E, Duni A, Naka KK, Vartholomatos G, Zoccali C. The Innate Immune System and Cardiovascular Disease in ESKD: Monocytes and Natural Killer Cells. Curr Vasc Pharmacol 2021; 19:63-76. [PMID: 32600233 DOI: 10.2174/1570161118666200628024027] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022]
Abstract
Adverse innate immune responses have been implicated in several disease processes, including cardiovascular disease (CVD) and chronic kidney disease (CKD). The monocyte subsets natural killer (NK) cells and natural killer T (NKT) cells are involved in innate immunity. Monocytes subsets are key in atherogenesis and the inflammatory cascade occurring in heart failure. Upregulated activity and counts of proinflammatory CD16+ monocyte subsets are associated with clinical indices of atherosclerosis, heart failure syndromes and CKD. Advanced CKD is a complex state of persistent systemic inflammation characterized by elevated expression of proinflammatory and pro-atherogenic CD14++CD16+ monocytes, which are associated with cardiovascular events and death both in the general population and among patients with CKD. Diminished NK cells and NKT cells counts and aberrant activity are observed in both coronary artery disease and end-stage kidney disease. However, evidence of the roles of NK cells and NKT cells in atherogenesis in advanced CKD is circumstantial and remains to be clarified. This review describes the available evidence regarding the roles of specific immune cell subsets in the pathogenesis of CVD in patients with CKD. Future research is expected to further uncover the links between CKD associated innate immune system dysregulation and accelerated CVD and will ideally be translated into therapeutic targets.
Collapse
Affiliation(s)
- Evangelia Dounousi
- Department of Nephrology, Medical School, University of Ioannina, Ioannina, Greece
| | - Anila Duni
- Department of Nephrology, Medical School, University of Ioannina, Ioannina, Greece
| | - Katerina K Naka
- 2nd Department of Cardiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Georgios Vartholomatos
- Laboratory of Haematology - Unit of Molecular Biology, University Hospital of Ioannina, Ioannina, Greece
| | - Carmine Zoccali
- Institute of Clinical Physiology-Reggio Cal Unit, National Research Council, Reggio Calabria, Italy
| |
Collapse
|
30
|
Marsh SA, Park C, Redgrave RE, Singh E, Draganova L, Boag SE, Spray L, Ali S, Spyridopoulos I, Arthur HM. Rapid fall in circulating non-classical monocytes in ST elevation myocardial infarction patients correlates with cardiac injury. FASEB J 2021; 35:e21604. [PMID: 33913566 DOI: 10.1096/fj.202100240r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 11/11/2022]
Abstract
Myocardial infarction leads to a rapid innate immune response that is ultimately required for repair of damaged heart tissue. We therefore examined circulating monocyte dynamics immediately after reperfusion of the culprit coronary vessel in STEMI patients to determine whether this correlated with level of cardiac injury. A mouse model of cardiac ischemia/reperfusion injury was subsequently used to establish the degree of monocyte margination to the coronary vasculature that could potentially contribute to the drop in circulating monocytes. We retrospectively analyzed blood samples from 51 STEMI patients to assess the number of non-classical (NC), classical, and intermediate monocytes immediately following primary percutaneous coronary intervention. Classical and intermediate monocytes showed minimal change. On the other hand, circulating numbers of NC monocytes fell by approximately 50% at 90 minutes post-reperfusion. This rapid decrease in NC monocytes was greatest in patients with the largest infarct size (P < .05) and correlated inversely with left ventricular function (r = 0.41, P = .04). The early fall in NC monocytes post-reperfusion was confirmed in a second prospective study of 13 STEMI patients. Furthermore, in a mouse cardiac ischemia model, there was significant monocyte adhesion to coronary vessel endothelium at 2 hours post-reperfusion pointing to a specific and rapid vessel margination response to cardiac injury. In conclusion, rapid depletion of NC monocytes from the circulation in STEMI patients following coronary artery reperfusion correlates with the level of acute cardiac injury and involves rapid margination to the coronary vasculature.
Collapse
Affiliation(s)
- Sarah A Marsh
- Biosciences Institute, Centre for Life, Newcastle University, Newcastle, UK
| | - Catherine Park
- Translational and Clinical Research Institute, Centre for Life, Newcastle University, Newcastle, UK
| | - Rachael E Redgrave
- Biosciences Institute, Centre for Life, Newcastle University, Newcastle, UK
| | - Esha Singh
- Biosciences Institute, Centre for Life, Newcastle University, Newcastle, UK
| | - Lilia Draganova
- Translational and Clinical Research Institute, Centre for Life, Newcastle University, Newcastle, UK
| | - Stephen E Boag
- Translational and Clinical Research Institute, Centre for Life, Newcastle University, Newcastle, UK
| | - Luke Spray
- Cardiology Department, Freeman Hospital, Newcastle, UK
| | - Simi Ali
- Translational and Clinical Research Institute, Leech Building, Newcastle University, Newcastle, UK
| | - Ioakim Spyridopoulos
- Translational and Clinical Research Institute, Centre for Life, Newcastle University, Newcastle, UK
| | - Helen M Arthur
- Biosciences Institute, Centre for Life, Newcastle University, Newcastle, UK
| |
Collapse
|
31
|
Kimm MA, Klenk C, Alunni-Fabbroni M, Kästle S, Stechele M, Ricke J, Eisenblätter M, Wildgruber M. Tumor-Associated Macrophages-Implications for Molecular Oncology and Imaging. Biomedicines 2021; 9:biomedicines9040374. [PMID: 33918295 PMCID: PMC8066018 DOI: 10.3390/biomedicines9040374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/21/2022] Open
Abstract
Tumor-associated macrophages (TAMs) represent the largest group of leukocytes within the tumor microenvironment (TME) of solid tumors and orchestrate the composition of anti- as well as pro-tumorigenic factors. This makes TAMs an excellent target for novel cancer therapies. The plasticity of TAMs resulting in varying membrane receptors and expression of intracellular proteins allow the specific characterization of different subsets of TAMs. Those markers similarly allow tracking of TAMs by different means of molecular imaging. This review aims to provides an overview of the origin of tumor-associated macrophages, their polarization in different subtypes, and how characteristic markers of the subtypes can be used as targets for molecular imaging and theranostic approaches.
Collapse
Affiliation(s)
- Melanie A. Kimm
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Christopher Klenk
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Marianna Alunni-Fabbroni
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Sophia Kästle
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Matthias Stechele
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Michel Eisenblätter
- Department of Diagnostic and Interventional Radiology, Freiburg University Hospital, 79106 Freiburg, Germany;
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
- Correspondence: ; Tel.: +49-0-89-4400-76640
| |
Collapse
|
32
|
Krychtiuk KA, Lenz M, Hohensinner P, Distelmaier K, Schrutka L, Kastl SP, Huber K, Dostal E, Oravec S, Hengstenberg C, Wojta J, Speidl WS. Circulating levels of proprotein convertase subtilisin/kexin type 9 (PCSK9) are associated with monocyte subsets in patients with stable coronary artery disease. J Clin Lipidol 2021; 15:512-521. [PMID: 33789832 DOI: 10.1016/j.jacl.2021.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Proprotein convertase subtilisin/kexin type-9 (PCSK9) is an enzyme promoting the degradation of low-density lipoprotein receptors (LDL-R) in hepatocytes. Inhibition of PCSK9 has emerged as a novel target for lipid-lowering therapy. Monocytes are crucially involved in the pathogenesis of atherosclerosis and can be divided into three subsets. OBJECTIVE The aim of this study was to examine whether circulating levels of PCSK9 are associated with monocyte subsets. METHODS We included 69 patients with stable coronary artery disease. PCSK9 levels were measured and monocyte subsets were assessed by flow cytometry and divided into classical monocytes (CD14++CD16-; CM), intermediate monocytes (CD14++CD16+; IM) and non-classical monocytes (CD14+CD16++; NCM). RESULTS Mean age was 64 years and 80% of patients were male. Patients on statin treatment (n = 55) showed higher PCSK9-levels (245.4 (206.0-305.5) ng/mL) as opposed to those without statin treatment (186.1 (162.3-275.4) ng/mL; p = 0.05). In patients on statin treatment, CM correlated with circulating PCSK9 levels (R = 0.29; p = 0.04), while NCM showed an inverse correlation with PCSK9 levels (R = -0.33; p = 0.02). Patients with PCSK9 levels above the median showed a significantly higher proportion of CM as compared to patients with PCSK9 below the median (83.5 IQR 79.2-86.7 vs. 80.4, IQR 76.5-85.2%; p = 0.05). Conversely, PCSK9 levels >median were associated with a significantly lower proportion of NCM as compared to those with PCSK9 <median (10.2, IQR 7.3-14.6 vs. 14.3, IQR 10.9-18.7%; p = 0.02). In contrast, IM showed no association with PCSK9 levels. CONCLUSIONS We hereby provide a novel link between PCSK9 regulation, innate immunity and atherosclerotic disease in statin-treated patients.
Collapse
Affiliation(s)
- Konstantin A Krychtiuk
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Max Lenz
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Philipp Hohensinner
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Klaus Distelmaier
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Lore Schrutka
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Stefan P Kastl
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Kurt Huber
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria; 3rd Medical Department, Wilhelminenhospital, Vienna, Austria
| | | | - Stanislav Oravec
- 1st Medical Clinic; Medical Faculty of Comenius University Bratislava, Bratislava, Slovakia
| | - Christian Hengstenberg
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Johann Wojta
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria; Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Walter S Speidl
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
33
|
Tahir S, Steffens S. Nonclassical monocytes in cardiovascular physiology and disease. Am J Physiol Cell Physiol 2021; 320:C761-C770. [PMID: 33596150 DOI: 10.1152/ajpcell.00326.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Monocytes are a heterogeneous cell population of innate immune cells with distinct cell surface markers that help them in carrying out different functions. In humans, there are three well-characterized subsets, namely, classical (CD14++CD16-), intermediate (CD14++CD16+), and nonclassical (CD14+ CD16++) monocytes. There is an emerging focus on the not yet well explored nonclassical monocytes that maintain vascular integrity by slowly patrolling on the endothelium, reacting to inflammatory signals, and clearing cell debris. In this manner, they are not only crucial for vascular homeostasis but also play a vital role in wound healing and resolution of inflammation by linking innate to adaptive immune response. Although they have been shown to be protective, yet they are also associated with inflammatory disease progression. This short review will give an insight about the emerging role of nonclassical monocytes in vascular homeostasis, inflammation, and protection in the context of cardiovascular disease.
Collapse
Affiliation(s)
- Sibgha Tahir
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
34
|
Morales X, Cortés-Domínguez I, Ortiz-de-Solorzano C. Modeling the Mechanobiology of Cancer Cell Migration Using 3D Biomimetic Hydrogels. Gels 2021; 7:17. [PMID: 33673091 PMCID: PMC7930983 DOI: 10.3390/gels7010017] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Understanding how cancer cells migrate, and how this migration is affected by the mechanical and chemical composition of the extracellular matrix (ECM) is critical to investigate and possibly interfere with the metastatic process, which is responsible for most cancer-related deaths. In this article we review the state of the art about the use of hydrogel-based three-dimensional (3D) scaffolds as artificial platforms to model the mechanobiology of cancer cell migration. We start by briefly reviewing the concept and composition of the extracellular matrix (ECM) and the materials commonly used to recreate the cancerous ECM. Then we summarize the most relevant knowledge about the mechanobiology of cancer cell migration that has been obtained using 3D hydrogel scaffolds, and relate those discoveries to what has been observed in the clinical management of solid tumors. Finally, we review some recent methodological developments, specifically the use of novel bioprinting techniques and microfluidics to create realistic hydrogel-based models of the cancer ECM, and some of their applications in the context of the study of cancer cell migration.
Collapse
Affiliation(s)
| | | | - Carlos Ortiz-de-Solorzano
- IDISNA, Ciberonc and Solid Tumors and Biomarkers Program, Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain; (X.M.); (I.C.-D.)
| |
Collapse
|
35
|
Mueller KAL, Langnau C, Günter M, Pöschel S, Gekeler S, Petersen-Uribe Á, Kreisselmeier KP, Klingel K, Bösmüller H, Li B, Jaeger P, Castor T, Rath D, Gawaz MP, Autenrieth SE. Numbers and phenotype of non-classical CD14dimCD16+ monocytes are predictors of adverse clinical outcome in patients with coronary artery disease and severe SARS-CoV-2 infection. Cardiovasc Res 2021; 117:224-239. [PMID: 33188677 PMCID: PMC7665325 DOI: 10.1093/cvr/cvaa328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/24/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
AIMS To elucidate the prognostic role of monocytes in the immune response of patients with coronary artery disease (CAD) at risk for life-threatening heart and lung injury as major complications of SARS-CoV-2 infection. METHODS AND RESULTS From February to April 2020, we prospectively studied a cohort of 96 participants comprising 47 consecutive patients with CAD and acute SARS-CoV-2 infection (CAD + SARS-CoV-2), 19 CAD patients without infections, and 30 healthy controls. Clinical assessment included blood sampling, echocardiography, and electrocardiography within 12 h of admission. Respiratory failure was stratified by the Horovitz Index (HI) as moderately/severely impaired when HI ≤200 mmHg. The clinical endpoint (EP) was defined as HI ≤200 mmHg with subsequent mechanical ventilation within a follow-up of 30 days. The numbers of CD14dimCD16+ non-classical monocytes in peripheral blood were remarkably low in CAD + SARS-CoV-2 compared with CAD patients without infection and healthy controls (P < 0.0001). Moreover, these CD14dimCD16 monocytes showed decreased expression of established markers of adhesion, migration, and T-cell activation (CD54, CD62L, CX3CR1, CD80, and HLA-DR). Decreased numbers of CD14dimCD16+ monocytes were associated with the occurrence of EP. Kaplan-Meier curves illustrate that CAD + SARS-CoV-2 patients with numbers below the median of CD14dimCD16+ monocytes (median 1443 cells/mL) reached EP significantly more often compared to patients with numbers above the median (log-rank 5.03, P = 0.025). CONCLUSION Decreased numbers of CD14dimCD16+ monocytes are associated with rapidly progressive respiratory failure in CAD + SARS-CoV-2 patients. Intensified risk assessments comprising monocyte sub- and phenotypes may help to identify patients at risk for respiratory failure.
Collapse
Affiliation(s)
- Karin Anne Lydia Mueller
- Department of Cardiology and Angiology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Otfried-Müller Str.10, 72076 Tuebingen, Germany
| | - Carolin Langnau
- Department of Cardiology and Angiology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Otfried-Müller Str.10, 72076 Tuebingen, Germany
| | - Manina Günter
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Simone Pöschel
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Sarah Gekeler
- Department of Cardiology and Angiology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Otfried-Müller Str.10, 72076 Tuebingen, Germany
| | - Álvaro Petersen-Uribe
- Department of Cardiology and Angiology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Otfried-Müller Str.10, 72076 Tuebingen, Germany
| | - Klaus-Peter Kreisselmeier
- Department of Cardiology and Angiology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Otfried-Müller Str.10, 72076 Tuebingen, Germany
| | - Karin Klingel
- Department of Molecular Pathology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Hans Bösmüller
- Department of Molecular Pathology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Bo Li
- Department of Cardiology and Angiology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Otfried-Müller Str.10, 72076 Tuebingen, Germany
| | - Philippa Jaeger
- Department of Cardiology and Angiology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Otfried-Müller Str.10, 72076 Tuebingen, Germany
| | - Tatsiana Castor
- Department of Cardiology and Angiology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Otfried-Müller Str.10, 72076 Tuebingen, Germany
| | - Dominik Rath
- Department of Cardiology and Angiology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Otfried-Müller Str.10, 72076 Tuebingen, Germany
| | - Meinrad Paul Gawaz
- Department of Cardiology and Angiology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Otfried-Müller Str.10, 72076 Tuebingen, Germany
| | - Stella E Autenrieth
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| |
Collapse
|
36
|
Teer E, Joseph DE, Glashoff RH, Faadiel Essop M. Monocyte/Macrophage-Mediated Innate Immunity in HIV-1 Infection: From Early Response to Late Dysregulation and Links to Cardiovascular Diseases Onset. Virol Sin 2021; 36:565-576. [PMID: 33400091 DOI: 10.1007/s12250-020-00332-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Although monocytes and macrophages are key mediators of the innate immune system, the focus has largely been on the role of the adaptive immune system in the context of human immunodeficiency virus (HIV) infection. Thus more attention and research work regarding the innate immune system-especially the role of monocytes and macrophages during early HIV-1 infection-is required. Blood monocytes and tissue macrophages are both susceptible targets of HIV-1 infection, and the early host response can determine whether the nature of the infection becomes pathogenic or not. For example, monocytes and macrophages can contribute to the HIV reservoir and viral persistence, and influence the initiation/extension of immune activation and chronic inflammation. Here the expansion of monocyte subsets (classical, intermediate and non-classical) provide an increased understanding of the crucial role they play in terms of chronic inflammation and also by increasing the risk of coagulation during HIV-1 infection. This review discusses the role of monocytes and macrophages during HIV-1 pathogenesis, starting from the early response to late dysregulation that occurs as a result of persistent immune activation and chronic inflammation. Such changes are also linked to downstream targets such as increased coagulation and the onset of cardiovascular diseases.
Collapse
Affiliation(s)
- Eman Teer
- Centre for Cardio-metabolic Research in Africa (CARMA), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Danzil E Joseph
- Centre for Cardio-metabolic Research in Africa (CARMA), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Richard H Glashoff
- Division of Medical Microbiology & Immunology, Department of Pathology, Stellenbosch University and NHLS, Cape Town, 7505, South Africa
| | - M Faadiel Essop
- Centre for Cardio-metabolic Research in Africa (CARMA), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa.
| |
Collapse
|
37
|
Winkler MJ, Müller P, Sharifi AM, Wobst J, Winter H, Mokry M, Ma L, van der Laan SW, Pang S, Miritsch B, Hinterdobler J, Werner J, Stiller B, Güldener U, Webb TR, Asselbergs FW, Björkegren JLM, Maegdefessel L, Schunkert H, Sager HB, Kessler T. Functional investigation of the coronary artery disease gene SVEP1. Basic Res Cardiol 2020; 115:67. [PMID: 33185739 PMCID: PMC7666586 DOI: 10.1007/s00395-020-00828-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022]
Abstract
A missense variant of the sushi, von Willebrand factor type A, EGF and pentraxin domain containing protein 1 (SVEP1) is genome-wide significantly associated with coronary artery disease. The mechanisms how SVEP1 impacts atherosclerosis are not known. We found endothelial cells (EC) and vascular smooth muscle cells to represent the major cellular source of SVEP1 in plaques. Plaques were larger in atherosclerosis-prone Svep1 haploinsufficient (ApoE-/-Svep1+/-) compared to Svep1 wild-type mice (ApoE-/-Svep1+/+) and ApoE-/-Svep1+/- mice displayed elevated plaque neutrophil, Ly6Chigh monocyte, and macrophage numbers. We assessed how leukocytes accumulated more inside plaques in ApoE-/-Svep1+/- mice and found enhanced leukocyte recruitment from blood into plaques. In vitro, we examined how SVEP1 deficiency promotes leukocyte recruitment and found elevated expression of the leukocyte attractant chemokine (C-X-C motif) ligand 1 (CXCL1) in EC after incubation with missense compared to wild-type SVEP1. Increasing wild-type SVEP1 levels silenced endothelial CXCL1 release. In line, plasma Cxcl1 levels were elevated in ApoE-/-Svep1+/- mice. Our studies reveal an atheroprotective role of SVEP1. Deficiency of wild-type Svep1 increased endothelial CXCL1 expression leading to enhanced recruitment of proinflammatory leukocytes from blood to plaque. Consequently, elevated vascular inflammation resulted in enhanced plaque progression in Svep1 deficiency.
Collapse
MESH Headings
- Animals
- Antigens, Ly/metabolism
- Calcium-Binding Proteins/deficiency
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Cell Adhesion Molecules/deficiency
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cells, Cultured
- Chemokine CXCL1/genetics
- Chemokine CXCL1/metabolism
- Chemotaxis, Leukocyte
- Coronary Artery Disease/genetics
- Coronary Artery Disease/metabolism
- Coronary Artery Disease/pathology
- Coronary Vessels/metabolism
- Coronary Vessels/pathology
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Genetic Association Studies
- Genetic Predisposition to Disease
- Haploinsufficiency
- Humans
- Macrophages/metabolism
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neutrophil Infiltration
- Neutrophils/pathology
- Plaque, Atherosclerotic
- Polymorphism, Single Nucleotide
- Proteins/genetics
- Proteins/metabolism
Collapse
Affiliation(s)
- Michael J Winkler
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
| | - Philipp Müller
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
| | - Amin M Sharifi
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
| | - Jana Wobst
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
| | - Hanna Winter
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
- Vascular Biology and Experimental Vascular Medicine Unit, Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Michal Mokry
- Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sander W van der Laan
- Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Shichao Pang
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Benedikt Miritsch
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
| | - Julia Hinterdobler
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
| | - Julia Werner
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
| | - Barbara Stiller
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Ulrich Güldener
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Tom R Webb
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research (NIHR) Leicester Cardiovascular Biomedical Research Centre, Leicester, UK
| | - Folkert W Asselbergs
- Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, and Health Data Research UK and Institute of Health Informatics, University College London, London, UK
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Lars Maegdefessel
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
- Vascular Biology and Experimental Vascular Medicine Unit, Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
| | - Hendrik B Sager
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany.
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany.
| | - Thorsten Kessler
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany.
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
38
|
Sun Y, Lu Y, Saredy J, Wang X, Drummer Iv C, Shao Y, Saaoud F, Xu K, Liu M, Yang WY, Jiang X, Wang H, Yang X. ROS systems are a new integrated network for sensing homeostasis and alarming stresses in organelle metabolic processes. Redox Biol 2020; 37:101696. [PMID: 32950427 PMCID: PMC7767745 DOI: 10.1016/j.redox.2020.101696] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are critical for the progression of cardiovascular diseases, inflammations and tumors. However, the mechanisms of how ROS sense metabolic stress, regulate metabolic pathways and initiate proliferation, inflammation and cell death responses remain poorly characterized. In this analytic review, we concluded that: 1) Based on different features and functions, eleven types of ROS can be classified into seven functional groups: metabolic stress-sensing, chemical connecting, organelle communication, stress branch-out, inflammasome-activating, dual functions and triple functions ROS. 2) Among the ROS generation systems, mitochondria consume the most amount of oxygen; and nine types of ROS are generated; thus, mitochondrial ROS systems serve as the central hub for connecting ROS with inflammasome activation, trained immunity and immunometabolic pathways. 3) Increased nuclear ROS production significantly promotes cell death in comparison to that in other organelles. Nuclear ROS systems serve as a convergent hub and decision-makers to connect unbearable and alarming metabolic stresses to inflammation and cell death. 4) Balanced ROS levels indicate physiological homeostasis of various metabolic processes in subcellular organelles and cytosol, while imbalanced ROS levels present alarms for pathological organelle stresses in metabolic processes. Based on these analyses, we propose a working model that ROS systems are a new integrated network for sensing homeostasis and alarming stress in metabolic processes in various subcellular organelles. Our model provides novel insights on the roles of the ROS systems in bridging metabolic stress to inflammation, cell death and tumorigenesis; and provide novel therapeutic targets for treating those diseases. (Word count: 246).
Collapse
Affiliation(s)
- Yu Sun
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA
| | - Yifan Lu
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA
| | - Jason Saredy
- Metabolic Disease Research and Cardiovascular Research and Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Xianwei Wang
- Metabolic Disease Research and Cardiovascular Research and Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Charles Drummer Iv
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA
| | - Ying Shao
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA
| | - Fatma Saaoud
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA
| | - Keman Xu
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA
| | - Ming Liu
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA
| | - William Y Yang
- Metabolic Disease Research and Cardiovascular Research and Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Xiaohua Jiang
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA; Metabolic Disease Research and Cardiovascular Research and Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Hong Wang
- Metabolic Disease Research and Cardiovascular Research and Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA; Metabolic Disease Research and Cardiovascular Research and Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
39
|
Takahashi T, Wong P, Ellingson MK, Lucas C, Klein J, Israelow B, Silva J, Oh JE, Mao T, Tokuyama M, Lu P, Venkataraman A, Park A, Liu F, Meir A, Sun J, Wang EY, Wyllie AL, Vogels CB, Earnest R, Lapidus S, Ott IM, Moore AJ, Casanovas-Massana A, Cruz CD, Fournier JB, Odio CD, Farhadian S, Grubaugh ND, Schulz WL, Ko AI, Ring AM, Omer SB, Iwasaki A. Sex differences in immune responses to SARS-CoV-2 that underlie disease outcomes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.06.06.20123414. [PMID: 32577695 PMCID: PMC7302304 DOI: 10.1101/2020.06.06.20123414] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A growing body of evidence indicates sex differences in the clinical outcomes of coronavirus disease 2019 (COVID-19)1-4. However, whether immune responses against SARS-CoV-2 differ between sexes, and whether such differences explain male susceptibility to COVID-19, is currently unknown. In this study, we examined sex differences in viral loads, SARS-CoV-2-specific antibody titers, plasma cytokines, as well as blood cell phenotyping in COVID-19 patients. By focusing our analysis on patients with mild to moderate disease who had not received immunomodulatory medications, our results revealed that male patients had higher plasma levels of innate immune cytokines and chemokines including IL-8, IL-18, and CCL5, along with more robust induction of non-classical monocytes. In contrast, female patients mounted significantly more robust T cell activation than male patients during SARS-CoV-2 infection, which was sustained in old age. Importantly, we found that a poor T cell response negatively correlated with patients' age and was predictive of worse disease outcome in male patients, but not in female patients. Conversely, higher innate immune cytokines in female patients associated with worse disease progression, but not in male patients. These findings reveal a possible explanation underlying observed sex biases in COVID-19, and provide important basis for the development of sex-based approach to the treatment and care of men and women with COVID-19.
Collapse
Affiliation(s)
- Takehiro Takahashi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
- These authors contributed equally
| | - Patrick Wong
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
- These authors contributed equally
| | - Mallory K. Ellingson
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520
- These authors contributed equally
| | - Carolina Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
- These authors contributed equally
| | - Jon Klein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
- These authors contributed equally
| | - Benjamin Israelow
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06520
| | - Julio Silva
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Ji Eun Oh
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Maria Tokuyama
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Peiwen Lu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Arvind Venkataraman
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Annsea Park
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Feimei Liu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
- Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, CT, 06511
| | - Amit Meir
- Boyer Center for Molecular Medicine, Department of Microbial Pathogenesis, Yale University, New Haven, CT, 06510
| | - Jonathan Sun
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520
| | - Eric Y. Wang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Anne L. Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520
| | - Chantal B.F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520
| | - Rebecca Earnest
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520
| | - Sarah Lapidus
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520
| | - Isabel M. Ott
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Adam J. Moore
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520
| | - Arnau Casanovas-Massana
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520
| | - Charles Dela Cruz
- Department of Medicine, Section of Pulmonary and Critical Care Medicine; Yale University School of Medicine, New Haven, CT 06520
| | - John B. Fournier
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06520
| | - Camila D. Odio
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06520
| | - Shelli Farhadian
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06520
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520
| | - Wade L. Schulz
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, 06520
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT, 06520
| | - Albert I. Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520
| | - Aaron M. Ring
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Saad B. Omer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06520
- Yale Institute for Global Health, Yale University, New Haven, CT 06520
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | | |
Collapse
|
40
|
Ciaglia E, Montella F, Lopardo V, Scala P, Ferrario A, Cattaneo M, Carrizzo A, Malovini A, Madeddu P, Vecchione C, Puca AA. Circulating BPIFB4 Levels Associate With and Influence the Abundance of Reparative Monocytes and Macrophages in Long Living Individuals. Front Immunol 2020; 11:1034. [PMID: 32547549 PMCID: PMC7272600 DOI: 10.3389/fimmu.2020.01034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/29/2020] [Indexed: 12/31/2022] Open
Abstract
Long-Living Individuals (LLIs) delay aging and are less prone to chronic inflammatory reactions. Whether a distinct monocytes and macrophages repertoire is involved in such a characteristic remains unknown. Previous studies from our group have shown high levels of the host defense BPI Fold Containing Family B Member 4 (BPIFB4) protein in the peripheral blood of LLIs. Moreover, a polymorphic variant of the BPIFB4 gene associated with exceptional longevity (LAV-BPIFB4) confers protection from cardiovascular diseases underpinned by low-grade chronic inflammation, such as atherosclerosis. We hypothesize that BPIFB4 may influence monocytes pool and macrophages skewing, shifting the balance toward an anti-inflammatory phenotype. We profiled circulating monocytes in 52 LLIs (median-age 97) and 52 healthy volunteers (median-age 55) using flow cytometry. If the frequency of total monocyte did not change, the intermediate CD14++CD16+ monocytes counts were lower in LLIs compared to control adults. Conversely, non-classical CD14+CD16++ monocyte counts, which are M2 macrophage precursors with an immunomodulatory function, were found significantly associated with the LLIs' state. In a differentiation assay, supplementation of the LLIs' plasma enhanced the capacity of monocytes, either from LLIs or controls, to acquire a paracrine M2 phenotype. A neutralizing antibody against the phosphorylation site (ser 75) of BPIFB4 blunted the M2 skewing effect of the LLIs' plasma. These data indicate that LLIs carry a peculiar anti-inflammatory myeloid profile, which is associated with and possibly sustained by high circulating levels of BPIFB4. Supplementation of recombinant BPIFB4 may represent a novel means to attenuate inflammation-related conditions typical of unhealthy aging.
Collapse
Affiliation(s)
- Elena Ciaglia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Francesco Montella
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Valentina Lopardo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Pasqualina Scala
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Anna Ferrario
- Cardiovascular Research Unit, IRCCS MultiMedica, Milan, Italy
| | - Monica Cattaneo
- Cardiovascular Research Unit, IRCCS MultiMedica, Milan, Italy
| | - Albino Carrizzo
- Vascular Pathophysiology Unit - IRCCS Neuromed, Pozzilli, Italy
| | - Alberto Malovini
- Laboratory of Informatics and Systems Engineering for Clinical Research, Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Paolo Madeddu
- Cardiovascular Research Unit, IRCCS MultiMedica, Milan, Italy.,Bristol Medical School - Translational Health Sciences, Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy.,Vascular Pathophysiology Unit - IRCCS Neuromed, Pozzilli, Italy
| | - Annibale Alessandro Puca
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy.,Cardiovascular Research Unit, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
41
|
Zhu H, Ding Y, Zhang Y, Ding X, Zhao J, Ouyang W, Gong J, Zou Y, Liu X, Wu W. CTRP3 induces an intermediate switch of CD14 ++CD16 + monocyte subset with anti-inflammatory phenotype. Exp Ther Med 2020; 19:2243-2251. [PMID: 32104290 PMCID: PMC7027268 DOI: 10.3892/etm.2020.8467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
Acute myocardial infarction (AMI) evokes a temporally coordinated immune response, in which monocytes are critically involved in the clearance of cell debris; however, excessive inflammation induced by the classical sub-population of monocytes frequently limits the endogenous reparative process. In the present study, the potential of the anti-inflammatory adipokine complement C1q tumor necrosis factor (TNF)-related protein-3 (CTRP3) to induce intermediate switch of monocytes to an anti-inflammatory phenotype was explored. Circulating monocytes were isolated from patients with AMI at various time-points (3–5 h, 3 days and 7 days) and categorized by flow cytometry/immunostaining into three sub-divisions based on the expression of CD14 and CD16 epitopes: Classical (CD14++/CD16−), non-classical (CD14+/CD16++) and intermediate populations (CD14++/CD16+). The phagocytic activity was evaluated by the ingestion of FITC-Zymosan and 19F-nanoemulsion and the migratory activity using Thin Cert™ Transwell assay. Monocytes were cultured using autologous serum in the presence of CTRP3 (1 µg/ml) for 24 h and the expression of interleukin 6 (IL-6) and TNF-α was quantified by reverse-transcription quantitative PCR. In addition, SB203580, a p38 mitogen-activated protein kinase (MAPK)/ERK inhibitor, was used to examine the downstream pathways of CTRP3. AMI evoked a transient increase in monocyte counts of the classical subset after onset of the ischemic insult, while the non-classical and intermediate subsets persistently expanded (P<0.01). The monocytes from patients at 3 days after AMI displayed enhanced phagocytic and migratory activities in comparison with those from healthy volunteers (P<0.01). Of note, addition of CTRP3 induced an intermediate switch of monocyte subsets and antagonized the enhanced expression of cytokines, particularly IL-6, in monocytes stressed by lipopolysaccharides, likely by blunting the ERK1/2 and P38 MAPK signaling pathway. In conclusion, the present study demonstrated a dynamic fluctuation of monocyte subsets and enhanced phagocytic and migratory activities in patients with AMI. Furthermore, the ‘proof-of-concept’ evidence pinpoints CTRP3 as an alternative candidate to modulate the ‘uncontrolled’ inflammatory response and thus to augment cardiac reparative processes in patients with AMI.
Collapse
Affiliation(s)
- Hongtao Zhu
- Department of Cardiology, People's Hospital of Danyang, The Affiliated Hospital of Nantong University, Danyang, Jiangsu 212300, P.R. China
| | - Yuan Ding
- Department of Clinical Laboratory, Danyang Hospital for Chinese Traditional Medicine, Danyang, Jiangsu 212300, P.R. China
| | - Youming Zhang
- Department of Cardiology, People's Hospital of Danyang, The Affiliated Hospital of Nantong University, Danyang, Jiangsu 212300, P.R. China
| | - Xiaojun Ding
- Department of Cardiology, People's Hospital of Danyang, The Affiliated Hospital of Nantong University, Danyang, Jiangsu 212300, P.R. China
| | - Jianfeng Zhao
- Department of Cardiology, People's Hospital of Danyang, The Affiliated Hospital of Nantong University, Danyang, Jiangsu 212300, P.R. China
| | - Weili Ouyang
- Department of Cardiology, People's Hospital of Danyang, The Affiliated Hospital of Nantong University, Danyang, Jiangsu 212300, P.R. China
| | - Junhui Gong
- Department of Cardiology, People's Hospital of Danyang, The Affiliated Hospital of Nantong University, Danyang, Jiangsu 212300, P.R. China
| | - Yuqin Zou
- Department of Cardiology, People's Hospital of Danyang, The Affiliated Hospital of Nantong University, Danyang, Jiangsu 212300, P.R. China
| | - Xueqing Liu
- Department of Cardiology, People's Hospital of Danyang, The Affiliated Hospital of Nantong University, Danyang, Jiangsu 212300, P.R. China
| | - Weidong Wu
- Department of Anesthesiology, People's Hospital of Danyang, The Affiliated Hospital of Nantong University, Danyang, Jiangsu 212300, P.R. China
| |
Collapse
|
42
|
Immune Characterization in Aneurysmal Subarachnoid Hemorrhage Reveals Distinct Monocytic Activation and Chemokine Patterns. Transl Stroke Res 2019; 11:1348-1361. [PMID: 31858408 DOI: 10.1007/s12975-019-00764-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/08/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022]
Abstract
The pathophysiology of delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (aSAH) is incompletely understood. Intrathecal activation of inflammatory immune cells is suspected to play a major role for the induction of DCI. The aim of this study is to identify immune cell subsets and mediators involved in the pathogenesis of DCI. We prospectively collected blood and CSF from 25 patients with aSAH at early and late time points. We performed multicolor flow cytometry of peripheral blood and CSF, analyzing immune cell activation and pro-inflammatory cyto- and chemokines. In addition to the primary immune analysis, we retrospectively analyzed immune cell dynamics in the CSF of all our SAH patients. Our results show an increased monocyte infiltration secondary to aneurysm rupture in patients with DCI. Infiltrating monocytes are defined by a non-classical (CD14dim CD16+) phenotype at early stages. The infiltration is most likely triggered by the intrathecal immune activation. Here, high levels of pro-inflammatory chemokines, such as CXCL1, CXCL9, CXCL10, and CXCL11, are detected. The intrathecal cellular activation profile of monocytes was defined by upregulation of CD163 and CD86 on monocytes and a presumable later differentiation into antigen-presenting plasmacytoid dendritic cells (pDCs) and hemosiderophages. Peripheral immune activation was reflected by CD69 upregulation on T cells. Analysis of DCI prevalence, Hunt and Hess grade, and clinical outcome correlated with the degree of immune activation. We demonstrate that monocytes and T cells are activated intrathecally after aSAH and mediate a local inflammatory response which is presumably driven by chemokines. Our data shows that the distinct pattern of immune activation correlates with the prevalence of DCI, indicating a pathophysiological connection to the incidence of vasospasm.
Collapse
|
43
|
Shelton KA, Nehete BP, Chitta S, Williams LE, Schapiro SJ, Simmons J, Abee CR, Nehete PN. Effects of Transportation and Relocation on Immunologic Measures in Cynomolgus Macaques ( Macaca fascicularis). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2019; 58:774-782. [PMID: 31604484 PMCID: PMC6926399 DOI: 10.30802/aalas-jaalas-19-000007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/19/2019] [Accepted: 03/14/2019] [Indexed: 01/08/2023]
Abstract
NHP are a small, but critical, portion of the animals studied in research laboratories. Many NHP are imported or raised at one facility and subsequently moved to another facility for research purposes. To improve our understanding of the effects of transportation and relocation on the NHP immune system, to minimize potential confounds associated with relocation, and to maximize study validity, we examined the phenotype and function of PBMC in cynomolgus macaques (Macaca fascicularis) that were transported approximately 200 miles by road from one facility to another. We evaluated the phenotype of lymphocyte subsets through flow cytometry, mitogen-specific immune responses of PBMC in vitro, and plasma levels of circulating cytokines before transportation, at approximately 24 h after arrival (day 2), and after 30 d of acclimation. Analyses of blood samples revealed that the CD3+ and CD4+ T-cell counts increased significantly, whereas NK+, NKT, and CD14+ CD16+ nonclassical monocyte subsets were decreased significantly on day 2 after relocation compared with baseline. We also noted significantly increased immune cell function as indicated by mitogen-specific proliferative responses and by IFNγ levels on day 2 compared with baseline. After 30 d of acclimation, peripheral blood CD4+ T-cells and monocyte counts were higher than baseline, whereas B-cell numbers were lower. The mitogen-induced responses to LPS and IFNγ production after stimulation with pokeweed mitogen or phytohemagglutinin remained significantly different from baseline. In conclusion, the effects of transportation and relocation on immune parameters in cynomolgus monkeys are significant and do not fully return to baseline values even after 30 d of acclimation.
Collapse
Affiliation(s)
- Kathryn A Shelton
- Department of Comparative Medicine, MD Anderson Cancer Center, University of Texas, Bastrop, Texas
| | - Bharti P Nehete
- Department of Comparative Medicine, MD Anderson Cancer Center, University of Texas, Bastrop, Texas;,
| | - Sriram Chitta
- Department of Comparative Medicine, MD Anderson Cancer Center, University of Texas, Bastrop, Texas
| | - Lawrence E Williams
- Department of Comparative Medicine, MD Anderson Cancer Center, University of Texas, Bastrop, Texas; Graduate School of Biomedical Sciences, University of Texas, Houston, Texas
| | - Steven J Schapiro
- Department of Comparative Medicine, MD Anderson Cancer Center, University of Texas, Bastrop, Texas; Department of Experimental Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Joe Simmons
- Department of Comparative Medicine, MD Anderson Cancer Center, University of Texas, Bastrop, Texas
| | - Christian R Abee
- Department of Comparative Medicine, MD Anderson Cancer Center, University of Texas, Bastrop, Texas
| | - Pramod N Nehete
- Department of Comparative Medicine, MD Anderson Cancer Center, University of Texas, Bastrop, Texas; Graduate School of Biomedical Sciences, University of Texas, Houston, Texas
| |
Collapse
|
44
|
Waller K, James C, de Jong A, Blackmore L, Ma Y, Stagg A, Kelsell D, O'Dwyer M, Hutchins R, Alazawi W. ADAM17-Mediated Reduction in CD14 ++CD16 + Monocytes ex vivo and Reduction in Intermediate Monocytes With Immune Paresis in Acute Pancreatitis and Acute Alcoholic Hepatitis. Front Immunol 2019; 10:1902. [PMID: 31507587 PMCID: PMC6718469 DOI: 10.3389/fimmu.2019.01902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022] Open
Abstract
Impaired immune responses and increased susceptibility to infection characterize acute inflammatory conditions such as pancreatitis and alcoholic hepatitis and are major causes of morbidity and mortality. However, the mechanisms that drive this apparent immune paresis remain poorly understood. Monocytes mediate host responses to damage and pathogens in health and disease, and three subsets of monocytes have been defined based on CD14 and CD16 expression. We sought to determine the changes in monocyte subsets in acute pancreatitis (AP) and acute alcoholic hepatitis (AAH), together with functional consequences and mechanisms that underlie this change. Peripheral blood mononuclear cells (PBMCs) from patients with AP or AAH were compared with healthy controls. Monocyte subsets were defined by HLA-DR, CD14, and CD16 expression. Changes in surface and intracellular protein expression and phosphorylation were determined by flow cytometry. Phenotype and function were assessed following stimulation with lipopolysaccharide (LPS) or other agonists in the presence of specific inhibitors of TNFα and a disintegrin and metalloproteinase 17 (ADAM17). Patients with AP and AAH had reduced CD14++CD16+ intermediate monocytes compared to controls. Reduction of intermediate monocytes was recapitulated ex vivo by stimulating healthy control PBMCs with Toll-like receptor (TLR) agonists LPS, flagellin or polyinosilic:polycytidylic acid (poly I:C). Stimulation caused shedding of CD14 and CD16, which could be reversed using the ADAM17 inhibitor, TMI005 but not direct inhibitors of TNFα, a known ADAM17-target. Culturing PBMCs from healthy controls resulted in expansion of intermediate monocytes, which did not occur when LPS was in the culture medium. Cultured intermediate monocytes showed reduced expression of CX3CR1, CCR2, TLR4, and TLR5. We found reduced migratory responses, intracellular signaling and pro-inflammatory cytokine production, and increased expression of IL-10. Stimulation with TLR agonists results in ADAM17-mediated shedding of phenotypic markers from CD16+ monocytes, leading to apparent “loss” of intermediate monocytes. Reduction in CD14++CD16− monocytes and increased CD14++CD16+ is associated with altered responses in functional assays ex vivo. Patients with AP and AAH had reduced proportions of CD14++CD16+ monocytes and reduced phosphorylation of NFκB and IL-6 production in response to bacterial LPS. Together, these processes may contribute to the susceptibility to infection observed in AP and AAH.
Collapse
Affiliation(s)
- Kathryn Waller
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Charlotte James
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Anja de Jong
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Laura Blackmore
- Institute of Liver Studies and Transplantation, King's College London, London, United Kingdom
| | - Yun Ma
- Institute of Liver Studies and Transplantation, King's College London, London, United Kingdom
| | - Andrew Stagg
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - David Kelsell
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| | | | - Robert Hutchins
- Hepatopancreaticobiliary Unit, Barts Health NHS Trust, London, United Kingdom
| | - William Alazawi
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
45
|
Ahmad F, Döbel T, Schmitz M, Schäkel K. Current Concepts on 6-sulfo LacNAc Expressing Monocytes (slanMo). Front Immunol 2019; 10:948. [PMID: 31191513 PMCID: PMC6540605 DOI: 10.3389/fimmu.2019.00948] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/12/2019] [Indexed: 12/25/2022] Open
Abstract
The human mononuclear phagocytes system consists of dendritic cells (DCs), monocytes, and macrophages having different functions in bridging innate and adaptive immunity. Among the heterogeneous population of monocytes the cell surface marker slan (6-sulfo LacNAc) identifies a specific subset of human CD14- CD16+ non-classical monocytes, called slan+ monocytes (slanMo). In this review we discuss the identity and functions of slanMo, their contributions to immune surveillance by pro-inflammatory cytokine production, and cross talk with T cells and NK cells. We also consider the role of slanMo in the regulation of chronic inflammatory diseases and cancer. Finally, we highlight unresolved questions that should be the focus of future research.
Collapse
Affiliation(s)
- Fareed Ahmad
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Döbel
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany.,Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universtät Dresden, Dresden, Germany.,Partner Site Dresden, National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Knut Schäkel
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
46
|
Mueller KAL, Hanna DB, Ehinger E, Xue X, Baas L, Gawaz MP, Geisler T, Anastos K, Cohen MH, Gange SJ, Heath SL, Lazar JM, Liu C, Mack WJ, Ofotokun I, Tien PC, Hodis HN, Landay AL, Kaplan RC, Ley K. Loss of CXCR4 on non-classical monocytes in participants of the Women's Interagency HIV Study (WIHS) with subclinical atherosclerosis. Cardiovasc Res 2019; 115:1029-1040. [PMID: 30520941 PMCID: PMC6735712 DOI: 10.1093/cvr/cvy292] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/07/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022] Open
Abstract
AIMS To test whether human immunodeficiency virus (HIV) infection and subclinical cardiovascular disease (sCVD) are associated with expression of CXCR4 and other surface markers on classical, intermediate, and non-classical monocytes in women. METHODS AND RESULTS sCVD was defined as presence of atherosclerotic lesions in the carotid artery in 92 participants of the Women's Interagency HIV Study (WIHS). Participants were stratified into four sets (n = 23 each) by HIV and sCVD status (HIV-/sCVD-, HIV-/sCVD+, HIV+/sCVD-, and HIV+/sCVD+) matched by age, race/ethnicity, and smoking status. Three subsets of monocytes were determined from archived peripheral blood mononuclear cells. Flow cytometry was used to count and phenotype surface markers. We tested for differences by HIV and sCVD status accounting for multiple comparisons. We found no differences in monocyte subset size among the four groups. Expression of seven surface markers differed significantly across the three monocyte subsets. CXCR4 expression [median fluorescence intensity (MFI)] in non-classical monocytes was highest among HIV-/CVD- [628, interquartile range (IQR) (295-1389)], followed by HIV+/CVD- [486, IQR (248-699)], HIV-/CVD+ (398, IQR (89-901)), and lowest in HIV+/CVD+ women [226, IQR (73-519)), P = 0.006 in ANOVA. After accounting for multiple comparison (Tukey) the difference between HIV-/CVD- vs. HIV+/CVD+ remained significant with P = 0.005 (HIV-/CVD- vs. HIV+/CVD- P = 0.04, HIV-/CVD- vs. HIV-/CVD+ P = 0.06, HIV+/CVD+ vs. HIV+/CVD- P = 0.88, HIV+/CVD+ vs. HIV-/CVD+ P = 0.81, HIV+/CVD- vs. HIV-/CVD+, P = 0.99). All pairwise comparisons with HIV-/CVD- were individually significant (P = 0.050 vs. HIV-/CVD+, P = 0.028 vs. HIV+/CVD-, P = 0.009 vs. HIV+/CVD+). CXCR4 expression on non-classical monocytes was significantly higher in CVD- (501.5, IQR (249.5-887.3)) vs. CVD+ (297, IQR (81.75-626.8) individuals (P = 0.028, n = 46 per group). CXCR4 expression on non-classical monocytes significantly correlated with cardiovascular and HIV-related risk factors including systolic blood pressure, platelet and T cell counts along with duration of antiretroviral therapy (P < 0.05). In regression analyses, adjusted for education level, study site, and injection drug use, presence of HIV infection and sCVD remained significantly associated with lower CXCR4 expression on non-classical monocytes (P = 0.003), but did not differ in classical or intermediate monocytes. CONCLUSION CXCR4 expression in non-classical monocytes was significantly lower among women with both HIV infection and sCVD, suggesting a potential atheroprotective role of CXCR4 in non-classical monocytes.
Collapse
Affiliation(s)
- Karin A L Mueller
- La Jolla Institute of Immunology, Athena Circle Drive La Jolla, CA, USA
- Eberhard Karls University, Tuebingen University Hospital, Department of Cardiology, Otfried-Mueller-Strasse 10, Tuebingen, Germany
| | - David B Hanna
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Belfer 13th floor, Bronx, NY, USA
| | - Erik Ehinger
- La Jolla Institute of Immunology, Athena Circle Drive La Jolla, CA, USA
| | - Xiaonan Xue
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Belfer 13th floor, Bronx, NY, USA
| | - Livia Baas
- La Jolla Institute of Immunology, Athena Circle Drive La Jolla, CA, USA
- Eberhard Karls University, Tuebingen University Hospital, Department of Cardiology, Otfried-Mueller-Strasse 10, Tuebingen, Germany
| | - Meinrad P Gawaz
- Eberhard Karls University, Tuebingen University Hospital, Department of Cardiology, Otfried-Mueller-Strasse 10, Tuebingen, Germany
| | - Tobias Geisler
- Eberhard Karls University, Tuebingen University Hospital, Department of Cardiology, Otfried-Mueller-Strasse 10, Tuebingen, Germany
| | - Kathryn Anastos
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Belfer 13th floor, Bronx, NY, USA
| | - Mardge H Cohen
- John H. Stroger, Jr. Hospital of Cook County, 1969 Ogden Ave, Chicago, IL, USA
| | - Stephen J Gange
- Department of Epidemiology, Johns Hopkins University, 265 Garland Hall, 3400 North Charles Street, Baltimore, MD, USA
| | - Sonya L Heath
- Department of Medicine, University of Alabama at Birmingham, 908 20th Street South, Birmingham, AL, USA
| | - Jason M Lazar
- Department of Medicine, SUNY-Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY, USA
| | - Chenglong Liu
- Georgetown University Medical Center, Washington, DC, USA
| | - Wendy J Mack
- Department of Preventive Medicine, University of Southern California, 2001 N Soto St, Los Angeles, CA, USA
| | - Igho Ofotokun
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, 49 Jesse Hill Jr. Drive, Atlanta, GA, USA
| | - Phyllis C Tien
- Department of Medicine, VAMC, Infectious Disease Section, 111W 4150 Clement St., San Francisco, CA, USA
| | - Howard N Hodis
- Department of Preventive Medicine, University of Southern California, 2001 N Soto St, Los Angeles, CA, USA
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, 1735 West Harrison St, Chicago, IL, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Belfer 13th floor, Bronx, NY, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Klaus Ley
- La Jolla Institute of Immunology, Athena Circle Drive La Jolla, CA, USA
| |
Collapse
|
47
|
Villegas MG, Ceballos MT, Urquijo J, Torres EY, Ortiz-Reyes BL, Arnache-Olmos OL, López MR. Poly(acrylic acid)-Coated Iron Oxide Nanoparticles interact with mononuclear phagocytes and decrease platelet aggregation. Cell Immunol 2019; 338:51-62. [DOI: 10.1016/j.cellimm.2019.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 01/28/2023]
|
48
|
Hutcheson JD, Goergen CJ, Schoen FJ, Aikawa M, Zilla P, Aikawa E, Gaudette GR. After 50 Years of Heart Transplants: What Does the Next 50 Years Hold for Cardiovascular Medicine? A Perspective From the International Society for Applied Cardiovascular Biology. Front Cardiovasc Med 2019; 6:8. [PMID: 30838213 PMCID: PMC6382669 DOI: 10.3389/fcvm.2019.00008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/24/2019] [Indexed: 12/24/2022] Open
Abstract
The first successful heart transplant 50 years ago by Dr.Christiaan Barnard in Cape Town, South Africa revolutionized cardiovascular medicine and research. Following this procedure, numerous other advances have reduced many contributors to cardiovascular morbidity and mortality; yet, cardiovascular disease remains the leading cause of death globally. Various unmet needs in cardiovascular medicine affect developing and underserved communities, where access to state-of-the-art advances remain out of reach. Addressing the remaining challenges in cardiovascular medicine in both developed and developing nations will require collaborative efforts from basic science researchers, engineers, industry, and clinicians. In this perspective, we discuss the advancements made in cardiovascular medicine since Dr. Barnard's groundbreaking procedure and ongoing research efforts to address these medical issues. Particular focus is given to the mission of the International Society for Applied Cardiovascular Biology (ISACB), which was founded in Cape Town during the 20th celebration of the first heart transplant in order to promote collaborative and translational research in the field of cardiovascular medicine.
Collapse
Affiliation(s)
- Joshua D Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Frederick J Schoen
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Masanori Aikawa
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Peter Zilla
- Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town, Cape Town, South Africa
| | - Elena Aikawa
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | | |
Collapse
|
49
|
Ropert C. How toll-like receptors reveal monocyte plasticity: the cutting edge of antiinflammatory therapy. Cell Mol Life Sci 2019; 76:745-755. [PMID: 30413835 PMCID: PMC11105477 DOI: 10.1007/s00018-018-2959-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/23/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLR)s are central in immune response by recognizing pathogen-associated molecular patterns (PAMP)s. If they are essential to eliminate pathogens in earlier stages of infection, they also might play a role in homeostasis and tissue repair. TLR versatility parallels the plasticity of monocytes, which represent an heterogeneous population of immune cells. They are rapidly recruited to sites of infection and involved in clearance of pathogens and in tissue healing. This review underlines how TLRs have proved to be an interesting tool to study the properties of monocytes and why different therapeutic strategies exploring monocyte plasticity may be relevant in the context of chronic inflammatory disorders.
Collapse
Affiliation(s)
- Catherine Ropert
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, Belo Horizonte, MG, 31270-910, Brazil.
| |
Collapse
|
50
|
Masthoff M, Gran S, Zhang X, Wachsmuth L, Bietenbeck M, Helfen A, Heindel W, Sorokin L, Roth J, Eisenblätter M, Wildgruber M, Faber C. Temporal window for detection of inflammatory disease using dynamic cell tracking with time-lapse MRI. Sci Rep 2018; 8:9563. [PMID: 29934611 PMCID: PMC6015069 DOI: 10.1038/s41598-018-27879-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
Time-lapse MRI was implemented for dynamic non-invasive cell tracking of individual slowly moving intravascular immune cells. Repetitive MRI acquisition enabled dynamic observation of iron oxide nanoparticle (ION) labelled cells. Simulations of MRI contrast indicated that only cells moving slower than 1 µm/s were detectable. Time-lapse MRI of the brain was performed after either IONs or ION-labelled monocytes were injected intravenously into naïve and experimental autoimmune encephalomyelitis (EAE) bearing mice at a presymptomatic or symptomatic stage. EAE mice showed a reduced number of slow moving, i.e. patrolling cells before and after onset of symptoms as compared to naïve controls. This observation is consistent with the notion of altered cell dynamics, i.e. higher velocities of immune cells rolling along the endothelium in the inflamed condition. Thus, time-lapse MRI enables for assessing immune cell dynamics non-invasively in deep tissue and may serve as a tool for detection or monitoring of an inflammatory response.
Collapse
Affiliation(s)
- Max Masthoff
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany
| | - Sandra Gran
- Institute for Immunology, University of Muenster, Roentgenstraße 21, 48149, Muenster, Germany
| | - Xueli Zhang
- Institute for Physiological Chemistry and Pathobiochemistry, University of Muenster, Waldeyerstraße 15, 48149, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Waldeyerstraße 15, 48149, Muenster, Germany
| | - Lydia Wachsmuth
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany
| | - Michael Bietenbeck
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany
| | - Anne Helfen
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany
| | - Walter Heindel
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany
| | - Lydia Sorokin
- Institute for Physiological Chemistry and Pathobiochemistry, University of Muenster, Waldeyerstraße 15, 48149, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Waldeyerstraße 15, 48149, Muenster, Germany
| | - Johannes Roth
- Institute for Immunology, University of Muenster, Roentgenstraße 21, 48149, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Waldeyerstraße 15, 48149, Muenster, Germany
| | - Michel Eisenblätter
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany.,Division of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
| | - Moritz Wildgruber
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Waldeyerstraße 15, 48149, Muenster, Germany
| | - Cornelius Faber
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany. .,Cells-in-Motion Cluster of Excellence, University of Muenster, Waldeyerstraße 15, 48149, Muenster, Germany.
| |
Collapse
|