1
|
Chatterjee S, Nalla LV, Sharma M, Sharma N, Singh AA, Malim FM, Ghatage M, Mukarram M, Pawar A, Parihar N, Arya N, Khairnar A. Association of COVID-19 with Comorbidities: An Update. ACS Pharmacol Transl Sci 2023; 6:334-354. [PMID: 36923110 PMCID: PMC10000013 DOI: 10.1021/acsptsci.2c00181] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Indexed: 03/03/2023]
Abstract
Coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) which was identified in Wuhan, China in December 2019 and jeopardized human lives. It spreads at an unprecedented rate worldwide, with serious and still-unfolding health conditions and economic ramifications. Based on the clinical investigations, the severity of COVID-19 appears to be highly variable, ranging from mild to severe infections including the death of an infected individual. To add to this, patients with comorbid conditions such as age or concomitant illnesses are significant predictors of the disease's severity and progression. SARS-CoV-2 enters inside the host cells through ACE2 (angiotensin converting enzyme2) receptor expression; therefore, comorbidities associated with higher ACE2 expression may enhance the virus entry and the severity of COVID-19 infection. It has already been recognized that age-related comorbidities such as Parkinson's disease, cancer, diabetes, and cardiovascular diseases may lead to life-threatening illnesses in COVID-19-infected patients. COVID-19 infection results in the excessive release of cytokines, called "cytokine storm", which causes the worsening of comorbid disease conditions. Different mechanisms of COVID-19 infections leading to intensive care unit (ICU) admissions or deaths have been hypothesized. This review provides insights into the relationship between various comorbidities and COVID-19 infection. We further discuss the potential pathophysiological correlation between COVID-19 disease and comorbidities with the medical interventions for comorbid patients. Toward the end, different therapeutic options have been discussed for COVID-19-infected comorbid patients.
Collapse
Affiliation(s)
- Sayan Chatterjee
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Lakshmi Vineela Nalla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India.,Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh 522302, India
| | - Monika Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Nishant Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Aditya A Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Fehmina Mushtaque Malim
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Manasi Ghatage
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Mohd Mukarram
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Abhijeet Pawar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Nidhi Parihar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Neha Arya
- Department of Translational Medicine, All India Institute of Medical Sciences (AIIMS), Bhopal, Bhopal 462020, India
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno 602 00, Czech Republic.,ICRC-FNUSA Brno 656 91, Czech Republic.,Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 62500 Brno, Czechia
| |
Collapse
|
2
|
Beta-Thalassemia Minor and SARS-CoV-2: Physiopathology, Prevalence, Severity, Morbidity, and Mortality. THALASSEMIA REPORTS 2023. [DOI: 10.3390/thalassrep13010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background: Since the first year of the COVID-19 global pandemic, a hypothesis concerning the possible protection/immunity of beta-thalassemia carriers has remained in abeyance. Methods: Three databases (Pubmed Central, Scopus, and Google Scholar) were screened and checked in order to extract all studies about the incidence of confirmed COVID-19 cases, mortality rate, severity assessment, or ICU admission among patients with beta-thalassemia minor, were included in this analysis. The language was limited to English. Studies such as case reports, review studies, and studies that did not have complete data for calculating incidences were excluded. Results and discussion: a total of 3 studies out of 2265 were selected. According to our systematic-review meta-analysis, beta-thalassemia carriers could be less affected by COVID-19 than the general population [IRR = 0.9250 (0.5752; 1.4877)], affected by COVID-19 with a worst severity [OR = 1.5933 (0.4884; 5.1981)], less admissible into the ICU [IRR = 0.3620 (0.0025; 51.6821)], and more susceptible to die from COVID-19 or one of its consequences [IRR = 1.8542 (0.7819; 4.3970)]. However, all of those results remain insignificant with a bad p-value (respectively 0.7479, 0.4400, 0.6881, and 0.1610). Other large case-control or registry studies are needed to confirm these trends.
Collapse
|
3
|
Sienko J, Marczak I, Kotowski M, Bogacz A, Tejchman K, Sienko M, Kotfis K. Association of ACE2 Gene Variants with the Severity of COVID-19 Disease-A Prospective Observational Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12622. [PMID: 36231922 PMCID: PMC9564490 DOI: 10.3390/ijerph191912622] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 virus (SARS-CoV-2), has triggered an enormous scientific response. Many studies have focused on understanding the entry of the SARS-CoV-2 virus into the host cell. The angiotensin-converting enzyme-2 (ACE2) is recognized as the host receptor used by SARS-CoV-2 to enter its target cells. Recent studies suggest that ACE2 gene polymorphisms might be candidates for genetic susceptibility to SARS-CoV-2 infection. The aim of this study is to evaluate the influence of ACE2 polymorphisms on COVID-19 disease risk and severity. In our study, we confirmed that there is a statistically significant increased risk of a more severe disease course of SARS-CoV-2 infection associated with the need for hospitalization in intensive care for patients with specific polymorphisms of the ACE2 gene. The most significant correlation was found for variant ACE2 rs2285666 (AA allele, OR = 2.12, p = 0.0189) and ACE2 rs2074192 (TT allele, OR = 2.05, p = 0.0016), and for ACE2 rs4646174 (GG allele, OR = 1.93, p = 0.0016), ACE2 rs4646156 (TT allele OR = 1.71, p = 0.008) and ACE2 rs2158083 (TT allele OR = 1.84, p = 0.0025). In conclusion, our findings identify that certain ACE2 polymorphisms impact the severity of COVID-19 disease independently of other well-known risk factors.
Collapse
Affiliation(s)
- Jerzy Sienko
- Department of General Surgery and Transplantology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Izabela Marczak
- Department of Neurology, SUNY Downstate Medical Center, Brooklyn, NY 11023, USA
| | - Maciej Kotowski
- Department of General Surgery and Transplantology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Anna Bogacz
- Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibers and Medicinal Plants, 62-064 Plewiska, Poland
| | - Karol Tejchman
- Department of General Surgery and Transplantology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Magdalena Sienko
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases, and Cardiology, Pomeranian Medical University, 71-252 Szczecin, Poland
| | - Katarzyna Kotfis
- Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
4
|
Govender N, Khaliq O, Moodley J, Naicker T. Unravelling the Mechanistic Role of ACE2 and TMPRSS2 in Hypertension: A Risk Factor for COVID-19. Curr Hypertens Rev 2022; 18:130-137. [PMID: 36508271 DOI: 10.2174/1573402118666220816090809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND This review explores the mechanistic action of angiotensin-converting enzyme- 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) in the renin-angiotensinaldosterone system (RAAS) that predisposes hypertensive patients to the adverse outcome of severe COVID-19. METHODS AND RESULTS Entry of SARS-CoV-2 into the host cell via ACE2 disrupts the RAAS system, creating an imbalance between ACE and ACE2, with an increased inflammatory response, leading to hypertension (HTN), pulmonary vasoconstriction and acute respiratory distress. SARSCoV- 2 may also predispose infected individuals with existing HTN to a greater risk of severe COVID-19 complications. In the duality of COVID-19 and HTN, the imbalance of ACE and ACE2 results in an elevation of AngII and a decrease in Ang (1-7), a hyperinflammatory response and endothelial dysfunction. Endothelial dysfunction is the main factor predisposing hypertensive patients to severe COVID-19 and vice-versa. CONCLUSION Despite the increase in ACE2 expression in hypertensive SARS-CoV-2 infected patients, ARBs/ACE inhibitors do not influence their severity and clinical outcomes, implicating continued usage. Future large-scale clinical trials are warranted to further elucidate the association between HTN and SARS-CoV-2 infection and the use of ARBs/ACEIs in SARS-CoV-2 hypertensive patients.
Collapse
Affiliation(s)
- Nalini Govender
- Department of Basic Medical Sciences, Faculty of Health Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Olive Khaliq
- The Department of Paediatrics and Child Health, Faculty of Health Sciences, The University of the Free State, Bloemfontein 9300, South Africa
| | - Jagidesa Moodley
- Women's Health and HIV Research Group, Department of Obstetrics and Gynaecology, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Thajasvarie Naicker
- Optics & Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| |
Collapse
|
5
|
Arefin S, Hernandez L, Ward LJ, Schwarz A, Barany P, Stenvinkel P, Kublickiene K. Angiotensin-converting enzyme 2 and transmembrane protease serine 2 in female and male patients with end-stage kidney disease. Eur J Clin Invest 2022; 52:e13786. [PMID: 35366343 PMCID: PMC9541326 DOI: 10.1111/eci.13786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Individuals with chronic kidney disease are affected by acute respiratory syndrome coronavirus 2 (SARS-CoV-2) due to multiple comorbidities and altered immune system. The first step of the infection process is the binding of SARS-CoV-2 with angiotensin-converting enzyme 2 (ACE2) receptor, followed by its priming by transmembrane protease serine 2 (TMPRSS2). We hypothesized that circulating soluble ACE2 levels, as well as the expressions of ACE2 and TMPRSS2 in the microvasculature, are increased in patients with end-stage kidney disease (ESKD). METHODS A total of 210 participants were enrolled, representing 80 ESKD patients and 73 non-CKD controls for soluble ACE2, and 31 ESKD and 26 non-CKD controls for vasculature and fat tissue bioassays. We have assessed ACE2 expression in blood using ELISA and in tissue using immunofluorescence. RESULTS Soluble ACE2 levels were higher in ESKD patients compared to controls; however, there is no sex difference observed. In ESKD and controls, soluble ACE2 positively correlated with Interleukin 6 (IL-6) and C-reactive protein (CRP), respectively. Similarly, ACE2 tissue expression in the vasculature was higher in ESKD patients; moreover, this higher ACE2 expression was observed only in male ESKD patients. In addition, TMPRSS2 expression was observed in vessels from males and females but showed no sex difference. The expression of ACE2 receptor was higher in ESKD patients on ACE-inhibitor/angiotensin blocker treatment. CONCLUSION ESKD is associated with increased ACE2 levels in the circulation and pronounced in male vasculature; however, further studies are warranted to assess possible sex differences on specific treatment regime(s) for different comorbidities present in ESKD.
Collapse
Affiliation(s)
- Samsul Arefin
- Division of Renal Medicine, Department of Clinical Science, Intervention & Technology, Karolinska Institutet, Stockholm, Sweden
| | - Leah Hernandez
- Division of Renal Medicine, Department of Clinical Science, Intervention & Technology, Karolinska Institutet, Stockholm, Sweden
| | - Liam J Ward
- Division of Renal Medicine, Department of Clinical Science, Intervention & Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Angelina Schwarz
- Division of Renal Medicine, Department of Clinical Science, Intervention & Technology, Karolinska Institutet, Stockholm, Sweden
| | | | - Peter Barany
- Division of Renal Medicine, Department of Clinical Science, Intervention & Technology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention & Technology, Karolinska Institutet, Stockholm, Sweden
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention & Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Association between COVID-19 Diagnosis and Coronary Artery Thrombosis: A Narrative Review. Biomedicines 2022; 10:biomedicines10030702. [PMID: 35327504 PMCID: PMC8945192 DOI: 10.3390/biomedicines10030702] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 is characterized by its severe respiratory effects. Data early on indicated an increased risk of mortality in patients with cardiovascular comorbidities. Early reports highlighted the multisystem inflammatory syndrome, cytokine storm, and thromboembolic events as part of the disease processes. The aim of this review is to assess the association between COVID-19 and its thrombotic complications, specifically related to the cardiovascular system. The role of neutrophil extracellular traps (NETs) is explored in the pathogenesis of the disease. The structure and anatomy of the virus are pivotal to its virulence in comparison to other α and β Coronaviridae (HCoV-229E, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1). In particular, the host interaction and response may explain the variability of severity in patients. Angio tensin-converting enzyme 2 (ACE2) activation may be implicated in the cardiovascular and throm bogenic potential of the disease. The virus may also have direct effects on the endothelial lining affecting hemostasis and resulting in thrombosis through several mechanisms. Dipyridamole may have a therapeutic benefit in NET suppression. Therapeutic avenues should be concentrated on the different pathophysiological steps involving the virus and the host.
Collapse
|
7
|
Nappi F, Iervolino A, Avtaar Singh SS. Molecular Insights of SARS-CoV-2 Antivirals Administration: A Balance between Safety Profiles and Impact on Cardiovascular Phenotypes. Biomedicines 2022; 10:437. [PMID: 35203646 PMCID: PMC8962379 DOI: 10.3390/biomedicines10020437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic has resulted in a complex clinical challenge, caused by a novel coronavirus, partially similar to previously known coronaviruses but with a different pattern of contagiousness, complications, and mortality. Since its global spread, several therapeutic agents have been developed to address the heterogeneous disease treatment, in terms of severity, hospital or outpatient management, and pre-existing clinical conditions. To better understand the rationale of new or old repurposed medications, the structure and host-virus interaction molecular bases are presented. The recommended agents by EDSA guidelines comprise of corticosteroids, JAK-targeting monoclonal antibodies, IL-6 inhibitors, and antivirals, some of them showing narrow indications due to the lack of large population trials and statistical power. The aim of this review is to present FDA-approved or authorized for emergency use antivirals, namely remdesivir, molnupinavir, and the combination nirmatrelvir-ritonavir and their impact on the cardiovascular system. We reviewed the literature for metanalyses, randomized clinical trials, and case reports and found positive associations between remdesivir and ritonavir administration at therapeutic doses and changes in cardiac conduction, relatable to their previously known pro-arrhythmogenic effects and important ritonavir interactions with cardioactive medications including antiplatelets, anti-arrhythmic agents, and lipid-lowering drugs, possibly interfering with pre-existing therapeutic regimens. Nonetheless, safety profiles of antivirals are largely questioned and addressed by health agencies, in consideration of COVID-19 cardiac and pro-thrombotic complications generally experienced by predisposed subjects. Our advice is to continuously adhere to the strict indications of FDA documents, monitor the possible side effects of antivirals, and increase physicians' awareness on the co-administration of antivirals and cardiovascular-relevant medications. This review dissects the global and local tendency to structure patient-based treatment plans, for a glance towards practical application of precision medicine.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord de Saint-Denis, 93200 Saint-Denis, France
| | - Adelaide Iervolino
- Department of Internal Medicine, University Policlinic Federico II, 80131 Naples, Italy;
| | | |
Collapse
|
8
|
Augustine R, S A, Nayeem A, Salam SA, Augustine P, Dan P, Maureira P, Mraiche F, Gentile C, Hansbro PM, McClements L, Hasan A. Increased complications of COVID-19 in people with cardiovascular disease: Role of the renin-angiotensin-aldosterone system (RAAS) dysregulation. Chem Biol Interact 2022; 351:109738. [PMID: 34740598 PMCID: PMC8563522 DOI: 10.1016/j.cbi.2021.109738] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 01/28/2023]
Abstract
The rapid spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19), has had a dramatic negative impact on public health and economies worldwide. Recent studies on COVID-19 complications and mortality rates suggest that there is a higher prevalence in cardiovascular diseases (CVD) patients. Past investigations on the associations between pre-existing CVDs and susceptibility to coronavirus infections including SARS-CoV and the Middle East Respiratory Syndrome coronavirus (MERS-CoV), have demonstrated similar results. However, the underlying mechanisms are poorly understood. This has impeded adequate risk stratification and treatment strategies for CVD patients with SARS-CoV-2 infections. Generally, dysregulation of the expression of angiotensin-converting enzyme (ACE) and the counter regulator, angiotensin-converting enzyme 2 (ACE2) is a hallmark of cardiovascular risk and CVD. ACE2 is the main host receptor for SARS-CoV-2. Although further studies are required, dysfunction of ACE2 after virus binding and dysregulation of the renin-angiotensin-aldosterone system (RAAS) signaling may worsen the outcomes of people affected by COVID-19 and with preexisting CVD. Here, we review the current knowledge and outline the gaps related to the relationship between CVD and COVID-19 with a focus on the RAAS. Improved understanding of the mechanisms regulating viral entry and the role of RAAS may direct future research with the potential to improve the prevention and management of COVID-19.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar.
| | - Abhilash S
- Department of Microbiology, Majlis Arts and Science College, Puramannur, Malappuram, Kerala, 676552, India
| | - Ajisha Nayeem
- Department of Biotechnology, St. Mary's College, Thrissur, 680020, Kerala, India
| | - Shaheen Abdul Salam
- Department of Biosciences, MES College Marampally, Aluva, Ernakulam, 683107, Kerala, India
| | - Priya Augustine
- Department of Zoology, Kongunadu Arts and Science College, Coimbatore, Tamil Nadu, 641029, India
| | - Pan Dan
- Department of Cardiovascular and Transplantation Surgery, Regional Central Hospital of Nancy, Lorraine University, France; Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Pablo Maureira
- Department of Cardiovascular and Transplantation Surgery, Regional Central Hospital of Nancy, Lorraine University, France
| | - Fatima Mraiche
- College of Pharmacy, QU-Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Carmine Gentile
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, Australia; School of Medicine, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Lana McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar.
| |
Collapse
|
9
|
Sarkar M, Madabhavi IV, Quy PN, Govindagoudar MB. COVID-19 vaccine-induced immune thrombotic thrombocytopenia: A review. Ann Thorac Med 2022; 17:1-13. [PMID: 35198043 PMCID: PMC8809131 DOI: 10.4103/atm.atm_404_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/21/2021] [Indexed: 11/18/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and pathogenic coronavirus responsible for the pandemic coronavirus disease 19 (COVID-19). It has significant impact on human health and public safety along with negative social and economic consequences. Vaccination against SARS-CoV-2 is likely the most effective approach to sustainably control the global COVID-19 pandemic. Vaccination is highly effective in reducing the risk of severe COVID-19 disease. Mass-scale vaccination will help us in attaining herd immunity and will lessen the negative impact of the disease on public health, social and economic conditions. The present pandemic stimulated the development of several effective vaccines based on different platforms. Although the vaccine is safe and efficacious, rare cases of thrombosis and thrombocytopenia following the use of vaccination with the ChAdOx1 CoV-19 vaccine (AstraZeneca, University of Oxford, and Serum Institute of India) or the Ad26.COV2.S vaccine (Janssen/Johnson & Johnson) have been reported globally. This review focussed on the definition, epidemiology, pathogenesis, clinical features, diagnosis, and management of vaccine associated thrombosis.
Collapse
Affiliation(s)
- Malay Sarkar
- Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| | - Irappa V. Madabhavi
- Department of Medical and Pediatric Oncology, Kerudi Cancer Hospital, Bagalkot, Karnataka, India
- Department of Medical Oncology, J N Medical College, Belagavi, Karnataka, India
| | - Pham Nguyen Quy
- Department of Medical Oncology, Kyoto Miniren Central Hospita, Ukyoku, Kyoto, Japan
| | - Manjunath B. Govindagoudar
- Department of Pulmonary and Critical Care, Pt B. D. Sharma, Postgraduate Institute of Medical Sciences, Rohtak, Haryana, India
| |
Collapse
|
10
|
Zlacká J, Stebelová K, Zeman M, Herichová I. Interactions of renin-angiotensin system and COVID-19: the importance of daily rhythms in ACE2, ADAM17 and TMPRSS2 expression. Physiol Res 2021; 70:S177-S194. [PMID: 34913351 DOI: 10.33549/physiolres.934754] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) was identified as a molecule that mediates the cellular entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several membrane molecules of the host cell must cooperate in this process. While ACE2 serves in a membrane receptor-mediating interaction with the surface spike (S) glycoprotein of SARS-CoV-2 located on the virus envelope, enzyme A disintegrin and metalloproteinase 17 (ADAM17) regulates ACE2 availability on the membrane and transmembrane protease serine 2 (TMPRSS2) facilitates virus-cell membrane fusion. Interestingly, ACE2, ADAM17 and TMPRSS2 show a daily rhythm of expression in at least some mammalian tissue. The circadian system can also modulate COVID-19 progression via circadian control of the immune system (direct, as well as melatonin-mediated) and blood coagulation. Virus/ACE2 interaction causes ACE2 internalization into the cell, which is associated with suppressed activity of ACE2. As a major role of ACE2 is to form vasodilatory angiotensin 1-7 from angiotensin II (Ang II), suppressed ACE2 levels in the lung can contribute to secondary COVID-19 complications caused by up-regulated, pro-inflammatory vasoconstrictor Ang II. This is supported by the positive association of hypertension and negative COVID-19 prognosis although this relationship is dependent on numerous comorbidities. Hypertension treatment with inhibitors of renin-angiotensin system does not negatively influence prognosis of COVID-19 patients. It seems that tissue susceptibility to SARS-CoV-2 shows negative correlation to ACE2 expression. However, in lungs of infected patient, a high ACE2 expression is associated with better outcome, compared to low ACE2 expression. Manipulation of soluble ACE2 levels is a promising COVID-19 therapeutic strategy.
Collapse
Affiliation(s)
- J Zlacká
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovak Republic.
| | | | | | | |
Collapse
|
11
|
Ahuja N, Bhinder J, Nguyen J, Langan T, O'Brien-Irr M, Montross B, Khan S, Sharma AM, Harris LM. Venous thromboembolism in patients with COVID-19 infection: risk factors, prevention, and management. Semin Vasc Surg 2021; 34:101-116. [PMID: 34642030 PMCID: PMC8336977 DOI: 10.1053/j.semvascsurg.2021.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/08/2023]
Abstract
Venous thromboembolic complications have emerged as serious sequelae in COVID-19 infections. This article summarizes the most current information regarding pathophysiology, risk factors and hematologic markers, incidence and timing of events, atypical venous thromboembolic complications, prophylaxis recommendations, and therapeutic recommendations. Data will likely to continue to rapidly evolve as more knowledge is gained regarding venous events in COVID-19 patients.
Collapse
Affiliation(s)
- Natasha Ahuja
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo General Medical Center/Kaleida Health, 100 High Street, B7, Buffalo, NY, 14203
| | - Jasmine Bhinder
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo General Medical Center/Kaleida Health, 100 High Street, B7, Buffalo, NY, 14203
| | - Jessica Nguyen
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo General Medical Center/Kaleida Health, 100 High Street, B7, Buffalo, NY, 14203
| | - Tom Langan
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo General Medical Center/Kaleida Health, 100 High Street, B7, Buffalo, NY, 14203
| | - Monica O'Brien-Irr
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo General Medical Center/Kaleida Health, 100 High Street, B7, Buffalo, NY, 14203
| | - Brittany Montross
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo General Medical Center/Kaleida Health, 100 High Street, B7, Buffalo, NY, 14203
| | - Sikandar Khan
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo General Medical Center/Kaleida Health, 100 High Street, B7, Buffalo, NY, 14203
| | - Aditya M Sharma
- University of Virginia School of Medicine, Charlottesville, VA
| | - Linda M Harris
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo General Medical Center/Kaleida Health, 100 High Street, B7, Buffalo, NY, 14203.
| |
Collapse
|
12
|
Impact of air pollution and smoking on COVID-19: a review. THE EGYPTIAN JOURNAL OF BRONCHOLOGY 2021. [PMCID: PMC8475828 DOI: 10.1186/s43168-021-00089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background The 21st century already witnessed many deadly epidemics and pandemics. The major ones were respiratory tract infections like SARS (2003), H1N1 (2009), MERS (2012) and the most recent pandemic COVID-19 (2019). The COVID-19 story begins when pneumonia of unknown cause was reported in the WHO country office of China at the end of 2019. SARS-CoV-2 is the causative agent that enters the host through the receptor ACE2, a component of the renin–angiotensin system. Main body of the abstract Symptoms of COVID-19 varies from patient to patient. It is all about the immunity and health status of the individual that decides the severity of the disease. The review focuses on the significant and often prevailing factors, those that influence the lung function. The factors that compromise the lung functions which may prepare the ground for severe COVID-19 infection are interestingly looked into. Focus was more on air pollution and cigarette smoke. Short conclusion The fact that the forested areas across the world show very low COVID-19 infection rate suggests that we are in need of the “Clean Air” on the fiftieth anniversary of World Earth Day. As many policies are implemented worldwide to protect from SARS-CoV-2, one simple remedy that we forgot was clean air can save lives. SARS-CoV-2 infects our lungs, and air pollution makes us more susceptible. In this crucial situation, the focus is only on the main threat; all other conditions are only in words to console the situation.
Collapse
|
13
|
Pyne JD, Brickman AM. The Impact of the COVID-19 Pandemic on Dementia Risk: Potential Pathways to Cognitive Decline. NEURODEGENER DIS 2021; 21:1-23. [PMID: 34348321 PMCID: PMC8678181 DOI: 10.1159/000518581] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/19/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19), the far-reaching pandemic, has infected approximately 185 million of the world's population to date. After infection, certain groups, including older adults, men, and people of color, are more likely to have adverse medical outcomes. COVID-19 can affect multiple organ systems, even among asymptomatic/mild severity individuals, with progressively worse damage for those with higher severity infections. SUMMARY The COVID-19 virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), primarily attaches to cells through the angiotensin-converting enzyme 2 (ACE2) receptor, a universal receptor present in most major organ systems. As SARS-CoV-2 binds to the ACE2 receptor, its bioavailability becomes limited, thus disrupting homeostatic organ function and inducing an injury cascade. Organ damage can then arise from multiple sources including direct cellular infection, overactive detrimental systemic immune response, and ischemia/hypoxia through thromboembolisms or disruption of perfusion. In the brain, SARS-CoV-2 has neuroinvasive and neurotropic characteristics with acute and chronic neurovirulent potential. In the cardiovascular system, COVID-19 can induce myocardial and systemic vascular damage along with thrombosis. Other organ systems such as the lungs, kidney, and liver are all at risk for infection damage. Key Messages: Our hypothesis is that each injury consequence has the independent potential to contribute to long-term cognitive deficits with the possibility of progressing to or worsening pre-existing dementia. Already, reports from recovered COVID-19 patients indicate that cognitive alterations and long-term symptoms are prevalent. This critical review highlights the injury pathways possible through SARS-CoV-2 infection that have the potential to increase and contribute to cognitive impairment and dementia.
Collapse
Affiliation(s)
- Jeffrey D. Pyne
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Adam M. Brickman
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
14
|
Thrombotic events after AstraZeneca vaccine: What if it was related to dysfunctional immune response? Therapie 2021; 76:367-369. [PMID: 33892936 PMCID: PMC8057862 DOI: 10.1016/j.therap.2021.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 04/08/2021] [Indexed: 12/15/2022]
|
15
|
Podestà MA, Valli F, Galassi A, Cassia MA, Ciceri P, Barbieri L, Carugo S, Cozzolino M. COVID-19 in Chronic Kidney Disease: The Impact of Old and Novel Cardiovascular Risk Factors. Blood Purif 2021; 50:740-749. [PMID: 33752209 PMCID: PMC8089440 DOI: 10.1159/000514467] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/14/2021] [Indexed: 01/03/2023]
Abstract
Cardiovascular disease is a frequent complication and the most common cause of death in patients with CKD. Despite landmark medical advancements, mortality due to cardiovascular disease is still 20 times higher in CKD patients than in the general population, which is mainly due to the high prevalence of risk factors in this group. Indeed, in addition to traditional cardiovascular risk factors, CKD patients are exposed to nontraditional ones, which include metabolic, hormonal, and inflammatory alterations. The global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has brought novel challenges for both cardiologists and nephrologists alike. Emerging evidence indicates that coronavirus disease 2019 (COVID-19) increases the risk of cardiovascular events and that several aspects of the disease may synergize with pre-existing cardiovascular risk factors in CKD patients. A better understanding of these mechanisms is pivotal for the prevention and treatment of cardiovascular events in this context, and we believe that additional clinical and experimental studies are needed to improve cardiovascular outcomes in CKD patients with COVID-19. In this review, we provide a summary of traditional and nontraditional cardiovascular risk factors in CKD patients, discussing their interaction with SARS-CoV-2 infection and focusing on CO-VID-19-related cardiovascular complications that may severely affect short- and long-term outcomes in this high-risk population.
Collapse
Affiliation(s)
- Manuel Alfredo Podestà
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Federica Valli
- Cardiology Unit, Department of Health Sciences, ASST Santi Paolo e Carlo, Milan, University of Milan, Milan, Italy
| | - Andrea Galassi
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Matthias A Cassia
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Paola Ciceri
- Department of Nephrology, Dialysis and Renal Transplant, Renal Research Laboratory, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Lucia Barbieri
- Cardiology Unit, Department of Health Sciences, ASST Santi Paolo e Carlo, Milan, University of Milan, Milan, Italy
| | - Stefano Carugo
- Cardiology Unit, Department of Health Sciences, ASST Santi Paolo e Carlo, Milan, University of Milan, Milan, Italy
| | - Mario Cozzolino
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy,
| |
Collapse
|
16
|
Rahman MM, Hasan M, Ahmed A. Potential detrimental role of soluble ACE2 in severe COVID-19 comorbid patients. Rev Med Virol 2021; 31:1-12. [PMID: 33426683 PMCID: PMC8014495 DOI: 10.1002/rmv.2213] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the host cell by binding to angiotensin-converting enzyme 2 (ACE2) receptor. Other important proteins involved in this process include disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) also known as tumour necrosis factor-α-converting enzyme and transmembrane serine protease 2. ACE2 converts angiotensin II (Ang II) to angiotensin (1-7), to balance the renin angiotensin system. Membrane-bound ACE2 ectodomain shedding is mediated by ADAM17 upon viral spike binding, Ang II overproduction and in several diseases. The shed soluble ACE2 (sACE2) retains its catalytic activity, but its precise role in viral entry is still unclear. Therapeutic sACE2 is claimed to exert dual effects; reduction of excess Ang II and blocking viral entry by masking the spike protein. Nevertheless, the paradox is why SARS-CoV-2 comorbid patients struggle to attain such benefit in viral infection despite having a high amount of sACE2. In this review, we discuss the possible detrimental role of sACE2 and speculate on a series of events where protease primed or non-primed virus-sACE2 complex might enter the host cell. As extracellular virus can bind many sACE2 molecules, sACE2 level could be reduced drastically upon endocytosis by the host cell. A consequential rapid rise in Ang II level could potentially aggravate disease severity through Ang II-angiotensin II receptor type 1 (AT1R) axis in comorbid patients. Hence, monitoring sACE2 and Ang II level in coronavirus disease 2019 comorbid patients are crucial to ensure safe and efficient intervention using therapeutic sACE2 and vaccines.
Collapse
Affiliation(s)
- Mohammad Mahmudur Rahman
- Department of Medical Biotechnology, Bangladesh University of Health Sciences, Dhaka, Bangladesh
| | - Maruf Hasan
- Department of Biomedical Engineering, Military Institute of Science and Technology, Dhaka, Bangladesh
| | - Asif Ahmed
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh
| |
Collapse
|
17
|
Belaroussi Y, Roblot P, Peiffer-Smadja N, Delaye T, Mathoulin-Pelissier S, Lemeux J, Le Moal G, Caumes E, Roblot F, Bleibtreu A. Why Methodology Is Important: Coffee as a Candidate Treatment for COVID-19? J Clin Med 2020; 9:E3691. [PMID: 33213035 PMCID: PMC7698499 DOI: 10.3390/jcm9113691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND During this pandemic situation, some studies have led to hasty conclusions about Corona Virus Disease-19 (COVID-19) treatment, due to a lack of methodology. This pedagogic study aimed to highlight potential biases in research on COVID-19 treatment. METHODS We evaluate the effect of coffee's active part, 1,3,7-trimethylxanthine (TMX) on patients with COVID-19. A cohort of 93 patients, with a diagnosis of COVID-19 is analyzed. RESULTS TMX group and control group included, respectively, 26 and 67 patients. In the TMX group, patients had a median length of stay in hospital of 5.5 days shorter than in the control group (9.5 vs. 15 days, p < 0.05). Patients in the control group were more severe than patients in the TMX group with a significantly higher National Early Warning Score 2 (NEWS-2 score) (8 vs. 6, p = 0.002). CONCLUSIONS Multiple biases prevents us from concluding to an effect of coffee on COVID-19. Despite an important social pressure during this crisis, methodology and conscientiousness are the best way to avoid hasty conclusions that can be deleterious for patients. Identifier: NCT04395742.
Collapse
Affiliation(s)
- Yaniss Belaroussi
- INSERM, Bordeaux Population Health Research Center, ISPED, University of Bordeaux, 33000 Bordeaux, France; (Y.B.); (P.R.); (S.M.-P.); (J.L.)
- Department of Neurosurgery, Centre Hospitalier Universitaire de Bordeaux, 33000 Bordeaux, France
| | - Paul Roblot
- INSERM, Bordeaux Population Health Research Center, ISPED, University of Bordeaux, 33000 Bordeaux, France; (Y.B.); (P.R.); (S.M.-P.); (J.L.)
- Department of Neurosurgery, Centre Hospitalier Universitaire de Bordeaux, 33000 Bordeaux, France
| | - Nathan Peiffer-Smadja
- IAME, INSERM, Université de Paris, F-75006 Paris, France;
- Service de Maladies Infectieuses et Tropicales, AP-HP Hôpital Bichat, F-75018 Paris, France
- National Institute for Health Research, Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London SW7 2AZ, UK
| | - Thomas Delaye
- Service de Maladies Infectieuses et Tropicales, CHU Poitiers, 86000 Poitiers, France; (T.D.); (G.L.M.); (F.R.)
| | - Simone Mathoulin-Pelissier
- INSERM, Bordeaux Population Health Research Center, ISPED, University of Bordeaux, 33000 Bordeaux, France; (Y.B.); (P.R.); (S.M.-P.); (J.L.)
- INSERM CIC1401, Clinical and Epidemiological Research Unit, Institut Bergonié, 33000 Bordeaux, France
| | - Joffrey Lemeux
- INSERM, Bordeaux Population Health Research Center, ISPED, University of Bordeaux, 33000 Bordeaux, France; (Y.B.); (P.R.); (S.M.-P.); (J.L.)
- Department of Neurosurgery, Centre Hospitalier Universitaire de Bordeaux, 33000 Bordeaux, France
| | - Gwenaël Le Moal
- Service de Maladies Infectieuses et Tropicales, CHU Poitiers, 86000 Poitiers, France; (T.D.); (G.L.M.); (F.R.)
- INSERM U1070, University of Poitiers, 86000 Poitiers, France
| | - Eric Caumes
- Assistance Publique—Hôpitaux de Paris, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Infectious Diseases Department, Pitié-Salpêtrière Hospital, 47–83 Boulevard de l’hôpital, 75013 Paris, France;
- INSERM, Institut Pierre Louis d’Épidémiologie et de Santé Publique, Sorbonne University, 75013 Paris, France
- COVID SMIT PSL STUDY GROUP Infectious Diseases Department, Pitié-Salpêtrière Hospital, 47-83 Boulevard de l’hôpital, 75013 Paris, France
| | - France Roblot
- Service de Maladies Infectieuses et Tropicales, CHU Poitiers, 86000 Poitiers, France; (T.D.); (G.L.M.); (F.R.)
- INSERM U1070, University of Poitiers, 86000 Poitiers, France
| | - Alexandre Bleibtreu
- Assistance Publique—Hôpitaux de Paris, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Infectious Diseases Department, Pitié-Salpêtrière Hospital, 47–83 Boulevard de l’hôpital, 75013 Paris, France;
- INSERM, Institut Pierre Louis d’Épidémiologie et de Santé Publique, Sorbonne University, 75013 Paris, France
- COVID SMIT PSL STUDY GROUP Infectious Diseases Department, Pitié-Salpêtrière Hospital, 47-83 Boulevard de l’hôpital, 75013 Paris, France
| |
Collapse
|
18
|
Hammoud SH, Wehbe Z, Abdelhady S, Kobeissy F, Eid AH, El-Yazbi AF. Dysregulation of Angiotensin Converting Enzyme 2 Expression and Function in Comorbid Disease Conditions Possibly Contributes to Coronavirus Infectious Disease 2019 Complication Severity. Mol Pharmacol 2020; 99:17-28. [PMID: 33082267 DOI: 10.1124/molpharm.120.000119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/09/2020] [Indexed: 01/08/2023] Open
Abstract
ACE2 has emerged as a double agent in the COVID-19 ordeal, as it is both physiologically protective and virally conducive. The identification of ACE2 in as many as 72 tissues suggests that extrapulmonary invasion and damage is likely, which indeed has already been demonstrated by cardiovascular and gastrointestinal symptoms. On the other hand, identifying ACE2 dysregulation in patients with comorbidities may offer insight as to why COVID-19 symptoms are often more severe in these individuals. This may be attributed to a pre-existing proinflammatory state that is further propelled with the cytokine storm induced by SARS-CoV-2 infection or the loss of functional ACE2 expression as a result of viral internalization. Here, we aim to characterize the distribution and role of ACE2 in various organs to highlight the scope of damage that may arise upon SARS-CoV-2 invasion. Furthermore, by examining the disruption of ACE2 in several comorbid diseases, we offer insight into potential causes of increased severity of COVID-19 symptoms in certain individuals. SIGNIFICANCE STATEMENT: Cell surface expression of ACE2 determines the tissue susceptibility for coronavirus infectious disease 2019 infection. Comorbid disease conditions altering ACE2 expression could increase the patient's vulnerability for the disease and its complications, either directly, through modulation of viral infection, or indirectly, through alteration of inflammatory status.
Collapse
Affiliation(s)
- Safaa H Hammoud
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon (S.H.); Departments of Biology (Z.W.), Biochemistry and Molecular Genetics (F.K.), and Pharmacology and Toxicology (A.H.E., A.F.E.-Y.), American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy (A.F.E.-Y.) and Faculty of Medicine (S.A.), Alexandria University, Alexandria, Egypt; and Department of Basic Medical Sciences, College of Medicine, and Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Zena Wehbe
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon (S.H.); Departments of Biology (Z.W.), Biochemistry and Molecular Genetics (F.K.), and Pharmacology and Toxicology (A.H.E., A.F.E.-Y.), American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy (A.F.E.-Y.) and Faculty of Medicine (S.A.), Alexandria University, Alexandria, Egypt; and Department of Basic Medical Sciences, College of Medicine, and Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Samar Abdelhady
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon (S.H.); Departments of Biology (Z.W.), Biochemistry and Molecular Genetics (F.K.), and Pharmacology and Toxicology (A.H.E., A.F.E.-Y.), American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy (A.F.E.-Y.) and Faculty of Medicine (S.A.), Alexandria University, Alexandria, Egypt; and Department of Basic Medical Sciences, College of Medicine, and Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Firas Kobeissy
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon (S.H.); Departments of Biology (Z.W.), Biochemistry and Molecular Genetics (F.K.), and Pharmacology and Toxicology (A.H.E., A.F.E.-Y.), American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy (A.F.E.-Y.) and Faculty of Medicine (S.A.), Alexandria University, Alexandria, Egypt; and Department of Basic Medical Sciences, College of Medicine, and Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Ali H Eid
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon (S.H.); Departments of Biology (Z.W.), Biochemistry and Molecular Genetics (F.K.), and Pharmacology and Toxicology (A.H.E., A.F.E.-Y.), American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy (A.F.E.-Y.) and Faculty of Medicine (S.A.), Alexandria University, Alexandria, Egypt; and Department of Basic Medical Sciences, College of Medicine, and Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon (S.H.); Departments of Biology (Z.W.), Biochemistry and Molecular Genetics (F.K.), and Pharmacology and Toxicology (A.H.E., A.F.E.-Y.), American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy (A.F.E.-Y.) and Faculty of Medicine (S.A.), Alexandria University, Alexandria, Egypt; and Department of Basic Medical Sciences, College of Medicine, and Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| |
Collapse
|
19
|
Interferons and viruses induce a novel truncated ACE2 isoform and not the full-length SARS-CoV-2 receptor. Nat Genet 2020; 52:1283-1293. [PMID: 33077916 DOI: 10.1038/s41588-020-00731-9] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes COVID-19, utilizes angiotensin-converting enzyme 2 (ACE2) for entry into target cells. ACE2 has been proposed as an interferon-stimulated gene (ISG). Thus, interferon-induced variability in ACE2 expression levels could be important for susceptibility to COVID-19 or its outcomes. Here, we report the discovery of a novel, transcriptionally independent truncated isoform of ACE2, which we designate as deltaACE2 (dACE2). We demonstrate that dACE2, but not ACE2, is an ISG. In The Cancer Genome Atlas, the expression of dACE2 was enriched in squamous tumors of the respiratory, gastrointestinal and urogenital tracts. In vitro, dACE2, which lacks 356 amino-terminal amino acids, was non-functional in binding the SARS-CoV-2 spike protein and as a carboxypeptidase. Our results suggest that the ISG-type induction of dACE2 in IFN-high conditions created by treatments, an inflammatory tumor microenvironment or viral co-infections is unlikely to increase the cellular entry of SARS-CoV-2 and promote infection.
Collapse
|
20
|
Maveddat A, Mallah H, Rao S, Ali K, Sherali S, Nugent K. Severe Acute Respiratory Distress Syndrome Secondary to Coronavirus 2 (SARS-CoV-2). THE INTERNATIONAL JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL MEDICINE 2020; 11:157-178. [PMID: 33098401 PMCID: PMC7740045 DOI: 10.34172/ijoem.2020.2202] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022]
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and has created a worldwide pandemic. Many patients with this infection have an asymptomatic or mild illness, but a small percentage of patients require hospitalization and intensive care. Patients with respiratory tract involvement have a spectrum of presentations that range from scattered ground-glass infiltrates to diffuse infiltrates with consolidation. Patients with the latter radiographic presentation have severe hypoxemia and usually require mechanical ventilation. In addition, some patients develop multiorgan failure, deep venous thrombi with pulmonary emboli, and cytokine storm syndrome. The respiratory management of these patients should focus on using low tidal volume ventilation with low intrathoracic pressures. Some patients have significant recruitable lung and may benefit from higher positive end-expiratory pressure (PEEP) levels and/or prone positioning. There is no well-established anti-viral treatment for this infection; the United States Food and Drug Administration (FDA) has provided emergency use authorization for convalescent plasma and remdesivir for the treatment of patients with COVID-19. In addition, randomized trials have demonstrated that dexamethasone improves outcomes in patients on mechanical ventilators or on oxygen. There are ongoing trials of other drugs which have the potential to moderate the acute inflammatory state seen in some of these patients. These patients often need prolonged high-level intensive care. Hospitals are confronted with significant challenges in patient management, supply management, health care worker safety, and health care worker burnout.
Collapse
Affiliation(s)
- Ashley Maveddat
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Haneen Mallah
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Sanjana Rao
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Kiran Ali
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Samir Sherali
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Kenneth Nugent
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.
| |
Collapse
|
21
|
Abou-Ismail MY, Diamond A, Kapoor S, Arafah Y, Nayak L. The hypercoagulable state in COVID-19: Incidence, pathophysiology, and management. Thromb Res 2020; 194:101-115. [PMID: 32788101 PMCID: PMC7305763 DOI: 10.1016/j.thromres.2020.06.029] [Citation(s) in RCA: 428] [Impact Index Per Article: 107.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023]
Abstract
The 2019 coronavirus disease (COVID-19) presents with a large variety of clinical manifestations ranging from asymptomatic carrier state to severe respiratory distress, multiple organ dysfunction and death. While it was initially considered primarily a respiratory illness, rapidly accumulating data suggests that COVID-19 results in a unique, profoundly prothrombotic milieu leading to both arterial and venous thrombosis. Consistently, elevated D-dimer level has emerged as an independent risk factor for poor outcomes, including death. Several other laboratory markers and blood counts have also been associated with poor prognosis, possibly due to their connection to thrombosis. At present, the pathophysiology underlying the hypercoagulable state is poorly understood. However, a growing body of data suggests that the initial events occur in the lung. A severe inflammatory response, originating in the alveoli, triggers a dysfunctional cascade of inflammatory thrombosis in the pulmonary vasculature, leading to a state of local coagulopathy. This is followed, in patients with more severe disease, by a generalized hypercoagulable state that results in macro- and microvascular thrombosis. Of concern, is the observation that anticoagulation may be inadequate in many circumstances, highlighting the need for alternative or additional therapies. Numerous ongoing studies investigating the pathophysiology of the COVID-19 associated coagulopathy may provide mechanistic insights that can direct appropriate interventional strategies.
Collapse
Affiliation(s)
- Mouhamed Yazan Abou-Ismail
- University Hospitals, Cleveland Medical Center, Cleveland, OH, United States of America; Case Western Reserve University, Cleveland, OH, United States of America.
| | - Akiva Diamond
- University Hospitals, Cleveland Medical Center, Cleveland, OH, United States of America; Case Western Reserve University, Cleveland, OH, United States of America
| | - Sargam Kapoor
- Alaska Native Medical Center, Anchorage, AK, United States of America
| | - Yasmin Arafah
- University Hospitals, Cleveland Medical Center, Cleveland, OH, United States of America; Case Western Reserve University, Cleveland, OH, United States of America
| | - Lalitha Nayak
- University Hospitals, Cleveland Medical Center, Cleveland, OH, United States of America; Case Western Reserve University, Cleveland, OH, United States of America.
| |
Collapse
|
22
|
Samidurai A, Das A. Cardiovascular Complications Associated with COVID-19 and Potential Therapeutic~Strategies. Int J Mol Sci 2020; 21:ijms21186790. [PMID: 32947927 PMCID: PMC7554795 DOI: 10.3390/ijms21186790] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19), an infectious disease with severe acute respiratory syndrome, has now become a worldwide pandemic. Despite the respiratory complication, COVID-19 is also associated with significant multiple organ dysfunction, including severe cardiac impairment. Emerging evidence reveals a direct interplay between COVID-19 and dire cardiovascular complications, including myocardial injury, heart failure, heart attack, myocarditis, arrhythmias as well as blood clots, which are accompanied with elevated risk and adverse outcome among infected patients, even sudden death. The proposed pathophysiological mechanisms of myocardial impairment include invasion of SARS-CoV-2 virus via angiotensin-converting enzyme 2 to cardiovascular cells/tissue, which leads to endothelial inflammation and dysfunction, de-stabilization of vulnerable atherosclerotic plaques, stent thrombosis, cardiac stress due to diminish oxygen supply and cardiac muscle damage, and myocardial infarction. Several promising therapeutics are under investigation to the overall prognosis of COVID-19 patients with high risk of cardiovascular impairment, nevertheless to date, none have shown proven clinical efficacy. In this comprehensive review, we aimed to highlight the current integrated therapeutic approaches for COVID-19 and we summarized the potential therapeutic options, currently under clinical trials, with their mechanisms of action and associated adverse cardiac events in highly infectious COVID-19 patients.
Collapse
Affiliation(s)
| | - Anindita Das
- Correspondence: ; Tel.: +1-804-628-5519; Fax: +1-804-828-8700
| |
Collapse
|
23
|
Ekiz T, Pazarlı AC. Relationship between COVID-19 and obesity. Diabetes Metab Syndr 2020; 14:761-763. [PMID: 32505980 PMCID: PMC7266606 DOI: 10.1016/j.dsx.2020.05.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Timur Ekiz
- Türkmenbaşı Medical Center, Department of Physical and Rehabilitation Medicine, Adana, Turkey.
| | - Ahmet Cemal Pazarlı
- Gaziosmanpaşa University Faculty of Medicine, Department of Pulmonary Diseases, Tokat, Turkey
| |
Collapse
|
24
|
Watanabe LM, Pires IF, Noronha NY, Pinhel MADS, Nonino CB. The influence of bitter-taste receptor (TAS2R) expression in pharmacological response to Chloroquine in obese patients with COVID-19. Clinics (Sao Paulo) 2020; 75:e2181. [PMID: 32876108 PMCID: PMC7442398 DOI: 10.6061/clinics/2020/e2181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Lígia Moriguchi Watanabe
- Departamento de Clinica Medica, Faculdade Medicina de Ribeirao Preto (FMRP), Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Izabella Ferreira Pires
- Departamento de Clinica Medica, Faculdade Medicina de Ribeirao Preto (FMRP), Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Natália Yumi Noronha
- Departamento de Clinica Medica, Faculdade Medicina de Ribeirao Preto (FMRP), Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Marcela Augusta de Souza Pinhel
- Departamento de Clinica Medica, Faculdade Medicina de Ribeirao Preto (FMRP), Universidade de Sao Paulo, Sao Paulo, SP, BR
- Departamento de Biologia Molecular, Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto, SP, BR
| | - Carla Barbosa Nonino
- Departamento de Clinica Medica, Faculdade Medicina de Ribeirao Preto (FMRP), Universidade de Sao Paulo, Sao Paulo, SP, BR
| |
Collapse
|
25
|
Sieńko J, Kotowski M, Bogacz A, Lechowicz K, Drożdżal S, Rosik J, Sietnicki M, Sieńko M, Kotfis K. COVID-19: The Influence of ACE Genotype and ACE-I and ARBs on the Course of SARS-CoV-2 Infection in Elderly Patients. Clin Interv Aging 2020; 15:1231-1240. [PMID: 32764907 PMCID: PMC7382582 DOI: 10.2147/cia.s261516] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/19/2020] [Indexed: 12/23/2022] Open
Abstract
Since the beginning of 2020, the whole world has been struggling with the pandemic of Coronavirus Disease 2019 (COVID-19) caused by a novel coronavirus SARS-CoV-2. The SARS-CoV-2 infection depends on ACE2, TMPRSS2, and CD147, which are expressed on host cells. Several studies suggest that some single nucleotide polymorphisms (SNPs) of ACE2 might be a risk factor of COVID-19 infection. Genotypes affect ACE2 structure, its serum concentration, and levels of circulating angiotensin (1-7). Moreover, there is evidence that ACE genotype affects the outcomes of acute respiratory distress syndrome (ARDS) treatment, the most severe consequence of SARS-CoV-2 infection. COVID-19 morbidity, infection course, and mortality might depend on ACE D allele frequency. The aim of this narrative review was to analyze and identify the mechanisms of ACE-I and ARBs with particular emphasis on angiotensin receptors and their polymorphism in the light of COVID-19 pandemic as these medications are commonly prescribed to elderly patients. There is no direct evidence yet for ACE-I or ARBs in the treatment of COVID-19. However, for those already taking these medications, both the European Society of Cardiology and the American College of Cardiology recommend continuing the treatment, because at present, there is no clear clinical or scientific evidence to justify the discontinuation of ACE-I or ARBs. Individualized treatment decisions should be based on the clinical condition and co-morbidities of each patient.
Collapse
Affiliation(s)
- Jerzy Sieńko
- Department of General Surgery and Transplantology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Maciej Kotowski
- Department of General Surgery and Transplantology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Anna Bogacz
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibers and Medicinal Plants, Poznan, Poland
| | - Kacper Lechowicz
- Department of Anaesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Sylwester Drożdżal
- Department of Pharmacokinetics and Monitored Therapy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jakub Rosik
- Department of Physiology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Marek Sietnicki
- Department of Civil Engineering and Architecture, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Magdalena Sieńko
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Katarzyna Kotfis
- Department of Anaesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
26
|
Onabajo OO, Banday AR, Yan W, Obajemu A, Stanifer ML, Santer DM, Florez-Vargas O, Piontkivska H, Vargas J, Kee C, Tyrrell DLJ, Mendoza JL, Boulant S, Prokunina-Olsson L. Interferons and viruses induce a novel primate-specific isoform dACE2 and not the SARS-CoV-2 receptor ACE2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.19.210955. [PMID: 32743577 PMCID: PMC7386494 DOI: 10.1101/2020.07.19.210955] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which causes COVID-19, utilizes angiotensin-converting enzyme 2 (ACE2) for entry into target cells. ACE2 has been proposed as an interferon-stimulated gene (ISG). Thus, interferon-induced variability in ACE2 expression levels could be important for susceptibility to COVID-19 or its outcomes. Here, we report the discovery of a novel, primate-specific isoform of ACE2, which we designate as deltaACE2 (dACE2). We demonstrate that dACE2, but not ACE2, is an ISG. In vitro, dACE2, which lacks 356 N-terminal amino acids, was non-functional in binding the SARS-CoV-2 spike protein and as a carboxypeptidase. Our results reconcile current knowledge on ACE2 expression and suggest that the ISG-type induction of dACE2 in IFN-high conditions created by treatments, inflammatory tumor microenvironment, or viral co-infections is unlikely to affect the cellular entry of SARS-CoV-2 and promote infection.
Collapse
Affiliation(s)
- Olusegun O Onabajo
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - A Rouf Banday
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wusheng Yan
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Adeola Obajemu
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Megan L Stanifer
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Deanna M Santer
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Oscar Florez-Vargas
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Helen Piontkivska
- Department of Biological Sciences and Brain Health Research Institute, Kent State University, Kent, OH, USA
| | - Joselin Vargas
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carmon Kee
- Division of Cellular Polarity and Viral Infection, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - D Lorne J Tyrrell
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Juan L Mendoza
- Pritzker School of Molecular Engineering and Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Steeve Boulant
- Division of Cellular Polarity and Viral Infection, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ludmila Prokunina-Olsson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
27
|
Pagliaro P, Penna C. ACE/ACE2 Ratio: A Key Also in 2019 Coronavirus Disease (Covid-19)? Front Med (Lausanne) 2020; 7:335. [PMID: 32626721 PMCID: PMC7314898 DOI: 10.3389/fmed.2020.00335] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/05/2020] [Indexed: 01/04/2023] Open
Affiliation(s)
- Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | | |
Collapse
|