1
|
Song I, Kim PJ, Choi YJ, Chung YS, Lee S, Baek JH, Woo KM. Exploring the Interplay Between Senescent Osteocytes and Bone Remodeling in Young Rodents. J Aging Res 2024; 2024:4213141. [PMID: 39583064 PMCID: PMC11585373 DOI: 10.1155/2024/4213141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/25/2024] [Accepted: 09/14/2024] [Indexed: 11/26/2024] Open
Abstract
This study identifies senescent osteocytes in the femur and tibia of young rodents and explores their role in bone remodeling. The proximity of osteoclasts to senescent osteocytes was observed, which is a new finding. Cultured osteocytes, sorted using a podoplanin antibody in FACS, exhibited osteocytic characteristics and increased senescence-related genes. Senescent osteocytes secreted cytokines associated with senescence, remodeling, and inflammation. Notably, IGF1 and MMP2 were elevated in podoplanin-positive (pdpn+) osteocytes. Migration assays demonstrated significant osteoclast precursor migration towards senescent osteocytes, further confirmed by co-culture experiments leading to osteoclast differentiation. These findings suggest that senescent osteocytes have a pivotal role in initiating bone resorption, with recruitment of osteoclast precursors during early bone remodeling stages. In conclusion, our research enhances our understanding of complicated bone remodeling mechanisms and bone homeostasis.
Collapse
Affiliation(s)
- Insun Song
- Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Pil-Jong Kim
- School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong Jun Choi
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Yoon-Sok Chung
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Soonchul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam-si 13496, Republic of Korea
| | - Jeong-Hwa Baek
- Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung Mi Woo
- Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Wang BH, Robert R, Marques FZ, Rajapakse N, Kiriazis H, Mackay CR, Kaye DM. Chemokine receptor CXCR7 antagonism ameliorates cardiac and renal fibrosis induced by mineralocorticoid excess. Sci Rep 2024; 14:26985. [PMID: 39505939 PMCID: PMC11541864 DOI: 10.1038/s41598-024-75789-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Cardiorenal fibrosis is a common feature of chronic cardiovascular disease and recent data suggests that cytokines and chemokines may also drive fibrosis. Here we tested the hypothesis that CXCR7, a highly conserved chemokine receptor, contributes to cardiac and renal fibrosis. We generated an anti-mouse CXCR7-specific monoclonal antibody (CXCR7 mAb) and tested its anti-fibrotic actions in cardiorenal fibrosis induced using the deoxycorticosterone acetate/uni-nephrectomy (DOCA-UNX) model. CXCR7 mAb treatment (10 mg/kg, twice weekly for 6 weeks) significantly attenuated the development of cardiac and renal fibrosis, and reduced fibrotic and inflammatory gene expression levels, in the absence of an effect on blood pressure. Immunohistochemical analysis demonstrated an increase in the vascular expression of CXCR7 in DOCA-UNX-treated mice. This study demonstrated that a CXCR7 mediated pathway plays a significant role in cardiac and renal fibrosis induced by DOCA-UNX treatment. Accordingly, antagonism of CXCR7 may provide a therapeutic opportunity to mitigate against fibrosis in the setting of mineralocorticoid excess.
Collapse
Affiliation(s)
- Bing H Wang
- Heart Failure Research Group, Baker Heart and Diabetes Institute, St Kilda Rd Central, PO Box 6492, Melbourne, VIC, 8008, Australia
- Biomarker Discovery, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Remy Robert
- Department of Physiology, Biodiscovery Research Institute, Faculty of Medicine, Nursing and Health Services, Monash University, Clayton, VIC, Australia
| | - Francine Z Marques
- Heart Failure Research Group, Baker Heart and Diabetes Institute, St Kilda Rd Central, PO Box 6492, Melbourne, VIC, 8008, Australia
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Niwanthi Rajapakse
- Heart Failure Research Group, Baker Heart and Diabetes Institute, St Kilda Rd Central, PO Box 6492, Melbourne, VIC, 8008, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Helen Kiriazis
- Preclinical Cardiology, Microsurgery, and Imaging Platform, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Charles R Mackay
- Department of Physiology, Biodiscovery Research Institute, Faculty of Medicine, Nursing and Health Services, Monash University, Clayton, VIC, Australia.
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| | - David M Kaye
- Heart Failure Research Group, Baker Heart and Diabetes Institute, St Kilda Rd Central, PO Box 6492, Melbourne, VIC, 8008, Australia.
- Monash-Alfred-Baker Centre for Cardiovascular Research, Faculty of Medicine, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Li JY, Dai SS, Li ZY, Guo QY, Liu F. Osteogenic mechanism of deciduous teeth periodontal ligament stem cells in inflammatory environment. Braz J Med Biol Res 2024; 57:e13606. [PMID: 39383381 PMCID: PMC11463910 DOI: 10.1590/1414-431x2024e13606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/29/2024] [Indexed: 10/11/2024] Open
Abstract
This study aimed to illustrate the biological behavior and changes in cell function during the progression of apical periodontitis in deciduous teeth and to explore the underlying molecular mechanism. Deciduous teeth periodontal ligament stem cells (DePDLSCs) were derived and their identity was confirmed. The viability, inflammation, and osteogenic ability of cells were tested by exposing them to various concentrations of lipopolysaccharide (LPS) (0-100 μg/mL) using the cell counting kit-8 (CCK-8) assay, reverse transcription polymerase chain reaction (real-time PCR), alkaline phosphatase (ALP) staining, and ALP activity assay. In addition, osteogenic-induced cells with and without 10 μg/mL LPS were harvested for high-throughput sequencing. Based on sequencing data, proinflammatory factors and ALP expression were measured after interference with the PI3K-AKT signaling pathway activator, 740Y-P. LPS biphasically affected the proliferation and osteogenesis of DePDLSCs. Low concentrations of LPS showed stimulatory effects, whereas inhibitory effects were observed at high concentrations. Sequencing analysis showed that the PI3K-AKT signaling pathway was significantly downregulated when DePDLSCs were treated with 10 μg/mL LPS. The LPS-induced inflammation and osteogenesis inhibition of DePDLSCs were partially rescued by 740Y-P treatment. In conclusion, LPS affected DePDLSCs proliferation and osteogenesis in a biphasic manner. Moderate activation of PI3K-AKT signaling pathway was beneficial for osteogenic differentiation and anti-inflammatory effect in DePDLSCs. This research may provide etiological probes for apical periodontitis and its treatment.
Collapse
Affiliation(s)
- Jin-yi Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Shan-shan Dai
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Zheng-yang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Qing-yu Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Fei Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
4
|
Karam HM, Lotfy DM, A Ibrahim A, Mosallam FM, Abdelrahman SS, Abd-ElRaouf A. A new approach of nano-metformin as a protector against radiation-induced cardiac fibrosis and inflammation via CXCL1/TGF-Β pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6919-6927. [PMID: 38592438 PMCID: PMC11422261 DOI: 10.1007/s00210-024-03052-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/14/2024] [Indexed: 04/10/2024]
Abstract
The present work investigates the potential role of metformin nanoparticles (MTF-NPs) as a radio-protector against cardiac fibrosis and inflammation induced by gamma radiation via CXCL1/TGF-β pathway. Lethal dose fifty of nano-metformin was determined in mice, then 21 rats (male albino) were equally divided into three groups: normal control (G1), irradiated control (G2), and MTF-NPs + IRR (G3). The possible protective effect of MTF-NPs is illustrated via decreasing cardiac contents of troponin, C-X-C motif Ligand 1 (CXCL1), tumor growth factor β (TGF-β), protein kinase B (AKT), and nuclear factor-κB (NF-κB). Also, the positive effect of MTF-NPs on insulin-like growth factor (IGF) and platelet-derived growth factor (PDGF) in heart tissues using immunohistochemical technique is illustrated in the present study. Histopathological examination emphasizes the biochemical findings. The current investigation suggests that MTF-NPs might be considered as a potent novel treatment for the management of cardiac fibrosis and inflammation in patients who receive radiotherapy or workers who may be exposed to gamma radiation.
Collapse
Affiliation(s)
- Heba M Karam
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Dina M Lotfy
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ayman A Ibrahim
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S4L8, Canada
| | - Farag M Mosallam
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Sahar S Abdelrahman
- Anatomic Pathology Department, Faculty of Veterinary medicine, Cairo University, Cairo, Egypt
| | - Amira Abd-ElRaouf
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
5
|
Borrmann K, Troschel FM, Brücksken KA, Espinoza-Sánchez NA, Rezaei M, Eder KM, Kemper B, Eich HT, Greve B. Antioxidants Hydroxytyrosol and Thioredoxin-Mimetic Peptide CB3 Protect Irradiated Normal Tissue Cells. Antioxidants (Basel) 2024; 13:961. [PMID: 39199207 PMCID: PMC11351936 DOI: 10.3390/antiox13080961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Reducing side effects in non-cancerous tissue is a key aim of modern radiotherapy. Here, we assessed whether the use of the antioxidants hydroxytyrosol (HT) and thioredoxin-mimetic peptide CB3 (TMP) attenuated radiation-induced normal tissue toxicity in vitro. We used primary human umbilical vein endothelial cells (HUVECs) and human epidermal keratinocytes (HaCaT) as normal tissue models. Cells were treated with HT and TMP 24 h or immediately prior to irradiation. Reactive oxygen species (ROS) were assessed via luminescent- and fluorescence-based assays, migration was investigated using digital holographic microscopy, and clonogenic survival was quantified by colony formation assays. Angiogenesis and wound healing were evaluated via time-dependent microscopy. Secreted cytokines were validated in quantitative polymerase chain reaction (qPCR) studies. Treatment with HT or TMP was well tolerated by cells. The application of either antioxidant before irradiation resulted in reduced ROS formation and a distinct decrease in cytokines compared to similarly irradiated, but otherwise untreated, controls. Antioxidant treatment also increased post-radiogenic migration and angiogenesis while accelerating wound healing. HT or TMP treatment immediately before radiotherapy increased clonogenic survival after radiotherapy, while treatment 24 h before radiotherapy enhanced baseline proliferation. Both antioxidants may decrease radiation-induced normal tissue toxicity and deserve further pre-clinical investigation.
Collapse
Affiliation(s)
- Katrin Borrmann
- Department of Radiation Oncology, University Hospital Münster, 48149 Münster, Germany
| | | | | | - Nancy Adriana Espinoza-Sánchez
- Department of Radiation Oncology, University Hospital Münster, 48149 Münster, Germany
- Department of Gynecology and Obstetrics, University Hospital Münster, 48149 Münster, Germany
| | - Maryam Rezaei
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Kai Moritz Eder
- Biomedical Technology Center, Medical Faculty, University of Münster, 48149 Münster, Germany (B.K.)
| | - Björn Kemper
- Biomedical Technology Center, Medical Faculty, University of Münster, 48149 Münster, Germany (B.K.)
| | - Hans Theodor Eich
- Department of Radiation Oncology, University Hospital Münster, 48149 Münster, Germany
| | - Burkhard Greve
- Department of Radiation Oncology, University Hospital Münster, 48149 Münster, Germany
| |
Collapse
|
6
|
Futorian A, Armon L, Waldman Ben-Asher H, Shoval I, Hazut I, Munitz A, Urbach A. Nephron-Specific Lin28A Overexpression Triggers Severe Inflammatory Response and Kidney Damage. Int J Biol Sci 2024; 20:4044-4054. [PMID: 39113694 PMCID: PMC11302891 DOI: 10.7150/ijbs.97434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/07/2024] [Indexed: 08/10/2024] Open
Abstract
The RNA-binding proteins LIN28A and LIN28B contribute to a variety of developmental biological processes. Dysregulation of Lin28A and Lin28B expression is associated with numerous types of tumors. This study demonstrates that Lin28A overexpression in the mouse nephrons leads to severe inflammation and kidney damage rather than to tumorigenesis. Notably, Lin28A overexpression causes inflammation only when expressed in nephrons, but not in the stromal cells of the kidneys, highlighting its cell context-dependent nature. The nephron-specific Lin28A-induced inflammatory response differs from previously described Lin28B-mediated inflammatory feedback loops as it is IL-6 independent. Instead, it is associated with the rapid upregulation of cytokines like Cxcl1 and Ccl2. These findings suggest that the pathophysiological effects of Lin28A overexpression extend beyond cell transformation. Our transgenic mouse model offers a valuable tool for advancing our understanding of the pathophysiology of acute kidney injury, where inflammation is a key factor.
Collapse
Affiliation(s)
- Anna Futorian
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Leah Armon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Hiba Waldman Ben-Asher
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Irit Shoval
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Inbal Hazut
- Department of Clinical Microbiology & Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Munitz
- Department of Clinical Microbiology & Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Achia Urbach
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
7
|
Wu Z, Yu W, Luo J, Shen G, Cui Z, Ni W, Wang H. Comprehensive transcriptomic analysis unveils macrophage-associated genes for establishing an abdominal aortic aneurysm diagnostic model and molecular therapeutic framework. Eur J Med Res 2024; 29:323. [PMID: 38867262 PMCID: PMC11167832 DOI: 10.1186/s40001-024-01900-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a highly lethal cardiovascular disease. The aim of this research is to identify new biomarkers and therapeutic targets for the treatment of such deadly diseases. METHODS Single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT algorithms were used to identify distinct immune cell infiltration types between AAA and normal abdominal aortas. Single-cell RNA sequencing data were used to analyse the hallmark genes of AAA-associated macrophage cell subsets. Six macrophage-related hub genes were identified through weighted gene co-expression network analysis (WGCNA) and validated for expression in clinical samples and AAA mouse models. We screened potential therapeutic drugs for AAA through online Connectivity Map databases (CMap). A network-based approach was used to explore the relationships between the candidate genes and transcription factors (TFs), lncRNAs, and miRNAs. Additionally, we also identified hub genes that can effectively identify AAA and atherosclerosis (AS) through a variety of machine learning algorithms. RESULTS We obtained six macrophage hub genes (IL-1B, CXCL1, SOCS3, SLC2A3, G0S2, and CCL3) that can effectively diagnose abdominal aortic aneurysm. The ROC curves and decision curve analysis (DCA) were combined to further confirm the good diagnostic efficacy of the hub genes. Further analysis revealed that the expression of the six hub genes mentioned above was significantly increased in AAA patients and mice. We also constructed TF regulatory networks and competing endogenous RNA networks (ceRNA) to reveal potential mechanisms of disease occurrence. We also obtained two key genes (ZNF652 and UBR5) through a variety of machine learning algorithms, which can effectively distinguish abdominal aortic aneurysm and atherosclerosis. CONCLUSION Our findings depict the molecular pharmaceutical network in AAA, providing new ideas for effective diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Zhen Wu
- Department of Vascular and Interventional Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Weiming Yu
- Department of Vascular and Interventional Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- General Surgery, Thyroid Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Jie Luo
- Department of Vascular and Interventional Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Guanghui Shen
- Department of Vascular and Interventional Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Zhongqi Cui
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Wenxuan Ni
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Haiyang Wang
- Department of Vascular and Interventional Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
8
|
Khan H, Zamzam A, Shaikh F, Saposnik G, Mamdani M, Qadura M. Predicting Major Adverse Carotid Cerebrovascular Events in Patients with Carotid Stenosis: Integrating a Panel of Plasma Protein Biomarkers and Clinical Features-A Pilot Study. J Clin Med 2024; 13:3382. [PMID: 38929911 PMCID: PMC11203750 DOI: 10.3390/jcm13123382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Carotid stenosis (CS) is an atherosclerotic disease of the carotid artery that can lead to devastating cardiovascular outcomes such as stroke, disability, and death. The currently available treatment for CS is medical management through risk reduction, including control of hypertension, diabetes, and/or hypercholesterolemia. Surgical interventions are currently suggested for patients with symptomatic disease with stenosis >50%, where patients have suffered from a carotid-related event such as a cerebrovascular accident, or asymptomatic disease with stenosis >60% if the long-term risk of death is <3%. There is a lack of current plasma protein biomarkers available to predict patients at risk of such adverse events. Methods: In this study, we investigated several growth factors and biomarkers of inflammation as potential biomarkers for adverse CS events such as stroke, need for surgical intervention, myocardial infarction, and cardiovascular-related death. In this pilot study, we use a support vector machine (SVM), random forest models, and the following four significantly elevated biomarkers: C-X-C Motif Chemokine Ligand 6 (CXCL6); Interleukin-2 (IL-2); Galectin-9; and angiopoietin-like protein (ANGPTL4). Results: Our SVM model best predicted carotid cerebrovascular events with an area under the curve (AUC) of >0.8 and an accuracy of 0.88, demonstrating strong prognostic capability. Conclusions: Our SVM model may be used for risk stratification of patients with CS to determine those who may benefit from surgical intervention.
Collapse
Affiliation(s)
- Hamzah Khan
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (A.Z.); (F.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Abdelrahman Zamzam
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (A.Z.); (F.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Farah Shaikh
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (A.Z.); (F.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Gustavo Saposnik
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (G.S.); (M.M.)
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Muhammad Mamdani
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (G.S.); (M.M.)
| | - Mohammad Qadura
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (A.Z.); (F.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (G.S.); (M.M.)
| |
Collapse
|
9
|
Van Bruggen S, Kraisin S, Van Wauwe J, Bomhals K, Stroobants M, Carai P, Frederix L, Van De Bruaene A, Witsch T, Martinod K. Neutrophil peptidylarginine deiminase 4 is essential for detrimental age-related cardiac remodelling and dysfunction in mice. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220475. [PMID: 37778383 PMCID: PMC10542445 DOI: 10.1098/rstb.2022.0475] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/21/2023] [Indexed: 10/03/2023] Open
Abstract
Mice fully deficient in peptidylarginine deiminase 4 (PAD4) enzyme have preserved cardiac function and reduced collagen deposition during ageing. The cellular source of PAD4 is hypothesized to be neutrophils, likely due to PAD4's involvement in neutrophil extracellular trap release. We investigated haematopoietic PAD4 impact on myocardial remodelling and systemic inflammation in cardiac ageing by generating mice with Padi4 deletion in circulating neutrophils under the MRP8 promoter (Ne-PAD4-/-), and ageing them for 2 years together with littermate controls (PAD4fl/fl). Ne-PAD4-/- mice showed protection against age-induced fibrosis, seen by reduced cardiac collagen deposition. Echocardiography analysis of structural and functional parameters also demonstrated preservation of both systolic and diastolic function with MRP8-driven PAD4 deletion. Furthermore, cardiac gene expression and plasma cytokine levels were evaluated. Cardiac genes and plasma cytokines involved in neutrophil recruitment were downregulated in aged Ne-PAD4-/- animals compared to PAD4fl/fl controls, including decreased levels of C-X-C ligand 1 (CXCL1). Our data confirm PAD4 involvement from circulating neutrophils in detrimental cardiac remodelling, leading to cardiac dysfunction with old age. Deletion of PAD4 in MRP8-expressing cells impacts the CXCL1-CXCR2 axis, known to be involved in heart failure development. This supports the future use of PAD4 inhibitors in cardiovascular disease. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.
Collapse
Affiliation(s)
- Stijn Van Bruggen
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, O&N1 Herestraat 49 - Bus 911, 3000 Leuven, Belgium
| | - Sirima Kraisin
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, O&N1 Herestraat 49 - Bus 911, 3000 Leuven, Belgium
| | - Jore Van Wauwe
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, O&N1 Herestraat 49 - Bus 911, 3000 Leuven, Belgium
| | - Katrien Bomhals
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, O&N1 Herestraat 49 - Bus 911, 3000 Leuven, Belgium
| | - Mathias Stroobants
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, O&N1 Herestraat 49 - Bus 911, 3000 Leuven, Belgium
| | - Paolo Carai
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, O&N1 Herestraat 49 - Bus 911, 3000 Leuven, Belgium
| | - Liesbeth Frederix
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, O&N1 Herestraat 49 - Bus 911, 3000 Leuven, Belgium
| | - Alexander Van De Bruaene
- Division of Cardiology, Department of Cardiovascular Sciences, KU Leuven, KU Leuven, Leuven 3000, Belgium
- Division of Structural and Congenital Cardiology, University Hospitals Leuven, Leuven 3000, Belgium
| | - Thilo Witsch
- Department of Cardiology and Angiology I, University of Freiburg, Heart Center, Faculty of Medicine, University of Freiburg, Freiburg 79110, Germany
| | - Kimberly Martinod
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, O&N1 Herestraat 49 - Bus 911, 3000 Leuven, Belgium
| |
Collapse
|
10
|
Jiang Y, Fang H, Lin S, Chen Y, Fu Y, Tu Y, Li Q, Hui Z. Imperatorin inhibits LPS-induced bone marrow-derived macrophages activation by decreased NF-κB p65 phosphorylation. Immunopharmacol Immunotoxicol 2023; 45:581-588. [PMID: 36995149 DOI: 10.1080/08923973.2023.2196603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Imperatorin (IMP) is a secondary metabolite of plants and is the most abundant in Angelica dahurica. Previous studies showed that IMP exhibited anti-inflammatory activity in RAW264.7 cell line. Here, we aim to investigate the roles and mechanisms of IMP in bone marrow-derived macrophages (BMDMs), in view of the difference between primary macrophages and cell lines. METHODS BMDMs were stimulated with LPS for the inflammation model. Flow cytometry was performed with BMDMs treated with different doses of IMP (0-20mg/L) within staining Annexin V-APC for 5 min. The cytokines and inflammatory mediators were detected by RT-PCR or ELISA. RNA-seq was performed in IMP-treated BMDMs or control, stimulated with LPS for 6h. Western blotting is carried out to determine the phosphorylation of p65, ERK1/2, JNK1, p38, and Akt. RESULTS Our results showed that IMP inhibited IL-12p40, IL-6, TNF-α and IL-1β in LPS-stimulated BMDMs. RNA-seq analysis suggested that IMP inhibits Toll-like receptor signaling pathway (KEGG), TNF signaling pathway (KEGG), NF-κB signaling pathway (KEGG), Inflammatory Response (GO). In addition, IMP inhibited myd88, tpl2, cxcl1, ptgs2(COX-2) expression in mRNA level. Finally, we found decreased phosphorylation of NF-κB p65 in IMP-treated BMDMs, after stimulated with LPS. CONCLUSION IMP inhibits IL-12p40, IL-6, TNF-α, and IL-1β expression in LPS-stimulated BMDMs. IMP inhibits macrophage activation, which maybe resulted in decreased phosphorylation of NF-κB p65. Furthermore, IMP may protect against the progress of inflammatory-related diseases.
Collapse
Affiliation(s)
- Yuan Jiang
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Hui Fang
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, China
| | - Siqi Lin
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Yunyun Chen
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, China
| | - Yuanzheng Fu
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, China
| | - Yifan Tu
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, China
| | - Qiang Li
- The Emergency Department, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhaoyuan Hui
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, China
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| |
Collapse
|
11
|
Chen J, Doyle MF, Fang Y, Mez J, Crane PK, Scollard P, Satizabal CL, Alosco ML, Qiu WQ, Murabito JM, Lunetta KL. Peripheral inflammatory biomarkers are associated with cognitive function and dementia: Framingham Heart Study Offspring cohort. Aging Cell 2023; 22:e13955. [PMID: 37584418 PMCID: PMC10577533 DOI: 10.1111/acel.13955] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/17/2023] Open
Abstract
Inflammatory protein biomarkers induced by immune responses have been associated with cognitive decline and the pathogenesis of Alzheimer's disease (AD). Here, we investigate associations between a panel of inflammatory biomarkers and cognitive function and incident dementia outcomes in the well-characterized Framingham Heart Study Offspring cohort. Participants aged ≥40 years and dementia-free at Exam 7 who had a stored plasma sample were selected for profiling using the OLINK proteomics inflammation panel. Cross-sectional associations of the biomarkers with cognitive domain scores (N = 708, 53% female, 22% apolipoprotein E (APOE) ε4 carriers, 15% APOE ε2 carriers, mean age 61) and incident all-cause and AD dementia during up to 20 years of follow-up were tested. APOE genotype-stratified analyses were performed to explore effect modification. Higher levels of 12 and 3 proteins were associated with worse executive function and language domain factor scores, respectively. Several proteins were associated with more than one cognitive domain, including IL10, LIF-R, TWEAK, CCL19, IL-17C, MCP-4, and TGF-alpha. Stratified analyses suggested differential effects between APOE ε2 and ε4 carriers: most ε4 carrier associations were with executive function and memory domains, whereas most ε2 associations were with the visuospatial domain. Higher levels of TNFB and CDCP1 were associated with higher risks of incident all-cause and AD dementia. Our study found that TWEAK concentration was associated both with cognitive function and risks for AD dementia. The association of these inflammatory biomarkers with cognitive function and incident dementia may contribute to the discovery of therapeutic interventions for the prevention and treatment of cognitive decline.
Collapse
Affiliation(s)
- Jiachen Chen
- Boston University School of Public HealthDepartment of BiostatisticsBostonMassachusettsUSA
| | - Margaret F. Doyle
- Department of Pathology and Laboratory MedicineLarner College of Medicine, University of VermontBurlingtonVermontUSA
| | - Yuan Fang
- Boston University School of Public HealthDepartment of BiostatisticsBostonMassachusettsUSA
| | - Jesse Mez
- Boston University Chobanian & Avedisian School of Medicine, Boston University Alzheimer's Disease Research Center and CTE CenterBostonMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Framingham Heart Study, National Heart, Lung, and Blood Institute and Boston University Chobanian & Avedisian School of MedicineFraminghamMassachusettsUSA
| | - Paul K. Crane
- Division of General Internal Medicine, Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Phoebe Scollard
- Division of General Internal Medicine, Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | | | - Claudia L. Satizabal
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- University of Texas Health Science Center at San Antonio, Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesSan AntonioTexasUSA
| | - Michael L. Alosco
- Boston University Chobanian & Avedisian School of Medicine, Boston University Alzheimer's Disease Research Center and CTE CenterBostonMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Wei Qiao Qiu
- Boston University Chobanian & Avedisian School of Medicine, Boston University Alzheimer's Disease Research Center and CTE CenterBostonMassachusettsUSA
- Department of PsychiatryBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Boston University Chobanian & Avedisian School of MedicineDepartment of Pharmacology & Experimental TherapeuticsBostonMassachusettsUSA
| | - Joanne M. Murabito
- Framingham Heart Study, National Heart, Lung, and Blood Institute and Boston University Chobanian & Avedisian School of MedicineFraminghamMassachusettsUSA
- Department of Medicine, Section of General Internal MedicineBoston University Chobanian & Avedisian School of Medicine and Boston Medical CenterBostonMassachusettsUSA
| | - Kathryn L. Lunetta
- Boston University School of Public HealthDepartment of BiostatisticsBostonMassachusettsUSA
| |
Collapse
|
12
|
Luu RJ, Hoefler BC, Gard AL, Ritenour CR, Rogers MT, Kim ES, Coppeta JR, Cain BP, Isenberg BC, Azizgolshani H, Fajardo-Ramirez OR, García-Cardeña G, Lech MP, Tomlinson L, Charest JL, Williams C. Fibroblast activation in response to TGFβ1 is modulated by co-culture with endothelial cells in a vascular organ-on-chip platform. Front Mol Biosci 2023; 10:1160851. [PMID: 37577751 PMCID: PMC10421749 DOI: 10.3389/fmolb.2023.1160851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/06/2023] [Indexed: 08/15/2023] Open
Abstract
Background: Tissue fibrosis is a major healthcare burden that affects various organs in the body for which no effective treatments exist. An underlying, emerging theme across organs and tissue types at early stages of fibrosis is the activation of pericytes and/or fibroblasts in the perivascular space. In hepatic tissue, it is well known that liver sinusoidal endothelial cells (EC) help maintain the quiescence of stellate cells, but whether this phenomenon holds true for other endothelial and perivascular cell types is not well studied. Methods: The goal of this work was to develop an organ-on-chip microvascular model to study the effect of EC co-culture on the activation of perivascular cells perturbed by the pro-fibrotic factor TGFβ1. A high-throughput microfluidic platform, PREDICT96, that was capable of imparting physiologically relevant fluid shear stress on the cultured endothelium was utilized. Results: We first studied the activation response of several perivascular cell types and selected a cell source, human dermal fibroblasts, that exhibited medium-level activation in response to TGFβ1. We also demonstrated that the PREDICT96 high flow pump triggered changes in select shear-responsive factors in human EC. We then found that the activation response of fibroblasts was significantly blunted in co-culture with EC compared to fibroblast mono-cultures. Subsequent studies with conditioned media demonstrated that EC-secreted factors play at least a partial role in suppressing the activation response. A Luminex panel and single cell RNA-sequencing study provided additional insight into potential EC-derived factors that could influence fibroblast activation. Conclusion: Overall, our findings showed that EC can reduce myofibroblast activation of perivascular cells in response to TGFβ1. Further exploration of EC-derived factors as potential therapeutic targets in fibrosis is warranted.
Collapse
Affiliation(s)
- Rebeccah J. Luu
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - B. Christopher Hoefler
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - Ashley L. Gard
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | | | - Miles T. Rogers
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - Ernest S. Kim
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - Jonathan R. Coppeta
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - Brian P. Cain
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - Brett C. Isenberg
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - Hesham Azizgolshani
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - Oscar R. Fajardo-Ramirez
- Laboratory for Systems Mechanobiology, Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Guillermo García-Cardeña
- Laboratory for Systems Mechanobiology, Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | | | | | - Joseph L. Charest
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - Corin Williams
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW The intricate interplay between inflammatory and reparative responses in the context of heart injury is central to the pathogenesis of heart failure. Recent clinical studies have shown the therapeutic benefits of anti-inflammatory strategies in the treatment of cardiovascular diseases. This review provides a comprehensive overview of the cross-talk between immune cells and fibroblasts in the diseased heart. RECENT FINDINGS The role of inflammatory cells in fibroblast activation after cardiac injury is well-documented, but recent single-cell transcriptomics studies have identified putative pro-inflammatory fibroblasts in the infarcted heart, suggesting that fibroblasts, in turn, can modify inflammatory cell behavior. Furthermore, anti-inflammatory immune cells and fibroblasts have been described. The use of spatial and temporal-omics analyses may provide additional insights toward a better understanding of disease-specific microenvironments, where activated fibroblasts and inflammatory cells are in proximity. Recent studies focused on the interplay between fibroblasts and immune cells have brought us closer to the identification of cell type-specific targets for intervention. Further exploration of these intercellular communications will provide deeper insights toward the development of novel therapeutics.
Collapse
Affiliation(s)
- Akitoshi Hara
- Center for Cardiovascular Research, University of Hawaii at Manoa, Honolulu, HI, 96825, USA.
| | - Michelle D Tallquist
- Center for Cardiovascular Research, University of Hawaii at Manoa, Honolulu, HI, 96825, USA
| |
Collapse
|
14
|
Guo Y, Yuan Z, Hu Z, Gao Y, Guo H, Zhu H, Hong K, Cen K, Mai Y, Bai Y, Yang X. Diagnostic model constructed by five EMT-related genes for renal fibrosis and reflecting the condition of immune-related cells. Front Immunol 2023; 14:1161436. [PMID: 37266443 PMCID: PMC10229861 DOI: 10.3389/fimmu.2023.1161436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Background Renal fibrosis is a physiological and pathological characteristic of chronic kidney disease (CKD) to end-stage renal disease. Since renal biopsy is the gold standard for evaluating renal fibrosis, there is an urgent need for additional non-invasive diagnostic biomarkers. Methods We used R package "limma" to screen out differently expressed genes (DEGs) based on Epithelial-mesenchymal transformation (EMT), and carried out the protein interaction network and GO, KEGG enrichment analysis of DEGs. Secondly, the least absolute shrinkage and selection operator (LASSO), random forest tree (RF), and support vector machine-recursive feature elimination (SVM-RFE) algorithms were used to identify candidate diagnostic genes. ROC curves were plotted to evaluate the clinical diagnostic value of these genes. In addition, mRNA expression levels of candidate diagnostic genes were analyzed in control samples and renal fibrosis samples. CIBERSORT algorithm was used to evaluate immune cells level. Additionally, gene set enrichment analysis (GSEA) and drug sensitivity were conducted. Results After obtaining a total of 24 DEGs, we discovered that they were mostly involved in several immunological and inflammatory pathways, including NF-KappaB signaling, AGE-RAGE signaling, and TNF signaling. Five genes (COL4A2, CXCL1, TIMP1, VCAM1, and VEGFA) were subsequently identified as biomarkers for renal fibrosis through machine learning, and their expression levels were confirmed by validation cohort data sets and in vitro RT-qPCR experiment. The AUC values of these five genes demonstrated significant clinical diagnostic value in both the training and validation sets. After that, CIBERSORT analysis showed that these biomarkers were strongly associated with immune cell content in renal fibrosis patients. GSEA also identifies the potential roles of these diagnostic genes. Additionally, diagnostic candidate genes were found to be closely related to drug sensitivity. Finally, a nomogram for diagnosing renal fibrosis was developed. Conclusion COL4A2, CXCL1, TIMP1, VCAM1, and VEGFA are promising diagnostic biomarkers of tissue and serum for renal fibrosis.
Collapse
Affiliation(s)
- Yangyang Guo
- Department of General Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Ziwei Yuan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zujian Hu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuanyuan Gao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hangcheng Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hengyue Zhu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kai Hong
- Department of General Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Kenan Cen
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Yifeng Mai
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuejia Yang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
15
|
Ji L, Shi Y, Bian Q. Comparative genomics analyses reveal sequence determinants underlying interspecies variations in injury-responsive enhancers. BMC Genomics 2023; 24:177. [PMID: 37020217 PMCID: PMC10077677 DOI: 10.1186/s12864-023-09283-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Injury induces profound transcriptional remodeling events, which could lead to only wound healing, partial tissue repair, or perfect regeneration in different species. Injury-responsive enhancers (IREs) are cis-regulatory elements activated in response to injury signals, and have been demonstrated to promote tissue regeneration in some organisms such as zebrafish and flies. However, the functional significances of IREs in mammals remain elusive. Moreover, whether the transcriptional responses elicited by IREs upon injury are conserved or specialized in different species, and what sequence features may underlie the functional variations of IREs have not been elucidated. RESULTS We identified a set of IREs that are activated in both regenerative and non-regenerative neonatal mouse hearts upon myocardial ischemia-induced damage by integrative epigenomic and transcriptomic analyses. Motif enrichment analysis showed that AP-1 and ETS transcription factor binding motifs are significantly enriched in both zebrafish and mouse IREs. However, the IRE-associated genes vary considerably between the two species. We further found that the IRE-related sequences in zebrafish and mice diverge greatly, with the loss of IRE inducibility accompanied by a reduction in AP-1 and ETS motif frequencies. The functional turnover of IREs between zebrafish and mice is correlated with changes in transcriptional responses of the IRE-associated genes upon injury. Using mouse cardiomyocytes as a model, we demonstrated that the reduction in AP-1 or ETS motif frequency attenuates the activation of IREs in response to hypoxia-induced damage. CONCLUSIONS By performing comparative genomics analyses on IREs, we demonstrated that inter-species variations in AP-1 and ETS motifs may play an important role in defining the functions of enhancers during injury response. Our findings provide important insights for understanding the molecular mechanisms of transcriptional remodeling in response to injury across species.
Collapse
Affiliation(s)
- Luzhang Ji
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Yuanyuan Shi
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Qian Bian
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.
| |
Collapse
|
16
|
Kobayashi H. Endometrial Inflammation and Impaired Spontaneous Decidualization: Insights into the Pathogenesis of Adenomyosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3762. [PMID: 36834456 PMCID: PMC9964052 DOI: 10.3390/ijerph20043762] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Adenomyosis is an estrogen-dependent gynecologic disease characterized by the myometrial invasion of the endometrial tissue. This review summarized the current understanding and recent findings on the pathophysiology of adenomyosis, focusing on repeated menstruation, persistent inflammation, and impaired spontaneous decidualization. A literature search was performed in the PubMed and Google Scholar databases from inception to 30 April 2022. Thirty-one full-text articles met the eligibility criteria. Repeated episodes of physiological events (i.e., endometrial shedding, damage, proliferation, differentiation, repair, and regeneration) during the menstrual cycle are associated with inflammation, angiogenesis, and immune processes. The decidualization process in humans is driven by the rise in progesterone levels, independently of pregnancy (i.e., spontaneous decidualization). Adenomyotic cells produce angiogenic and fibrogenic factors with the downregulation of decidualization-associated molecules. This decidualization dysfunction and persistent inflammation are closely related to the pathogenesis of adenomyosis. Recently, it has been found that the reproductive tract microbiota composition and function in women with adenomyosis differ from those without. An increase in opportunistic pathogens and a decrease in beneficial commensals may promote impaired defense mechanisms against inflammation and predispose women to uncontrolled endometrial inflammation. However, currently, there is no direct evidence that adenomyosis is linked to pre-existing inflammation and impaired spontaneous decidualization. Overall, persistent inflammation, impaired spontaneous decidualization, and microbiota dysbiosis (i.e., an imbalance in the composition and function of endometrial microbiota) may be involved in the pathophysiology of adenomyosis.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara 634-0813, Japan; ; Tel.: +81-744-20-0028
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
| |
Collapse
|
17
|
Lee MJ, Lee J, Kang SK, Wirth D, Yoo SM, Park C, Lee MS. CXCL1 confers a survival advantage in Kaposi's sarcoma-associated herpesvirus-infected human endothelial cells through STAT3 phosphorylation. J Med Virol 2023; 95. [PMID: 35869037 DOI: 10.1002/jmv.28020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 01/11/2023]
Abstract
Many cytokines produced by Kaposi's sarcoma-associated herpesvirus (KSHV)-infected cells have been shown to participate in the pathogenesis of KSHV. Determination of the exact role of cytokines in Kaposi's sarcoma (KS) pathogenesis is limited, however, by the difficulty to manipulate the target genes in human endothelial cells. In this study, we sought to elucidate the role of cytokines in KSHV-infected human immortalized endothelial cell line (HuARLT cells) by knockout (KO) of the corresponding target genes using the CRISPR/Cas9 system. The cytokine production profile of KSHV-infected HuARLT cells was analyzed using a protein array, and several cytokines were found to be highly upregulated following KSHV infection. This study focused on CXCL1, which was investigated by knocked out in HuARLT cells. KSHV-infected CXCL1 KO cells underwent increased cell death compared to KSHV-infected wild-type (WT) cells and mock-infected CXCL1 KO cells. Lytic replication was not observed in KSHV-infected WT nor CXCL1 KO cells. Phosphorylation of STAT3 was significantly suppressed in KSHV-infected CXCL1 KO cells. Additionally, inhibitors of STAT3 and CXCL1 induced cell death in KSHV-infected endothelial cells. Our results show that CXCL1 production is required for the survival of KSHV-infected endothelial cells, and the CXCL1 to STAT3 phosphorylation signaling pathway may be a therapeutic target for KS.
Collapse
Affiliation(s)
- Myung-Ju Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Jisu Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Su-Kyung Kang
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Dagmar Wirth
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Seung-Min Yoo
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Changhoon Park
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
| |
Collapse
|
18
|
Zhang Y, Wu Z, Lu S, Lin M, Yue X, Wang Z, Cai B. Time-Series Expression Profile Analysis of Post-Traumatic Joint Contracture in Rats at the Early Stages of the Healing Process. J Inflamm Res 2023; 16:1169-1181. [PMID: 36945316 PMCID: PMC10024884 DOI: 10.2147/jir.s400557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Objective This study aimed to characterize the gene expression profile at the early stages of the healing process of post-traumatic joint contracture (PTJC). Methods Twelve rats were used for PTJC model establishment and were divided into four groups according to the sampling time: S0d, S3d, S7d and S2w. Transcriptome sequencing was performed on fibrotic joint capsule samples in four groups followed by bioinformatics analyses including differentially expressed genes (DEGs) screening, Short Time-series Expression Miner (STEM) analysis, network construction, and pathway analysis. Five important genes were validated by qRT-PCR. Results A total of 1171, 1052 and 793 DEGs were screened in S3d vs S0d, S7d vs S0d, and S2w vs S0d comparison groups, respectively. A total of 383 overlapping genes were screened out, which were significantly enriched in some inflammatory functions and pathways. Through STEM analysis, three clusters were identified, including 105, 57 and 57 DEGs, respectively. Then, based on the cluster genes, 10 genes, such as Il6, Timp1, Cxcl1, Cxcr4 and Mmp3, were further selected after PPI and pathway analyses. The expression levels of Il6, Timp1, Cxcl1, Cxcr4 and Mmp3 were validated by qRT-PCR. Conclusion The present study screened out several genes with significant changes in expression levels at the early stages of the healing process in PTJC, such as Il6, Timp1, Cxcl1, Cxcr4 and Mmp3. Our study offers a valuable contribution to the understanding pathomechanism of PTJC.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Rehabilitation Medicine, Hainan Western Central Hospital, Danzhou, Hainan, People’s Republic of China
- Department of Rehabilitation Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, People’s Republic of China
- Correspondence: Yuxin Zhang; Bin Cai, Department of Rehabilitation Medicine, Hainan Western Central Hospital, No. 2, Fubo East Road, Nada Town, Danzhou, Hainan, 571700, People’s Republic of China, Tel +86-21-53315248, Email ;
| | - Zhigang Wu
- Department of Rehabilitation Medicine, Hainan Western Central Hospital, Danzhou, Hainan, People’s Republic of China
| | - Shenji Lu
- Department of Rehabilitation Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Minghui Lin
- Department of Rehabilitation Medicine, Hainan Western Central Hospital, Danzhou, Hainan, People’s Republic of China
| | - Xiaokun Yue
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Zengguang Wang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Bin Cai
- Department of Rehabilitation Medicine, Hainan Western Central Hospital, Danzhou, Hainan, People’s Republic of China
- Department of Rehabilitation Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
19
|
Chalise U, Becirovic‐Agic M, Lindsey ML. The cardiac wound healing response to myocardial infarction. WIREs Mech Dis 2023; 15:e1584. [PMID: 36634913 PMCID: PMC10077990 DOI: 10.1002/wsbm.1584] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/31/2022] [Accepted: 05/18/2022] [Indexed: 01/14/2023]
Abstract
Myocardial infarction (MI) is defined as evidence of myocardial necrosis consistent with prolonged ischemia. In response to MI, the myocardium undergoes a series of wound healing events that initiate inflammation and shift to anti-inflammation before transitioning to tissue repair that culminates in scar formation to replace the region of the necrotic myocardium. The overall response to MI is determined by two major steps, the first of which is the secretion of proteases by infiltrating leukocytes to breakdown extracellular matrix (ECM) components, a necessary step to remove necrotic cardiomyocytes. The second step is the generation of new ECM that comprises the scar; and this step is governed by the cardiac fibroblasts as the major source of new ECM synthesis. The leukocyte component resides in the middle of the two-step process, contributing to both sides as the leukocytes transition from pro-inflammatory to anti-inflammatory and reparative cell phenotypes. The balance between the two steps determines the final quantity and quality of scar formed, which in turn contributes to chronic outcomes following MI, including the progression to heart failure. This review will summarize our current knowledge regarding the cardiac wound healing response to MI, primarily focused on experimental models of MI in mice. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Immune System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Upendra Chalise
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular ResearchUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Research ServiceNebraska‐Western Iowa Health Care SystemOmahaNebraskaUSA
| | - Mediha Becirovic‐Agic
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular ResearchUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Research ServiceNebraska‐Western Iowa Health Care SystemOmahaNebraskaUSA
| | - Merry L. Lindsey
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular ResearchUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Research ServiceNebraska‐Western Iowa Health Care SystemOmahaNebraskaUSA
| |
Collapse
|
20
|
Muangthong T, Chusangnin P, Hassametto A, Tanomrat R, Suwannalert P. Thioredoxin Reductase-1 as a Potential Biomarker in Fibroblast-Associated HCT116 Cancer Cell Progression and Dissemination in a Zebrafish Model. Cancers (Basel) 2022; 15:cancers15010056. [PMID: 36612053 PMCID: PMC9817953 DOI: 10.3390/cancers15010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment, especially that of fibroblasts, strongly promotes colorectal cancer (CRC) progression. Progressive cancers usually accumulate high reactive oxygen species (ROS), leading to oxidative stress. The stress relates to the expression of thioredoxin reductase-1 (TrxR-1), which is an oxidative stress sensitivity molecule. This study aimed to investigate TrxR-1 expression as an indication of colon-fibroblast-inducing colorectal cancer progression and metastasis. We found that the high proliferative fibroblast-cultured media (FCM) contained pro-inflammatory cytokines that have a high ability to influence HCT116 and CRC cell progression, when compared with complete media (CM) as a control in terms of growth (CM = 100.00%, FCM = 165.96%), migration (CM = 32.22%, FCM = 83.07%), invasion (CM = 130 cells/field, FCM = 449 cells/field), and EMT transformation while decreasing E-cadherin expression (CM = 1.00, FCM = 0.69) and shape factor (CM = 0.94, FCM = 0.61). In addition, the overexpression of TrxR-1 is associated with cellular oxidant enchantment in FCM-treated cells. A dot plot analysis showed a strong relation between the EMT process and the overexpression of TrxR-1 in FCM-treated cells (CM = 13/100 cells, FCM = 45/100 cells). The cancer transplantation of the adult zebrafish model illustrated a significantly higher number of microtumors in FCM-treated cells (CM = 4.33 ± 1.51/HPF, FCM = 25.00 ± 13.18/HPF) disseminated in the intraperitoneal cavity with TrxR-1 positive cells. The overexpression of TrxR-1 indicated fibroblast-associated CRC progression in HCT116 cells and the zebrafish model. Therefore, TrxR-1 could be applied as a novel biomarker for colorectal cancer progression and prognostic evaluation.
Collapse
Affiliation(s)
- Tharathip Muangthong
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Pornnapat Chusangnin
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Artchaya Hassametto
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Rataya Tanomrat
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Prasit Suwannalert
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Pathobiology Information and Learning Center, Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Correspondence:
| |
Collapse
|
21
|
Bhagat A, Shrestha P, Kleinerman ES. The Innate Immune System in Cardiovascular Diseases and Its Role in Doxorubicin-Induced Cardiotoxicity. Int J Mol Sci 2022; 23:ijms232314649. [PMID: 36498974 PMCID: PMC9739741 DOI: 10.3390/ijms232314649] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Innate immune cells are the early responders to infection and tissue damage. They play a critical role in the initiation and resolution of inflammation in response to insult as well as tissue repair. Following ischemic or non-ischemic cardiac injury, a strong inflammatory response plays a critical role in the removal of cell debris and tissue remodeling. However, persistent inflammation could be detrimental to the heart. Studies suggest that cardiac inflammation and tissue repair needs to be tightly regulated such that the timely resolution of the inflammation may prevent adverse cardiac damage. This involves the recognition of damage; activation and release of soluble mediators such as cytokines, chemokines, and proteases; and immune cells such as monocytes, macrophages, and neutrophils. This is important in the context of doxorubicin-induced cardiotoxicity as well. Doxorubicin (Dox) is an effective chemotherapy against multiple cancers but at the cost of cardiotoxicity. The innate immune system has emerged as a contributor to exacerbate the disease. In this review, we discuss the current understanding of the role of innate immunity in the pathogenesis of cardiovascular disease and dox-induced cardiotoxicity and provide potential therapeutic targets to alleviate the damage.
Collapse
|
22
|
Obstructive Sleep Apnea Syndrome In Vitro Model: Controlled Intermittent Hypoxia Stimulation of Human Stem Cells-Derived Cardiomyocytes. Int J Mol Sci 2022; 23:ijms231810272. [PMID: 36142186 PMCID: PMC9499466 DOI: 10.3390/ijms231810272] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular morbidity is the leading cause of death of obstructive sleep apnea (OSA) syndrome patients. Nocturnal airway obstruction is associated with intermittent hypoxia (IH). In our previous work with cell lines, incubation with sera from OSA patients induced changes in cell morphology, NF-κB activation and decreased viability. A decrease in beating rate, contraction amplitude and a reduction in intracellular calcium signaling was also observed in human cardiomyocytes differentiated from human embryonic stem cells (hESC-CMs). We expanded these observations using a new controlled IH in vitro system on beating hESC-CMs. The Oxy-Cycler system was programed to generate IH cycles. Following IH, we detected the activation of Hif-1α as an indicator of hypoxia and nuclear NF-κB p65 and p50 subunits, representing pro-inflammatory activity. We also detected the secretion of inflammatory cytokines, such as MIF, PAI-1, MCP-1 and CXCL1, and demonstrated a decrease in beating rate of hESC-CMs following IH. IH induces the co-activation of inflammatory features together with cardiomyocyte alterations which are consistent with myocardial damage in OSA. This study provides an innovative approach for in vitro studies of OSA cardiovascular morbidity and supports the search for new pharmacological agents and molecular targets to improve diagnosis and treatment of patients.
Collapse
|
23
|
Bioinformatics and System Biological Approaches for the Identification of Genetic Risk Factors in the Progression of Cardiovascular Disease. Cardiovasc Ther 2022; 2022:9034996. [PMID: 36035865 PMCID: PMC9381297 DOI: 10.1155/2022/9034996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/17/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background Cardiovascular disease (CVD) is the combination of coronary heart disease, myocardial infarction, rheumatic heart disease, and peripheral vascular disease of the heart and blood vessels. It is one of the leading deadly diseases that causes one-third of the deaths yearly in the globe. Additionally, the risk factors associated with it make the situation more complex for cardiovascular patients, which lead them towards mortality, but the genetic association between CVD and its risk factors is not clearly explored in the global literature. We addressed this issue and explored the linkage between CVD and its risk factors. Methods We developed an analytical approach to reveal the risk factors and their linkages with CVD. We used GEO microarray datasets for the CVD and other risk factors in this study. We performed several analyses including gene expression analysis, diseasome analysis, protein-protein interaction (PPI) analysis, and pathway analysis for discovering the relationship between CVD and its risk factors. We also examined the validation of our study using gold benchmark databases OMIM, dbGAP, and DisGeNET. Results We observed that the number of 32, 17, 53, 70, and 89 differentially expressed genes (DEGs) is overlapped between CVD and its risk factors of hypertension (HTN), type 2 diabetes (T2D), hypercholesterolemia (HCL), obesity, and aging, respectively. We identified 10 major hub proteins (FPR2, TNF, CXCL8, CXCL1, IL1B, VEGFA, CYBB, PTGS2, ITGAX, and CCR5), 12 significant functional pathways, and 11 gene ontological pathways that are associated with CVD. We also found the connection of CVD with its risk factors in the gold benchmark databases. Our experimental outcomes indicate a strong association of CVD with its risk factors of HTN, T2D, HCL, obesity, and aging. Conclusions Our computational approach explored the genetic association of CVD with its risk factors by identifying the significant DEGs, hub proteins, and signaling and ontological pathways. The outcomes of this study may be further used in the lab-based analysis for developing the effective treatment strategies of CVD.
Collapse
|
24
|
Stojanovic D, Mitic V, Stojanovic M, Milenkovic J, Ignjatovic A, Milojkovic M. The Scientific Rationale for the Introduction of Renalase in the Concept of Cardiac Fibrosis. Front Cardiovasc Med 2022; 9:845878. [PMID: 35711341 PMCID: PMC9193824 DOI: 10.3389/fcvm.2022.845878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/25/2022] [Indexed: 12/17/2022] Open
Abstract
Cardiac fibrosis represents a redundant accumulation of extracellular matrix proteins, resulting from a cascade of pathophysiological events involved in an ineffective healing response, that eventually leads to heart failure. The pathophysiology of cardiac fibrosis involves various cellular effectors (neutrophils, macrophages, cardiomyocytes, fibroblasts), up-regulation of profibrotic mediators (cytokines, chemokines, and growth factors), and processes where epithelial and endothelial cells undergo mesenchymal transition. Activated fibroblasts and myofibroblasts are the central cellular effectors in cardiac fibrosis, serving as the main source of matrix proteins. The most effective anti-fibrotic strategy will have to incorporate the specific targeting of the diverse cells, pathways, and their cross-talk in the pathogenesis of cardiac fibroproliferation. Additionally, renalase, a novel protein secreted by the kidneys, is identified. Evidence demonstrates its cytoprotective properties, establishing it as a survival element in various organ injuries (heart, kidney, liver, intestines), and as a significant anti-fibrotic factor, owing to its, in vitro and in vivo demonstrated pleiotropy to alleviate inflammation, oxidative stress, apoptosis, necrosis, and fibrotic responses. Effective anti-fibrotic therapy may seek to exploit renalase’s compound effects such as: lessening of the inflammatory cell infiltrate (neutrophils and macrophages), and macrophage polarization (M1 to M2), a decrease in the proinflammatory cytokines/chemokines/reactive species/growth factor release (TNF-α, IL-6, MCP-1, MIP-2, ROS, TGF-β1), an increase in anti-apoptotic factors (Bcl2), and prevention of caspase activation, inflammasome silencing, sirtuins (1 and 3) activation, and mitochondrial protection, suppression of epithelial to mesenchymal transition, a decrease in the pro-fibrotic markers expression (’α-SMA, collagen I, and III, TIMP-1, and fibronectin), and interference with MAPKs signaling network, most likely as a coordinator of pro-fibrotic signals. This review provides the scientific rationale for renalase’s scrutiny regarding cardiac fibrosis, and there is great anticipation that these newly identified pathways are set to progress one step further. Although substantial progress has been made, indicating renalase’s therapeutic promise, more profound experimental work is required to resolve the accurate underlying mechanisms of renalase, concerning cardiac fibrosis, before any potential translation to clinical investigation.
Collapse
Affiliation(s)
- Dijana Stojanovic
- Institute of Pathophysiology, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Valentina Mitic
- Department of Cardiovascular Rehabilitation, Institute for Treatment and Rehabilitation "Niska Banja", Niska Banja, Serbia
| | - Miodrag Stojanovic
- Department of Medical Statistics and Informatics, Faculty of Medicine, University of Niš, Niš, Serbia.,Center of Informatics and Biostatistics in Healthcare, Institute for Public Health, Niš, Serbia
| | - Jelena Milenkovic
- Institute of Pathophysiology, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Aleksandra Ignjatovic
- Department of Medical Statistics and Informatics, Faculty of Medicine, University of Niš, Niš, Serbia.,Center of Informatics and Biostatistics in Healthcare, Institute for Public Health, Niš, Serbia
| | - Maja Milojkovic
- Institute of Pathophysiology, Faculty of Medicine, University of Niš, Niš, Serbia
| |
Collapse
|