1
|
Krzyżewska A, Kurakula K. Sex Dimorphism in Pulmonary Arterial Hypertension Associated With Autoimmune Diseases. Arterioscler Thromb Vasc Biol 2024; 44:2169-2190. [PMID: 39145392 DOI: 10.1161/atvbaha.124.320886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Pulmonary hypertension is a rare, incurable, and progressive disease. Although there is increasing evidence that immune disorders, particularly those associated with connective tissue diseases, are a strong predisposing factor in the development of pulmonary arterial hypertension (PAH), there is currently a lack of knowledge about the detailed molecular mechanisms responsible for this phenomenon. Exploring this topic is crucial because patients with an immune disorder combined with PAH have a worse prognosis and higher mortality compared with patients with other PAH subtypes. Moreover, data recorded worldwide show that the prevalence of PAH in women is 2× to even 4× higher than in men, and the ratio of PAH associated with autoimmune diseases is even higher (9:1). Sexual dimorphism in the pathogenesis of cardiovascular disease was explained for many years by the action of female sex hormones. However, there are increasing reports of interactions between sex hormones and sex chromosomes, and differences in the pathogenesis of cardiovascular disease may be controlled not only by sex hormones but also by sex chromosome pathways that are not dependent on the gonads. This review discusses the role of estrogen and genetic factors including the role of genes located on the X chromosome, as well as the potential protective role of the Y chromosome in sexual dimorphism, which is prominent in the occurrence of PAH associated with autoimmune diseases. Moreover, an overview of animal models that could potentially play a role in further investigating the aforementioned link was also reviewed.
Collapse
Affiliation(s)
- Anna Krzyżewska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Poland (A.K.)
| | - Kondababu Kurakula
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Free University Medical Center, the Netherlands (K.K.)
| |
Collapse
|
2
|
Zhou QY, Liu W, Gong SX, Tian Y, Ma XF, Wang AP. Pulmonary artery smooth muscle cell pyroptosis promotes the proliferation of PASMCs by paracrine IL‑1β and IL‑18 in monocrotaline‑induced pulmonary arterial hypertensive rats. Exp Ther Med 2024; 28:394. [PMID: 39171148 PMCID: PMC11336803 DOI: 10.3892/etm.2024.12683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a common vascular disease, and pulmonary vascular remodeling is a pivotal pathophysiological mechanism of PAH. Major pathological changes of pulmonary arterial remodeling, including proliferation, hypertrophy and enhanced secretory activity, can occur in pulmonary artery smooth muscle cells (PASMCs). Multiple active factors and cytokines play important roles in PAH. However, the regulatory mechanisms of the active factors and cytokines in PAH remain unclear. The present study aimed to reveal the crucial role of PASMC pyroptosis in PAH and to elucidate the intrinsic mechanisms. To establish the PAH rat models, Sprague-Dawley rats were injected intraperitoneally with monocrotaline (MCT) at a dose of 60 mg/kg. The expression of proteins and interleukins were detected by western blotting and ELISA assay. The results indicated that the pyroptosis of PASMCs is significantly increased in MCT-induced PAH rats. Notably, pyroptotic PASMCs can secret IL-1β and IL-18 to promote the proliferation of PASMCs. On this basis, inhibiting the secretion of IL-1β and IL-18 can markedly inhibit PASMC proliferation. Collectively, the findings of the present study indicate a critical role for PASMC pyroptosis in MCT-induced PAH rats, prompting a new preventive and therapeutic strategy for PAH.
Collapse
Affiliation(s)
- Qin-Yi Zhou
- Department of Cardiology, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421002, P.R. China
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Wang Liu
- Department of Cardiology, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421002, P.R. China
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shao-Xin Gong
- Department of Pathology, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ying Tian
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiao-Feng Ma
- Department of Cardiology, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421002, P.R. China
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ai-Ping Wang
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
3
|
Jia K, Luo X, Yi J, Zhang C. Hormonal influence: unraveling the impact of sex hormones on vascular smooth muscle cells. Biol Res 2024; 57:61. [PMID: 39227995 PMCID: PMC11373308 DOI: 10.1186/s40659-024-00542-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
Sex hormones play a pivotal role as endocrine hormones that exert profound effects on the biological characteristics and vascular function of vascular smooth muscle cells (VSMCs). By modulating intracellular signaling pathways, activating nuclear receptors, and regulating gene expression, sex hormones intricately influence the morphology, function, and physiological state of VSMCs, thereby impacting the biological properties of vascular contraction, relaxation, and growth. Increasing evidence suggests that abnormal phenotypic changes in VSMCs contribute to the initiation of vascular diseases, including atherosclerosis. Therefore, understanding the factors governing phenotypic alterations in VSMCs and elucidating the underlying mechanisms can provide crucial insights for refining interventions targeted at vascular diseases. Additionally, the varying levels of different types of sex hormones in the human body, influenced by sex and age, may also affect the phenotypic conversion of VSMCs. This review aims to explore the influence of sex hormones on the phenotypic switching of VSMCs and the development of associated vascular diseases in the human body.
Collapse
Affiliation(s)
- Keran Jia
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xin Luo
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jingyan Yi
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Chunxiang Zhang
- Department of Cardiology, The Affiliated Hospital, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
4
|
Zhou Y, Yin Z, Cui J, Wang C, Fu T, Adu-Amankwaah J, Fu L, Zhou X. 16α-OHE1 alleviates hypoxia-induced inflammation and myocardial damage via the activation of β2-Adrenergic receptor. Mol Cell Endocrinol 2024; 587:112200. [PMID: 38518841 DOI: 10.1016/j.mce.2024.112200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/24/2024]
Abstract
OBJECTIVE Myocardial injuries resulting from hypoxia are a significant concern, and this study aimed to explore potential protective strategies against such damage. Specifically, we sought to investigate the cardioprotective effects of 16α-hydroxyestrone (16α-OHE1). METHODS Male Sprague‒Dawley (SD) rats were subjected to hypoxic conditions simulating high-altitude exposure at 6000 m in a low-pressure chamber for 7 days. Before and during hypoxic exposure, estradiol (E2) and various doses of 16α-OHE1 were administered for 14 days. Heart weight/body weight (HW/BW), myocardial structure, Myocardial injury indicators and inflammatory infiltration in rats were measured. H9C2 cells cultured under 5% O2 conditions received E2 and varying doses of 16α-OHE1; Cell viability, apoptosis, inflammatory infiltration, and Myocardial injury indicators were determined. Expression levels of β2AR were determined in rat hearts and H9C2 cells. The β2AR inhibitor, ICI 118,551, was employed to investigate β2AR's role in 16α-OHE1's cardioprotective effects. RESULTS Hypoxia led to substantial myocardial damage, evident in increased heart HW, CK-MB, cTnT, ANP, BNP, structural myocardial changes, inflammatory infiltration, and apoptosis. Pre-treatment with E2 and 16α-OHE1 significantly mitigated these adverse changes. Importantly, the protective effects of E2 and 16α-OHE1 were associated with the upregulation of β2AR expression in both rat hearts and H9C2 cells. However, inhibition of β2AR by ICI 118,551 in H9C2 cells nullified the protective effect of 16α-OHE1 on myocardium. CONCLUSION Our findings suggest that 16α-OHE1 can effectively reduce hypoxia-induced myocardial injury in rats through β2ARs, indicating a promising avenue for cardioprotection.
Collapse
Affiliation(s)
- Yequan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China, 221004.
| | - Zeyuan Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China, 221004; University of Manchester, CTF Building, 46 Grafton Street, Manchester, M13 9NT, United Kingdom.
| | - Junchao Cui
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China, 221004.
| | - Cheng Wang
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China, 221004.
| | - Tong Fu
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China, 221004.
| | | | - Lu Fu
- Department of Physiology, Xuzhou Medical University, Xuzhou, China, 221004.
| | - Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China, 221004.
| |
Collapse
|
5
|
Sun Y, Chen C, Yan Q, Wang S, Tan Y, Long J, Lin Y, Ning S, Wang J, Zhang S, Ai Q, Liu S. A peripheral system disease-Pulmonary hypertension. Biomed Pharmacother 2024; 175:116787. [PMID: 38788548 DOI: 10.1016/j.biopha.2024.116787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Pulmonary hypertension (PH) is a cardiovascular disorder characterized by substantial morbidity and mortality rates. It is a chronic condition characterized by intricate pathogenesis and uncontrollable factors. We summarized the pathological effects of estrogen, genetics, neuroinflammation, intestinal microbiota, metabolic reorganization, and histone modification on PH. PH is not only a pulmonary vascular disease, but also a systemic disease. The findings emphasize that the onset of PH is not exclusively confined to the pulmonary vasculature, consequently necessitating treatment approaches that extend beyond targeting pulmonary blood vessels. Hence, the research on the pathological mechanism of PH is not limited to target organs such as pulmonary vessels, but also focuses on exploring other fields (such as estrogen, genetics, neuroinflammation, intestinal microbiota, metabolic reorganization, and histone modification).
Collapse
Affiliation(s)
- Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Siying Wang
- Pharmacy Department, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Yong Tan
- Nephrology Department, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shuangcheng Ning
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Jin Wang
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Shusheng Zhang
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China.
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China.
| |
Collapse
|
6
|
Park E, Safdar Z. Pulmonary Hypertension in Women. Methodist Debakey Cardiovasc J 2024; 20:70-80. [PMID: 38495664 PMCID: PMC10941702 DOI: 10.14797/mdcvj.1308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/20/2023] [Indexed: 03/19/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare devastating disease characterized by elevated pulmonary artery pressure and increased pulmonary vascular resistance. Females have a higher incidence of PAH, which is reflected globally across registries in the United States, Europe, and Asia. However, despite female predominance, women had better outcomes compared with male patients, a finding that has been labeled the "estrogen paradox." Special considerations should be given to women with PAH regarding sexual health, contraception, family planning, and treatment before, during, and after pregnancy. Pregnant women with PAH should be referred to a pulmonary hypertension care center; a multidisciplinary team approach is recommended, and Cesarean section is the preferred mode of delivery. While pregnancy outcomes have improved over the years with PAH-specific therapy, pregnancy portends a high-risk for those with PAH. Continued research is needed to tailor PAH treatment for women.
Collapse
Affiliation(s)
- Eunwoo Park
- Houston Methodist Hospital, Houston, Texas, US
| | - Zeenat Safdar
- Houston Methodist Lung Center, Houston Methodist Hospital, Houston, Texas, US
- Weill Cornell College of Medicine, New York, New York, US
| |
Collapse
|
7
|
Park JM, Seo YS, Kim SH, Kim HY, Kim MS, Lee MY. Impact of inhalation exposure to cigarette smoke on the pathogenesis of pulmonary hypertension primed by monocrotaline in rats. J Appl Toxicol 2024; 44:470-483. [PMID: 37876240 DOI: 10.1002/jat.4555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023]
Abstract
Extensive, long-term exposure to cigarette smoke (CS) was recently suggested to be a risk factor for pulmonary hypertension, although further validation is required. The vascular effects of CS share similarities with the etiology of pulmonary hypertension, including vascular inflammation and remodeling. Thus, we examined the influence of CS exposure on the pathogenesis of monocrotaline (MCT)-induced pulmonary hypertension, hypothesizing that smoking might accelerate the development of primed pulmonary hypertension. CS was generated from 3R4F reference cigarettes, and rats were exposed to CS by inhalation at total particulate matter concentrations of 100-300 μg/L for 4 h/day, 7 days/week for 4 weeks. Following 1 week of initial exposure, rats received 60 mg/kg MCT and were sacrificed and analyzed after an additional 3 weeks of exposure. MCT induced hypertrophy in pulmonary arterioles and increased the Fulton index, a measure of right ventricular hypertrophy. Additional CS exposure exacerbated arteriolar hypertrophy but did not further elevate the Fulton index. No significant alterations were observed in levels of endothelin-1 and vascular endothelial growth factor, or in hematological and serum biochemical parameters. Short-term inhalation exposure to CS exacerbated arteriolar hypertrophy in the lung, although this effect did not directly aggravate the overworked heart under the current experimental conditions.
Collapse
Affiliation(s)
- Jung-Min Park
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Yoon-Seok Seo
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Sung-Hwan Kim
- Inhalation Toxicology Research Group, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Hyeon-Young Kim
- Inhalation Toxicology Research Group, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Min-Seok Kim
- Inhalation Toxicology Research Group, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Moo-Yeol Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
8
|
Xu F, Ma J, Wang X, Wang X, Fang W, Sun J, Li Z, Liu J. The Role of G Protein-Coupled Estrogen Receptor (GPER) in Vascular Pathology and Physiology. Biomolecules 2023; 13:1410. [PMID: 37759810 PMCID: PMC10526873 DOI: 10.3390/biom13091410] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVE Estrogen is indispensable in health and disease and mainly functions through its receptors. The protection of the cardiovascular system by estrogen and its receptors has been recognized for decades. Numerous studies with a focus on estrogen and its receptor system have been conducted to elucidate the underlying mechanism. Although nuclear estrogen receptors, including estrogen receptor-α and estrogen receptor-β, have been shown to be classical receptors that mediate genomic effects, studies now show that GPER mainly mediates rapid signaling events as well as transcriptional regulation via binding to estrogen as a membrane receptor. With the discovery of selective synthetic ligands for GPER and the utilization of GPER knockout mice, significant progress has been made in understanding the function of GPER. In this review, the tissue and cellular localizations, endogenous and exogenous ligands, and signaling pathways of GPER are systematically summarized in diverse physiological and diseased conditions. This article further emphasizes the role of GPER in vascular pathology and physiology, focusing on the latest research progress and evidence of GPER as a promising therapeutic target in hypertension, pulmonary hypertension, and atherosclerosis. Thus, selective regulation of GPER by its agonists and antagonists have the potential to be used in clinical practice for treating such diseases.
Collapse
Affiliation(s)
- Fujie Xu
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Xiaoya Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Weiyi Fang
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jingwei Sun
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Zilin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| |
Collapse
|
9
|
Sferra SR, Guo M, Gonzalez Salazar AJ, Penikis AB, Engwall-Gill AJ, Ebanks A, Harting MT, Collaco JM, Kunisaki SM. Sex-Specific Differences in Congenital Diaphragmatic Hernia Mortality. J Pediatr 2023; 259:113481. [PMID: 37196780 DOI: 10.1016/j.jpeds.2023.113481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
OBJECTIVE To compare disease severity and mortality differences between female and male patients with congenital diaphragmatic hernia (CDH). STUDY DESIGN We queried the CDH Study Group (CDHSG) database for CDH neonates managed between 2007 and 2018. Female and males were compared in statistical analyses using t tests, χ² tests, and Cox regression, as appropriate (P ≤ .05). RESULTS There were 7288 CDH patients, of which 3048 (41.8%) were female. Females weighed less on average at birth than males (2.84 kg vs 2.97 kg, P < .001) despite comparable gestational age. Females had similar rates of extracorporeal life support (ECLS) utilization (27.8% vs 27.3%, P = .65). Although both cohorts had equivalent defect size and rates of patch repair, female patients had increased rates of intrathoracic liver herniation (49.2% vs 45.9%, P = .01) and pulmonary hypertension (PH) (86.6% vs 81.1%, P < .001). Females had lower survival rates at 30-days (77.3% vs 80.1%, P = .003) and overall lower survival to discharge (70.2% vs 74.2%, P < .001). Subgroup analysis revealed that increased mortality was significant among those who underwent repair but were never supported on ECLS (P = .005). On Cox regression analysis, female sex was independently associated with mortality (adjusted hazard ratio 1.32, P = .02). CONCLUSION After controlling for the established prenatal and postnatal predictors of mortality, female sex remains independently associated with a higher risk of mortality in CDH. Further study into the underlying causes for sex-specific disparities in CDH outcomes is warranted.
Collapse
Affiliation(s)
- Shelby R Sferra
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Matthew Guo
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Andres J Gonzalez Salazar
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Annalise B Penikis
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Abigail J Engwall-Gill
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ashley Ebanks
- Department of Pediatric Surgery, University of Texas McGovern Medical School and Children's Memorial Hermann Hospital, Houston, TX
| | - Matthew T Harting
- Department of Pediatric Surgery, University of Texas McGovern Medical School and Children's Memorial Hermann Hospital, Houston, TX
| | - Joseph M Collaco
- Eudowood Division of Pediatric Respiratory Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Shaun M Kunisaki
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
10
|
Ormeloxifene, a selective estrogen receptor modulator, protects against pulmonary hypertension. Eur J Pharmacol 2023; 943:175558. [PMID: 36731722 DOI: 10.1016/j.ejphar.2023.175558] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
PURPOSE Protective effect of 17β-estradiol is well-known in pulmonary hypertension. However, estrogen-based therapy may potentially increase the risk of breast cancer, necessitating a search for novel drugs. This study, therefore, investigated the ameliorative effects of a selective estrogen receptor modulator, ormeloxifene, in pulmonary hypertension. METHODS Cardiomyocytes (H9C2) and human pulmonary arterial smooth muscle cells (HPASMCs) were exposed to hypoxia (1% O2) for 42 and 96 h, respectively, with or without ormeloxifene pre-treatment (1 μM). Also, female (ovary-intact or ovariectomized) and male Sprague-Dawley rats received monocrotaline (60 mg/kg, once, subcutaneously), with or without ormeloxifene treatment (2.5 mg/kg, orally) for four weeks. RESULTS Hypoxia dysregulated 17β-hydroxysteroid dehydrogenase (17βHSD) 1 & 2 expressions, reducing 17β-estradiol production and estrogen receptors α and β in HPASMC but increasing estrone, proliferation, inflammation, oxidative stress, and mitochondrial dysfunction. Similarly, monocrotaline decreased plasma 17β-estradiol and uterine weight in ovary-intact rats. Further, monocrotaline altered 17βHSD1 & 2 expressions and reduced estrogen receptors α and β, increasing right ventricular pressure, proliferation, inflammation, oxidative stress, endothelial dysfunction, mitochondrial dysfunction, and vascular remodeling in female and male rats, with worsened conditions in ovariectomized rats. Ormeloxifene was less uterotrophic; however, it attenuated both hypoxia and monocrotaline effects by improving pulmonary 17β-estradiol synthesis. Furthermore, ormeloxifene decreased cardiac hypertrophy and right ventricular remodeling induced by hypoxia and monocrotaline. CONCLUSION This study demonstrates that ormeloxifene promoted pulmonary 17β-estradiol synthesis, alleviated inflammation, improved the NOX4/HO1/Nrf/PPARγ/PGC-1α axis, and attenuated pulmonary hypertension. It is evidently safe at tested concentrations and may be effectively repurposed for pulmonary hypertension treatment.
Collapse
|
11
|
Sex- and Gender-Related Aspects in Pulmonary Hypertension. Heart Fail Clin 2023; 19:11-24. [DOI: 10.1016/j.hfc.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Volkmann ER, Siegfried J, Lahm T, Ventetuolo CE, Mathai SC, Steen V, Herzog EL, Shansky R, Anguera MC, Danoff SK, Giles JT, Lee YC, Drake W, Maier LA, Lachowicz-Scroggins M, Park H, Banerjee K, Fessel J, Reineck L, Vuga L, Crouser E, Feghali-Bostwick C. Impact of Sex and Gender on Autoimmune Lung Disease: Opportunities for Future Research: NHLBI Working Group Report. Am J Respir Crit Care Med 2022; 206:817-823. [PMID: 35549658 PMCID: PMC9799264 DOI: 10.1164/rccm.202112-2746pp] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Affiliation(s)
- Elizabeth R. Volkmann
- Division of Rheumatology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Jill Siegfried
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Tim Lahm
- Pulmonary and Critical Care, Department of Medicine, Indiana University School of Medicine and Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Corey E. Ventetuolo
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Brown University, Providence, Rhode Island
| | - Stephen C. Mathai
- Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Virginia Steen
- Division of Rheumatology, Department of Medicine, Georgetown University, Washington, District of Columbia
| | - Erica L. Herzog
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Rebecca Shansky
- Department of Psychology, Northeastern University College of Science, Boston, Massachusetts
| | - Montserrat C. Anguera
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sonye K. Danoff
- Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jon T. Giles
- Division of Rheumatology, Department of Medicine, Columbia University, New York City, New York
| | - Yvonne C. Lee
- Division of Rheumatology, Department of Medicine, Northwestern University, Evanston, Illinois
| | - Wonder Drake
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Lisa A. Maier
- Division of Occupational Health and Environmental Health Sciences, National Jewish Health and the University of Colorado, Denver, Colorado
| | - Marrah Lachowicz-Scroggins
- Women’s Health Working Group, NIH Office of Research on Women's Health, National Institute of Health, Bethesda, Maryland
| | - Heiyoung Park
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, Maryland
| | | | - Josh Fessel
- Division of Lung Diseases, NHLBI, Bethesda, Maryland
| | - Lora Reineck
- Division of Lung Diseases, NHLBI, Bethesda, Maryland
| | - Louis Vuga
- Division of Lung Diseases, NHLBI, Bethesda, Maryland
| | - Elliott Crouser
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, the Ohio State University, Columbus, Ohio; and
| | - Carol Feghali-Bostwick
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
13
|
MacLean MR, Fanburg B, Hill N, Lazarus HM, Pack TF, Palacios M, Penumatsa KC, Wring SA. Serotonin and Pulmonary Hypertension; Sex and Drugs and ROCK and Rho. Compr Physiol 2022; 12:4103-4118. [PMID: 36036567 DOI: 10.1002/cphy.c220004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Serotonin is often referred to as a "happy hormone" as it maintains good mood, well-being, and happiness. It is involved in communication between nerve cells and plays a role in sleeping and digestion. However, too much serotonin can have pathogenic effects and serotonin synthesis is elevated in pulmonary artery endothelial cells from patients with pulmonary arterial hypertension (PAH). PAH is characterized by elevated pulmonary pressures, right ventricular failure, inflammation, and pulmonary vascular remodeling; serotonin has been shown to be associated with these pathologies. The rate-limiting enzyme in the synthesis of serotonin in the periphery of the body is tryptophan hydroxylase 1 (TPH1). TPH1 expression and serotonin synthesis are elevated in pulmonary artery endothelial cells in patients with PAH. The serotonin synthesized in the pulmonary arterial endothelium can act on the adjacent pulmonary arterial smooth muscle cells (PASMCs), adventitial macrophages, and fibroblasts, in a paracrine fashion. In humans, serotonin enters PASMCs cells via the serotonin transporter (SERT) and it can cooperate with the 5-HT1B receptor on the plasma membrane; this activates both contractile and proliferative signaling pathways. The "serotonin hypothesis of pulmonary hypertension" arose when serotonin was associated with PAH induced by diet pills such as fenfluramine, aminorex, and chlorphentermine; these act as indirect serotonergic agonists causing the release of serotonin from platelets and cells through the SERT. Here the role of serotonin in PAH is reviewed. Targeting serotonin synthesis or signaling is a promising novel alternative approach which may lead to novel therapies for PAH. © 2022 American Physiological Society. Compr Physiol 12: 1-16, 2022.
Collapse
Affiliation(s)
- Margaret R MacLean
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
| | - Barry Fanburg
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Nicolas Hill
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | | | | | | | - Krishna C Penumatsa
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | | |
Collapse
|
14
|
Rodriguez-Irizarry VJ, Schneider AC, Ahle D, Smith JM, Suarez-Martinez EB, Salazar EA, McDaniel Mims B, Rasha F, Moussa H, Moustaïd-Moussa N, Pruitt K, Fonseca M, Henriquez M, Clauss MA, Grisham MB, Almodovar S. Mice with humanized immune system as novel models to study HIV-associated pulmonary hypertension. Front Immunol 2022; 13:936164. [PMID: 35990658 PMCID: PMC9390008 DOI: 10.3389/fimmu.2022.936164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022] Open
Abstract
People living with HIV and who receive antiretroviral therapy have a significantly improved lifespan, compared to the early days without therapy. Unfortunately, persisting viral replication in the lungs sustains chronic inflammation, which may cause pulmonary vascular dysfunction and ultimate life-threatening Pulmonary Hypertension (PH). The mechanisms involved in the progression of HIV and PH remain unclear. The study of HIV-PH is limited due to the lack of tractable animal models that recapitulate infection and pathobiological aspects of PH. On one hand, mice with humanized immune systems (hu-mice) are highly relevant to HIV research but their suitability for HIV-PH research deserves investigation. On another hand, the Hypoxia-Sugen is a well-established model for experimental PH that combines hypoxia with the VEGF antagonist SU5416. To test the suitability of hu-mice, we combined HIV with either SU5416 or hypoxia. Using right heart catheterization, we found that combining HIV+SU5416 exacerbated PH. HIV infection increases human pro-inflammatory cytokines in the lungs, compared to uninfected mice. Histopathological examinations showed pulmonary vascular inflammation with arterial muscularization in HIV-PH. We also found an increase in endothelial-monocyte activating polypeptide II (EMAP II) when combining HIV+SU5416. Therefore, combinations of HIV with SU5416 or hypoxia recapitulate PH in hu-mice, creating well-suited models for infectious mechanistic pulmonary vascular research in small animals.
Collapse
Affiliation(s)
- Valerie J. Rodriguez-Irizarry
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States,Department of Biology, University of Puerto Rico in Ponce, Ponce, PR, United States
| | - Alina C. Schneider
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Daniel Ahle
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Justin M. Smith
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | - Ethan A. Salazar
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Brianyell McDaniel Mims
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Fahmida Rasha
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Hanna Moussa
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, United States
| | - Naima Moustaïd-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States
| | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Marcelo Fonseca
- Program of Physiology and Biophysics, University of Chile, Santiago, Chile
| | - Mauricio Henriquez
- Program of Physiology and Biophysics, University of Chile, Santiago, Chile
| | - Matthias A. Clauss
- Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University, Indianapolis, IN, United States
| | - Matthew B. Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Sharilyn Almodovar
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States,*Correspondence: Sharilyn Almodovar,
| |
Collapse
|
15
|
Christou H, Khalil RA. Mechanisms of pulmonary vascular dysfunction in pulmonary hypertension and implications for novel therapies. Am J Physiol Heart Circ Physiol 2022; 322:H702-H724. [PMID: 35213243 PMCID: PMC8977136 DOI: 10.1152/ajpheart.00021.2022] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022]
Abstract
Pulmonary hypertension (PH) is a serious disease characterized by various degrees of pulmonary vasoconstriction and progressive fibroproliferative remodeling and inflammation of the pulmonary arterioles that lead to increased pulmonary vascular resistance, right ventricular hypertrophy, and failure. Pulmonary vascular tone is regulated by a balance between vasoconstrictor and vasodilator mediators, and a shift in this balance to vasoconstriction is an important component of PH pathology, Therefore, the mainstay of current pharmacological therapies centers on pulmonary vasodilation methodologies that either enhance vasodilator mechanisms such as the NO-cGMP and prostacyclin-cAMP pathways and/or inhibit vasoconstrictor mechanisms such as the endothelin-1, cytosolic Ca2+, and Rho-kinase pathways. However, in addition to the increased vascular tone, many patients have a "fixed" component in their disease that involves altered biology of various cells in the pulmonary vascular wall, excessive pulmonary artery remodeling, and perivascular fibrosis and inflammation. Pulmonary arterial smooth muscle cell (PASMC) phenotypic switch from a contractile to a synthetic and proliferative phenotype is an important factor in pulmonary artery remodeling. Although current vasodilator therapies also have some antiproliferative effects on PASMCs, they are not universally successful in halting PH progression and increasing survival. Mild acidification and other novel approaches that aim to reverse the resident pulmonary vascular pathology and structural remodeling and restore a contractile PASMC phenotype could ameliorate vascular remodeling and enhance the responsiveness of PH to vasodilator therapies.
Collapse
Affiliation(s)
- Helen Christou
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Vrigkou E, Vassilatou E, Dima E, Langleben D, Kotanidou A, Tzanela M. The Role of Thyroid Disorders, Obesity, Diabetes Mellitus and Estrogen Exposure as Potential Modifiers for Pulmonary Hypertension. J Clin Med 2022; 11:jcm11040921. [PMID: 35207198 PMCID: PMC8874474 DOI: 10.3390/jcm11040921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/30/2022] [Accepted: 02/06/2022] [Indexed: 02/01/2023] Open
Abstract
Pulmonary hypertension (PH) is a progressive disorder characterized by a chronic in-crease in pulmonary arterial pressure, frequently resulting in right-sided heart failure and potentially death. Co-existing medical conditions are important factors in PH, since they not only result in the genesis of the disorder, but may also contribute to its progression. Various studies have assessed the impact of thyroid disorders and other endocrine conditions (namely estrogen exposure, obesity, and diabetes mellitus) on the progression of PH. The complex interactions that hormones may have with the cardiovascular system and pulmonary vascular bed can create several pathogenetic routes that could explain the effects of endocrine disorders on PH development and evolution. The aim of this review is to summarize current knowledge on the role of concomitant thyroid disorders, obesity, diabetes mellitus, and estrogen exposure as potential modifiers for PH, and especially for pulmonary arterial hypertension, and to discuss possible pathogenetic routes linking them with PH. This information could be valuable for practicing clinicians so as to better evaluate and/or treat concomitant endocrine conditions in the PH population.
Collapse
Affiliation(s)
- Eleni Vrigkou
- 1st Department of Critical Care and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (E.V.); (E.D.); (A.K.)
| | | | - Effrosyni Dima
- 1st Department of Critical Care and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (E.V.); (E.D.); (A.K.)
| | - David Langleben
- Center for Pulmonary Vascular Disease, Azrieli Heart Center, Jewish General Hospital and McGill University, Montreal, QC H3A 0G4, Canada;
| | - Anastasia Kotanidou
- 1st Department of Critical Care and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (E.V.); (E.D.); (A.K.)
| | - Marinella Tzanela
- Department of Endocrinology, Diabetes Center, Evangelismos Hospital, 10676 Athens, Greece
- Correspondence: ; Tel.: +30-694-4284-637
| |
Collapse
|