1
|
Tian Y, Shao S, Feng H, Zeng R, Li S, Zhang Q. Targeting senescent cells in atherosclerosis: Pathways to novel therapies. Ageing Res Rev 2024; 101:102502. [PMID: 39278272 DOI: 10.1016/j.arr.2024.102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 09/08/2024] [Indexed: 09/18/2024]
Abstract
Targeting senescent cells has recently emerged as a promising strategy for treating age-related diseases, such as atherosclerosis, which significantly contributes to global cardiovascular morbidity and mortality. This review elucidates the role of senescent cells in the development of atherosclerosis, including persistently damaging DNA, inducing oxidative stress and secreting pro-inflammatory factors known as the senescence-associated secretory phenotype. Therapeutic approaches targeting senescent cells to mitigate atherosclerosis are summarized in this review, which include the development of senotherapeutics and immunotherapies. These therapies are designed to either remove these cells or suppress their deleterious effects. These emerging therapies hold potential to decelerate or even alleviate the progression of AS, paving the way for new avenues in cardiovascular research and treatment.
Collapse
Affiliation(s)
- Yuhan Tian
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Sihang Shao
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
| | - Haibo Feng
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Rui Zeng
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Shanshan Li
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China.
| | - Qixiong Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Department of Pharmacy, Sichuan Provincial People's Hospital East Sichuan Hospital & Dazhou First People's Hospital, Dazhou 635000, China.
| |
Collapse
|
2
|
Ahmed B, Rahman AA, Lee S, Malhotra R. The Implications of Aging on Vascular Health. Int J Mol Sci 2024; 25:11188. [PMID: 39456971 PMCID: PMC11508873 DOI: 10.3390/ijms252011188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Vascular aging encompasses structural and functional changes in the vasculature, significantly contributing to cardiovascular diseases, which are the leading cause of death globally. The incidence and prevalence of these diseases increase with age, with most morbidity and mortality attributed to myocardial infarction and stroke. Diagnosing and intervening in vascular aging while understanding the mechanisms behind age-induced vascular phenotypic and pathophysiological alterations offers the potential for delaying and preventing cardiovascular mortality in an aging population. This review delves into various aspects of vascular aging by examining age-related changes in arterial health at the cellular level, including endothelial dysfunction, cellular senescence, and vascular smooth muscle cell transdifferentiation, as well as at the structural level, including arterial stiffness and changes in wall thickness and diameter. We also explore aging-related changes in perivascular adipose tissue deposition, arterial collateralization, and calcification, providing insights into the physiological and pathological implications. Overall, aging induces phenotypic changes that augment the vascular system's susceptibility to disease, even in the absence of traditional risk factors, such as hypertension, diabetes, obesity, and smoking. Overall, age-related modifications in cellular phenotype and molecular homeostasis increase the vulnerability of the arterial vasculature to structural and functional alterations, thereby accelerating cardiovascular risk. Increasing our understanding of these modifications is crucial for success in delaying or preventing cardiovascular diseases. Non-invasive techniques, such as measuring carotid intima-media thickness, pulse wave velocity, and flow-mediated dilation, as well as detecting vascular calcifications, can be used for the early detection of vascular aging. Targeting specific pathological mechanisms, such as cellular senescence and enhancing angiogenesis, holds promise for innovative therapeutic approaches.
Collapse
Affiliation(s)
- Bulbul Ahmed
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Ahmed A. Rahman
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sujin Lee
- Division of Vascular Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Rajeev Malhotra
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
3
|
Sung JY, Kim SG, Park SY, Kim JR, Choi HC. Telomere stabilization by metformin mitigates the progression of atherosclerosis via the AMPK-dependent p-PGC-1α pathway. Exp Mol Med 2024; 56:1967-1979. [PMID: 39223261 PMCID: PMC11446938 DOI: 10.1038/s12276-024-01297-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 09/04/2024] Open
Abstract
Telomere dysfunction is a well-known molecular trigger of senescence and has been associated with various age-related diseases, including atherosclerosis. However, the mechanisms involved have not yet been elucidated, and the extent to which telomeres contribute to atherosclerosis is unknown. Therefore, we investigated the mechanism of metformin-induced telomere stabilization and the ability of metformin to inhibit vascular smooth muscle cell (VSMC) senescence caused by advanced atherosclerosis. The present study revealed that metformin inhibited the phenotypes of atherosclerosis and senescence in VSMCs. Metformin increased the phosphorylation of AMPK-dependent PGC-1α and thus increased telomerase activity and the protein level of TERT in OA-treated VSMCs. Mechanistically, the phosphorylation of AMPK and PGC-1α by metformin not only enhanced telomere function but also increased the protein level of TERT, whereas TERT knockdown accelerated the development of atherosclerosis and senescent phenotypes in OA-treated VSMCs regardless of metformin treatment. Furthermore, the in vivo results showed that metformin attenuated the formation of atherosclerotic plaque markers in the aortas of HFD-fed ApoE KO mice. Although metformin did not reduce plaque size, it inhibited the phosphorylation of the AMPK/PGC-1α/TERT signaling cascade, which is associated with the maintenance and progression of plaque formation, in HFD-fed ApoE KO mice. Accordingly, metformin inhibited atherosclerosis-associated phenotypes in vitro and in vivo. These observations show that the enhancement of telomere function by metformin is involved in specific signaling pathways during the progression of atherosclerosis. These findings suggest that telomere stabilization by metformin via the AMPK/p-PGC-1α pathway might provide a strategy for developing therapeutics against vascular diseases such as atherosclerosis.
Collapse
MESH Headings
- Animals
- Male
- Mice
- AMP-Activated Protein Kinases/metabolism
- Atherosclerosis/metabolism
- Atherosclerosis/drug therapy
- Atherosclerosis/pathology
- Atherosclerosis/etiology
- Cellular Senescence/drug effects
- Disease Models, Animal
- Disease Progression
- Metformin/pharmacology
- Metformin/therapeutic use
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics
- Phosphorylation/drug effects
- Signal Transduction/drug effects
- Telomerase/metabolism
- Telomerase/genetics
- Telomere/metabolism
- Telomere/drug effects
- Telomere Homeostasis/drug effects
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Jin Young Sung
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu, 42415, Republic of Korea
- Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu, 42415, Republic of Korea
| | - Seul Gi Kim
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu, 42415, Republic of Korea
- Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu, 42415, Republic of Korea
| | - So-Young Park
- Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu, 42415, Republic of Korea
- Department of Physiology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu, 42415, Republic of Korea
| | - Jae-Ryong Kim
- Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu, 42415, Republic of Korea
- Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu, 42415, Republic of Korea
| | - Hyoung Chul Choi
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu, 42415, Republic of Korea.
- Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu, 42415, Republic of Korea.
| |
Collapse
|
4
|
Ajay AK, Zhu LJ, Zhao L, Liu Q, Ding Y, Chang YC, Shah SI, Hsiao LL. Local vascular Klotho mediates diabetes-induced atherosclerosis via ERK1/2 and PI3-kinase-dependent signaling pathways. Atherosclerosis 2024; 396:118531. [PMID: 38996716 DOI: 10.1016/j.atherosclerosis.2024.118531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND AND AIMS Diabetes is one of the major causes of cardiovascular disease (CVD). As high as 29 % of patients with diabetes develop atherosclerosis. Vascular Smooth Muscle Cells (VSMCs) are a key mediator in the pathogenesis of atherosclerosis, generating pro-inflammatory and proliferative characteristics in atherosclerotic lesions. METHODS We used human atherosclerotic samples, developed diabetes-induced atherosclerotic mice, and generated loss of function and gain of function in Klotho human aortic smooth muscle cells to investigate the function of Klotho in atherosclerosis. RESULTS We found that Klotho expression is decreased in smooth muscle actin-positive cells in patients with diabetes and atherosclerosis. Consistent with human data, we found that Apoe knockout mice with streptozotocin-induced diabetes fed on a high-fat diet showed decreased expression of Klotho in SMCs. Additionally, these mice showed increased expression of TGF-β, MMP9, phosphorylation of ERK and Akt. Further, we utilized primary Human Aortic Smooth Muscle Cells (HASMCs) with d-glucose under dose-response and in time-dependent conditions to study the role of Klotho in these cells. Klotho gain of function and loss of function studies showed that Klotho inversely regulated the expression of atherosclerotic markers TGF-β, MMP2, MMP9, and Fractalkine. Further, High Glucose (HG) induced Akt, and ERK1/2 phosphorylation were enhanced or mitigated by endogenous Klotho deficiency or its overexpression respectively. PI3K/Akt and MAPK/ERK inhibition partially abolished the HG-induced upregulation of TGF-β, MMP2, MMP9, and Fractalkine. Additionally, Klotho knockdown increased the proliferation of HASMCs and enhanced α-SMA and TGF-β expression. CONCLUSIONS Taken together, these results indicate that local vascular Klotho is involved in diabetes-induced atherosclerosis, which is via PI3K/Akt and ERK1/2-dependent signaling pathways.
Collapse
MESH Headings
- Klotho Proteins/metabolism
- Animals
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/genetics
- Glucuronidase/metabolism
- Glucuronidase/genetics
- Humans
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/complications
- Mice, Knockout, ApoE
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Male
- Signal Transduction
- Cells, Cultured
- Aorta/pathology
- Aorta/metabolism
- MAP Kinase Signaling System
- Mice
- Aortic Diseases/pathology
- Aortic Diseases/metabolism
- Aortic Diseases/genetics
- Aortic Diseases/enzymology
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Mice, Inbred C57BL
- Proto-Oncogene Proteins c-akt/metabolism
- Cell Proliferation
Collapse
Affiliation(s)
- Amrendra K Ajay
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA, 02115.
| | - Lang-Jing Zhu
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA, 02115; Department of Nephrology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Li Zhao
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA, 02115; Division of Renal Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Qinghua Liu
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA, 02115; Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan Ding
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA, 02115
| | - Yu-Chun Chang
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA, 02115
| | - Sujal I Shah
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA, 02115
| | - Li-Li Hsiao
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA, 02115.
| |
Collapse
|
5
|
Sazdova I, Hadzi-Petrushev N, Keremidarska-Markova M, Stojchevski R, Sopi R, Shileiko S, Mitrokhin V, Gagov H, Avtanski D, Lubomirov LT, Mladenov M. SIRT-associated attenuation of cellular senescence in vascular wall. Mech Ageing Dev 2024; 220:111943. [PMID: 38762036 DOI: 10.1016/j.mad.2024.111943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
This review focuses on the vital function that SIRT1 and other sirtuins play in promoting cellular senescence in vascular smooth muscle cells, which is a key element in the pathogenesis of vascular aging and associated cardiovascular diseases. Vascular aging is a gradual process caused by the accumulation of senescent cells, which results in increased vascular remodeling, stiffness, and diminished angiogenic ability. Such physiological alterations are characterized by a complex interplay of environmental and genetic variables, including oxidative stress and telomere attrition, which affect gene expression patterns and trigger cell growth arrest. SIRT1 has been highlighted for its potential to reduce cellular senescence through modulation of multiple signaling cascades, particularly the endothelial nitric oxide (eNOS)/NO signaling pathway. It also modulates cell cycle through p53 inactivation and suppresses NF-κB mediated expression of adhesive molecules at the vascular level. The study also examines the therapeutic potential of sirtuin modulation in vascular health, identifying SIRT1 and its sirtuin counterparts as potential targets for reducing vascular aging. This study sheds light on the molecular basis of vascular aging and the beneficial effects of sirtuins, paving the way for the development of tailored therapies aimed at enhancing vascular health and prolonging life.
Collapse
Affiliation(s)
- Iliyana Sazdova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University 'St. Kliment Ohridski', Sofia 1504, Bulgaria
| | - Nikola Hadzi-Petrushev
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje 1000, North Macedonia
| | - Milena Keremidarska-Markova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University 'St. Kliment Ohridski', Sofia 1504, Bulgaria
| | - Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Ramadan Sopi
- Faculty of Medicine, University of Prishtina, Prishtina 10 000, Kosovo
| | - Stanislav Shileiko
- Department of Fundamental and Applied Physiology, Russian States Medical University, Moscow 117997, Russia
| | - Vadim Mitrokhin
- Department of Fundamental and Applied Physiology, Russian States Medical University, Moscow 117997, Russia
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University 'St. Kliment Ohridski', Sofia 1504, Bulgaria
| | - Dimitar Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Lubomir T Lubomirov
- Vascular Biology Research Group (RenEVA), Research Institute, Medical University-Varna, Varna, Bulgaria; Institute of Physiology and Pathophysiology, Faculty of Health - School of Medicine, Biomedical Center for Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Mitko Mladenov
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje 1000, North Macedonia; Department of Fundamental and Applied Physiology, Russian States Medical University, Moscow 117997, Russia.
| |
Collapse
|
6
|
Reppe S, Gundersen S, Sandve GK, Wang Y, Andreassen OA, Medina-Gomez C, Rivadeneira F, Utheim TP, Hovig E, Gautvik KM. Identification of Transcripts with Shared Roles in the Pathogenesis of Postmenopausal Osteoporosis and Cardiovascular Disease. Int J Mol Sci 2024; 25:5554. [PMID: 38791593 PMCID: PMC11121938 DOI: 10.3390/ijms25105554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Epidemiological evidence suggests existing comorbidity between postmenopausal osteoporosis (OP) and cardiovascular disease (CVD), but identification of possible shared genes is lacking. The skeletal global transcriptomes were analyzed in trans-iliac bone biopsies (n = 84) from clinically well-characterized postmenopausal women (50 to 86 years) without clinical CVD using microchips and RNA sequencing. One thousand transcripts highly correlated with areal bone mineral density (aBMD) were further analyzed using bioinformatics, and common genes overlapping with CVD and associated biological mechanisms, pathways and functions were identified. Fifty genes (45 mRNAs, 5 miRNAs) were discovered with established roles in oxidative stress, inflammatory response, endothelial function, fibrosis, dyslipidemia and osteoblastogenesis/calcification. These pleiotropic genes with possible CVD comorbidity functions were also present in transcriptomes of microvascular endothelial cells and cardiomyocytes and were differentially expressed between healthy and osteoporotic women with fragility fractures. The results were supported by a genetic pleiotropy-informed conditional False Discovery Rate approach identifying any overlap in single nucleotide polymorphisms (SNPs) within several genes encoding aBMD- and CVD-associated transcripts. The study provides transcriptional and genomic evidence for genes of importance for both BMD regulation and CVD risk in a large collection of postmenopausal bone biopsies. Most of the transcripts identified in the CVD risk categories have no previously recognized roles in OP pathogenesis and provide novel avenues for exploring the mechanistic basis for the biological association between CVD and OP.
Collapse
Affiliation(s)
- Sjur Reppe
- Department of Medical Biochemistry, Oslo University Hospital, 0450 Oslo, Norway
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, 0440 Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0424 Oslo, Norway
| | - Sveinung Gundersen
- Center for Bioinformatics, Department of Informatics, University of Oslo, 0313 Oslo, Norway
| | - Geir K. Sandve
- Department of Informatics, University of Oslo, 0373 Oslo, Norway; (G.K.S.)
| | - Yunpeng Wang
- NORMENT, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway; (Y.W.); (O.A.A.)
- Division of Mental Health and Addiction, Oslo University Hospital, 0424 Oslo, Norway
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Ole A. Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway; (Y.W.); (O.A.A.)
- Division of Mental Health and Addiction, Oslo University Hospital, 0424 Oslo, Norway
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (C.M.-G.); (F.R.)
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (C.M.-G.); (F.R.)
| | - Tor P. Utheim
- Department of Medical Biochemistry, Oslo University Hospital, 0450 Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0424 Oslo, Norway
| | - Eivind Hovig
- Department of Informatics, University of Oslo, 0373 Oslo, Norway; (G.K.S.)
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
| | - Kaare M. Gautvik
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, 0440 Oslo, Norway
| |
Collapse
|
7
|
Zheng L, He S, Wang H, Li J, Liu Y, Liu S. Targeting Cellular Senescence in Aging and Age-Related Diseases: Challenges, Considerations, and the Emerging Role of Senolytic and Senomorphic Therapies. Aging Dis 2024; 15:2554-2594. [PMID: 38421832 PMCID: PMC11567261 DOI: 10.14336/ad.2024.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Cellular senescence is characterized by the permanent arrest of cell proliferation and is a response to endogenous and exogenous stress. The continuous accumulation of senescent cells (SnCs) in the body leads to the development of aging and age-related diseases (such as neurodegenerative diseases, cancer, metabolic diseases, cardiovascular diseases, and osteoarthritis). In the face of the growing challenge of aging and age-related diseases, several compounds have received widespread attention for their potential to target SnCs. As a result, senolytics (compounds that selectively eliminate SnCs) and senomorphics (compounds that alter intercellular communication and modulate the behavior of SnCs) have become hot research topics in the field of anti-aging. In addition, strategies such as combination therapies and immune-based approaches have also made significant progress in the field of anti-aging therapy. In this article, we discuss the latest research on anti-aging targeting SnCs and gain a deeper understanding of the mechanism of action and impact of different anti-aging strategies on aging and age-related diseases, with the aim of providing more effective references and therapeutic ideas for clinical anti-aging treatment in the face of the ever-grave challenges of aging and age-related diseases.
Collapse
Affiliation(s)
- Liyao Zheng
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Shipei He
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Wang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinling Li
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuanyuan Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.
| | - Sijia Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
8
|
Ali MA, Gioscia-Ryan R, Yang D, Sutton NR, Tyrrell DJ. Cardiovascular aging: spotlight on mitochondria. Am J Physiol Heart Circ Physiol 2024; 326:H317-H333. [PMID: 38038719 PMCID: PMC11219063 DOI: 10.1152/ajpheart.00632.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/02/2023]
Abstract
Mitochondria are cellular organelles critical for ATP production and are particularly relevant to cardiovascular diseases including heart failure, atherosclerosis, ischemia-reperfusion injury, and cardiomyopathies. With advancing age, even in the absence of clinical disease, mitochondrial homeostasis becomes disrupted (e.g., redox balance, mitochondrial DNA damage, oxidative metabolism, and mitochondrial quality control). Mitochondrial dysregulation leads to the accumulation of damaged and dysfunctional mitochondria, producing excessive reactive oxygen species and perpetuating mitochondrial dysfunction. In addition, mitochondrial DNA, cardiolipin, and N-formyl peptides are potent activators of cell-intrinsic and -extrinsic inflammatory pathways. These age-related mitochondrial changes contribute to the development of cardiovascular diseases. This review covers the impact of aging on mitochondria and links these mechanisms to therapeutic implications for age-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Md Akkas Ali
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Rachel Gioscia-Ryan
- Department of Anesthesiology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Dongli Yang
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Nadia R Sutton
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - Daniel J Tyrrell
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
9
|
Zhou M, Ma X, Gao M, Wu H, Liu Y, Shi X, Dai M. Paeonol Attenuates Atherosclerosis by Inhibiting Vascular Smooth Muscle Cells Senescence via SIRT1/P53/TRF2 Signaling Pathway. Molecules 2024; 29:261. [PMID: 38202844 PMCID: PMC10780795 DOI: 10.3390/molecules29010261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease leading to various vascular diseases. Vascular smooth muscle cell (VSMC) senescence promotes atherosclerotic inflammation and the formation of plaque necrosis core, in part through telomere damage mediated by a high-fat diet. Our previous research found that paeonol, a potential anti-inflammatory agent extracted from Cortex Moutan, could significantly improve VSMCs dysfunction. However, the impact of paeonol on the senescence of VSMCs remains unexplored. This study presents the protective effects of paeonol on VSMCs senescence, and its potential activity in inhibiting the progression of atherosclerosis in vivo and in vitro. Sirtuin 1 (SIRT1) is a nuclear deacetylase involved in cell proliferation, senescence, telomere damage, and inflammation. Here, SIRT1 was identified as a potential target of paeonol having anti-senescence and anti-atherosclerosis activity. Mechanistic studies revealed that paeonol binds directly to SIRT1 and then activates the SIRT1/P53/TRF2 pathway to inhibit VSMCs senescence. Our results suggested that SIRT1-mediated VSMCs senescence is a promising druggable target for atherosclerosis, and that pharmacological modulation of the SIRT1/P53/TRF2 signaling pathway by paeonol is of potential benefit for patients with atherosclerosis.
Collapse
Affiliation(s)
- Min Zhou
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.Z.); (X.M.); (M.G.); (H.W.); (Y.L.)
| | - Xiaolin Ma
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.Z.); (X.M.); (M.G.); (H.W.); (Y.L.)
| | - Menglong Gao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.Z.); (X.M.); (M.G.); (H.W.); (Y.L.)
| | - Hongfei Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.Z.); (X.M.); (M.G.); (H.W.); (Y.L.)
- Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei 230012, China
| | - Yarong Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.Z.); (X.M.); (M.G.); (H.W.); (Y.L.)
- Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei 230012, China
| | - Xiaoyan Shi
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.Z.); (X.M.); (M.G.); (H.W.); (Y.L.)
| | - Min Dai
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.Z.); (X.M.); (M.G.); (H.W.); (Y.L.)
- Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei 230012, China
| |
Collapse
|
10
|
Pineda-Castillo SA, Acar H, Detamore MS, Holzapfel GA, Lee CH. Modulation of Smooth Muscle Cell Phenotype for Translation of Tissue-Engineered Vascular Grafts. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:574-588. [PMID: 37166394 PMCID: PMC10618830 DOI: 10.1089/ten.teb.2023.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
Translation of small-diameter tissue-engineered vascular grafts (TEVGs) for the treatment of coronary artery disease (CAD) remains an unfulfilled promise. This is largely due to the limited integration of TEVGs into the native vascular wall-a process hampered by the insufficient smooth muscle cell (SMC) infiltration and extracellular matrix deposition, and low vasoactivity. These processes can be promoted through the judicious modulation of the SMC toward a synthetic phenotype to promote remodeling and vascular integration; however, the expression of synthetic markers is often accompanied by a decrease in the expression of contractile proteins. Therefore, techniques that can precisely modulate the SMC phenotypical behavior could have the potential to advance the translation of TEVGs. In this review, we describe the phenotypic diversity of SMCs and the different environmental cues that allow the modulation of SMC gene expression. Furthermore, we describe the emerging biomaterial approaches to modulate the SMC phenotype in TEVG design and discuss the limitations of current techniques. In addition, we found that current studies in tissue engineering limit the analysis of the SMC phenotype to a few markers, which are often the characteristic of early differentiation only. This limited scope has reduced the potential of tissue engineering to modulate the SMC toward specific behaviors and applications. Therefore, we recommend using the techniques presented in this review, in addition to modern single-cell proteomics analysis techniques to comprehensively characterize the phenotypic modulation of SMCs. Expanding the holistic potential of SMC modulation presents a great opportunity to advance the translation of living conduits for CAD therapeutics.
Collapse
Affiliation(s)
- Sergio A. Pineda-Castillo
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, Oklahoma, USA
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, Oklahoma, USA
| | - Handan Acar
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, Oklahoma, USA
- Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, Norman, Oklahoma, USA
| | - Michael S. Detamore
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, Oklahoma, USA
- Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, Norman, Oklahoma, USA
| | - Gerhard A. Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Chung-Hao Lee
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, Oklahoma, USA
- Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
11
|
Gao P, Yao F, Pang J, Yin K, Zhu X. m 6A methylation in cellular senescence of age-associated diseases. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1168-1183. [PMID: 37394885 PMCID: PMC10449638 DOI: 10.3724/abbs.2023107] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/14/2023] [Indexed: 07/04/2023] Open
Abstract
Cellular senescence is a state of irreversible cellular growth arrest that occurs in response to various stresses. In addition to exiting the cell cycle, senescent cells undergo many phenotypic alterations, including metabolic reprogramming, chromatin rearrangement, and senescence-associated secretory phenotype (SASP) development. Furthermore, senescent cells can affect most physiological and pathological processes, such as physiological development; tissue homeostasis; tumour regression; and age-associated disease progression, including diabetes, atherosclerosis, Alzheimer's disease, and hypertension. Although corresponding anti-senescence therapies are actively being explored for the treatment of age-associated diseases, the specific regulatory mechanisms of senescence remain unclear. N 6-methyladenosine (m 6A), a chemical modification commonly distributed in eukaryotic RNA, plays an important role in biological processes such as translation, shearing, and RNA transcription. Numerous studies have shown that m 6A plays an important regulatory role in cellular senescence and aging-related disease. In this review, we systematically summarize the role of m 6A modifications in cellular senescence with regard to oxidative stress, DNA damage, telomere alterations, and SASP development. Additionally, diabetes, atherosclerosis, and Alzheimer's disease regulation via m 6A-mediated cellular senescence is discussed. We further discuss the challenges and prospects of m 6A in cellular senescence and age-associated diseases with the aim of providing rational strategies for the treatment of these age-associated diseases.
Collapse
Affiliation(s)
- Pan Gao
- Guangxi Key Laboratory of Diabetic Systems MedicineGuilin Medical UniversityGuilin541100China
| | - Feng Yao
- Guangxi Key Laboratory of Diabetic Systems MedicineGuilin Medical UniversityGuilin541100China
| | - Jin Pang
- Guangxi Key Laboratory of Diabetic Systems MedicineGuilin Medical UniversityGuilin541100China
| | - Kai Yin
- The Fifth Affiliated Hospital of Southern Medical UniversityGuangzhou510900China
| | - Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems MedicineGuilin Medical UniversityGuilin541100China
| |
Collapse
|
12
|
Iwasaki K, Abarca C, Aguayo-Mazzucato C. Regulation of Cellular Senescence in Type 2 Diabetes Mellitus: From Mechanisms to Clinical Applications. Diabetes Metab J 2023; 47:441-453. [PMID: 36872059 PMCID: PMC10404529 DOI: 10.4093/dmj.2022.0416] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/07/2023] [Indexed: 03/07/2023] Open
Abstract
Cellular senescence is accelerated by hyperglycemia through multiple pathways. Therefore, senescence is an important cellular mechanism to consider in the pathophysiology of type 2 diabetes mellitus (T2DM) and an additional therapeutic target. The use of drugs that remove senescent cells has led to improvements in blood glucose levels and diabetic complications in animal studies. Although the removal of senescent cells is a promising approach for the treatment of T2DM, two main challenges limit its clinical application: the molecular basis of cellular senescence in each organ is yet to be understood, and the specific effect of removing senescent cells in each organ has to be determined. This review aims to discuss future applications of targeting senescence as a therapeutic option in T2DM and elucidate the characteristics of cellular senescence and senescence-associated secretory phenotype in the tissues important for regulating glucose levels: pancreas, liver, adipocytes, and skeletal muscle.
Collapse
Affiliation(s)
- Kanako Iwasaki
- Joslin Diabetes Center, Harvard Medical School, Boston, MA,
USA
- Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka,
Japan
| | - Cristian Abarca
- Joslin Diabetes Center, Harvard Medical School, Boston, MA,
USA
| | | |
Collapse
|
13
|
Mao Q, Deng M, Zhao J, Zhou D, Chen M, Liu Q, Xu S, Zhao X. Low serum Klotho reflects senile inflammation in middle-aged and elderly patients with coronary atherosclerosis. Cytokine 2023; 167:156213. [PMID: 37121091 DOI: 10.1016/j.cyto.2023.156213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Anti-aging protein Klotho has been reported to be associated with atherosclerosis, which was considered as a chronic inflammatory disease. However, the relationship between Klotho and senile inflammation remained unclear. The present study aims to ascertain the correlation of Klotho with inflammation in middle-aged and elderly coronary atherosclerotic disease (CAD). METHODS A total of 302 patients with CAD were included in this study. Coronary atherosclerosis was confirmed and quantified for all patients by coronary angiography. Serum Klotho was detected by enzyme linked immunosorbent assay. Serum concentrations of IL-6 and IL-8 were quantified by chemiluminescence assay. T-lymphocyte subsets were measured using flow cytometry. RESULTS Multivariate linear regression analysis showed that serum Klotho was an independent predictor for circulating monocytes (standard β = -0.321, P < 0.001) and CD4+/CD8+ ratio (standard β = -0.522, P < 0.001). After adjustment, serum Klotho was still independently associated with IL-6 (standard β = -0.395, P < 0.001) and IL-8 (standard β = -0.296, P < 0.001). Moreover, circulating monocytes, CD4+ and CD8+ lymphocytes were correlated with increased serum concentrations of IL-6 and IL-8, independent of CRP (P < 0.05). In receiver operating characteristic curve analysis, CD4+/CD8+ ratio (AUC = 0.863, P < 0.001), IL-6 (AUC = 0.893, P < 0.001) and IL-8 (AUC = 0.884, P < 0.001) presented the excellent predictive performance for significant CAD. CONCLUSIONS Decreased concentrations in serum Klotho reflect senile inflammation, which is related to the severity of CAD in middle-aged and elderly patients.
Collapse
Affiliation(s)
- Qi Mao
- Department of Cardiology, Institute of Cardiovascular Research, Xinqiao Hospital, Army Medical University, Chongqing 400037, China.
| | - Mengyang Deng
- Department of Cardiology, Institute of Cardiovascular Research, Xinqiao Hospital, Army Medical University, Chongqing 400037, China.
| | - Jianhua Zhao
- Department of Cardiology, Institute of Cardiovascular Research, Xinqiao Hospital, Army Medical University, Chongqing 400037, China.
| | - Denglu Zhou
- Department of Cardiology, Institute of Cardiovascular Research, Xinqiao Hospital, Army Medical University, Chongqing 400037, China.
| | - Man Chen
- Department of Clinical Laboratory, Xinqiao Hospital, Army Medical University, Chongqing 400037, China.
| | - Qingsong Liu
- Department of Cardiology, Institute of Cardiovascular Research, Xinqiao Hospital, Army Medical University, Chongqing 400037, China.
| | - Shangcheng Xu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China.
| | - Xiaohui Zhao
- Department of Cardiology, Institute of Cardiovascular Research, Xinqiao Hospital, Army Medical University, Chongqing 400037, China.
| |
Collapse
|
14
|
Meng J, Geng Q, Jin S, Teng X, Xiao L, Wu Y, Tian D. Exercise protects vascular function by countering senescent cells in older adults. Front Physiol 2023; 14:1138162. [PMID: 37089434 PMCID: PMC10118010 DOI: 10.3389/fphys.2023.1138162] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/29/2023] [Indexed: 04/25/2023] Open
Abstract
Blood vessels are key conduits for the transport of blood and circulating factors. Abnormalities in blood vessels promote cardiovascular disease (CVD), which has become the most common disease as human lifespans extend. Aging itself is not pathogenic; however, the decline of physiological and biological function owing to aging has been linked to CVD. Although aging is a complex phenomenon that has not been comprehensively investigated, there is accumulating evidence that cellular senescence aggravates various pathological changes associated with aging. Emerging evidence shows that approaches that suppress or eliminate cellular senescence preserve vascular function in aging-related CVD. However, most pharmacological therapies for treating age-related CVD are inefficient. Therefore, effective approaches to treat CVD are urgently required. The benefits of exercise for the cardiovascular system have been well documented in basic research and clinical studies; however, the mechanisms and optimal frequency of exercise for promoting cardiovascular health remain unknown. Accordingly, in this review, we have discussed the changes in senescent endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) that occur in the progress of CVD and the roles of physical activity in CVD prevention and treatment.
Collapse
Affiliation(s)
- Jinqi Meng
- Department of Sports, Hebei Medical University, Shijiazhuang, China
| | - Qi Geng
- Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, China
| | - Sheng Jin
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Xu Teng
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Lin Xiao
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Danyang Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
15
|
Shikhevich S, Chadaeva I, Khandaev B, Kozhemyakina R, Zolotareva K, Kazachek A, Oshchepkov D, Bogomolov A, Klimova NV, Ivanisenko VA, Demenkov P, Mustafin Z, Markel A, Savinkova L, Kolchanov NA, Kozlov V, Ponomarenko M. Differentially Expressed Genes and Molecular Susceptibility to Human Age-Related Diseases. Int J Mol Sci 2023; 24:ijms24043996. [PMID: 36835409 PMCID: PMC9966505 DOI: 10.3390/ijms24043996] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Mainstream transcriptome profiling of susceptibility versus resistance to age-related diseases (ARDs) is focused on differentially expressed genes (DEGs) specific to gender, age, and pathogeneses. This approach fits in well with predictive, preventive, personalized, participatory medicine and helps understand how, why, when, and what ARDs one can develop depending on their genetic background. Within this mainstream paradigm, we wanted to find out whether the known ARD-linked DEGs available in PubMed can reveal a molecular marker that will serve the purpose in anyone's any tissue at any time. We sequenced the periaqueductal gray (PAG) transcriptome of tame versus aggressive rats, identified rat-behavior-related DEGs, and compared them with their known homologous animal ARD-linked DEGs. This analysis yielded statistically significant correlations between behavior-related and ARD-susceptibility-related fold changes (log2 values) in the expression of these DEG homologs. We found principal components, PC1 and PC2, corresponding to the half-sum and the half-difference of these log2 values, respectively. With the DEGs linked to ARD susceptibility and ARD resistance in humans used as controls, we verified these principal components. This yielded only one statistically significant common molecular marker for ARDs: an excess of Fcγ receptor IIb suppressing immune cell hyperactivation.
Collapse
Affiliation(s)
- Svetlana Shikhevich
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Bato Khandaev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Rimma Kozhemyakina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Karina Zolotareva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Anna Kazachek
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitry Oshchepkov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Anton Bogomolov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Natalya V. Klimova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Vladimir A. Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Pavel Demenkov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Zakhar Mustafin
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Arcady Markel
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Ludmila Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Nikolay A. Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Vladimir Kozlov
- Research Institute of Fundamental and Clinical Immunology (RIFCI) SB RAS, Novosibirsk 630099, Russia
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- Correspondence: ; Tel.: +7-(383)-363-4963 (ext. 1311)
| |
Collapse
|
16
|
Identification and Development of an Age-Related Classification and Signature to Predict Prognosis and Immune Landscape in Osteosarcoma. JOURNAL OF ONCOLOGY 2022; 2022:5040458. [PMID: 36276293 PMCID: PMC9581613 DOI: 10.1155/2022/5040458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022]
Abstract
Background. In childhood and adolescence, the prevailing bone tumor is osteosarcoma associated with frequent recurrence and lung metastasis. This research focused on predicting the survival and immune landscape of osteosarcoma by developing a prognostic signature and establishing aging-related genes (ARGs) subtypes. Methods. The training group comprised of the transcriptomic and associated clinical data of 84 patients with osteosarcoma accessed at the TARGET database and the validation group consisted of 53 patients from GSE21257. The aging-related subtypes were identified using unsupervised consensus clustering analysis. The ARG signature was developed utilizing multivariate Cox analysis and LASSO regression. The prognostic value was assessed using the univariate and multivariate Cox analyses, Kaplan-Meier plotter, time-dependent ROC curve, and nomogram. The functional enrichment analyses were performed by GSEA, GO, and KEGG analysis, while the ssGSEA, ESTIMATE, and CIBERSORT analyses were conducted to reveal the immune landscape in osteosarcoma. Results. The two clusters of osteosarcoma patients formed based on 543 ARGs, depicted a considerable difference in the tumor microenvironment, and the overall survival and immune cell infiltration rate varied as well. Among these, the selected 23 ARGs were utilized for the construction of an efficient predictive prognostic signature for the overall survival prediction. The testing in the validation group of osteosarcoma patients confirmed the status of the high-risk score as an independent indicator for poor prognosis, which was already identified as such using the univariate and multivariate Cox analyses. Furthermore, the ARG signature could distinguish different immune-related functions, infiltration status of immune cells, and tumor microenvironment, as well as predict the immunotherapy response of osteosarcoma patients. Conclusion. The aging-related subtypes were identified and a prognostic signature was developed in this research, which determined different prognoses and allowed for treatment of osteosarcoma patients to be tailored. Additionally, the immunotherapeutic response of individuals with osteosarcoma could also be predicted by the ARG signature.
Collapse
|
17
|
Mao L, Yin R, Yang L, Zhao D. Role of advanced glycation end products on vascular smooth muscle cells under diabetic atherosclerosis. Front Endocrinol (Lausanne) 2022; 13:983723. [PMID: 36120471 PMCID: PMC9470882 DOI: 10.3389/fendo.2022.983723] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease and leading cause of cardiovascular diseases. The progression of AS is a multi-step process leading to high morbidity and mortality. Hyperglycemia, dyslipidemia, advanced glycation end products (AGEs), inflammation and insulin resistance which strictly involved in diabetes are closely related to the pathogenesis of AS. A growing number of studies have linked AGEs to AS. As one of the risk factors of cardiac metabolic diseases, dysfunction of VSMCs plays an important role in AS pathogenesis. AGEs are increased in diabetes, participate in the occurrence and progression of AS through multiple molecular mechanisms of vascular cell injury. As the main functional cells of vascular, vascular smooth muscle cells (VSMCs) play different roles in each stage of atherosclerotic lesions. The interaction between AGEs and receptor for AGEs (RAGE) accelerates AS by affecting the proliferation and migration of VSMCs. In addition, increasing researches have reported that AGEs promote osteogenic transformation and macrophage-like transformation of VSMCs, and affect the progression of AS through other aspects such as autophagy and cell cycle. In this review, we summarize the effect of AGEs on VSMCs in atherosclerotic plaque development and progression. We also discuss the AGEs that link AS and diabetes mellitus, including oxidative stress, inflammation, RAGE ligands, small noncoding RNAs.
Collapse
Affiliation(s)
| | | | | | - Dong Zhao
- *Correspondence: Longyan Yang, ; Dong Zhao,
| |
Collapse
|