1
|
Yadav S, Sapra L, Srivastava RK. Polysaccharides to postbiotics: Nurturing bone health via modulating "gut-immune axis". Int J Biol Macromol 2024; 278:134655. [PMID: 39128750 DOI: 10.1016/j.ijbiomac.2024.134655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The increasing prevalence of individuals affected by bone pathologies globally has sparked catastrophic concerns. Ankylosing spondylitis, osteoporosis, rheumatoid arthritis, osteoarthritis, and fractures alone impact an estimated 1.71 billion people worldwide. The gut microbiota plays a crucial role in interacting with the host through the synthesis of a diverse range of metabolites called gut-associated metabolites (GAMs), which originate from external dietary substrates or endogenous host compounds. Many metabolic disorders have been linked to alterations in the gut microbiota's activity and composition. The development of metabolic illnesses has been linked to certain microbiota-derived metabolites, such as branched-chain amino acids, bile acids, short-chain fatty acids, tryptophan, trimethylamine N-oxide, and indole derivatives. Moreover, the modulation of gut microbiota through biotics (prebiotics, probiotics and postbiotics) presents a promising avenue for therapeutic intervention. Biotics selectively promote the growth of beneficial gut bacteria, thereby enhancing the production of GAMs with potential beneficial effects on bone metabolism. Understanding the intricate interplay between GAMs, and bone-associated genes through molecular informatics holds significant promise for early diagnosis, prognosis, and novel treatment strategies for various bone disorders.
Collapse
Affiliation(s)
- Sumedha Yadav
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Rupesh K Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
2
|
Tang MY, Xie H, Tao JT, Zhang C, Luo YH, Zhang C, Peng SQ, Xie LX, Lv WB, Zhang C, Huang L. Pathophysiological relevance and therapeutic outlook of GPR43 in atherosclerosis. Biochem Cell Biol 2024. [PMID: 39013204 DOI: 10.1139/bcb-2024-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
Atherosclerosis (AS) is an inflammatory arterial disorder that occurs due to the deposition of the excessive lipoprotein under the artery intima, mainly including low-density lipoprotein and other apolipoprotein B-containing lipoproteins. G protein-coupled receptors (GPCRs) play a crucial role in transmitting signals in physiological and pathophysiological conditions. GPCRs recognize inflammatory mediators, thereby serving as important players during chronic inflammatory processes. It has been demonstrated that free fatty acids can function as ligands for various GPCRs, such as free fatty acid receptor (FFAR)1/GPR40, FFAR2/GPR43, FFAR3/GPR41, FFAR4/GPR120, and the lipid metabolite binding glucose-dependent insulinotropic receptor (GPR119). This review discusses GPR43 and its ligands in the pathogenesis of AS, especially focusing on its distinct role in regulating chronic vascular inflammation, inhibiting oxidative stress, ameliorating endothelial dysfunction and improving dyslipidemia. It is hoped that this review may provide guidance for further studies aimed at GPR43 as a promising target for drug development in the prevention and therapy of AS.
Collapse
Affiliation(s)
- Mu-Yao Tang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Hao Xie
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Jin-Tao Tao
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Chun Zhang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yao-Hua Luo
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Cong Zhang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Si-Qin Peng
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Lin-Xi Xie
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Wen-Bo Lv
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Liang Huang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| |
Collapse
|
3
|
Inuki S, Miyamoto J, Hashimoto N, Shimizu H, Tabuchi H, Kawai A, Greiner LC, Kimura I, Ohno H. Structure-activity relationship studies of tetrahydroquinolone derivatives as GPR41 modulators. Bioorg Med Chem Lett 2024; 107:129758. [PMID: 38641152 DOI: 10.1016/j.bmcl.2024.129758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
GPR41, a G protein-coupled receptor, serves as a sensor for short-chain fatty acids and plays a crucial role in regulating multiple physiological processes such as the maintenance of metabolic and immune homeostasis. Therefore, the modulation of GPR41 has garnered attention as a potential strategy for the treatment of various disorders. We conducted a structure-activity relationship study on a lead tetrahydroquinolone derivative bearing a 2-(trifluoromethoxy)benzene group that displayed antagonistic activity toward GPR41. Modification of the aryl group attached to the furan moiety revealed that derivatives containing di- or trifluorobenzene, instead of 2-(trifluoromethoxy)benzene, exhibited agonistic activity toward GPR41, comparable with the reported agonistic modulator AR420626. These results suggest that the aryl group plays a pivotal role in regulating the activity of compounds toward GPR41, providing valuable insights for the design of GPR41 modulators.
Collapse
Affiliation(s)
- Shinsuke Inuki
- Department of Bioorganic Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Junki Miyamoto
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| | - Naoki Hashimoto
- Department of Bioorganic Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hidenori Shimizu
- Laboratory of Molecular Endocrinology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Noster Inc., Kamiueno, Muko-shi, Kyoto 617-0006, Japan
| | - Hitomi Tabuchi
- Department of Bioorganic Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Atsuko Kawai
- Department of Bioorganic Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Luca C Greiner
- Department of Bioorganic Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ikuo Kimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan; Laboratory of Molecular Endocrinology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Department of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan.
| | - Hiroaki Ohno
- Department of Bioorganic Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|
4
|
Ruhnke N, Beyer ASL, Kaemmerer D, Sänger J, Schulz S, Lupp A. Expression of free fatty acid receptor 2 in normal and neoplastic tissues. Exp Mol Pathol 2024; 137:104902. [PMID: 38788249 DOI: 10.1016/j.yexmp.2024.104902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/22/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
OBJECTIVE Little information is available concerning protein expression of the free fatty acid receptor 2 (FFAR2), especially in tumours. Therefore, the aim of the present study was to comprehensively characterise the expression profile of FFAR2 in a large series of human normal and neoplastic tissues using immunohistochemistry thus providing a basis for further in-depth investigations into its potential diagnostic or therapeutic importance. METHODS We developed a novel rabbit polyclonal anti-FFAR2 antibody, 0524, directed against the C-terminal region of human FFAR2. Antibody specificity was confirmed via Western blot analyses and immunocytochemistry using the FFAR2-expressing cell line BON-1 and FFAR2-specific small interfering RNA as well as native and FFAR2-transfected HEK-293 cells. The antibody was then used for immunohistochemical analyses of various formalin-fixed, paraffin-embedded specimens of normal and neoplastic human tissues. RESULTS In normal tissues, FFAR2 was mainly present in distinct cell populations of the cerebral cortex, follicular cells and C cells of the thyroid, cardiomyocytes of the heart, bronchial epithelia and glands, hepatocytes and bile duct epithelia of the liver, gall bladder epithelium, exocrine and β-cells of the endocrine pancreas, glomerular mesangial cells and podocytes as well as collecting ducts of the kidney, intestinal mucosa (particularly enteroendocrine cells), prostate epithelium, seminiferous tubules of the testicles, and placental syncytiotrophoblasts. In neoplastic tissues, FFAR2 was particularly prevalent in papillary thyroid carcinomas, parathyroid adenomas, and gastric, colon, pancreatic, hepatocellular, cholangiocellular, urinary bladder, breast, cervical, and ovarian carcinomas. CONCLUSIONS We generated and characterised a novel rabbit polyclonal anti-human FFAR2 antibody that is well-suited for visualising FFAR2 expression in human routine pathology tissues. This antibody is also suitable for Western blot and immunocytochemistry experiments. To our knowledge, this antibody enabled the first broad FFAR2 protein expression profile in various normal and neoplastic human tissues.
Collapse
Affiliation(s)
- Niklas Ruhnke
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | | | - Daniel Kaemmerer
- Department of General and Visceral Surgery, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Jörg Sänger
- Laboratory of Pathology and Cytology Bad Berka, Bad Berka, Germany
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany.
| |
Collapse
|
5
|
Lee DH, Kim MT, Han JH. GPR41 and GPR43: From development to metabolic regulation. Biomed Pharmacother 2024; 175:116735. [PMID: 38744220 DOI: 10.1016/j.biopha.2024.116735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
G-protein-coupled receptors are a diverse class of cell surface receptors that orchestrate numerous physiological functions. The G-protein-coupled receptors, GPR41 and GPR43, sense short-chain fatty acids (SCFAs), which are metabolites of dietary fermentation by the host's intestinal bacteria. These receptors have gained attention as potential therapeutic targets against various diseases because of their SCFA-mediated beneficial effects on the host's intestinal health. Mounting evidence has associated the activity of these receptors with chronic metabolic diseases, including obesity, diabetes, inflammation, and cardiovascular disease. However, despite intensive research using various strategies, including gene knockout (KO) mouse models, evidence about the precise roles of GPR41 and GPR43 in disease treatment remains inconsistent. Here, we comprehensively review the latest findings from functional studies of the signaling mechanisms that underlie the activities of GPR41 and GPR43, as well as highlight their multifaceted roles in health and disease. We anticipate that this knowledge will guide future research priorities and the development of effective therapeutic interventions.
Collapse
Affiliation(s)
- Do-Hyung Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, the Republic of Korea
| | - Min-Tae Kim
- Department of Pharmaceutical Research, KyongBo Pharmaceutical Co., Ltd, 174, Sirok-ro, Asan-si, Chungcheongnam-do 31501, the Republic of Korea
| | - Joo-Hui Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju 55338, the Republic of Korea.
| |
Collapse
|
6
|
Yuan Y, Ren M, Zhu C, Lou Y, Liang Q, Xiong Z. Chemoselectivity Strategy Based on B-Label Integrated with Tailored COF for Targeted Metabolomic Analysis of Short-Chain Fatty Acids by UHPLC-MS/MS. Anal Chem 2024; 96:6575-6583. [PMID: 38637908 DOI: 10.1021/acs.analchem.3c05590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Chemoselective extraction strategy is an emerging and powerful means for targeted metabolomics analysis, which allows for the selective identification of biomarkers. Short-chain fatty acids (SCFAs) as functional metabolites for many diseases pose challenges in qualitative and quantitative analyses due to their high polarity and uneven abundance. In our study, we proposed the B-labeled method for the derivatization of SCFAs using easily available 3-aminobenzeneboronic acid as the derivatization reagent, which enables the introduction of recognition unit (boric acid groups). To analyze the B-labeled targeted metabolites accurately, cis-diol-based covalent organic framework (COF) was designed to specifically capture and release target compounds by pH-response borate affinity principle. The COF synthesized by the one-step Schiff base reaction possessed a large surface area (215.77 m2/g), excellent adsorption capacity (774.9 μmol/g), good selectivity, and strong regeneration ability (20 times). Combined with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis, our results indicated that the detection sensitivities of SCFAs increased by 1.2-2500 folds compared with unlabeled method, and the retention time and isomer separation were improved. Using this strategy, we determined twenty-six SCFAs in the serum and urine of rats in four groups about osteoporosis and identified important biomarkers related to the tricarboxylic acid cycle and fatty acid metabolism pathways. In summary, UHPLC-MS/MS based on B-labeled derivatization with tailored COF strategy shows its high selectivity, excellent sensitivity, and good chromatographic behavior and has remarkable application prospect in targeted metabolomics study of biospecimens.
Collapse
Affiliation(s)
- Yue Yuan
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| | - Mengxin Ren
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| | - Chengze Zhu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| | - Yanwei Lou
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| | - Qinghua Liang
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| |
Collapse
|
7
|
Paiva IHRD, Maciel LM, Silva RSD, Mendonça IP, Souza JRBD, Peixoto CA. Prebiotics modulate the microbiota-gut-brain axis and ameliorate anxiety and depression-like behavior in HFD-fed mice. Food Res Int 2024; 182:114153. [PMID: 38519181 DOI: 10.1016/j.foodres.2024.114153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 03/24/2024]
Abstract
Previous research has demonstrated that Prebiotics can influence the composition of the gut microbiota, consequently impacting mood regulation. This study aimed to assess the effects of Prebiotics, specifically Fructooligosaccharides (FOS) and Galactooligosaccharides (GOS) on neuroinflammation, depression, and anxiety-like behavior in a mouse model fed a high-fat diet (HFD). Initially, mice were divided into two groups: a control group on a standard diet (n = 15) and a group on an HFD for 18 weeks (n = 45). By the 13th week, the HFD group was further divided into experimental groups: Control (n = 15), HFD (n = 15), HFD receiving Prebiotics (n = 15), and HFD receiving Fluoxetine (n = 15). From the 13th week onward, the HFD + Prebiotics group received both the high-fat diet and a combination of FOS and GOS, while the HFD + Fluoxetine group received Fluoxetine in their drinking water. In the 18th week, all mice underwent tests to evaluate behavior, including the Tail Suspension Test (TST), Forced Swimming Test (FST), Sucrose Preference Test (SPT), and the Plus Maze Test (PMT), after which they were euthanized. Mice on the HFD exhibited increased body weight, abdominal size, blood glucose, triglyceride levels, cholesterol, insulin, HOMA index, and higher serum IL-1β. These obese mice also displayed an increased number of microglia and astrocytes, activation of the TLR4 pathway, and elevated levels of neuroinflammatory markers like TNF-α, IL-1β, and COX-2. Moreover, obese mice showed increased activation of the IDO pathway and decreased levels of NMDA receptors. Additionally, markers of neurogenesis and synaptic plasticity, such as PSD, SAP 102, CREB-p, and BDNF, were lower. Treatment with FOS and GOS reversed symptoms of depression and anxiety in mice subjected to HD. This improvement in behavior resulted from a reduction in dysbiosis with an increase in acetate-producing bacteria (B. acidifaciens and B. dorei) and intestinal permeability, leading to a decrease in chronic peripheral and central inflammation. Furthermore, the modulation of the gut-brain axis by FOS and GOS promoted elevated acetate and GPR43 levels in the brain and a reduction in the levels of pro-inflammatory cytokines, positively impacting signaling pathways of neuronal proliferation and survival in the hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- Igor Henrique Rodrigues de Paiva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), PE, Brazil; Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil.
| | - Laís Macedo Maciel
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), PE, Brazil
| | - Rodrigo Soares da Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), PE, Brazil; Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Ingrid Prata Mendonça
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), PE, Brazil; Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | | | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), PE, Brazil; Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil.
| |
Collapse
|
8
|
Chen S, Jiao Y, Han Y, Zhang J, Deng Y, Yu Z, Wang J, He S, Cai W, Xu J. Edible traditional Chinese medicines improve type 2 diabetes by modulating gut microbiotal metabolites. Acta Diabetol 2024; 61:393-411. [PMID: 38227209 DOI: 10.1007/s00592-023-02217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/17/2023] [Indexed: 01/17/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder with intricate pathogenic mechanisms. Despite the availability of various oral medications for controlling the condition, reports of poor glycemic control in type 2 diabetes persist, possibly involving unknown pathogenic mechanisms. In recent years, the gut microbiota have emerged as a highly promising target for T2DM treatment, with the metabolites produced by gut microbiota serving as crucial intermediaries connecting gut microbiota and strongly related to T2DM. Increasingly, traditional Chinese medicine is being considered to target the gut microbiota for T2DM treatment, and many of them are edible. In studies conducted on animal models, edible traditional Chinese medicine have been shown to primarily alter three significant gut microbiotal metabolites: short-chain fatty acids, bile acids, and branched-chain amino acids. These metabolites play crucial roles in alleviating T2DM by improving glucose metabolism and reducing inflammation. This review primarily summarizes twelve edible traditional Chinese medicines that improve T2DM by modulating the aforementioned three gut microbiotal metabolites, along with potential underlying molecular mechanisms, and also incorporation of edible traditional Chinese medicines into the diets of T2DM patients and combined use with probiotics for treating T2DM are discussed.
Collapse
Affiliation(s)
- Shen Chen
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiqiao Jiao
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiyang Han
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Jie Zhang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yuanyuan Deng
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Zilu Yu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Jiao Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shasha He
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Wei Cai
- Department of Medical Genetics and Cell Biology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China.
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, Jiangxi, 330006, People's Republic of China.
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
9
|
Lu X, Li G, Liu Y, Luo G, Ding S, Zhang T, Li N, Geng Q. The role of fatty acid metabolism in acute lung injury: a special focus on immunometabolism. Cell Mol Life Sci 2024; 81:120. [PMID: 38456906 PMCID: PMC10923746 DOI: 10.1007/s00018-024-05131-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 03/09/2024]
Abstract
Reputable evidence from multiple studies suggests that excessive and uncontrolled inflammation plays an indispensable role in mediating, amplifying, and protracting acute lung injury (ALI). Traditionally, immunity and energy metabolism are regarded as separate functions regulated by distinct mechanisms, but recently, more and more evidence show that immunity and energy metabolism exhibit a strong interaction which has given rise to an emerging field of immunometabolism. Mammalian lungs are organs with active fatty acid metabolism, however, during ALI, inflammation and oxidative stress lead to a series metabolic reprogramming such as impaired fatty acid oxidation, increased expression of proteins involved in fatty acid uptake and transport, enhanced synthesis of fatty acids, and accumulation of lipid droplets. In addition, obesity represents a significant risk factor for ALI/ARDS. Thus, we have further elucidated the mechanisms of obesity exacerbating ALI from the perspective of fatty acid metabolism. To sum up, this paper presents a systematical review of the relationship between extensive fatty acid metabolic pathways and acute lung injury and summarizes recent advances in understanding the involvement of fatty acid metabolism-related pathways in ALI. We hold an optimistic believe that targeting fatty acid metabolism pathway is a promising lung protection strategy, but the specific regulatory mechanisms are way too complex, necessitating further extensive and in-depth investigations in future studies.
Collapse
Affiliation(s)
- Xiao Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Guorui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Guoqing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Tianyu Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
| |
Collapse
|
10
|
Jing G, Xu W, Ma W, Yu Q, Zhu H, Liu C, Cheng Y, Guo Y, Qian H. Echinacea purpurea polysaccharide intervene in hepatocellular carcinoma via modulation of gut microbiota to inhibit TLR4/NF-κB pathway. Int J Biol Macromol 2024; 261:129917. [PMID: 38309407 DOI: 10.1016/j.ijbiomac.2024.129917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
Echinacea purpurea polysaccharide (EPP) exhibit various pharmacological activities, including immunomodulatory, anti-inflammatory, and anti-tumor effects. In this study, we investigated the potential mechanism of EPP intervention in hepatocellular carcinoma (HCC). The results demonstrated that EPP effectively mitigated liver injury caused by HCC, inhibited the proliferation of HCC, and induced apoptosis. Following EPP intervention, there was a significant increase in propionic acid and butyric acid-producing gut microbiota such as Coprococcus, Clostridium and Roseburia, leading to enhanced expression of intestinal tight junction proteins and the repair of the intestinal barrier. This controls lipopolysaccharide (LPS) leakage, which in turn inhibits the TLR4/NF-κB pathway and reduces the expression of inflammatory factors such as IL-6, as well as migration factors like MMP-2. Metabolomics revealed the downregulation of pyrimidine metabolism and nucleotide metabolism, along with the upregulation of butyrate metabolism in tumor cells. This study demonstrated that EPP effectively regulated LPS leakage by modulating gut microbes, and this modulation influenced the TLR4/NF-κB pathway, ultimately disrupting tumor cell survival induced by HCC in mice.
Collapse
Affiliation(s)
- Gaoxiang Jing
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wenqian Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Ma
- Wuxi Yi-Hope Food Industry Development Co., Ltd., Wuxi 214122, China
| | - Qian Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongkang Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yahui Guo
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
11
|
Tizabi Y, Getachew B, Aschner M. Butyrate Protects and Synergizes with Nicotine against Iron- and Manganese-induced Toxicities in Cell Culture. Neurotox Res 2023; 42:3. [PMID: 38095760 DOI: 10.1007/s12640-023-00682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/22/2023] [Accepted: 12/10/2023] [Indexed: 12/18/2023]
Abstract
Toxic exposures to heavy metals, such as iron (Fe) and manganese (Mn), can result in long-range neurological diseases and are therefore of significant environmental and medical concerns. We have previously reported that damage to neuroblastoma-derived dopaminergic cells (SH-SY5Y) by both Fe and Mn could be prevented by pre-treatment with nicotine. Moreover, butyrate, a short chain fatty acid (SCFA) provided protection against salsolinol, a selective dopaminergic toxin, in the same cell line. Here, we broadened the investigation to determine whether butyrate might also protect against Fe and/or Mn, and whether, if combined with nicotine, an additive or synergistic effect might be observed. Both butyrate and nicotine concentration-dependently blocked Fe and Mn toxicities. Ineffective concentrations of nicotine and butyrate, when combined, provided full protection against both Fe and Mn. Moreover, the effects of nicotine but not butyrate could be blocked by mecamylamine, a non-selective nicotinic antagonist. On the other hand, the effects of butyrate, but not nicotine, could be blocked by beta-hydroxy butyrate, a fatty acid-3 receptor antagonist. These results not only provide further support for neuroprotective effects of both nicotine and butyrate but also indicate distinct mechanisms of action for each one. Furthermore, potential utility of butyrate and nicotine combination against heavy metal toxicities is suggested.
Collapse
Affiliation(s)
- Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC, 20059, USA.
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC, 20059, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
12
|
Tizabi Y, Getachew B, Aschner M. Butyrate protects and synergizes with nicotine against iron- and manganese-induced toxicities in cell culture: Implications for neurodegenerative diseases. RESEARCH SQUARE 2023:rs.3.rs-3389904. [PMID: 37886507 PMCID: PMC10602090 DOI: 10.21203/rs.3.rs-3389904/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Toxic exposures to heavy metals, such as iron (Fe) and manganese (Mn), can result in long-range neurological diseases and are therefore of significant environmental and medical concerns. We have previously reported that damage to neuroblastoma-derived dopaminergic cells (SH-SY5Y) by both Fe and Mn could be prevented by pre-treatment with nicotine. Moreover, butyrate, a short chain fatty acid (SCFA) provided protection against salsolinol, a selective dopaminergic toxin, in the same cell line. Here, we broadened the investigation to determine whether butyrate might also protect against Fe and/or Mn, and whether, if combined with nicotine, an additive or synergistic effect might be observed. Both butyrate and nicotine concentration-dependently blocked Fe and Mn toxicities. The ineffective concentrations of nicotine and butyrate, when combined, provided full protection against both Fe and Mn. Moreover, the effects of nicotine but not butyrate could be blocked by mecamylamine, a non-selective nicotinic antagonist. On the other hand, the effects of butyrate, but not nicotine, could be blocked by beta-hydroxy butyrate, a fatty acid-3 receptor antagonist. These results not only provide further support for neuroprotective effects of both nicotine and butyrate but indicate distinct mechanisms of action for each one. Furthermore, potential utility of the combination of butyrate and nicotine against heavy metal toxicities is suggested.
Collapse
|
13
|
Zhao G, Teng J, Dong R, Ban Q, Yang L, Du K, Wang Y, Pu H, Yang CS, Ren Z. Alleviating effects and mechanisms of action of large-leaf yellow tea drinking on diabetes and diabetic nephropathy in mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
14
|
Dias MTS, Aguilar EC, Campos GP, do Couto NF, Capettini LDSA, Braga WF, Andrade LDO, Alvarez-Leite J. Butyrate inhibits LPC-induced endothelial dysfunction by regulating nNOS-produced NO and ROS production. Nitric Oxide 2023; 138-139:42-50. [PMID: 37308032 DOI: 10.1016/j.niox.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/09/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023]
Abstract
Lipids oxidation is a key risk factor for cardiovascular diseases. Lysophosphatidylcholine (LPC), the major component of oxidized LDL, is an important triggering agent for endothelial dysfunction and atherogenesis. Sodium butyrate, a short-chain fatty acid, has demonstrated atheroprotective properties. So, we evaluate the role of butyrate in LPC-induced endothelial dysfunction. Vascular response to phenylephrine (Phe) and acetylcholine (Ach) was performed in aortic rings from male mice (C57BL/6J). The aortic rings were incubated with LPC (10 μM) and butyrate (0.01 or 0.1 Mm), with or without TRIM (an nNOS inhibitor). Endothelial cells (EA.hy296) were incubated with LPC and butyrate to evaluate nitric oxide (NO) and reactive oxygen species (ROS) production, calcium influx, and the expression of total and phosphorylated nNOS and ERK½. We found that butyrate inhibited LPC-induced endothelial dysfunction by improving nNOS activity in aortic rings. In endothelial cells, butyrate reduced ROS production and increased nNOS-related NO release, by improving nNOS activation (phosphorylation at Ser1412). Additionally, butyrate prevented the increase in cytosolic calcium and inhibited ERk½ activation by LPC. In conclusion, butyrate inhibited LPC-induced vascular dysfunction by increasing nNOS-derived NO and reducing ROS production. Butyrate restored nNOS activation, which was associated with calcium handling normalization and reduction of ERK½ activation.
Collapse
Affiliation(s)
- Melissa Tainan Silva Dias
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901, Belo Horizonte, MG, Brazil.
| | - Edenil Costa Aguilar
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901, Belo Horizonte, MG, Brazil.
| | - Gianne Paul Campos
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901, Belo Horizonte, MG, Brazil.
| | - Natalia Fernanda do Couto
- Department of Medicine. University of Illinois Chicago, Center of Cardiovascular Research, 909 South Wolcott Avenue, MC801 Chicago, IL, 60612, USA.
| | - Luciano Dos Santos Aggum Capettini
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901, Belo Horizonte, MG, Brazil.
| | - Weslley Fernandes Braga
- Icahn School of Medicine. Mount Sinai, Nova Iorque, Gustave L. Levy Place, New York, NY, 10029-5674, USA.
| | - Luciana de Oliveira Andrade
- Department of Cell Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901, Belo Horizonte, MG, Brazil.
| | - Jacqueline Alvarez-Leite
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
15
|
Yang M, Wang JH, Shin JH, Lee D, Lee SN, Seo JG, Shin JH, Nam YD, Kim H, Sun X. Pharmaceutical efficacy of novel human-origin Faecalibacterium prausnitzii strains on high-fat-diet-induced obesity and associated metabolic disorders in mice. Front Endocrinol (Lausanne) 2023; 14:1220044. [PMID: 37711887 PMCID: PMC10497875 DOI: 10.3389/fendo.2023.1220044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/04/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Obesity and related metabolic issues are a growing global health concern. Recently, the discovery of new probiotics with anti-obesity properties has gained interest. Methods In this study, four Faecalibacte-rium prausnitzii strains were isolated from healthy human feces and evaluated on a high-fat diet-induced mouse model for 12 weeks. Results The F. prausnitzii strains reduced body weight gain, liver and fat weights, and calorie intake while improving lipid and glucose metabolism in the liver and adipose tissue, as evidenced by regulating lipid metabolism-associated gene expression, including ACC1, FAS, SREBP1c, leptin, and adiponectin. Moreover, the F. prausnitzii strains inhibited low-grade inflammation, restored gut integrity, and ameliorated hepatic function and insulin resistance. Interestingly, the F. prausnitzii strains modulated gut and neural hormone secretion and reduced appetite by affecting the gut-brain axis. Supplementation with F. prausnitzii strains noticeably changed the gut microbiota composition. Discussion In summary, the novel isolated F. prausnitzii strains have therapeutic effects on obesity and associated metabolic disorders through modulation of the gut-brain axis. Additionally, the effectiveness of different strains might not be achieved through identical mechanisms. Therefore, the present findings provide a reliable clue for developing novel therapeutic probiotics against obesity and associated metabolic disorders.
Collapse
Affiliation(s)
- Meng Yang
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang-si, Republic of Korea
| | - Jing-Hua Wang
- Institute of Bioscience & Integrative Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Joo-Hyun Shin
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Dokyung Lee
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Sang-Nam Lee
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Jae-Gu Seo
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Ji-Hee Shin
- Research Group of Healthcare, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Young-Do Nam
- Research Group of Healthcare, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang-si, Republic of Korea
| | - Xiaomin Sun
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Xiong J, Fang J, Chen D, Xu H. Physicochemical property changes of Dendrobium officinale leaf polysaccharide LDOP-A and it promotes GLP-1 secretion in NCI-H716 cells by simulated saliva-gastrointestinal digestion. Food Sci Nutr 2023; 11:2686-2696. [PMID: 37324850 PMCID: PMC10261737 DOI: 10.1002/fsn3.3341] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 09/20/2024] Open
Abstract
A polysaccharide LDOP-A with a molecular weight of 9.9 kDa was isolated and purified from Dendrobium officinale leaves by membrane separation, cellulose column, and dextran gel column. The Smith degradable products, methylation products, and nuclear magnetic resonance analysis showed that LDOP-A may be composed of →4)-Glc-(1→, →3,6)-Man-(1→, and →6)-Glc-(1→sugar residues. In vitro, simulated digestion assays showed that LDOP-A could be partially digested in the stomach and small intestine, and produced a large amount of acetic acid and butyric acid during colonic fermentation. Further cell experiment results illustrated that LDOP-A-I (LDOP-A digested by gastrointestinal tract) could induce glucagon-like peptide-1 (GLP-1) secretion in NCI-H716 cells without showing any cytotoxicity.
Collapse
Affiliation(s)
- Jingfang Xiong
- Department of GeriatricsZhejiang Hospital of Integrated Traditional Chinese and Western MedicineHangzhouZhejiang310000China
| | - Jingyu Fang
- Department of Food Science and TechnologyZhejiang University of TechnologyHangzhouZhejiang310000China
| | - Dongya Chen
- Department of Gastroenterology and HepatologyZhejiang Hospital of Integrated Traditional Chinese and Western MedicineHangzhouZhejiang310000China
| | - Hong Xu
- Department of Gastroenterology and HepatologyZhejiang Hospital of Integrated Traditional Chinese and Western MedicineHangzhouZhejiang310000China
| |
Collapse
|
17
|
Valentini A, Schultz-Knudsen K, Højgaard Hansen A, Tsakoumagkou A, Jenkins L, Christensen HB, Manandhar A, Milligan G, Ulven T, Rexen Ulven E. Discovery of Potent Tetrazole Free Fatty Acid Receptor 2 Antagonists. J Med Chem 2023; 66:6105-6121. [PMID: 37129317 PMCID: PMC10547238 DOI: 10.1021/acs.jmedchem.2c01935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Indexed: 05/03/2023]
Abstract
The free fatty acid receptor 2 (FFA2), also known as GPR43, mediates effects of short-chain fatty acids and has attracted interest as a potential target for treatment of various metabolic and inflammatory diseases. Herein, we report the results from bioisosteric replacement of the carboxylic acid group of the established FFA2 antagonist CATPB and SAR investigations around these compounds, leading to the discovery of the first high-potency FFA2 antagonists, with the preferred compound TUG-2304 (16l) featuring IC50 values of 3-4 nM in both cAMP and GTPγS assays, favorable physicochemical and pharmacokinetic properties, and the ability to completely inhibit propionate-induced neutrophil migration and respiratory burst.
Collapse
Affiliation(s)
- Alice Valentini
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Katrine Schultz-Knudsen
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Anders Højgaard Hansen
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Argyro Tsakoumagkou
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Laura Jenkins
- Centre
for Translational Pharmacology, School of Molecular Biosciences, College
of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Henriette B. Christensen
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Asmita Manandhar
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Graeme Milligan
- Centre
for Translational Pharmacology, School of Molecular Biosciences, College
of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Trond Ulven
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Elisabeth Rexen Ulven
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
18
|
An Y, Dai H, Duan Y, Cheng L, Shi L, He C, Wang C, Lv Y, Li H, Zhang H, Huang Y, Fu W, Sun W, Zhao B. The relationship between gut microbiota and susceptibility to type 2 diabetes mellitus in rats. Chin Med 2023; 18:49. [PMID: 37147692 PMCID: PMC10161507 DOI: 10.1186/s13020-023-00717-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/30/2023] [Indexed: 05/07/2023] Open
Abstract
PURPOSE The purpose of this study is to investigate the relationship between the susceptibility to type 2 diabetes and gut microbiota in rats and to explore the potential mechanism involved. METHODS Thirty-two SPF-grade SD rats were raised as donor rats, and divided into control, type 2 diabetes mellitus (T2DM, fasting blood glucose ≥ 11.1 mmol/L), and Non-T2DM (fasting blood glucose < 11.1 mmol/L) groups. Feces were collected and prepared as fecal bacteria supernatants Diab (fecal bacteria supernatant of T2DM group rats), Non (fecal bacteria supernatant of Non-T2DM group rats), and Con (fecal bacteria supernatant of control group rats). Another seventy-nine SPF-grade SD rats were separated into normal saline (NS) and antibiotics (ABX) groups and given normal saline and antibiotics solutions, respectively. In addition, the ABX group rats were randomly separated into ABX-ord (fed with a 4-week ordinary diet), ABX-fat (fed with a 4-week high-fat diet and STZ ip), FMT-Diab (with transplanted fecal bacteria supernatant Diab and fed with a 4-week high-fat diet and STZ ip), FMT-Non (with transplanted fecal bacteria supernatant Non and fed with a 4-week high-fat diet and STZ ip), and FMT-Con (with transplanted fecal bacteria supernatant Con and fed with a 4-week high-fat diet and STZ ip) groups. Furthermore, the NS group was randomly divided into NS-ord (fed with a 4-week ordinary diet) and NS-fat (fed with a 4-week high-fat diet and STZ ip) groups. After this, the short-chain fatty acids (SCFAs) in the feces were detected using gas chromatography, and the gut microbiota were detected using 16S rRNA gene sequencing. Finally, G protein-coupled receptor 41 (GPR41) and GPR43 were detected by western blot and quantitative real-time polymerase chain reaction. RESULTS G__Ruminococcus_gnavus_group were more abundant in the FMT-Diab group compared to the ABX-fat and FMT-Non groups. The levels of blood glucose, serum insulin, total cholesterol, triglycerides, and low-density lipoprotein cholesterol were also higher in the FMT-Diab group compared to those of the ABX-fat group. Compared to the ABX-fat group, both the FMT-Diab and FMT-Non groups had higher contents of acetic and butyric acid, and the expression of GPR41/43 were significantly higher as well. CONCLUSIONS G__Ruminococcus_gnavus_group might make rats more susceptible to T2DM; T2DM-susceptible flora transplantation increased the susceptibility to T2DM in rats. Additionally, gut microbiota-SCFAs-GPR41/43 may play a role in the development of T2DM. Lowering blood glucose by regulating gut microbiota may therefore become a new strategy for the treatment of T2DM in humans.
Collapse
Affiliation(s)
- Yongcheng An
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Hongyu Dai
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yuhui Duan
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Long Cheng
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Lu Shi
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Changhao He
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Chen Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yinglan Lv
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Huimin Li
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Huilin Zhang
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yan Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Wanxin Fu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Weiguang Sun
- Guangzhou Baiyunshan Xingqun Pharmaceutical Company Limited, Guangzhou, 510288, China.
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
19
|
Liu XF, Shao JH, Liao YT, Wang LN, Jia Y, Dong PJ, Liu ZZ, He DD, Li C, Zhang X. Regulation of short-chain fatty acids in the immune system. Front Immunol 2023; 14:1186892. [PMID: 37215145 PMCID: PMC10196242 DOI: 10.3389/fimmu.2023.1186892] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
A growing body of research suggests that short-chain fatty acids (SCFAs), metabolites produced by intestinal symbiotic bacteria that ferment dietary fibers (DFs), play a crucial role in the health status of symbiotes. SCFAs act on a variety of cell types to regulate important biological processes, including host metabolism, intestinal function, and immune function. SCFAs also affect the function and fate of immune cells. This finding provides a new concept in immune metabolism and a better understanding of the regulatory role of SCFAs in the immune system, which impacts the prevention and treatment of disease. The mechanism by which SCFAs induce or regulate the immune response is becoming increasingly clear. This review summarizes the different mechanisms through which SCFAs act in cells. According to the latest research, the regulatory role of SCFAs in the innate immune system, including in NLRP3 inflammasomes, receptors of TLR family members, neutrophils, macrophages, natural killer cells, eosinophils, basophils and innate lymphocyte subsets, is emphasized. The regulatory role of SCFAs in the adaptive immune system, including in T-cell subsets, B cells, and plasma cells, is also highlighted. In addition, we discuss the role that SCFAs play in regulating allergic airway inflammation, colitis, and osteoporosis by influencing the immune system. These findings provide evidence for determining treatment options based on metabolic regulation.
Collapse
Affiliation(s)
- Xiao-feng Liu
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Jia-hao Shao
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Yi-Tao Liao
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Li-Ning Wang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuan Jia
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Peng-jun Dong
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Zhi-zhong Liu
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Dan-dan He
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Chao Li
- Department of Spine, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Xian Zhang
- Department of Spine, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| |
Collapse
|
20
|
Getachew B, Csoka AB, Copeland RL, Manaye KF, Tizabi Y. Dihydromyricetin Protects Against Salsolinol-Induced Toxicity in Dopaminergic Cell Line: Implication for Parkinson's Disease. Neurotox Res 2023; 41:141-148. [PMID: 36585544 DOI: 10.1007/s12640-022-00631-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease associated with loss of dopaminergic neurons in the substantia nigra pars compacta. Although aging is the primary cause, environmental and genetic factors have also been implicated in its etiology. In fact, the sporadic nature of PD (i.e., unknown etiology) renders the uncovering of the exact pathogenic mechanism(s) or development of effective pharmacotherapies challenging. In search of novel neuroprotectants, we showed that butyrate (BUT), a short-chain fatty acid, protects against salsolinol (SALS)-induced toxicity in human neuroblastoma-derived SH-SY5Y cells, which are considered an in-vitro model of PD. Dihydromyricetin (DHM), a flavonoid derived from Asian medicinal plant, has also shown effectiveness against oxidative damage and neuroinflammation, hallmarks of neurodegenerative diseases. Here we show that pretreatment of SH-SY5Y cells with DHM concentration-dependently prevented SALS-induced toxicity and that a combination of DHM and BUT resulted in a synergistic protection. The effects of both DHM and BUT in turn could be completely blocked by flumazenil (FLU), a GABAA antagonist acting at benzodiazepine receptor site, and by bicuculline (BIC), a GABAA antagonist acting at orthosteric site. Beta-hydroxybutyrate (BHB), a free fatty acid 3 (FA3) receptor antagonist, also fully blocked the protective effect of DHM. BHB was shown previously to only partially block the protective effect of BUT. Thus, there are some overlaps and some distinct differences in protective mechanisms of DHM and BUT against SALS-induced toxicity. It is suggested that a combination of DHM and BUT may have therapeutic potential in PD. However, further in-vivo verifications are necessary.
Collapse
Affiliation(s)
- Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, 520 W Street, Washington, NWDC, 20059, USA
| | - Antonei B Csoka
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Robert L Copeland
- Department of Pharmacology, Howard University College of Medicine, 520 W Street, Washington, NWDC, 20059, USA
| | - Kebreten F Manaye
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, 520 W Street, Washington, NWDC, 20059, USA.
| |
Collapse
|
21
|
Vega-Cárdenas M, Martínez-Gutierrez F, Lara-Ramírez EE, Reynaga-Hernandez E, Yañez-Estrada L, Ratering S, Schnell S, Godínez-Hernández CI, Vargas-Morales JM, Portales-Pérez DP. Agave fructans enhance the effects of fermented milk products on obesity biomarkers: a randomised trial. Benef Microbes 2023; 14:153-164. [PMID: 36856122 DOI: 10.3920/bm2022.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Dysbiosis has been implicated in childhood obesity. Oral intake of fermented milk containing Lacticaseibacillus casei strain Shirota preserves gut microbiota (GM) diversity in children and adults. This study was a double-blind trial involving 37 overweight or obese children aged 6-10 years. Children were followed over a 6-week intervention period in which they received different fermented milk products containing L. casei Shirota: 10 in the first group received just L. casei Shirota; 13 received L. casei Shirota with 3 g/day of inulin (L. casei+inulin); and 14 received L. casei Shirota with 3 g/day of fructans from Agave salmiana (L. casei+fructans). Principal component analysis showed the relationship between microbial abundance, GM metabolites, and other obesity-related markers. Supplementation with probiotics and synbiotics improved the HDL-cholesterol levels of overweight and obese children, although no changes in body composition were detected. We observed an increase in butyrate or propionate concentrations in the L. casei+fructans group compared to the end of the intervention (P<0.03). A diminished level of ANGPTL4 within the L. casei+fructans group (P=0.04) was also found, but no differences when lipopolysaccharide-binding protein was evaluated. The FFAR2+ cell frequency decreased between baseline and at the end of 6-week intervention in L. casei+inulin (P=0.02) and L. casei+fructans groups (P=0.04). In contrast, the percentage of CD14+FFAR3+ frequency increased in the same groups (P=0.04). The L. casei Shirota with inulin or fructans modulates GM, which improves the lipid profile and changes at a molecular level, such as expression of FFAR3 and FFAR2, ANGPTL4, propionate, and butyrate. It, therefore, could be considered an interesting therapeutic possibility for treating childhood overweight and obesity. The study was registered at ClinicalTrials.gov (ID: NCT05423015).
Collapse
Affiliation(s)
- M Vega-Cárdenas
- Research Centre for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí (UASLP), Av. Sierra Leona 550, Lomas de San Luis 78210, San Luis Potosí, SLP, Mexico
| | - F Martínez-Gutierrez
- Research Centre for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí (UASLP), Av. Sierra Leona 550, Lomas de San Luis 78210, San Luis Potosí, SLP, Mexico.,Faculty of Chemical Sciences, UASLP, Av. Dr. Manuel Nava 6, Zona Universitaria 78210, San Luis Potosí, SLP, Mexico
| | - E E Lara-Ramírez
- Zacatecas Biomedical Research Unit, Mexican Social Security Institute (IMSS), Alameda Trinidad García de La Cadena 438, Zacatecas Centro 98000 Zacatecas, Zac, Mexico
| | - E Reynaga-Hernandez
- Faculty of Chemical Sciences, UASLP, Av. Dr. Manuel Nava 6, Zona Universitaria 78210, San Luis Potosí, SLP, Mexico
| | - L Yañez-Estrada
- Faculty of Medicine, UASLP, Av. Dr. Manuel Nava 6, Zona Universitaria 78210, San Luis Potosí, SLP, Mexico
| | - S Ratering
- Institute of Applied Microbiology, Justus Liebig University, Schubertstr. 81 35392, Giessen, Germany
| | - S Schnell
- Institute of Applied Microbiology, Justus Liebig University, Schubertstr. 81 35392, Giessen, Germany
| | - C I Godínez-Hernández
- Desert Zones Research Institute, UASLP, De Altair 200, Col del Llano, 78377, San Luis Potosí, SLP, Mexico
| | - J M Vargas-Morales
- Faculty of Chemical Sciences, UASLP, Av. Dr. Manuel Nava 6, Zona Universitaria 78210, San Luis Potosí, SLP, Mexico
| | - D P Portales-Pérez
- Research Centre for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí (UASLP), Av. Sierra Leona 550, Lomas de San Luis 78210, San Luis Potosí, SLP, Mexico.,Faculty of Chemical Sciences, UASLP, Av. Dr. Manuel Nava 6, Zona Universitaria 78210, San Luis Potosí, SLP, Mexico
| |
Collapse
|
22
|
Peng K, Dong W, Luo T, Tang H, Zhu W, Huang Y, Yang X. Butyrate and obesity: Current research status and future prospect. Front Endocrinol (Lausanne) 2023; 14:1098881. [PMID: 36909336 PMCID: PMC9999029 DOI: 10.3389/fendo.2023.1098881] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/07/2023] [Indexed: 03/14/2023] Open
Abstract
Over the past few decades, increasing prevalence of obesity caused an enormous medical, social, and economic burden. As the sixth most important risk factor contributing to the overall burden of disease worldwide, obesity not only directly harms the human body, but also leads to many chronic diseases such as diabetes, cardiovascular diseases (CVD), nonalcoholic fatty liver disease (NAFLD), and mental illness. Weight loss is still one of the most effective strategies against obesity and related disorders. Recently, the link between intestinal microflora and metabolic health has been constantly established. Butyrate, a four-carbon short-chain fatty acid, is a major metabolite of the gut microbiota that has many beneficial effects on metabolic health. The anti-obesity activity of butyrate has been demonstrated, but its mechanisms of action have not been fully described. This review summarizes current knowledge of butyrate, including its production, absorption, distribution, metabolism, and the effect and mechanisms involved in weight loss and obesity-related diseases. The aim was to contribute to and advance our understanding of butyrate and its role in obesity. Further exploration of butyrate and its pathway may help to identify new anti-obesity.
Collapse
Affiliation(s)
- Ke Peng
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Wenjie Dong
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Taimin Luo
- Department of Pharmacy, Chengdu Seventh People’s Hospital, Chengdu, Sichuan, China
| | - Hui Tang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Wanlong Zhu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yilan Huang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xuping Yang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
23
|
Balouei F, Stefanon B, Sgorlon S, Sandri M. Factors Affecting Gut Microbiota of Puppies from Birth to Weaning. Animals (Basel) 2023; 13:ani13040578. [PMID: 36830365 PMCID: PMC9951692 DOI: 10.3390/ani13040578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The review described the most important factors affecting the development of the intestinal microbiota in puppies from birth to weaning. The health and well-being of the microbiome in puppies is influenced by the type of parturition, the maternal microbiota, and the diet of the mother, directly or indirectly. The isolation of bacteria in dogs from the placenta, fetal fluids, and fetuses suggests that colonization could occur before birth, although this is still a matter of debate. Accordingly, newborn puppies could harbor bacteria that could be of maternal origin and that could influence microbial colonization later in life. However, the long-term impacts on health and the clinical significance of this transfer is not yet clear and needs to be investigated. The same maternal bacteria were found in puppies that were born vaginally and in those delivered via cesarean section. Potentially, the relationship between the type of parturition and the colonization of the microbiome will influence the occurrence of diseases, since it can modulate the gut microbiome during early life. In addition, puppies' gut microbiota becomes progressively more similar to adult dogs at weaning, as a consequence of the transition from milk to solid food that works together with behavioral factors. A number of researches have investigated the effects of diet on the gut microbiota of dogs, revealing that dietary interference may affect the microbial composition and activity through the production of short-chain fatty acids and vitamins. These compounds play a fundamental role during the development of the fetus and the initial growth of the puppy. The composition of the diet fed during pregnancy to the bitches is also an important factor to consider for the health of newborns. As far as it is known, the effects of the type of parturition, the maternal microbiota, and the diet on the microbial colonization and the long-term health of the dogs deserve further studies. Definitely, longitudinal studies with a larger number of dogs will be required to assess a causal link between microbiome composition in puppies and diseases in adult dogs.
Collapse
|
24
|
Bhatt S, Gupta M. Dietary fiber from fruit waste as a potential source of metabolites in maintenance of gut milieu during ulcerative colitis: A comprehensive review. Food Res Int 2023; 164:112329. [PMID: 36737922 DOI: 10.1016/j.foodres.2022.112329] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/24/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
The prevalence of inflammatory bowel disease, particularly ulcerative colitis (UC), has increased dramatically in the past few years owing to a changed lifestyle. Despite various therapeutic treatments, management of the disease is still an issue due to several limitations, including cost and adverse reactions. In this regard, researchers and consumers are inclined towards natural herbal medicines and prophylactic agents. Of these, dietary fiber (DF) (polysaccharides) has become an important topic of interest owing to various putative health attributes, particularly for diseases associated with the large intestine, such as UC. To fulfil industrial and scientific demands of dietary fibers, waste utilization can prove advantageous. Here, the present review highlights recent comprehensive advances in dietary fiber from waste resources in improving UC. Additionally, their role in the gut-associated microbiome, pathway for metabolites synthesis, inflammation, and its mediators. Moreover, here we also discussed short-chain fatty acids (SCFAs) transport and epithelial barrier function along with the mechanism of inflammation regulation. Collectively, it depicts dietary fiber from waste resources that could regulate various cellular processes and molecular mechanisms involved in perpetuating UC and can be used as a promising therapeutic candidate.
Collapse
Affiliation(s)
- Shriya Bhatt
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mahesh Gupta
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
25
|
Kotlyarov S. Immune and metabolic cross-links in the pathogenesis of comorbid non-alcoholic fatty liver disease. World J Gastroenterol 2023; 29:597-615. [PMID: 36742172 PMCID: PMC9896611 DOI: 10.3748/wjg.v29.i4.597] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/28/2022] [Accepted: 11/10/2022] [Indexed: 01/20/2023] Open
Abstract
In recent years, there has been a steady growth of interest in non-alcoholic fatty liver disease (NAFLD), which is associated with negative epidemiological data on the prevalence of the disease and its clinical significance. NAFLD is closely related to the metabolic syndrome and these relationships are the subject of active research. A growing body of evidence shows cross-linkages between metabolic abnormalities and the innate immune system in the development and progression of NAFLD. These links are bidirectional and largely still unclear, but a better understanding of them will improve the quality of diagnosis and management of patients. In addition, lipid metabolic disorders and the innate immune system link NAFLD with other diseases, such as atherosclerosis, which is of great clinical importance.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, Ryazan 390026, Russia
| |
Collapse
|
26
|
Ding YY, Fang Y, Pan Y, Lan J, Xu T, Zhang W, Mao H, Gu Z, Chen X, Shen Q. Orally administered octacosanol improves liver insulin resistance in high-fat diet-fed mice through the reconstruction of the gut microbiota structure and inhibition of the TLR4/NF-κB inflammatory pathway. Food Funct 2023; 14:769-786. [PMID: 36594412 DOI: 10.1039/d2fo02463b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
1-Octacosanol (Octa) is reported to possess many physiological properties. However, its relative mechanism has not been illustrated yet. Herein, we aimed to investigate the effect of Octa on insulin resistance in mice fed with a high fat diet (HFD) and used an in vitro simulated gastrointestinal tract to analyze its digestive behavior. The effects of Octa on the gut microbiota were verified by in vitro fermentation using the mouse fecal microbiota. As a result, the Octa monomer was digested into shortened saturated and unsaturated fatty acids (C10-C24) in the simulated gastrointestinal tract. Octa improved the fasting blood glucose (FBG), insulin resistance (IR), plasma lipids, and inflammatory response in HFD-fed mice in a dose-dependent manner. This study also suggested that a high-dose of Octa effectively decreased the levels of toll-like receptor 4 (TLR4), nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in the plasma of HFD-fed mice. Octa improved the oxidative stress induced by a HFD and increased the expression of the Nrf2/ARE signaling pathway. Importantly, Octa reshaped gut microbiota through decreasing Firmicutes content and increasing Bacteroidota and Verrucomicrobiota contents at the phylum level, and the changes of intestinal flora structure caused by Octa were significantly correlated with the changes of inflammatory biomarkers. In conclusion, the effects of Octa on insulin resistance might be attributed to the reconstruction of the gut microbiota structure and inhibition of the TLR4/NF-κB inflammatory pathway in HFD-induced obese individuals.
Collapse
Affiliation(s)
- Yin-Yi Ding
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China. .,Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yumeng Fang
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Yuxiang Pan
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Jinchi Lan
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Tao Xu
- Huzhou Shengtao Biotechnology LLC, Huzhou, 313000, China
| | - Wanyue Zhang
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Huijuan Mao
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Linping, Zhejiang, 311106, China.
| | - Zhenyu Gu
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Xi Chen
- Center for General Practice Medicine, Department of General Practice Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
| | - Qing Shen
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China. .,Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China, 310018
| |
Collapse
|
27
|
Hiseni P, Snipen L, Wilson RC, Furu K, Hegge FT, Rudi K. Prediction of high fecal propionate-to-butyrate ratios using 16S rRNA-based detection of bacterial groups with liquid array diagnostics. Biotechniques 2023; 74:9-21. [PMID: 36601888 DOI: 10.2144/btn-2022-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Butyrate and propionate represent two of three main short-chain fatty acids produced by the intestinal microbiota. In healthy populations, their levels are reportedly equimolar, whereas a deviation in their ratio has been observed in various diseased cohorts. Monitoring such a ratio represents a valuable metric; however, it remains a challenge to adopt short-chain fatty acid detection techniques in clinical settings because of the volatile nature of these acids. Here we aimed to estimate short-chain fatty acid information indirectly through a novel, simple quantitative PCR-compatible assay (liquid array diagnostics) targeting a limited number of microbiome 16S markers. Utilizing 15 liquid array diagnostics probes to target microbiome markers selected by a model that combines partial least squares and linear discriminant analysis, the classes (normal vs high propionate-to-butyrate ratio) separated at a threshold of 2.6 with a prediction accuracy of 96%.
Collapse
Affiliation(s)
- Pranvera Hiseni
- Genetic Analysis AS, Kabelgata 8, Oslo, 0580, Norway.,Department of Chemistry, Biotechnology & Food Sciences, Norwegian University of Life Sciences, PO Box 5003, Aas, 1432, Norway
| | - Lars Snipen
- Department of Chemistry, Biotechnology & Food Sciences, Norwegian University of Life Sciences, PO Box 5003, Aas, 1432, Norway
| | - Robert C Wilson
- Department of Biotechnology, Inland Norway University of Applied Sciences, PO Box 400 Vestad, Elverum, 2418, Norway
| | - Kari Furu
- Genetic Analysis AS, Kabelgata 8, Oslo, 0580, Norway
| | | | - Knut Rudi
- Department of Chemistry, Biotechnology & Food Sciences, Norwegian University of Life Sciences, PO Box 5003, Aas, 1432, Norway.,Department of Biotechnology, Inland Norway University of Applied Sciences, PO Box 400 Vestad, Elverum, 2418, Norway
| |
Collapse
|
28
|
Chaudhary P, Kathuria D, Suri S, Bahndral A, Kanthi Naveen A. Probiotics- its functions and influence on the ageing process: A comprehensive review. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
29
|
Oyabambi AO, Olaniyi KS. Sodium butyrate aggravates glucose dysregulation and dyslipidemia in high fat-fed Wistar rats. Metabol Open 2022; 17:100226. [PMID: 36606023 PMCID: PMC9807820 DOI: 10.1016/j.metop.2022.100226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Sodium butyrate (NaB), a short chain fatty acid (SCFA) has been shown to improve metabolic, glucose and lipid signaling. High fat diet elicits increased risk of cardiometabolic disease due to dysmetabolism, altered endothelial function and elevated oxidant activities. This study aims at evaluating the effect of NaB on high fat diet-fed female Wistar rats, and the possible role of vascular endothelial growth factor (VEGF). Twenty female Wistar rats with mean weight of 120 ± 5 g were divided randomly after one week of acclimatization into four groups: Control diet (CTR), High fat diet (HFD), NaB (200 mg/kg), and HFD + NaB. After six weeks of the experimental procedure, blood samples were collected by cardiac puncture. Data were analyzed and expressed in mean ± SEM and p-values <0.05 were accepted as significant. Data showed that HFD increased lactate dehydrogenase (LD) and free fatty acid (FFA), but not triglyceride (TG) and total cholesterol (TC). It also led to insulin resistance (elevated fasting blood glucose, insulin and homeostasis model assessment for insulin resistance). These effects of HFD were accompanied by increased lipid peroxidation (malondialdehyde and 4-hydroxynonenal). Sodium butyrate significantly decreased circulating nitric oxide (NO) and LD while increasing FFA, TG, insulin resistance, aggravated lipid peroxidation and increased VEGF in HFD rats (P < 0.05). We speculated therefore, that NaB aggravated glucose dysregulation and dyslipidemia, which is accompanied by increased VEGF.
Collapse
Affiliation(s)
- Adewumi Oluwafemi Oyabambi
- HOPE Cardiometabolic Research Team and Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria,Corresponding author. Hope Cardiometabolic Research Unit, Department of Physiology, College of Health Sciences, University of Ilorin, P.M.B. 1515 Ilorin, 240001, Nigeria.
| | - Kehinde Samuel Olaniyi
- HOPE Cardiometabolic Research Team and Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria,Cardio/Repro-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| |
Collapse
|
30
|
Saint-Martin V, Quéré P, Trapp S, Guabiraba R. Uncovering the core principles of the gut-lung axis to enhance innate immunity in the chicken. Front Immunol 2022; 13:956670. [PMID: 36268022 PMCID: PMC9577073 DOI: 10.3389/fimmu.2022.956670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Research in mammals has evidenced that proper colonization of the gut by a complex commensal microbial community, the gut microbiota (GM), is critical for animal health and wellbeing. It greatly contributes to the control of infectious processes through competition in the microbial environment while supporting proper immune system development and modulating defence mechanisms at distant organ sites such as the lung: a concept named ‘gut-lung axis’. While recent studies point to a role of the GM in boosting immunity and pathogen resilience also in poultry, the mechanisms underlying this role are largely unknown. In spite of this knowledge gap, GM modulation approaches are today considered as one of the most promising strategies to improve animal health and welfare in commercial poultry production, while coping with the societal demand for responsible, sustainable and profitable farming systems. The majority of pathogens causing economically important infectious diseases in poultry are targeting the respiratory and/or gastrointestinal tract. Therefore, a better understanding of the role of the GM in the development and function of the mucosal immune system is crucial for implementing measures to promote animal robustness in commercial poultry production. The importance of early gut colonization in the chicken has been overlooked or neglected in industrial poultry production systems, where chicks are hampered from acquiring a complex GM from the hen. Here we discuss the concept of strengthening mucosal immunity in the chicken through GM modulation approaches favouring immune system development and functioning along the gut-lung axis, which could be put into practice through improved farming systems, early-life GM transfer, feeding strategies and pre-/probiotics. We also provide original data from experiments with germ-free and conventional chickens demonstrating that the gut-lung axis appears to be functional in chickens. These key principles of mucosal immunity are likely to be relevant for a variety of avian diseases and are thus of far-reaching importance for the poultry sector worldwide.
Collapse
|
31
|
Lednovich KR, Nnyamah C, Gough S, Priyadarshini M, Xu K, Wicksteed B, Mishra S, Jain S, Zapater JL, Yadav H, Layden BT. Intestinal FFA3 mediates obesogenic effects in mice on a Western diet. Am J Physiol Endocrinol Metab 2022; 323:E290-E306. [PMID: 35858247 PMCID: PMC9448285 DOI: 10.1152/ajpendo.00016.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 01/05/2023]
Abstract
Free fatty acid receptor 3 (FFA3) is a recently-deorphanized G-protein-coupled receptor. Its ligands are short-chain fatty acids (SCFAs), which are key nutrients derived from the gut microbiome fermentation process that play diverse roles in the regulation of metabolic homeostasis and glycemic control. FFA3 is highly expressed within the intestine, where its role and its effects on physiology and metabolism are unclear. Previous in vivo studies involving this receptor have relied on global knockout mouse models, making it difficult to isolate intestine-specific roles of FFA3. To overcome this challenge, we generated an intestine-specific knockout mouse model for FFA3, Villin-Cre-FFA3 (Vil-FFA3). Model validation and general metabolic assessment of male mice fed a standard chow diet revealed no major congenital defects. Because dietary changes are known to alter gut microbial composition, and thereby SCFA production, an obesogenic challenge was performed on male Vil-FFA3 mice and their littermate controls to probe for a phenotype on a high-fat, high-sugar "Western diet" (WD) compared with a low-fat control diet (CD). Vil-FFA3 mice versus FFA3fl/fl controls on WD, but not CD, were protected from the development of diet-induced obesity and exhibited significantly less fat mass as well as smaller adipose depositions and adipocytes. Although overall glycemic control was unchanged in the WD-fed Vil-FFA3 group, fasted glucose levels trended lower. Intestinal inflammation was significantly reduced in the WD-fed Vil-FFA3 mice, supporting protection from obesogenic effects. Furthermore, we observed lower levels of gastric inhibitory protein (GIP) in the WD-fed Vil-FFA3 mice, which may contribute to phenotypic changes. Our findings suggest a novel role of intestinal FFA3 in promoting the metabolic consequences of a WD, including the development of obesity and inflammation. Moreover, these data support an intestine-specific role of FFA3 in whole body metabolic homeostasis and in the development of adiposity.NEW & NOTEWORTHY Here, we generated a novel intestine-specific knockout mouse model for FFA3 (Vil-FFA3) and performed a comprehensive metabolic characterization of mice in response to an obesogenic challenge. We found that Vil-FFA3 mice fed with a Western diet were largely protected from obesity, exhibiting significantly lower levels of fat mass, lower intestinal inflammation, and altered expression of intestinal incretin hormones. Results support an important role of intestinal FFA3 in contributing to metabolism and in the development of diet-induced obesity.
Collapse
Affiliation(s)
- Kristen R Lednovich
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Chioma Nnyamah
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Sophie Gough
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Medha Priyadarshini
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Kai Xu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Barton Wicksteed
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Sidharth Mishra
- USF Center for Microbiome Research, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Shalini Jain
- USF Center for Microbiome Research, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Joseph L Zapater
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Hariom Yadav
- USF Center for Microbiome Research, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Brian T Layden
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|
32
|
Cheng H, Liu J, Tan Y, Feng W, Peng C. Interactions between gut microbiota and berberine, a necessary procedure to understand the mechanisms of berberine. J Pharm Anal 2022; 12:541-555. [PMID: 36105164 PMCID: PMC9463479 DOI: 10.1016/j.jpha.2021.10.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/23/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Berberine (BBR), an isoquinoline alkaloid, has been found in many plants, such as Coptis chinensis Franch and Phellodendron chinense Schneid. Although BBR has a wide spectrum of pharmacological effects, its oral bioavailability is extremely low. In recent years, gut microbiota has emerged as a cynosure to understand the mechanisms of action of herbal compounds. Numerous studies have demonstrated that due to its low bioavailability, BBR can interact with the gut microbiota, thereby exhibiting altered pharmacological effects. However, no systematic and comprehensive review has summarized these interactions and their corresponding influences on pharmacological effects. Here, we describe the direct interactive relationships between BBR and gut microbiota, including regulation of gut microbiota composition and metabolism by BBR and metabolization of BBR by gut microbiota. In addition, the complex interactions between gut microbiota and BBR as well as the side effects and personalized use of BBR are discussed. Furthermore, we provide our viewpoint on future research directions regarding BBR and gut microbiota. This review not only helps to explain the mechanisms underlying BBR activity but also provides support for the rational use of BBR in clinical practice.
Collapse
Affiliation(s)
| | | | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
33
|
Qian XH, Xie RY, Liu XL, Chen SD, Tang HD. Mechanisms of Short-Chain Fatty Acids Derived from Gut Microbiota in Alzheimer's Disease. Aging Dis 2022; 13:1252-1266. [PMID: 35855330 PMCID: PMC9286902 DOI: 10.14336/ad.2021.1215] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
Short-chain fatty acids (SCFAs) are important metabolites derived from the gut microbiota through fermentation of dietary fiber. SCFAs participate a number of physiological and pathological processes in the human body, such as host metabolism, immune regulation, appetite regulation. Recent studies on gut-brain interaction have shown that SCFAs are important mediators of gut-brain interactions and are involved in the occurrence and development of many neurodegenerative diseases, including Alzheimer's disease. This review summarizes the current research on the potential roles and mechanisms of SCFAs in AD. First, we introduce the metabolic distribution, specific receptors and signaling pathways of SCFAs in human body. The concentration levels of SCFAs in AD patient/animal models are then summarized. In addition, we illustrate the effects and mechanisms of SCFAs on the cognitive level, pathological features (Aβ and tau) and neuroinflammation in AD. Finally, we analyze the translational value of SCFAs as potential therapeutic targets for the treatment of AD.
Collapse
Affiliation(s)
- Xiao-hang Qian
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Ru-yan Xie
- Shanghai Guangci Memorial hospital, Shanghai 200025, China.
| | - Xiao-li Liu
- Department of Neurology, Shanghai Fengxian District Central Hospital, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus, Shanghai 201406, China.
| | - Sheng-di Chen
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
- Correspondence should be addressed to: Dr. Sheng-di Chen () and Dr. Hui-dong Tang (), Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hui-dong Tang
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
- Correspondence should be addressed to: Dr. Sheng-di Chen () and Dr. Hui-dong Tang (), Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
34
|
Tawfick MM, Xie H, Zhao C, Shao P, Farag MA. Inulin fructans in diet: Role in gut homeostasis, immunity, health outcomes and potential therapeutics. Int J Biol Macromol 2022; 208:948-961. [PMID: 35381290 DOI: 10.1016/j.ijbiomac.2022.03.218] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/19/2022] [Accepted: 03/31/2022] [Indexed: 12/18/2022]
Abstract
Inulin consumption in both humans and animal models is recognized for its prebiotic action with the most consistent change that lies in enhancing the growth and functionality of Bifidobacterium bacteria, as well as its effect on host gene expression and metabolism. Further, inulin-type fructans are utilized in the colon by bacterial fermentation to yield short-chain fatty acids (SCFAs), which play important role in its biological effects both locally inside the gut and in systemic actions. The gut symbiosis sustained by inulin supplementation among other dietary fibers exerts preventive and/or therapeutic options for many metabolic disorders including obesity, type 2 diabetes mellitus, cardiometabolic diseases, kidney diseases and hyperuricemia. Although, gastrointestinal negative effects due to inulin consumption were reported, such as gastrointestinal symptoms in humans and exacerbated inflammatory bowel disease (IBD) in mice. This comprehensive review aims to present the whole story of how inulin functions as a prebiotic at cellular levels and the interplay between physiological, functional and immunological responses inside the animal or human gut as influenced by inulin in diets, in context to its structural composition. Such review is of importance to identify management and feed strategies to optimize gut health, for instance, consumption of the tolerated doses to healthy adults of 10 g/day of native inulin or 5 g/day of naturally inulin-rich chicory extract. In addition, inulin-drug interactions should be further clarified particularly if used as a supplement for the treatment of degenerative diseases (e.g., diabetes) over a long period. The combined effect of probiotics and inulin appears more effective, and more research on this synergy is still needed.
Collapse
Affiliation(s)
- Mahmoud M Tawfick
- Department of Microbiology and Immunology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11751, Egypt; Department of Microbiology and Immunology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Hualing Xie
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Ping Shao
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China.
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562 Cairo, Egypt.
| |
Collapse
|
35
|
Jourova L, Anzenbacherova E, Dostal Z, Anzenbacher P, Briolotti P, Rigal E, Daujat-Chavanieu M, Gerbal-Chaloin S. Butyrate, a typical product of gut microbiome, affects function of the AhR gene, being a possible agent of crosstalk between gut microbiome and hepatic drug metabolism. J Nutr Biochem 2022; 107:109042. [PMID: 35533897 DOI: 10.1016/j.jnutbio.2022.109042] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/11/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023]
Abstract
Modulation of gut microbiome composition seems to be a promising therapeutic strategy for a wide range of pathological states. However, these microbiota-targeted interventions may affect production of microbial metabolites, circulating factors in the gut-liver axis influencing hepatic drug metabolism with possible clinical relevance. Butyrate, a short-chain fatty acid produced through microbial fermentation of dietary fibers in the colon, has well established anti-inflammatory role in the intestine, while the effect of butyrate on the liver is unknown. In this study, we have evaluated the effect of butyrate on hepatic AhR activity and AhR-regulated gene expression. We have showed that AhR and its target genes were upregulated by butyrate in dose dependent manner in HepG2-C3 as well as in primary human hepatocytes. The involvement of AhR has been proved using specific AhR antagonist and siRNA-mediated AhR silencing. Experiments with AhR reporter cells have shown that butyrate regulates the expression of AhR target genes by modulating the AhR activity. Our results suggest also epigenetic action by butyrate on AhR and its repressor (AHRR) presumably through mechanisms based on HDAC inhibition in the liver. Our results demonstrate that butyrate may influence the drug metabolizing ability of liver enzymes e.g. through the interaction with AhR dependent pathways.
Collapse
Affiliation(s)
- Lenka Jourova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 3, Olomouc 775 15, Czech Republic.
| | - Eva Anzenbacherova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 3, Olomouc 775 15, Czech Republic
| | - Zdenek Dostal
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 3, Olomouc 775 15, Czech Republic
| | - Pavel Anzenbacher
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 3, Olomouc 775 15, Czech Republic
| | - Philippe Briolotti
- IRMB, University Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Emilie Rigal
- IRMB, University Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | | | | |
Collapse
|
36
|
You X, Dadwal UC, Lenburg ME, Kacena MA, Charles JF. Murine Gut Microbiome Meta-analysis Reveals Alterations in Carbohydrate Metabolism in Response to Aging. mSystems 2022; 7:e0124821. [PMID: 35400171 PMCID: PMC9040766 DOI: 10.1128/msystems.01248-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/28/2022] [Indexed: 11/23/2022] Open
Abstract
Compositional and functional alterations to the gut microbiota during aging are hypothesized to potentially impact our health. Thus, determining aging-specific gut microbiome alterations is critical for developing microbiome-based strategies to improve health and promote longevity in the elderly. In this study, we performed a meta-analysis of publicly available 16S rRNA gene sequencing data from studies investigating the effect of aging on the gut microbiome in mice. Aging reproducibly increased gut microbial alpha diversity and shifted the microbial community structure in mice. We applied the bioinformatic tool PICRUSt2 to predict microbial metagenome function and established a random forest classifier to differentiate between microbial communities from young and old hosts and to identify aging-specific metabolic features. In independent validation data sets, this classifier achieved an area under the receiver operating characteristic curve (AUC) of 0.75 to 0.97 in differentiating microbiomes from young and old hosts. We found that 50% of the most important predicted aging-specific metabolic features were involved in carbohydrate metabolism. Furthermore, fecal short-chain fatty acid (SCFA) concentrations were significantly decreased in old mice, and the expression of the SCFA receptor Gpr41 in the colon was significantly correlated with the relative abundances of gut microbes and microbial carbohydrate metabolic pathways. In conclusion, this study identified aging-specific alterations in the composition and function of the gut microbiome and revealed a potential relationship between aging, microbial carbohydrate metabolism, fecal SCFA, and colonic Gpr41 expression. IMPORTANCE Aging-associated microbial alteration is hypothesized to play an important role in host health and longevity. However, investigations regarding specific gut microbes or microbial functional alterations associated with aging have had inconsistent results. We performed a meta-analysis across 5 independent studies to investigate the effect of aging on the gut microbiome in mice. Our analysis revealed that aging increased gut microbial alpha diversity and shifted the microbial community structure. To determine if we could reliably differentiate the gut microbiomes from young and old hosts, we established a random forest classifier based on predicted metagenome function and validated its performance against independent data sets. Alterations in microbial carbohydrate metabolism and decreased fecal short-chain fatty acid (SCFA) concentrations were key features of aging and correlated with host colonic expression of the SCFA receptor Gpr41. This study advances our understanding of the impact of aging on the gut microbiome and proposes a hypothesis that alterations in gut microbiota-derived SCFA-host GPR41 signaling are a feature of aging.
Collapse
Affiliation(s)
- Xiaomeng You
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ushashi C. Dadwal
- Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Marc E. Lenburg
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Melissa A. Kacena
- Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Julia F. Charles
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Waddell IS, Orfila C. Dietary fiber in the prevention of obesity and obesity-related chronic diseases: From epidemiological evidence to potential molecular mechanisms. Crit Rev Food Sci Nutr 2022; 63:8752-8767. [PMID: 35471164 DOI: 10.1080/10408398.2022.2061909] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obesity is a mostly preventable diet-related disease and currently a major challenge for human populations worldwide. Obesity is a major risk factor for diseases such as type 2 diabetes mellitus (T2DM), cardiovascular disease (CVD) and certain cancers. Dietary fiber is a complex mixture of non-digestible molecules, mostly polysaccharides. Multiple epidemiological studies have demonstrated statistically significant reductions in risks of obesity, T2DM, CVD, colorectal cancer, and pre-menopausal breast cancer with higher dietary fiber intakes. Various direct and indirect mechanisms have been proposed including altered digestion and absorption, stimulation of gut hormones including glucagon-like-peptide-1 (GLP-1) and peptide YY (PYY), reduced appetite, and altered metabolism of bile and cholesterol. These may act via pathways involving G-protein-coupled receptors (GPRs), histone deacetylase (HDAC), and aromatase enzymes. Ultimately, fiber intake contributes to improving glucose levels and insulin sensitivity, lowering risk of T2DM, CVD and certain cancers. Therefore, diets rich in dietary fiber should be encouraged to prevent obesity and associated chronic disease.
Collapse
Affiliation(s)
- Isabella Skye Waddell
- School of Food Science and Nutrition, Woodhouse Lane, University of Leeds, Leeds, UK
| | - Caroline Orfila
- School of Food Science and Nutrition, Woodhouse Lane, University of Leeds, Leeds, UK
| |
Collapse
|
38
|
Kotlyarov S. Role of Short-Chain Fatty Acids Produced by Gut Microbiota in Innate Lung Immunity and Pathogenesis of the Heterogeneous Course of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2022; 23:4768. [PMID: 35563159 PMCID: PMC9099629 DOI: 10.3390/ijms23094768] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a widespread socially significant disease. The development of COPD involves the innate immune system. Interestingly, the regulation of the innate lung immune system is related to the gut microbiota. This connection is due to the production by gut microorganisms of short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate. Nutritional disturbances and changes in the structure of the intestinal microbiota lead to a decrease in SCFAs production and their effect on pulmonary immunity. The presence of a metabolic and immune axis linking the lungs and gut plays an important role in the pathogenesis of COPD. In addition, the nature of nutrition and SCFAs may participate in the development of the clinically heterogeneous course of COPD.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
39
|
Getachew B, Csoka AB, Tizabi Y. Dihydromyricetin Protects Against Ethanol-Induced Toxicity in SH-SY5Y Cell Line: Role of GABA A Receptor. Neurotox Res 2022; 40:892-899. [PMID: 35386023 DOI: 10.1007/s12640-022-00503-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/07/2022] [Accepted: 03/29/2022] [Indexed: 11/26/2022]
Abstract
Toxicity induced by binge alcohol drinking, particularly in adolescent and young adults, is of major medical and social consequence. Recently, we reported that butyrate, a short chain fatty acid, can protect against ethanol (ETOH)-induced toxicity in an in vitro model. In this study, we sought to evaluate the potential effectiveness of dihydromyricetin (DHM), a natural bioactive flavonoid, alone or in combination with butyrate in the same model. Exposure of SH-SY5Y cells for 24 h to 500 mM ETOH resulted in approximately 40% reduction in cell viability, which was completely prevented by 0.1 μM DHM. Combinations of DHM and butyrate provided synergistic protection against alcohol toxicity. Whereas butyrate effect was shown to be mediated primarily through fatty acid receptor 3 activation, DHM protection appears to be mediated primarily via benzodiazepine receptor site of GABAA receptor. This is based on the finding that DHM's effect could be completely prevented by pretreatment with flumazenil, a selective antagonist at this site, but not by bicuculline, a selective antagonist at the actual GABAA receptor binding site. These findings suggest potential utility of DHM alone or in combination with butyrate against ETOH-induced toxicity.
Collapse
Affiliation(s)
- Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC, USA
| | - Antonei B Csoka
- Department of Anatomy, Howard University College of Medicine, 520 W Street NW, Washington, DC, USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC, USA.
| |
Collapse
|
40
|
Fang J, Lin Y, Xie H, Farag MA, Feng S, Li J, Shao P. Dendrobium officinale leaf polysaccharides ameliorated hyperglycemia and promoted gut bacterial associated SCFAs to alleviate type 2 diabetes in adult mice. Food Chem X 2022; 13:100207. [PMID: 35498995 PMCID: PMC9039915 DOI: 10.1016/j.fochx.2022.100207] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/17/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
Fractions of LDOP show the hypoglycemic effect and can restore histological function of T2D mice. There is a difference in the anti-T2D effect between LDOP-A and LDOP-B. LDOP-A modulated the gut microbiota composition of T2D mice. LDOP-A promotes the formation of SCFAs in T2D mice, especially butyric acid. Compared with LDOP-B, LDOP-A shows greater potential to ameliorate T2D.
The present study aimed to explore the possible mechanisms underlying Dendrobium officinale leaf polysaccharides of different molecular weight to alleviate glycolipid metabolic abnormalities, organ dysfunction and gut microbiota dysbiosis of T2D mice. An ultrafiltration membrane was employed to separate two fractions from Dendrobium officinale leaf polysaccharide named LDOP-A and LDOP-B. Here, we present data supporting that oral administration of LDOP-A and LDOP-B ameliorated hyperglycemia, inhibited insulin resistance, reduced lipid concentration, improved β-cell function. LDOP-A with lower molecular weight exhibited improved effect on diabetes than LDOP-B, concurrent with increased levels of colonic short-chain fatty acids (SCFAs) i.e., butyrate, decreased ratio of Firmicutes to Bacteroidetes phyla, and increased abundance of the gut beneficial bacteria i.e., Lactobacillus, Bifidobacterium and Akkermansia. These results suggest that LDOP-A possesses a stronger effect in ameliorating T2D than LDOP-B which may be related to the distinct improved SCFAs levels produced by the change of intestinal flora microstructure.
Collapse
Key Words
- AUC, The area under the concentration–time curve
- Dendrobium officinale
- FBG, fasting blood glucose
- FT-IR, Fourier-transform infrared
- GLP-1, glucagon-like peptide-1
- GLUT4, glucose transporter type 4
- H&E, hematoxylin and eosin
- HDL-c, high-density lipoprotein cholesterol
- HFD, high-fat diet
- HOMA-IR, homeostasis model assessment-insulin resistance
- HOMA-β, β-cell sensitivity
- IC, ion Chromatography
- IL-6, interleukin-6
- Intestinal microflora
- LDL-c, low-density lipoprotein cholesterol
- LDOP, Dendrobium officinale leaf polysaccharide
- Mw, molecular weight
- OGTT, oral glucose tolerance test
- OTUs, operational taxonomic units
- PAS, periodic acid-Schiff
- PYY, peptide YY
- Polysaccharide
- SCFAs, short chain fatty acids
- STZ, streptozotocin
- Short-chain fatty acids
- T2D, Type 2 Diabetic
- TG, triglycerides
- TNF-α, tumor necrosis factor-alpha
- Type 2 Diabetes
Collapse
Affiliation(s)
- Jingyu Fang
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China
| | - Yang Lin
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China
| | - Hualing Xie
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt.,Department of Chemistry, School of Science & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Simin Feng
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China
| | - Jinjun Li
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China.,Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light Industry, Hangzhou 310021, China
| |
Collapse
|
41
|
Huang C, Du W, Ni Y, Lan G, Shi G. The effect of short-chain fatty acids on M2 macrophages polarization in vitro and in vivo. Clin Exp Immunol 2022; 207:53-64. [PMID: 35020860 PMCID: PMC8802183 DOI: 10.1093/cei/uxab028] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 12/19/2022] Open
Abstract
Alternatively activated macrophages (M2 polarization) play an important role in asthma. Short-chain fatty acids (SCFAs) possessed immune-regulatory functions, but their effects on M2 polarization of alveolar macrophages and its underlying mechanisms are still unclear. In our study, murine alveolar macrophage MH-S cell line and human monocyte-derived macrophages were used to polarize to M2 subset with interleukin-4 (IL-4) treatment. The underlying mechanisms involved were investigated using molecule inhibitors/agonists. In vivo, female C57BL/6 mice were divided into five groups: CON group, ovalbumin (OVA) asthma group, OVA+Acetate group, OVA+Butyrate group, and OVA+Propionate group. Mice were fed with or without SCFAs (Acetate, Butyrate, Propionate) in drinking water for 20 days before developing OVA-induced asthma model. In MH-S, SCFAs inhibited IL-4-incuced protein or mRNA expressions of M2-associated genes in a dose-dependent manner. G-protein-coupled receptor 43 (GPR43) agonist 4-CMTB and histone deacetylase (HDAC) inhibitor (trichostatin A, TSA), but not GPR41 agonist AR420626 could inhibit the protein or mRNA expressions M2-associated genes. 4-CMTB, but not TSA, had no synergistic role in the inhibitory effect of SCFAs on M2 polarization. In vivo study indicated Butyrate and Propionate, but not Acetate, attenuated OVA-induced M2 polarization in the lung and airway inflammation. We also found the inhibitory effect of SCFAs on M2 polarization in human-derived macrophages. Therefore, SCFAs inhibited M2 polarization in MH-S likely through GPR43 activation and/or HDAC inhibition. Butyrate and Propionate but not Acetate could inhibit M2 polarization and airway inflammation in asthma model. SCFAs also abrogated M2 polarization in human-derived macrophages.
Collapse
Affiliation(s)
- Chunrong Huang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, People's Republic of China
| | - Wei Du
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, People's Republic of China
| | - Yingmeng Ni
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, People's Republic of China
| | - Gelei Lan
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, People's Republic of China
| | - Guochao Shi
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, People's Republic of China
| |
Collapse
|
42
|
Machado MG, Patente TA, Rouillé Y, Heumel S, Melo EM, Deruyter L, Pourcet B, Sencio V, Teixeira MM, Trottein F. Acetate Improves the Killing of Streptococcus pneumoniae by Alveolar Macrophages via NLRP3 Inflammasome and Glycolysis-HIF-1α Axis. Front Immunol 2022; 13:773261. [PMID: 35126390 PMCID: PMC8810543 DOI: 10.3389/fimmu.2022.773261] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022] Open
Abstract
Short-chain fatty acids (SCFAs) are metabolites produced mainly by the gut microbiota with a known role in immune regulation. Acetate, the major SCFA, is described to disseminate to distal organs such as lungs where it can arm sentinel cells, including alveolar macrophages, to fight against bacterial intruders. In the current study, we explored mechanisms through which acetate boosts macrophages to enhance their bactericidal activity. RNA sequencing analyses show that acetate triggers a transcriptomic program in macrophages evoking changes in metabolic process and immune effector outputs, including nitric oxide (NO) production. In addition, acetate enhances the killing activity of macrophages towards Streptococcus pneumoniae in an NO-dependent manner. Mechanistically, acetate improves IL-1β production by bacteria-conditioned macrophages and the latter acts in an autocrine manner to promote NO production. Strikingly, acetate-triggered IL-1β production was neither dependent of its cell surface receptor free-fatty acid receptor 2, nor of the enzymes responsible for its metabolism, namely acetyl-CoA synthetases 1 and 2. We found that IL-1β production by acetate relies on NLRP3 inflammasome and activation of HIF-1α, the latter being triggered by enhanced glycolysis. In conclusion, we unravel a new mechanism through which acetate reinforces the bactericidal activity of alveolar macrophages.
Collapse
Affiliation(s)
- Marina Gomes Machado
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 9017, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Yves Rouillé
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 9017, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Severine Heumel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 9017, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Eliza Mathias Melo
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lucie Deruyter
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 9017, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Benoit Pourcet
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1011, Lille, France
- Univ. Lille, U1011 – European Genomic Institute for Diabetes EGID, Lille, France
| | - Valentin Sencio
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 9017, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - François Trottein
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 9017, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
- *Correspondence: François Trottein,
| |
Collapse
|
43
|
Patti AM, Giglio RV, Papanas N, Serban D, Stoian AP, Pafili K, Al Rasadi K, Rajagopalan K, Rizvi AA, Ciaccio M, Rizzo M. Experimental and Emerging Free Fatty Acid Receptor Agonists for the Treatment of Type 2 Diabetes. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58010109. [PMID: 35056417 PMCID: PMC8779029 DOI: 10.3390/medicina58010109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 04/11/2023]
Abstract
The current management of Type 2 Diabetes Mellitus (T2DM) includes incretin-based treatments able to enhance insulin secretion and peripheral insulin sensitivity as well as improve body mass, inflammation, plasma lipids, blood pressure, and cardiovascular outcomes. Dietary Free Fatty Acids (FFA) regulate metabolic and anti-inflammatory processes through their action on incretins. Selective synthetic ligands for FFA1-4 receptors have been developed as potential treatments for T2DM. To comprehensively review the available evidence for the potential role of FFA receptor agonists in the treatment of T2DM, we performed an electronic database search assessing the association between FFAs, T2DM, inflammation, and incretins. Evidence indicates that FFA1-4 agonism increases insulin sensitivity, induces body mass loss, reduces inflammation, and has beneficial metabolic effects. There is a strong inter-relationship between FFAs and incretins. FFA receptor agonism represents a potential target for the treatment of T2DM and may provide an avenue for the management of cardiometabolic risk in susceptible individuals. Further research promises to shed more light on this emerging topic.
Collapse
Affiliation(s)
- Angelo Maria Patti
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, 90133 Palermo, Italy; (A.M.P.); (M.R.)
| | - Rosaria Vincenza Giglio
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, 90127 Palermo, Italy; (R.V.G.); (M.C.)
| | - Nikolaos Papanas
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, 68132 Alexandroupolis, Greece; (N.P.); (K.P.)
| | - Dragos Serban
- Forth Surgery Department, Faculty of Medicine, Carol Davila University, 050098 Bucharest, Romania;
| | - Anca Pantea Stoian
- Department of Diabetes, Faculty of Medicine, Nutrition and Metabolic Diseases, Carol Davila University, 050474 Bucharest, Romania;
| | - Kalliopi Pafili
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, 68132 Alexandroupolis, Greece; (N.P.); (K.P.)
| | - Khalid Al Rasadi
- Medical Research Center, Sultan Qaboos University, Muscat 123, Oman;
| | - Kanya Rajagopalan
- Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA;
| | - Ali A. Rizvi
- Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA;
- Division of Endocrinology, Diabetes and Metabolism, University of South Carolina School of Medicine, Columbia, SC 29208, USA
- Correspondence:
| | - Marcello Ciaccio
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, 90127 Palermo, Italy; (R.V.G.); (M.C.)
- Department of Laboratory Medicine, University Hospital, 90127 Palermo, Italy
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, 90133 Palermo, Italy; (A.M.P.); (M.R.)
- Department of Diabetes, Faculty of Medicine, Nutrition and Metabolic Diseases, Carol Davila University, 050474 Bucharest, Romania;
- Division of Endocrinology, Diabetes and Metabolism, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| |
Collapse
|
44
|
Chen L, Yan G, Ohwada T. Building on endogenous lipid mediators to design synthetic receptor ligands. Eur J Med Chem 2022; 231:114154. [DOI: 10.1016/j.ejmech.2022.114154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 01/05/2023]
|
45
|
Petit J, Wiegertjes GF. Conservation of members of the free fatty acid receptor gene family in common carp. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104240. [PMID: 34461159 DOI: 10.1016/j.dci.2021.104240] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Accumulating evidence supports the crucial role intestinal microbiota and their metabolites play in the homeostasis of organisms. An important class of metabolites that have been shown to affect the immune system are short chain fatty acids (SCFAs). These SCFAs can affect the host cells via passive diffusion or via ligation to receptors, among others G-protein coupled receptor (GPR) 41 and 43. GPR41 and GPR43 are both part of a family of GPR40-related receptors. Mammalian studies have shown an important role for GPR41 and GPR43 in the modulation of immune responses by SCFAs. However, up till date, no validated coding sequences for orthologues of these SCFA receptors have been published for teleost fish. We used genomic resources and cDNA cloning, to identify and validate ten coding sequences for gpr40L genes in common carp. Phylogenetic analysis showed a division into three subclasses, putatively named class a, b and c, and showed the common carp genes had a closer phylogenetic relationship to mammalian GPR43 than to mammalian GPR41. Synteny analysis revealed a clear conservation of syntenic relationships between gpr40L in the genomes of spotted gar and common carp with the relevant region in the human genome. This conservation of synteny validates the genes identified, as gpr40L. Finally, presence of gpr40L genes was investigated in silico for genomes of 25 different, mostly teleost, fish species largely confirming the observations for gpr40L of common carp with regards to both, subdivision in three subclasses a-c and conservation of synteny. Our data provide an important first step towards an understanding of the role and function of receptors for SCFAs and immunomodulation in fish.
Collapse
Affiliation(s)
- Jules Petit
- Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University and Research, PO Box 338, 6700, AH, Wageningen, the Netherlands
| | - Geert F Wiegertjes
- Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University and Research, PO Box 338, 6700, AH, Wageningen, the Netherlands.
| |
Collapse
|
46
|
Ibragimova S, Ramachandran R, Ali FR, Lipovich L, Ho SB. Dietary Patterns and Associated Microbiome Changes that Promote Oncogenesis. Front Cell Dev Biol 2021; 9:725821. [PMID: 34869313 PMCID: PMC8633417 DOI: 10.3389/fcell.2021.725821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
The recent increases in cancer incidences have been linked to lifestyle changes that result in obesity and metabolic syndrome. It is now evident that these trends are associated with the profound changes that occur in the intestinal microbiome, producing altered microbial population signatures that interact, directly or indirectly, with potentially pro-carcinogenic molecular pathways of transcription, proliferation, and inflammation. The effects of the entire gut microbial population on overall health are complex, but individual bacteria are known to play important and definable roles. Recent detailed examinations of a large number of subjects show a tight correlation between habitual diets, fecal microbiome signatures, and markers of metabolic health. Diets that score higher in healthfulness or diversity such as plant-based diets, have altered ratios of specific bacteria, including an increase in short-chain fatty acid producers, which in turn have been linked to improved metabolic markers and lowered cancer risk. Contrarily, numerous studies have implicated less healthy, lower-scoring diets such as the Western diet with reduced intestinal epithelial defenses and promotion of specific bacteria that affect carcinogenic pathways. In this review, we will describe how different dietary patterns affect microbial populations in the gut and illustrate the subsequent impact of bacterial products and metabolites on molecular pathways of cancer development, both locally in the gut and systemically in distant organs.
Collapse
Affiliation(s)
- Shakhzada Ibragimova
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, UAE
| | - Revathy Ramachandran
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, UAE
| | - Fahad R Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, UAE
| | - Leonard Lipovich
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, UAE
| | - Samuel B Ho
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, UAE.,Department of Medicine, Mediclinic City Hospital, Dubai Healthcare City, Dubai, UAE
| |
Collapse
|
47
|
Getachew B, Csoka AB, Garden AR, Copeland RL, Tizabi Y. Sodium Butyrate Protects Against Ethanol-Induced Toxicity in SH-SY5Y Cell Line. Neurotox Res 2021; 39:2186-2193. [PMID: 34554410 PMCID: PMC8459139 DOI: 10.1007/s12640-021-00418-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023]
Abstract
Alcohol use disorder (AUD), brought about by excessive alcohol use, is associated with damages to several organs including the brain. Chronic excessive use of alcohol can compromise intestinal integrity, leading to changes in gut microbiota (GM) composition known as dysbiosis. Dysbiosis, by disruption of the gut-brain axis (GBA), further exacerbates the deleterious effects of alcohol. One of the fermentation by-products of GM is butyrate (BUT), a short-chain fatty acid (SCFA) that plays an important role in maintaining homeostasis of the GBA. Alcohol metabolism results in formation of acetaldehyde, a highly reactive compound that reacts with dopamine in the brain to form toxic adducts such as salsolinol. Recent studies indicate potential neuro-protective effects of BUT against various toxicants including salsolinol. Here, we sought to investigate whether BUT can also protect against alcohol toxicity. Pretreatment of neuroblastoma-derived SH-SY5Y cells with 500 mM ethanol (ETOH) for 24 h resulted in approximately 40% reduction in cell viability, which was totally blocked by 10 µM of either BUT or AR 420,626 (AR), a selective fatty acid 3 receptor (FA3R) agonist. The neuro-protective effects of both BUT and AR were significantly (80%) attenuated by beta-hydroxy butyrate (BHB), a selective FA3R antagonist. Interestingly, combination of BUT and AR resulted in synergistic protection against ETOH, which was totally blocked by BHB. These findings suggest potential utility of butyrate and/or FA3R agonists against ETOH-induced toxicity.
Collapse
Affiliation(s)
- Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC, 20059, USA
| | - Antonei B Csoka
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Allison R Garden
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC, 20059, USA
| | - Robert L Copeland
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC, 20059, USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC, 20059, USA.
| |
Collapse
|
48
|
Kotlyarov S, Kotlyarova A. Anti-Inflammatory Function of Fatty Acids and Involvement of Their Metabolites in the Resolution of Inflammation in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:ijms222312803. [PMID: 34884621 PMCID: PMC8657960 DOI: 10.3390/ijms222312803] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Lipid metabolism plays an important role in many lung functions. Disorders of lipid metabolism are part of the pathogenesis of chronic obstructive pulmonary disease (COPD). Lipids are involved in numerous cross-linkages with inflammation. Recent studies strongly support the involvement of fatty acids as participants in inflammation. They are involved in the initiation and resolution of inflammation, including acting as a substrate for the formation of lipid mediators of inflammation resolution. Specialized pro-inflammatory mediators (SPMs) belonging to the classes of lipoxins, resolvins, maresins, and protectins, which are formed enzymatically from unsaturated fatty acids, are now described. Disorders of their production and function are part of the pathogenesis of COPD. SPMs are currently the subject of active research in order to find new drugs. Short-chain fatty acids are another important participant in metabolic and immune processes, and their role in the pathogenesis of COPD is of great clinical interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
- Correspondence:
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
49
|
Neag MA, Mitre AO, Catinean A, Buzoianu AD. Overview of the microbiota in the gut-liver axis in viral B and C hepatitis. World J Gastroenterol 2021; 27:7446-7461. [PMID: 34887642 PMCID: PMC8613744 DOI: 10.3748/wjg.v27.i43.7446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/13/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
Viral B and C hepatitis are a major current health issue, both diseases having a chronic damaging effect on the liver and its functions. Chronic liver disease can lead to even more severe and life-threatening conditions, such as liver cirrhosis and hepatocellular carcinoma. Recent years have uncovered an important interplay between the liver and the gut microbiome: the gut-liver axis. Hepatitis B and C infections often cause alterations in the gut microbiota by lowering the levels of ‘protective’ gut microorganisms and, by doing so, hinder the microbiota ability to boost the immune response. Treatments aimed at restoring the gut microbiota balance may provide a valuable addition to current practice therapies and may help limit the chronic changes observed in the liver of hepatitis B and C patients. This review aims to summarize the current knowledge on the anato-functional axis between the gut and liver and to highlight the influence that hepatitis B and C viruses have on the microbiota balance, as well as the influence of treatments aimed at restoring the gut microbiota on infected livers and disease progression.
Collapse
Affiliation(s)
- Maria Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca 400337, Romania
| | - Andrei Otto Mitre
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca 400012, Romania
| | - Adrian Catinean
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca 400006, Romania
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca 400337, Romania
| |
Collapse
|
50
|
Schlender J, Behrens F, McParland V, Müller D, Wilck N, Bartolomaeus H, Holle J. Bacterial metabolites and cardiovascular risk in children with chronic kidney disease. Mol Cell Pediatr 2021; 8:17. [PMID: 34677718 PMCID: PMC8536815 DOI: 10.1186/s40348-021-00126-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular complications are the major cause of the marked morbidity and mortality associated with chronic kidney disease (CKD). The classical cardiovascular risk factors such as diabetes and hypertension undoubtedly play a role in the development of cardiovascular disease (CVD) in adult CKD patients; however, CVD is just as prominent in children with CKD who do not have these risk factors. Hence, the CKD-specific pathophysiology of CVD remains incompletely understood. In light of this, studying children with CKD presents a unique opportunity to analyze CKD-associated mechanisms of CVD more specifically and could help to unveil novel therapeutic targets. Here, we comprehensively review the interaction of the human gut microbiome and the microbial metabolism of nutrients with host immunity and cardiovascular end-organ damage. The human gut microbiome is evolutionary conditioned and modified throughout life by endogenous factors as well as environmental factors. Chronic diseases, such as CKD, cause significant disruption to the composition and function of the gut microbiome and lead to disease-associated dysbiosis. This dysbiosis and the accompanying loss of biochemical homeostasis in the epithelial cells of the colon can be the result of poor diet (e.g., low-fiber intake), medications, and underlying disease. As a result of dysbiosis, bacteria promoting proteolytic fermentation increase and those for saccharolytic fermentation decrease and the integrity of the gut barrier is perturbed (leaky gut). These changes disrupt local metabolite homeostasis in the gut and decrease productions of the beneficial short-chain fatty acids (SCFAs). Moreover, the enhanced proteolytic fermentation generates unhealthy levels of microbially derived toxic metabolites, which further accumulate in the systemic circulation as a consequence of impaired kidney function. We describe possible mechanisms involved in the increased systemic inflammation in CKD that is associated with the combined effect of SCFA deficiency and accumulation of uremic toxins. In the future, a more comprehensive and mechanistic understanding of the gut–kidney–heart interaction, mediated largely by immune dysregulation and inflammation, might allow us to target the gut microbiome more specifically in order to attenuate CKD-associated comorbidities.
Collapse
Affiliation(s)
- Julia Schlender
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, 13353, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), a cooperation of Charité - Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine (MDC), 13125, Berlin, Germany
| | - Felix Behrens
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, 13353, Berlin, Germany.,Charité - Universitätsmedizin Berlin and Berlin Institute of Health, 10117, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, 13316, Berlin, Germany.,Institute of Physiology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Victoria McParland
- Experimental and Clinical Research Center (ECRC), a cooperation of Charité - Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine (MDC), 13125, Berlin, Germany
| | - Dominik Müller
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, 13353, Berlin, Germany
| | - Nicola Wilck
- Experimental and Clinical Research Center (ECRC), a cooperation of Charité - Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine (MDC), 13125, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, 13316, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Internal Intensive Care Medicine, 10117, Berlin, Germany
| | - Hendrik Bartolomaeus
- Experimental and Clinical Research Center (ECRC), a cooperation of Charité - Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine (MDC), 13125, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, 13316, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Internal Intensive Care Medicine, 10117, Berlin, Germany
| | - Johannes Holle
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, 13353, Berlin, Germany. .,Experimental and Clinical Research Center (ECRC), a cooperation of Charité - Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine (MDC), 13125, Berlin, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Berlin, 13316, Berlin, Germany.
| |
Collapse
|