1
|
Ma B, Li F, Fu X, Luo X, Lin Q, Liang H, Niu Y, Li N. Asparagine Availability Is a Critical Limiting Factor for Infectious Spleen and Kidney Necrosis Virus Replication. Viruses 2024; 16:1540. [PMID: 39459874 PMCID: PMC11512393 DOI: 10.3390/v16101540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Infectious spleen and kidney necrosis virus (ISKNV) has brought huge economic loss to the aquaculture industry. Through interfering with the viral replication and proliferation process that depends on host cells, its pathogenicity can be effectively reduced. In this study, we investigated the role of asparagine metabolites in ISKNV proliferation. The results showed that ISKNV infection up-regulated the expression of some key enzymes of the asparagine metabolic pathway in Chinese perch brain (CPB) cells. These key enzymes, including glutamic oxaloacetic transaminase 1/2 (GOT1/2) and malate dehydrogenase1/2 (MDH1/2) associated with the malate-aspartate shuttle (MAS) pathway and asparagine synthetase (ASNS) involved in the asparagine biosynthesis pathway, were up-regulated during ISKNV replication and release stages. In addition, results showed that the production of ISKNV was significantly reduced by inhibiting the MAS pathway or reducing the expression of ASNS by 1.3-fold and 0.6-fold, respectively, indicating that asparagine was a critical limiting metabolite for ISKNV protein synthesis. Furthermore, when asparagine was added to the medium without glutamine, ISKNV copy number was restored to 92% of that in the complete medium, indicating that ISKNV could be fully rescued from the absence of glutamine by supplementing asparagine. The above results indicated that asparagine was a critical factor in limiting the effective replication of ISKNV, which provided a new idea for the treatment of aquatic viral diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ningqiu Li
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune and Sustainable Aquaculture, Guangzhou 510380, China
| |
Collapse
|
2
|
Stovell MG, Howe DJ, Thelin EP, Jalloh I, Helmy A, Guilfoyle MR, Grice P, Mason A, Giorgi-Coll S, Gallagher CN, Murphy MP, Menon DK, Carpenter TA, Hutchinson PJ, Carpenter KLH. High-physiological and supra-physiological 1,2- 13C 2 glucose focal supplementation to the traumatised human brain. J Cereb Blood Flow Metab 2023; 43:1685-1701. [PMID: 37157814 PMCID: PMC10581237 DOI: 10.1177/0271678x231173584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 03/12/2023] [Accepted: 04/02/2023] [Indexed: 05/10/2023]
Abstract
How to optimise glucose metabolism in the traumatised human brain remains unclear, including whether injured brain can metabolise additional glucose when supplied. We studied the effect of microdialysis-delivered 1,2-13C2 glucose at 4 and 8 mmol/L on brain extracellular chemistry using bedside ISCUSflex, and the fate of the 13C label in the 8 mmol/L group using high-resolution NMR of recovered microdialysates, in 20 patients. Compared with unsupplemented perfusion, 4 mmol/L glucose increased extracellular concentrations of pyruvate (17%, p = 0.04) and lactate (19%, p = 0.01), with a small increase in lactate/pyruvate ratio (5%, p = 0.007). Perfusion with 8 mmol/L glucose did not significantly influence extracellular chemistry measured with ISCUSflex, compared to unsupplemented perfusion. These extracellular chemistry changes appeared influenced by the underlying metabolic states of patients' traumatised brains, and the presence of relative neuroglycopaenia. Despite abundant 13C glucose supplementation, NMR revealed only 16.7% 13C enrichment of recovered extracellular lactate; the majority being glycolytic in origin. Furthermore, no 13C enrichment of TCA cycle-derived extracellular glutamine was detected. These findings indicate that a large proportion of extracellular lactate does not originate from local glucose metabolism, and taken together with our earlier studies, suggest that extracellular lactate is an important transitional step in the brain's production of glutamine.
Collapse
Affiliation(s)
- Matthew G Stovell
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Neurosurgery, The Walton Centre, Liverpool, UK
| | - Duncan J Howe
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Eric P Thelin
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Ibrahim Jalloh
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Mathew R Guilfoyle
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter Grice
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Andrew Mason
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Susan Giorgi-Coll
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Clare N Gallagher
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - T Adrian Carpenter
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Keri LH Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Holeček M. Aspartic Acid in Health and Disease. Nutrients 2023; 15:4023. [PMID: 37764806 PMCID: PMC10536334 DOI: 10.3390/nu15184023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Aspartic acid exists in L- and D-isoforms (L-Asp and D-Asp). Most L-Asp is synthesized by mitochondrial aspartate aminotransferase from oxaloacetate and glutamate acquired by glutamine deamidation, particularly in the liver and tumor cells, and transamination of branched-chain amino acids (BCAAs), particularly in muscles. The main source of D-Asp is the racemization of L-Asp. L-Asp transported via aspartate-glutamate carrier to the cytosol is used in protein and nucleotide synthesis, gluconeogenesis, urea, and purine-nucleotide cycles, and neurotransmission and via the malate-aspartate shuttle maintains NADH delivery to mitochondria and redox balance. L-Asp released from neurons connects with the glutamate-glutamine cycle and ensures glycolysis and ammonia detoxification in astrocytes. D-Asp has a role in brain development and hypothalamus regulation. The hereditary disorders in L-Asp metabolism include citrullinemia, asparagine synthetase deficiency, Canavan disease, and dicarboxylic aminoaciduria. L-Asp plays a role in the pathogenesis of psychiatric and neurologic disorders and alterations in BCAA levels in diabetes and hyperammonemia. Further research is needed to examine the targeting of L-Asp metabolism as a strategy to fight cancer, the use of L-Asp as a dietary supplement, and the risks of increased L-Asp consumption. The role of D-Asp in the brain warrants studies on its therapeutic potential in psychiatric and neurologic disorders.
Collapse
Affiliation(s)
- Milan Holeček
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic
| |
Collapse
|
4
|
Wang X, Guo Y, Chen G, Fang E, Wang J, Li Q, Li D, Hu A, Bao B, Zhou Y, Gao H, Song J, Du X, Zheng L, Tong Q. Therapeutic targeting of FUBP3 phase separation by GATA2-AS1 inhibits malate-aspartate shuttle and neuroblastoma progression via modulating SUZ12 activity. Oncogene 2023; 42:2673-2687. [PMID: 37537343 DOI: 10.1038/s41388-023-02798-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
Malate-aspartate shuttle (MAS) is essential for maintaining glycolysis and energy metabolism in tumors, while its regulatory mechanisms in neuroblastoma (NB), the commonest extracranial malignancy during childhood, still remain to be elucidated. Herein, by analyzing multi-omics data, GATA binding protein 2 (GATA2) and its antisense RNA 1 (GATA2-AS1) were identified to suppress MAS during NB progression. Mechanistic studies revealed that GATA2 inhibited the transcription of glutamic-oxaloacetic transaminase 2 (GOT2) and malate dehydrogenase 2 (MDH2). As a long non-coding RNA destabilized by RNA binding motif protein 15-mediated N6-methyladenosine methylation, GATA2-AS1 bound with far upstream element binding protein 3 (FUBP3) to repress its liquid-liquid phase separation and interaction with suppressor of zest 12 (SUZ12), resulting in decrease of SUZ12 activity and epigenetic up-regulation of GATA2 and other tumor suppressors. Rescue experiments revealed that GATA2-AS1 inhibited MAS and NB progression via repressing interaction between FUBP3 and SUZ12. Pre-clinically, administration of lentivirus carrying GATA2-AS1 suppressed MAS, aerobic glycolysis, and aggressive behaviors of NB xenografts. Notably, low GATA2-AS1 or GATA2 expression and high FUBP3, SUZ12, GOT2 or MDH2 levels were linked with unfavorable outcome of NB patients. These findings suggest that GATA2-AS1 inhibits FUBP3 phase separation to repress MAS and NB progression via modulating SUZ12 activity.
Collapse
Affiliation(s)
- Xiaojing Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China
| | - Yanhua Guo
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China
| | - Guo Chen
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China
| | - Erhu Fang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China
| | - Jianqun Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China
| | - Qilan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China
| | - Anpei Hu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China
| | - Banghe Bao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China
| | - Yi Zhou
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China
| | - Haiyang Gao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China
| | - Jiyu Song
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China
| | - Xinyi Du
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China
| | - Liduan Zheng
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China.
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China.
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China.
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China.
| |
Collapse
|
5
|
Broeks MH, van Karnebeek CDM, Wanders RJA, Jans JJM, Verhoeven‐Duif NM. Inborn disorders of the malate aspartate shuttle. J Inherit Metab Dis 2021; 44:792-808. [PMID: 33990986 PMCID: PMC8362162 DOI: 10.1002/jimd.12402] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022]
Abstract
Over the last few years, various inborn disorders have been reported in the malate aspartate shuttle (MAS). The MAS consists of four metabolic enzymes and two transporters, one of them having two isoforms that are expressed in different tissues. Together they form a biochemical pathway that shuttles electrons from the cytosol into mitochondria, as the inner mitochondrial membrane is impermeable to the electron carrier NADH. By shuttling NADH across the mitochondrial membrane in the form of a reduced metabolite (malate), the MAS plays an important role in mitochondrial respiration. In addition, the MAS maintains the cytosolic NAD+ /NADH redox balance, by using redox reactions for the transfer of electrons. This explains why the MAS is also important in sustaining cytosolic redox-dependent metabolic pathways, such as glycolysis and serine biosynthesis. The current review provides insights into the clinical and biochemical characteristics of MAS deficiencies. To date, five out of seven potential MAS deficiencies have been reported. Most of them present with a clinical phenotype of infantile epileptic encephalopathy. Although not specific, biochemical characteristics include high lactate, high glycerol 3-phosphate, a disturbed redox balance, TCA abnormalities, high ammonia, and low serine, which may be helpful in reaching a diagnosis in patients with an infantile epileptic encephalopathy. Current implications for treatment include a ketogenic diet, as well as serine and vitamin B6 supplementation.
Collapse
Affiliation(s)
- Melissa H. Broeks
- Department of Genetics, Section Metabolic DiagnosticsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Clara D. M. van Karnebeek
- Departments of PediatricsAmsterdam University Medical CenterAmsterdamThe Netherlands
- Department of Pediatrics, Amalia Children's Hospital, Radboud Center for Mitochondrial DiseasesRadboud University Medical CenterNijmegenThe Netherlands
- On behalf of “United for Metabolic Diseases”The Netherlands
| | - Ronald J. A. Wanders
- Departments of Pediatrics and Laboratory Medicine, Laboratory Genetic Metabolic DiseasesAmsterdam University Medical Center, University of AmsterdamAmsterdamThe Netherlands
| | - Judith J. M. Jans
- Department of Genetics, Section Metabolic DiagnosticsUniversity Medical Center UtrechtUtrechtThe Netherlands
- On behalf of “United for Metabolic Diseases”The Netherlands
| | - Nanda M. Verhoeven‐Duif
- Department of Genetics, Section Metabolic DiagnosticsUniversity Medical Center UtrechtUtrechtThe Netherlands
- On behalf of “United for Metabolic Diseases”The Netherlands
| |
Collapse
|
6
|
The mitochondrial aspartate/glutamate carrier (AGC or Aralar1) isoforms in D. melanogaster: biochemical characterization, gene structure, and evolutionary analysis. Biochim Biophys Acta Gen Subj 2021; 1865:129854. [PMID: 33497735 DOI: 10.1016/j.bbagen.2021.129854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND In man two mitochondrial aspartate/glutamate carrier (AGC) isoforms, known as aralar and citrin, are required to accomplish several metabolic pathways. In order to fill the existing gap of knowledge in Drosophila melanogaster, we have studied aralar1 gene, orthologue of human AGC-encoding genes in this organism. METHODS The blastp algorithm and the "reciprocal best hit" approach have been used to identify the human orthologue of AGCs in Drosophilidae and non-Drosophilidae. Aralar1 proteins have been overexpressed in Escherichia coli and functionally reconstituted into liposomes for transport assays. RESULTS The transcriptional organization of aralar1 comprises six isoforms, three constitutively expressed (aralar1-RA, RD and RF), and the remaining three distributed during the development or in different tissues (aralar1-RB, RC and RE). Aralar1-PA and Aralar1-PE, representative of all isoforms, have been biochemically characterized. Recombinant Aralar1-PA and Aralar1-PE proteins share similar efficiency to exchange glutamate against aspartate, and same substrate affinities than the human isoforms. Interestingly, although Aralar1-PA and Aralar1-PE diverge only in their EF-hand 8, they greatly differ in their specific activities and substrate specificity. CONCLUSIONS The tight regulation of aralar1 transcripts expression and the high request of aspartate and glutamate during early embryogenesis suggest a crucial role of Aralar1 in this Drosophila developmental stage. Furthermore, biochemical characterization and calcium sensitivity have identified Aralar1-PA and Aralar1-PE as the human aralar and citrin counterparts, respectively. GENERAL SIGNIFICANCE The functional characterization of the fruit fly mitochondrial AGC transporter represents a crucial step toward a complete understanding of the metabolic events acting during early embryogenesis.
Collapse
|
7
|
Shen J, Tomar JS. Elevated Brain Glutamate Levels in Bipolar Disorder and Pyruvate Carboxylase-Mediated Anaplerosis. Front Psychiatry 2021; 12:640977. [PMID: 33708149 PMCID: PMC7940766 DOI: 10.3389/fpsyt.2021.640977] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/19/2021] [Indexed: 12/17/2022] Open
Abstract
In vivo 1H magnetic resonance spectroscopy studies have found elevated brain glutamate or glutamate + glutamine levels in bipolar disorder with surprisingly high reproducibility. We propose that the elevated glutamate levels in bipolar disorder can be explained by increased pyruvate carboxylase-mediated anaplerosis in brain. Multiple independent lines of evidence supporting increased pyruvate carboxylase-mediated anaplerosis as a common mechanism underlying glutamatergic hyperactivity in bipolar disorder and the positive association between bipolar disorder and obesity are also described.
Collapse
Affiliation(s)
- Jun Shen
- Section on Magnetic Resonance Spectroscopy, Molecular Imaging Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, United States
| | - Jyoti Singh Tomar
- Section on Magnetic Resonance Spectroscopy, Molecular Imaging Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
8
|
Rosiles-Abonce A, Rubio C, Taddei E, Rosiles D, Rubio-Osornio M. Antiepileptogenic Effect of Retinoic Acid. Curr Neuropharmacol 2021; 19:383-391. [PMID: 32351181 PMCID: PMC8033965 DOI: 10.2174/1570159x18666200429232104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/17/2020] [Accepted: 04/24/2020] [Indexed: 11/24/2022] Open
Abstract
Retinoic acid, a metabolite of vitamin A, acts through either genomic or nongenomic actions. The genomic action of retinoids exerts effects on gene transcription through interaction with retinoid receptors such as retinoic acid receptors (RARα, β, and γ) and retinoid X receptors (RXRα, β, and γ) that are primarily concentrated in the amygdala, pre-frontal cortex, and hippocampal areas in the brain. In response to retinoid binding, RAR/RXR heterodimers undergo major conformational changes and orchestrate the transcription of specific gene networks. Previous experimental studies have reported that retinoic acid exerts an antiepileptogenic effect through diverse mechanisms, including the modulation of gap junctions, neurotransmitters, long-term potentiation, calcium channels and some genes. To our knowledge, there are no previous or current clinical trials evaluating the use of retinoic acid for seizure control.
Collapse
Affiliation(s)
| | | | | | | | - Moisés Rubio-Osornio
- Address correspondence to this author at the Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico; E-mail:
| |
Collapse
|
9
|
Zuhra K, Augsburger F, Majtan T, Szabo C. Cystathionine-β-Synthase: Molecular Regulation and Pharmacological Inhibition. Biomolecules 2020; 10:E697. [PMID: 32365821 PMCID: PMC7277093 DOI: 10.3390/biom10050697] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Cystathionine-β-synthase (CBS), the first (and rate-limiting) enzyme in the transsulfuration pathway, is an important mammalian enzyme in health and disease. Its biochemical functions under physiological conditions include the metabolism of homocysteine (a cytotoxic molecule and cardiovascular risk factor) and the generation of hydrogen sulfide (H2S), a gaseous biological mediator with multiple regulatory roles in the vascular, nervous, and immune system. CBS is up-regulated in several diseases, including Down syndrome and many forms of cancer; in these conditions, the preclinical data indicate that inhibition or inactivation of CBS exerts beneficial effects. This article overviews the current information on the expression, tissue distribution, physiological roles, and biochemistry of CBS, followed by a comprehensive overview of direct and indirect approaches to inhibit the enzyme. Among the small-molecule CBS inhibitors, the review highlights the specificity and selectivity problems related to many of the commonly used "CBS inhibitors" (e.g., aminooxyacetic acid) and provides a comprehensive review of their pharmacological actions under physiological conditions and in various disease models.
Collapse
Affiliation(s)
- Karim Zuhra
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Fiona Augsburger
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| |
Collapse
|
10
|
Kanellopoulos AK, Mariano V, Spinazzi M, Woo YJ, McLean C, Pech U, Li KW, Armstrong JD, Giangrande A, Callaerts P, Smit AB, Abrahams BS, Fiala A, Achsel T, Bagni C. Aralar Sequesters GABA into Hyperactive Mitochondria, Causing Social Behavior Deficits. Cell 2020; 180:1178-1197.e20. [DOI: 10.1016/j.cell.2020.02.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/01/2020] [Accepted: 02/18/2020] [Indexed: 12/21/2022]
|
11
|
Xu R, Ritz BK, Wang Y, Huang J, Zhao C, Gong K, Liu X, Du J. The retina and retinal pigment epithelium differ in nitrogen metabolism and are metabolically connected. J Biol Chem 2020; 295:2324-2335. [PMID: 31953322 DOI: 10.1074/jbc.ra119.011727] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/15/2020] [Indexed: 01/07/2023] Open
Abstract
Defects in energy metabolism in either the retina or the immediately adjacent retinal pigment epithelium (RPE) underlie retinal degeneration, but the metabolic dependence between retina and RPE remains unclear. Nitrogen-containing metabolites such as amino acids are essential for energy metabolism. Here, we found that 15N-labeled ammonium is predominantly assimilated into glutamine in both the retina and RPE/choroid ex vivo [15N]Ammonium tracing in vivo show that, like the brain, the retina can synthesize asparagine from ammonium, but RPE/choroid and the liver cannot. However, unless present at toxic concentrations, ammonium cannot be recycled into glutamate in the retina and RPE/choroid. Tracing with 15N-labeled amino acids show that the retina predominantly uses aspartate transaminase for de novo synthesis of glutamate, glutamine, and aspartate, whereas RPE uses multiple transaminases to utilize and synthesize amino acids. Retina consumes more leucine than RPE, but little leucine is catabolized. The synthesis of serine and glycine is active in RPE but limited in the retina. RPE, but not the retina, uses alanine as mitochondrial substrates through mitochondrial pyruvate carrier. However, when the mitochondrial pyruvate carrier is inhibited, alanine may directly enter the retinal mitochondria but not those of RPE. In conclusion, our results demonstrate that the retina and RPE differ in nitrogen metabolism and highlight that the RPE supports retinal metabolism through active amino acid metabolism.
Collapse
Affiliation(s)
- Rong Xu
- Central Laboratory, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012 China; Department of Ophthalmology, West Virginia University, Morgantown, West Virginia 26506; Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Brianna K Ritz
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia 26506; Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Yekai Wang
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia 26506; Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Jiancheng Huang
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia 26506; Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506; Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433 China
| | - Chen Zhao
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433 China
| | - Kaizheng Gong
- Department of Cardiology, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012 China
| | - Xinnong Liu
- Department of General Surgery, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012; Department of Cardiology, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012 China.
| | - Jianhai Du
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia 26506; Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506.
| |
Collapse
|
12
|
Fang Y, Deng X, Lu X, Zheng J, Jiang H, Rao Y, Zeng D, Hu J, Zhang X, Xue D. Differential phosphoproteome study of the response to cadmium stress in rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:780-788. [PMID: 31154203 DOI: 10.1016/j.ecoenv.2019.05.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
Cadmium (Cd) is one of the most toxic heavy metals, and its accumulation in plants will seriously affect growth and yield. In this study, Cd-sensitive line D69 and Cd-tolerant line D28 were selected, which the Cd content of D28 was higher than D69 in both above and underground parts after Cd treatment. Using a combination of two-dimensional gel electrophoresis (2-DE) and MALDI-TOF-TOF MS/MS, the differential expression changes of phosphorylated proteins between D69 and D28 in leaves were classified and analyzed after Cd treatment. A total of 53 differentially expressed phosphoproteins were identified, which mainly involved in metabolism, signal transduction, gene expression regulation, material transport, and membrane fusion. The phosphorylated proteins of Cd-tolerant and Cd-sensitive lines were all analyzed, and found that some proteins associated with carbon metabolism, proteolytic enzymes, F-box containing transcription factors, RNA helicases, DNA replication/transcription/repair enzymes and ankyrins were detected in Cd-tolerant line D28, which might alleviate the abiotic stress caused by Cd treatment. These results will clarify the phosphorylated pathways in response and resistance to Cd stress in rice.
Collapse
Affiliation(s)
- Yunxia Fang
- College of Life and Environmental Sciences, Hangzhou Normal University, 16 Xiasha Road, 310036, Hangzhou, China
| | - Xiangxiong Deng
- College of Life and Environmental Sciences, Hangzhou Normal University, 16 Xiasha Road, 310036, Hangzhou, China
| | - Xueli Lu
- College of Life and Environmental Sciences, Hangzhou Normal University, 16 Xiasha Road, 310036, Hangzhou, China; State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyu Road, 310006, Hangzhou, China
| | - Junjun Zheng
- College of Life and Environmental Sciences, Hangzhou Normal University, 16 Xiasha Road, 310036, Hangzhou, China
| | - Hua Jiang
- Zhejiang Academy of Agricultural Science, 298 Deshengzhong Road, 310021, Hangzhou, China
| | - Yuchun Rao
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, 321004, Jinhua, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyu Road, 310006, Hangzhou, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyu Road, 310006, Hangzhou, China.
| | - Xiaoqin Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, 16 Xiasha Road, 310036, Hangzhou, China.
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, 16 Xiasha Road, 310036, Hangzhou, China.
| |
Collapse
|
13
|
Tobore TO. Towards a comprehensive understanding of the contributions of mitochondrial dysfunction and oxidative stress in the pathogenesis and pathophysiology of Huntington's disease. J Neurosci Res 2019; 97:1455-1468. [DOI: 10.1002/jnr.24492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/06/2019] [Accepted: 06/16/2019] [Indexed: 12/21/2022]
|
14
|
Zhang M, Ying W. NAD + Deficiency Is a Common Central Pathological Factor of a Number of Diseases and Aging: Mechanisms and Therapeutic Implications. Antioxid Redox Signal 2019; 30:890-905. [PMID: 29295624 DOI: 10.1089/ars.2017.7445] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Increasing evidence has indicated critical roles of nicotinamide adenine dinucleotide, oxidized form (NAD+) in various biological functions. NAD+ deficiency has been found in models of a number of diseases such as cerebral ischemia, myocardial ischemia, and diabetes, and in models of aging. Applications of NAD+ or other approaches that can restore NAD+ levels are highly protective in these models of diseases and aging. NAD+ produces its beneficial effects by targeting at multiple pathological pathways, including attenuating mitochondrial alterations, DNA damage, and oxidative stress, by modulating such enzymes as sirtuins, glyceraldehyde-3-phosphate dehydrogenase, and AP endonuclease. These findings have suggested great therapeutic and nutritional potential of NAD+ for diseases and senescence. Recent Advances: Approaches that can restore NAD+ levels are highly protective in the models of such diseases as glaucoma. The NAD+ deficiency in the diseases and aging results from not only poly(ADP-ribose) polymerase-1 (PARP-1) activation but also decreased nicotinamide phosphoribosyltransferase (Nampt) activity and increased CD38 activity. Significant biological effects of extracellular NAD+ have been found. Increasing evidence has suggested that NAD+ deficiency is a common central pathological factor in a number of diseases and aging. Critical Issues and Future Directions: Future studies are required for solidly establishing the concept that "NAD+ deficiency is a common central pathological factor in a number of disease and aging." It is also necessary to further investigate the mechanisms underlying the NAD+ deficiency in the diseases and aging. Preclinical and clinical studies should be conducted to determine the therapeutic potential of NAD+ for the diseases and aging.
Collapse
Affiliation(s)
- Mingchao Zhang
- 1 Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,2 Collaborative Innovation Center for Genetics and Development, Shanghai, China
| | - Weihai Ying
- 1 Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,2 Collaborative Innovation Center for Genetics and Development, Shanghai, China
| |
Collapse
|
15
|
Jalloh I, Helmy A, Howe DJ, Shannon RJ, Grice P, Mason A, Gallagher CN, Murphy MP, Pickard JD, Menon DK, Carpenter TA, Hutchinson PJ, Carpenter KLH. A Comparison of Oxidative Lactate Metabolism in Traumatically Injured Brain and Control Brain. J Neurotrauma 2018; 35:2025-2035. [PMID: 29690859 PMCID: PMC6098406 DOI: 10.1089/neu.2017.5459] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Metabolic abnormalities occur after traumatic brain injury (TBI). Glucose is conventionally regarded as the major energy substrate, although lactate can also be an energy source. We compared 3-13C lactate metabolism in TBI with "normal" control brain and muscle, measuring 13C-glutamine enrichment to assess tricarboxylic acid (TCA) cycle metabolism. Microdialysis catheters in brains of nine patients with severe TBI, five non-TBI brain surgical patients, and five resting muscle (non-TBI) patients were perfused (24 h in brain, 8 h in muscle) with 8 mmol/L sodium 3-13C lactate. Microdialysate analysis employed ISCUS and nuclear magnetic resonance. In TBI, with 3-13C lactate perfusion, microdialysate glucose concentration increased nonsignificantly (mean +11.9%, p = 0.463), with significant increases (p = 0.028) for lactate (+174%), pyruvate (+35.8%), and lactate/pyruvate ratio (+101.8%). Microdialysate 13C-glutamine fractional enrichments (median, interquartile range) were: for C4 5.1 (0-11.1) % in TBI and 5.7 (4.6-6.8) % in control brain, for C3 0 (0-5.0) % in TBI and 0 (0-0) % in control brain, and for C2 2.9 (0-5.7) % in TBI and 1.8 (0-3.4) % in control brain. 13C-enrichments were not statistically different between TBI and control brain, showing both metabolize 3-13C lactate via TCA cycle, in contrast to muscle. Several patients with TBI exhibited 13C-glutamine enrichment above the non-TBI control range, suggesting lactate oxidative metabolism as a TBI "emergency option."
Collapse
Affiliation(s)
- Ibrahim Jalloh
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| | - Adel Helmy
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| | - Duncan J Howe
- 2 Department of Chemistry, University of Cambridge , Cambridge, United Kingdom
| | - Richard J Shannon
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| | - Peter Grice
- 2 Department of Chemistry, University of Cambridge , Cambridge, United Kingdom
| | - Andrew Mason
- 2 Department of Chemistry, University of Cambridge , Cambridge, United Kingdom
| | - Clare N Gallagher
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom .,3 Division of Neurosurgery, Department of Clinical Neurosciences, University of Calgary , Calgary, Ontario, Canada
| | - Michael P Murphy
- 4 MRC Mitochondrial Biology Unit, University of Cambridge , Cambridge, United Kingdom
| | - John D Pickard
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom .,5 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| | - David K Menon
- 5 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom .,6 Division of Anaesthesia, Department of Medicine, University of Cambridge , Cambridge, United Kingdom
| | - T Adrian Carpenter
- 5 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| | - Peter J Hutchinson
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom .,5 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| | - Keri L H Carpenter
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom .,5 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| |
Collapse
|
16
|
Guo L, Tian J, Du H. Mitochondrial Dysfunction and Synaptic Transmission Failure in Alzheimer's Disease. J Alzheimers Dis 2018; 57:1071-1086. [PMID: 27662318 DOI: 10.3233/jad-160702] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder, in which multiple risk factors converge. Despite the complexity of the etiology of the disease, synaptic failure is the pathological basis of cognitive impairment, the cardinal sign of AD. Decreased synaptic density, compromised synaptic transmission, and defected synaptic plasticity are hallmark synaptic pathologies accompanying AD. However, the mechanisms by which synapses are injured in AD-related conditions have not been fully elucidated. Mitochondria are a critical organelle in neurons. The pivotal role of mitochondria in supporting synaptic function and the concomitant occurrence of mitochondrial dysfunction with synaptic stress in postmortem AD brains as well as AD animal models seem to lend the credibility to the hypothesis that mitochondrial defects underlie synaptic failure in AD. This concept is further strengthened by the protective effect of mitochondrial medicine on synaptic function against the toxicity of amyloid-β, a key player in the pathogenesis of AD. In this review, we focus on the association between mitochondrial dysfunction and synaptic transmission deficits in AD. Impaired mitochondrial energy production, deregulated mitochondrial calcium handling, excess mitochondrial reactive oxygen species generation and release play a crucial role in mediating synaptic transmission deregulation in AD. The understanding of the role of mitochondrial dysfunction in synaptic stress may lead to novel therapeutic strategies for the treatment of AD through the protection of synaptic transmission by targeting to mitochondrial deficits.
Collapse
Affiliation(s)
- Lan Guo
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Jing Tian
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Heng Du
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA.,Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
17
|
Rojas-Gutierrez E, Muñoz-Arenas G, Treviño S, Espinosa B, Chavez R, Rojas K, Flores G, Díaz A, Guevara J. Alzheimer's disease and metabolic syndrome: A link from oxidative stress and inflammation to neurodegeneration. Synapse 2017. [PMID: 28650104 DOI: 10.1002/syn.21990] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and one of the most important causes of morbidity and mortality among the aging population. AD diagnosis is made post-mortem, and the two pathologic hallmarks, particularly evident in the end stages of the illness, are amyloid plaques and neurofibrillary tangles. Currently, there is no curative treatment for AD. Additionally, there is a strong relation between oxidative stress, metabolic syndrome, and AD. The high levels of circulating lipids and glucose imbalances amplify lipid peroxidation that gradually diminishes the antioxidant systems, causing high levels of oxidative metabolism that affects cell structure, leading to neuronal damage. Accumulating evidence suggests that AD is closely related to a dysfunction of both insulin signaling and glucose metabolism in the brain, leading to an insulin-resistant brain state. Four drugs are currently used for this pathology: Three FDA-approved cholinesterase inhibitors and one NMDA receptor antagonist. However, wide varieties of antioxidants are promissory to delay or prevent the symptoms of AD and may help in treating the disease. Therefore, therapeutic efforts to achieve attenuation of oxidative stress could be beneficial in AD treatment, attenuating Aβ-induced neurotoxicity and improve neurological outcomes in AD. The term inflammaging characterizes a widely accepted paradigm that aging is accompanied by a low-grade chronic up-regulation of certain pro-inflammatory responses in the absence of overt infection, and is a highly significant risk factor for both morbidity and mortality in the elderly.
Collapse
Affiliation(s)
- Eduardo Rojas-Gutierrez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Guadalupe Muñoz-Arenas
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Blanca Espinosa
- Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias-INER, Ciudad de México, Mexico
| | - Raúl Chavez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Karla Rojas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Jorge Guevara
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
18
|
Juaristi I, García-Martín ML, Rodrigues TB, Satrústegui J, Llorente-Folch I, Pardo B. ARALAR/AGC1 deficiency, a neurodevelopmental disorder with severe impairment of neuronal mitochondrial respiration, does not produce a primary increase in brain lactate. J Neurochem 2017; 142:132-139. [PMID: 28429368 DOI: 10.1111/jnc.14047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 03/07/2017] [Accepted: 04/07/2017] [Indexed: 12/28/2022]
Abstract
ARALAR/AGC1 (aspartate-glutamate mitochondrial carrier 1) is an important component of the NADH malate-aspartate shuttle (MAS). AGC1-deficiency is a rare disease causing global cerebral hypomyelination, developmental arrest, hypotonia, and epilepsy (OMIM ID #612949); the aralar-KO mouse recapitulates the major findings in humans. This study was aimed at understanding the impact of ARALAR-deficiency in brain lactate levels as a biomarker. We report that lactate was equally abundant in wild-type and aralar-KO mouse brain in vivo at postnatal day 17. We find that lactate production upon mitochondrial blockade depends on up-regulation of lactate formation in astrocytes rather than in neurons. However, ARALAR-deficiency decreased cell respiration in neurons, not astrocytes, which maintained unchanged respiration and lactate production. As the primary site of ARALAR-deficiency is neuronal, this explains the lack of accumulation of brain lactate in ARALAR-deficiency in humans and mice. On the other hand, we find that the cytosolic and mitochondrial components of the glycerol phosphate shuttle are present in astrocytes with similar activities. This suggests that glycerol phosphate shuttle is the main NADH shuttle in astrocytes and explains the absence of effects of ARALAR-deficiency in these cells.
Collapse
Affiliation(s)
- Inés Juaristi
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain.,CIBER de Enfermedades Raras (CIBERER), Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD); Universidad Autónoma de Madrid, Madrid, Spain
| | - María L García-Martín
- Laboratory of Metabolomics and Molecular Imaging, BIONAND, Andalusian Centre for Nanomedicine and Biotechnology (Junta de Andalucía, Universidad de Málaga), Malaga, Spain
| | - Tiago B Rodrigues
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.,Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Jorgina Satrústegui
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain.,CIBER de Enfermedades Raras (CIBERER), Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD); Universidad Autónoma de Madrid, Madrid, Spain
| | - Irene Llorente-Folch
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain.,CIBER de Enfermedades Raras (CIBERER), Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD); Universidad Autónoma de Madrid, Madrid, Spain
| | - Beatriz Pardo
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain.,CIBER de Enfermedades Raras (CIBERER), Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD); Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
19
|
Shang W, Wei X, Ying W. Malate-aspartate shuttle inhibitor aminooxyacetic acid blocks lipopolysaccharides-induced activation of BV2 microglia. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2017; 9:58-63. [PMID: 28533892 PMCID: PMC5435673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/06/2017] [Indexed: 06/07/2023]
Abstract
NADH shuttles, including malate-aspartate shuttle (MAS) and glycerol-3-phosphate shuttle, mediate the transfer of the reducing equivalents of cytosolic NADH into mitochondria. In our current study, we used BV2 microglia as a cellular model to determine the roles of NADH shuttles in lipopolysaccharides (LPS)-induced microglial activation. We found that aminooxyacetic acid (AOAA), a widely used MAS inhibitor, significantly attenuated LPS-induced increases in the levels of nitric oxide-a hallmarker of microglial activation. Our Western Blot assays also showed that AOAA blocked the LPS-induced increases in the protein levels of iNOS, TNF-α and COX-2. Furthermore, we found that AOAA decreased LPS-induced nuclear translocation of NF-κB. Collectively, our study has suggested that AOAA may be a new agent for inhibiting microglial activation. Our study has also suggested that MAS may be a novel target for modulating microglial activation under pathological conditions.
Collapse
Affiliation(s)
- Wangsong Shang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghai, China
| | - Xunbin Wei
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghai, China
| | - Weihai Ying
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghai, China
- Institute of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Collaborative Innovation Center of Genetics and DevelopmentShanghai, China
| |
Collapse
|
20
|
Contreras L, Rial E, Cerdan S, Satrustegui J. Uncoupling Protein 2 (UCP2) Function in the Brain as Revealed by the Cerebral Metabolism of (1–13C)-Glucose. Neurochem Res 2016; 42:108-114. [DOI: 10.1007/s11064-016-1999-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/30/2016] [Accepted: 07/02/2016] [Indexed: 12/15/2022]
|
21
|
Wang C, Chen H, Zhang M, Zhang J, Wei X, Ying W. Malate-aspartate shuttle inhibitor aminooxyacetic acid leads to decreased intracellular ATP levels and altered cell cycle of C6 glioma cells by inhibiting glycolysis. Cancer Lett 2016; 378:1-7. [PMID: 27157912 DOI: 10.1016/j.canlet.2016.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 01/08/2023]
Abstract
NADH shuttles, including malate-aspartate shuttle (MAS) and glycerol-3-phosphate shuttle, can shuttle the reducing equivalents of cytosolic NADH into mitochondria. It is widely accepted that the major function of NADH shuttles is to increase mitochondrial energy production. Our study tested the hypothesis that the novel major function of NADH shuttles in cancer cells is to maintain glycolysis by decreasing cytosolic NADH/NAD(+) ratios. We found that AOAA, a widely used MAS inhibitor, led to decreased intracellular ATP levels, altered cell cycle and increased apoptosis and necrosis of C6 glioma cells, without affecting the survival of primary astrocyte cultures. AOAA also decreased the glycolytic rate and the levels of extracellular lactate and pyruvate, without affecting the mitochondrial membrane potential of C6 cells. Moreover, the toxic effects of AOAA were completely prevented by pyruvate treatment. Collectively, our study has suggested that AOAA may be used to selectively decrease glioma cell survival, and the major function of MAS in cancer cells may be profoundly different from its major function in normal cells: The major function of MAS in cancer cells is to maintain glycolysis, instead of increasing mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Caixia Wang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Heyu Chen
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Mingchao Zhang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jie Zhang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xunbin Wei
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Weihai Ying
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| |
Collapse
|
22
|
Amoedo ND, Punzi G, Obre E, Lacombe D, De Grassi A, Pierri CL, Rossignol R. AGC1/2, the mitochondrial aspartate-glutamate carriers. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2394-412. [PMID: 27132995 DOI: 10.1016/j.bbamcr.2016.04.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/28/2016] [Accepted: 04/08/2016] [Indexed: 10/21/2022]
Abstract
In this review we discuss the structure and functions of the aspartate/glutamate carriers (AGC1-aralar and AGC2-citrin). Those proteins supply the aspartate synthesized within mitochondrial matrix to the cytosol in exchange for glutamate and a proton. A structure of an AGC carrier is not available yet but comparative 3D models were proposed. Moreover, transport assays performed by using the recombinant AGC1 and AGC2, reconstituted into liposome vesicles, allowed to explore the kinetics of those carriers and to reveal their specific transport properties. AGCs participate to a wide range of cellular functions, as the control of mitochondrial respiration, calcium signaling and antioxydant defenses. AGC1 might also play peculiar tissue-specific functions, as it was found to participate to cell-to-cell metabolic symbiosis in the retina. On the other hand, AGC1 is involved in the glutamate-mediated excitotoxicity in neurons and AGC gene or protein alterations were discovered in rare human diseases. Accordingly, a mice model of AGC1 gene knock-out presented with growth delay and generalized tremor, with myelinisation defects. More recently, AGC was proposed to play a crucial role in tumor metabolism as observed from metabolomic studies showing that the asparate exported from the mitochondrion by AGC1 is employed in the regeneration of cytosolic glutathione. Therefore, given the central role of AGCs in cell metabolism and human pathology, drug screening are now being developed to identify pharmacological modulators of those carriers. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
Affiliation(s)
- N D Amoedo
- Univ. Bordeaux, U1211, Bordeaux, France; INSERM, U1211, Bordeaux, France; Instituto de Bioquímica Médica Leopoldo De Meis, UFRJ, Rio de Janeiro, Brazil
| | - G Punzi
- Univ. Bordeaux, U1211, Bordeaux, France; INSERM, U1211, Bordeaux, France; Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari
| | - E Obre
- Univ. Bordeaux, U1211, Bordeaux, France; INSERM, U1211, Bordeaux, France
| | - D Lacombe
- Univ. Bordeaux, U1211, Bordeaux, France; INSERM, U1211, Bordeaux, France
| | - A De Grassi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari
| | - C L Pierri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari.
| | - R Rossignol
- Univ. Bordeaux, U1211, Bordeaux, France; INSERM, U1211, Bordeaux, France.
| |
Collapse
|
23
|
Iglesias J, Morales L, Barreto GE. Metabolic and Inflammatory Adaptation of Reactive Astrocytes: Role of PPARs. Mol Neurobiol 2016; 54:2518-2538. [PMID: 26984740 DOI: 10.1007/s12035-016-9833-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/04/2016] [Indexed: 01/10/2023]
Abstract
Astrocyte-mediated inflammation is associated with degenerative pathologies such as Alzheimer's and Parkinson's diseases and multiple sclerosis. The acute inflammation and morphological and metabolic changes that astrocytes develop after the insult are known as reactive astroglia or astrogliosis that is an important response to protect and repair the lesion. Astrocytes optimize their metabolism to produce lactate, glutamate, and ketone bodies in order to provide energy to the neurons that are deprived of nutrients upon insult. Firstly, we review the basis of inflammation and morphological changes of the different cell population implicated in reactive gliosis. Next, we discuss the more active metabolic pathways in healthy astrocytes and explain the metabolic response of astrocytes to the insult in different pathologies and which metabolic alterations generate complications in these diseases. We emphasize the role of peroxisome proliferator-activated receptors isotypes in the inflammatory and metabolic adaptation of astrogliosis developed in ischemia or neurodegenerative diseases. Based on results reported in astrocytes and other cells, we resume and hypothesize the effect of peroxisome proliferator-activated receptor (PPAR) activation with ligands on different metabolic pathways in order to supply energy to the neurons. The activation of selective PPAR isotype activity may serve as an input to better understand the role played by these receptors on the metabolic and inflammatory compensation of astrogliosis and might represent an opportunity to develop new therapeutic strategies against traumatic brain injuries and neurodegenerative diseases.
Collapse
Affiliation(s)
- José Iglesias
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.
| | - Ludis Morales
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
- Universidad Científica del Sur, Lima, Peru
| |
Collapse
|
24
|
Contreras L. Role of AGC1/aralar in the metabolic synergies between neuron and glia. Neurochem Int 2015; 88:38-46. [DOI: 10.1016/j.neuint.2015.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/30/2015] [Accepted: 04/07/2015] [Indexed: 10/23/2022]
|
25
|
Wang C, Zhang J, Zhang M, Chen H, Ying W. Aralar plays a significant role in maintaining the survival and mitochondrial membrane potential of BV2 microglia. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2015; 7:107-114. [PMID: 26330901 PMCID: PMC4550213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 02/28/2015] [Indexed: 06/05/2023]
Abstract
NADH shuttles mediate the transfer of the reducing equivalents of cytosolic NADH into mitochondria. Increasing evidence has suggested that malate-aspartate shuttle (MAS), one of the two types of NADH shuttles, plays important roles in certain biological processes. Aralar/AGC1, a Ca(2+)-dependent aspartate-glutamate carrier on mitochondrial membrane, is a component of MAS. It has been reported that Aralar plays crucial roles in linking increased cytosolic Ca(2+) concentrations to enhanced mitochondrial energy metabolism of neurons under certain conditions, while the role of the carrier in cell survival remains unknown. In the current study, we tested our hypothesis that Aralar plays an important role in cell survival, using BV2 microglia as a cellular model. Our study showed that Aralar siRNA-produced decrease in the Aralar level led to a significant reduction of the cell survival. Our FACS-based Annexin V/7-AAD assays also showed that the Aralar siRNA treatment led to a significant increase in apoptosis of the cells. Moreover, the Aralar siRNA treatment led to both mitochondrial depolarization and decreases in the intracellular ATP level of the cells. Collectively, our study has provided the first evidence suggesting that Aralar plays a significant role in cell survival, at least for such cell types as BV2 microglia, possibly by producing mitochondrial depolarization. These observations have also provided novel information for understanding the roles of NADH shuttles in cell survival.
Collapse
Affiliation(s)
- Caixia Wang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghai 200030, P. R. China
| | - Jie Zhang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghai 200030, P. R. China
| | - Mingchao Zhang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghai 200030, P. R. China
- Zhiyuan College, Shanghai Jiao Tong UniversityShanghai 200030, P. R. China
| | - Heyu Chen
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghai 200030, P. R. China
| | - Weihai Ying
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghai 200030, P. R. China
- Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200025, P. R. China
| |
Collapse
|
26
|
Chen H, Wang C, Wei X, Ding X, Ying W. Malate-Aspartate Shuttle Inhibitor Aminooxyacetate Acid Induces Apoptosis and Impairs Energy Metabolism of Both Resting Microglia and LPS-Activated Microglia. Neurochem Res 2015; 40:1311-8. [PMID: 25998884 DOI: 10.1007/s11064-015-1589-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/19/2015] [Accepted: 04/22/2015] [Indexed: 01/08/2023]
Abstract
NADH shuttles mediate the transfer of the reducing equivalents of cytosolic NADH into mitochondria. Cumulating evidence has suggested that malate-aspartate shuttle (MAS), one of the two types of NADH shuttles, plays significant roles in such biological processes as glutamate synthesis in neurons. However, there has been no information regarding the roles of NADH shuttle in the survival and energy metabolism of microglia. In current study, using microglial BV2 cells as a cellular model, we determined the roles of MAS in the survival and energy metabolism of microglia by using aminooxyacetate acid (AOAA)-a widely used MAS inhibitor. Our study has suggested that AOAA can effectively inhibit the MAS activity of the cells. We also found that AOAA can induce both early- and late-stage apoptosis of resting microglia and lipopolysaccharides (LPS)-activated microglia. AOAA also induced mitochondrial depolarization, increases in the cytosolic Ca(2+) concentrations, and decreases in the intracellular ATP levels. Moreover, our study has excluded the possibility that the major nonspecific effect of AOAA-inhibition of GABA transaminase-is involved in theses effects of AOAA. Collectively, our study has provided first information suggesting significant roles of MAS in the survival and energy metabolism in both resting microglia and LPS-activated microglia.
Collapse
Affiliation(s)
- Heyu Chen
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, People's Republic of China
| | | | | | | | | |
Collapse
|
27
|
Verkhratsky A, Nedergaard M, Hertz L. Why are astrocytes important? Neurochem Res 2014; 40:389-401. [PMID: 25113122 DOI: 10.1007/s11064-014-1403-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/22/2014] [Accepted: 07/26/2014] [Indexed: 12/27/2022]
Abstract
Astrocytes, which populate the grey and white mater of the brain and the spinal cord are highly heterogeneous in their morphology and function. These cells are primarily responsible for homeostasis of the central nervous system (CNS). Most central synapses are surrounded by exceedingly thin astroglial perisynaptic processes, which act as "astroglial cradle" critical for genesis, maturation and maintenance of synaptic connectivity. The perisynaptic glial processes are densely packed with numerous transporters, which provide for homeostasis of ions and neurotransmitters in the synaptic cleft, for local metabolic support and for release of astroglial derived scavengers of reactive oxygen species. Through perivascular processes astrocytes contribute to blood-brain barrier and form "glymphatic" drainage system of the CNS. Furthermore astrocytes are indispensible for glutamatergic and γ-aminobutyrate-ergic synaptic transmission being the supplier of neurotransmitters precursor glutamine via an astrocytic/neuronal cycle. Pathogenesis of many neurological disorders, including neuropsychiatric and neurodegenerative diseases is defined by loss of homeostatic function (astroglial asthenia) or remodelling of astroglial homoeostatic capabilities. Astroglial cells further contribute to neuropathologies through mounting complex defensive programme generally known as reactive astrogliosis.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK,
| | | | | |
Collapse
|
28
|
Wang C, Chen H, Zhang J, Hong Y, Ding X, Ying W. Malate-aspartate shuttle mediates the intracellular ATP levels, antioxidation capacity and survival of differentiated PC12 cells. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2014; 6:109-114. [PMID: 25057337 PMCID: PMC4106647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/22/2014] [Indexed: 06/03/2023]
Abstract
NAD(+) and NADH play pivotal roles in numerous redox reactions in cells. While increasing evidence has indicated important roles of NAD(+) in cell survival and cellular functions, there has been distinct deficiency in the studies regarding the biological functions of NADH. NADH shuttles mediate the transfer of the reducing equivalents of the cytosolic NADH into mitochondria. Cumulating evidence has suggested that malate-aspartate shuttle (MAS), one of the two types of NADH shuttles, plays significant roles in multiple biological processes such as glutamate synthesis in neurons. Because there has been no information regarding the roles of NADH shuttle in the energy metabolism, antioxidation capacity, and survival of any type of neural cells, in this study we used differentiated PC12 cells as a cellular model to investigate the roles of MAS in the energy metabolism, antioxidation capacity and survival of cells. We found that MAS inhibition led to a significant decrease in the levels of GSH - a major antioxidation molecule in cells, suggesting an important role of MAS in maintaining the antioxidation capacity of cells. Our study has also suggested that MAS could play critical roles in maintaining the intracellular ATP levels of the cells. Moreover, MAS inhibition was shown to significantly decrease the survival of differentiated PC12 cells. Collectively, our study has provided first evidence suggesting important roles of NADH shuttles in maintaining antioxidation capacity of cells. Our study has also suggested important roles of MAS in maintaining the intracellular ATP levels and survival of differentiated PC12 cells.
Collapse
Affiliation(s)
- Caixia Wang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghai 200030, P.R. China
| | - Heyu Chen
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghai 200030, P.R. China
| | - Jie Zhang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghai 200030, P.R. China
| | - Yunyi Hong
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghai 200030, P.R. China
| | - Xianting Ding
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghai 200030, P.R. China
| | - Weihai Ying
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghai 200030, P.R. China
- Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200030, P.R. China
| |
Collapse
|
29
|
Fatty acids in energy metabolism of the central nervous system. BIOMED RESEARCH INTERNATIONAL 2014; 2014:472459. [PMID: 24883315 PMCID: PMC4026875 DOI: 10.1155/2014/472459] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/29/2014] [Accepted: 03/29/2014] [Indexed: 12/13/2022]
Abstract
In this review, we analyze the current hypotheses regarding energy metabolism in the neurons and astroglia. Recently, it was shown that up to 20% of the total brain's energy is provided by mitochondrial oxidation of fatty acids. However, the existing hypotheses consider glucose, or its derivative lactate, as the only main energy substrate for the brain. Astroglia metabolically supports the neurons by providing lactate as a substrate for neuronal mitochondria. In addition, a significant amount of neuromediators, glutamate and GABA, is transported into neurons and also serves as substrates for mitochondria. Thus, neuronal mitochondria may simultaneously oxidize several substrates. Astrocytes have to replenish the pool of neuromediators by synthesis de novo, which requires large amounts of energy. In this review, we made an attempt to reconcile β-oxidation of fatty acids by astrocytic mitochondria with the existing hypothesis on regulation of aerobic glycolysis. We suggest that, under condition of neuronal excitation, both metabolic pathways may exist simultaneously. We provide experimental evidence that isolated neuronal mitochondria may oxidize palmitoyl carnitine in the presence of other mitochondrial substrates. We also suggest that variations in the brain mitochondrial metabolic phenotype may be associated with different mtDNA haplogroups.
Collapse
|
30
|
Hertz L, Rodrigues TB. Astrocytic-Neuronal-Astrocytic Pathway Selection for Formation and Degradation of Glutamate/GABA. Front Endocrinol (Lausanne) 2014; 5:42. [PMID: 24772106 PMCID: PMC3982103 DOI: 10.3389/fendo.2014.00042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/19/2014] [Indexed: 12/16/2022] Open
Affiliation(s)
- Leif Hertz
- College of Basic Medical Sciences, China Medical University, Shenyang, China
- *Correspondence: ;
| | - Tiago B. Rodrigues
- CRUK Cambridge Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
- *Correspondence: ;
| |
Collapse
|