1
|
Stefanakis K, Upadhyay J, Ramirez-Cisneros A, Patel N, Sahai A, Mantzoros CS. Leptin physiology and pathophysiology in energy homeostasis, immune function, neuroendocrine regulation and bone health. Metabolism 2024; 161:156056. [PMID: 39481533 DOI: 10.1016/j.metabol.2024.156056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Since its discovery and over the past thirty years, extensive research has significantly expanded our understanding of leptin and its diverse roles in human physiology, pathophysiology and therapeutics. A prototypical adipokine initially identified for its critical function in appetite regulation and energy homeostasis, leptin has been revealed to also exert profound effects on the hypothalamic-pituitary-gonadal, thyroid, adrenal and growth hormone axis, differentially between animals and humans, as well as in regulating immune function. Beyond these roles, leptin plays a pivotal role in significantly affecting bone health by promoting bone formation and regulating bone metabolism both directly and indirectly through its neuroendocrine actions. The diverse actions of leptin are particularly notable in leptin-deficient animal models and in conditions characterized by low circulating leptin levels, such as lipodystrophies and relative energy deficiency. Conversely, the effectiveness of leptin is attenuated in leptin-sufficient states, such as obesity and other high-adiposity conditions associated with hyperleptinemia and leptin tolerance. This review attempts to consolidate 30 years of leptin research with an emphasis on its physiology and pathophysiology in humans, including its promising therapeutic potential. We discuss preclinical and human studies describing the pathophysiology of energy deficiency across organ systems and the significant role of leptin in regulating neuroendocrine, immune, reproductive and bone health. We finally present past proof of concept clinical trials of leptin administration in leptin-deficient subjects that have demonstrated positive neuroendocrine, reproductive, and bone health outcomes, setting the stage for future phase IIb and III randomized clinical trials in these conditions.
Collapse
Affiliation(s)
- Konstantinos Stefanakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jagriti Upadhyay
- Department of Medicine, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Arantxa Ramirez-Cisneros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nihar Patel
- Department of Medicine, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Akshat Sahai
- Vassar Brothers Medical Center, Poughkeepsie, NY, USA
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Medicine, Boston VA Healthcare System, Boston, MA, USA.
| |
Collapse
|
2
|
Wang X, Jiang Y, Zhang Y, Xia M, Li J, Man C. Adipose tissue responds to stress-induced immunosuppression affecting immune response partially by miR-145-5p/S1PR1 pathway. Poult Sci 2024; 103:104431. [PMID: 39418791 PMCID: PMC11530903 DOI: 10.1016/j.psj.2024.104431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/20/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024] Open
Abstract
Stress-induced immunosuppression (SIIS) is one of the most common problems in intensive poultry production, which can cause immunized chickens to still develop diseases and bring huge losses to production. Recently, adipose tissue, as an immunomodulatory organ, has become a hot topic of attention. However, the function and mechanism of adipose tissue involved in SIIS and its influence on the immune response are still unclear. In this study, we dynamically analyzed the correlations between the T cells migration and change of sphingosine-1-phosphate receptor 1(S1PR1) gene in adipose tissue using chicken models with different immune states, and further explored the regulatory mechanisms and application. The results showed that SIIS could significantly change the expressions of lymphocytes migration related S1PR1 gene, and SIIS could inhibit the Newcastle disease virus (NDV) immune response partially by affecting the migration and proliferation of TCRα+ T cells in adipose tissue. Moreover, the miR-145-5p/S1PR1 pathway was a potential key mechanism to regulate T cells migration in adipose tissue, and circulating miR-145-5p had potential value as a molecular marker. This research can provide innovative reference for in-depth studying the immunoregulatory function and mechanism of adipose tissue.
Collapse
Affiliation(s)
- Xiangnan Wang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Yi Jiang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Yuxin Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Meiqi Xia
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Jia Li
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Chaolai Man
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China.
| |
Collapse
|
3
|
Liao Z, He X, Chen A, Zhong J, Lin S, Guo Y, Cui X, Chen B, Zhao W, Niu J. Astaxanthin attenuates glucose-induced liver injury in largemouth bass: role of p38MAPK and PI3K/Akt signaling pathways. Cell Biosci 2024; 14:122. [PMID: 39300527 DOI: 10.1186/s13578-024-01304-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Astaxanthin (ASX) has been documented to exert beneficial influence on various processes in fish. Largemouth bass (Micropterus salmoides) serves as a common model for studying glucose-induced liver disease, making it imperative to investigate the regulatory mechanisms underlying its liver health. METHODS Largemouth bass were fed with a control diet (CON), a high carbohydrate diet (HC), or a HC diet supplemented astaxanthin (HCA) for 8-weeks, followed by the glucose tolerance test (GTT). Primary hepatocytes were treated with low glucose and high glucose combined with different concentrations of astaxanthin for 48 h. The histopathology, enzymology, transcriptomics, molecular biology and cell biology were combined to investigate the mechanism of liver injury. RESULTS This study provides evidence for the protective effects of ASX against growth performance reduction and hepatic liver injure in largemouth bass fed HC diet. In GTT, HCA diet exhibited an improvement in glucose tolerance following glucose loading. Although HCA diet did not restore the expression of insulin resistance-related genes in livers at different time during the GTT, the addition of ASX in the long-term HC diet did improve the insulin resistance pathway by regulating the PTP1B/PI3K/Akt signaling pathway. Hepatic transcriptome analyses showed that ASX plays an essential role in the modulation of glucose homeostasis in response to treated with HC diet. In in vitro study, ASX treatment resulted in an exaltation in cell viability and a reduction in the rate of cell apoptosis and reactive oxygen species (ROS). Additionally, astaxanthin was observed to improve apoptosis induced by high-glucose via p38MAPK/bcl-2/caspase-3 signaling pathway. CONCLUSIONS Astaxanthin exhibited a protective effect against apoptosis by regulating p38MAPK/bcl-2/caspase-3 pathway, and ameliorated insulin resistance by activating the PTP1B/PI3K/Akt pathway. This study elucidated the mechanism of astaxanthin in the liver injury of largemouth bass from a new perspective and provided a new target for the treatment of insulin resistance.
Collapse
Affiliation(s)
- Zhihong Liao
- State key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xuanshu He
- State key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Anqi Chen
- State key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | | | - Sihan Lin
- State key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yucai Guo
- State key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xin Cui
- State key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Baoyang Chen
- State key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wei Zhao
- State key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| | - Jin Niu
- State key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
4
|
Cai X, Li Y, Cui A, Jiang Y, Wang B, Meng Z, Xu Y. Characterization of adaptive expression regulation of yellowtail kingfish (Seriola lalandi) leptin, receptor, and receptor overlapping transcript genes in response to fasting and re-feeding strategies. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1513-1526. [PMID: 38722479 DOI: 10.1007/s10695-024-01353-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/02/2024] [Indexed: 07/30/2024]
Abstract
Leptins and other related genes have been proven to play vital roles in food intake, weight control, and other life activities. While the function of leptins in yellowtail kingfish (Seriola lalandi) has not yet been explored, in the present study, we investigated the structure and preliminary function of four leptin-related genes in S. lalandi. In detail, the sequence of two leptin genes (lepa and lepb), one leptin receptor gene (lepr), and one leptin receptor overlapping transcript (leprot) gene were obtained by homology cloning and RACE methods, in which lepa and lepb have similar structure. Moreover, homologous sequence alignment and evolutionary analysis of all four genes were clustered with Seriola dumerili. The tissue distribution of these four genes in thirteen tissues of yellowtail kingfish was detected by RT-qPCR. Both lepa and leprot were highly expressed in the brain and ovary, while lepb was highly expressed in the pituitary, gill, muscle, and ovary; lepr was highly expressed in the gill, kidney, and ovary. Additionally, these four genes also played roles in embryo development and early growth and development of larvae and juveniles of yellowtail kingfish. Finally, the function of leptin and leptin-related genes was investigated during fasting and re-feeding adaption of yellowtail kingfish. The results showed that these four genes have different regulation functions in five tissues; for example, the mRNA levels of lepa, lepr, and leprot in the brain decreased during fasting and immediately increased after re-feeding, while the mRNA level of lepb did not show significant fluctuation during starvation but significantly lowered after re-feeding. However, lepa and lepb mRNA levels were significantly elevated during fasting and returned to control levels after re-feeding, and there were no significant changes in the expression of lepr and leprot in the liver during fasting and after re-feeding. Moreover, the body mass of fish in the experimental group was measured, and compensatory growth was found after the resumption of feeding. These results suggested that leptin and receptor genes play different functions in different tissues to regulate the physiological state of fish in food deficiency and gain processes.
Collapse
Affiliation(s)
- Xin Cai
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Joint Laboratory for Deep Blue Fishery Engineering, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Ying Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Joint Laboratory for Deep Blue Fishery Engineering, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Aijun Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Joint Laboratory for Deep Blue Fishery Engineering, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Yan Jiang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Joint Laboratory for Deep Blue Fishery Engineering, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Bin Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Joint Laboratory for Deep Blue Fishery Engineering, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Zhaojun Meng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Joint Laboratory for Deep Blue Fishery Engineering, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Yongjiang Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Joint Laboratory for Deep Blue Fishery Engineering, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
| |
Collapse
|
5
|
Maylem ERS, Schütz LF, Spicer LJ. The role of asprosin in regulating ovarian granulosa- and theca-cell steroidogenesis: a review with comparisons to other adipokines. Reprod Fertil Dev 2024; 36:RD24027. [PMID: 39074236 DOI: 10.1071/rd24027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/04/2024] [Indexed: 07/31/2024] Open
Abstract
Adipose tissues produce a variety of biologically active compounds, including cytokines, growth factors and adipokines. Adipokines are important as they function as endocrine hormones that are related to various metabolic and reproductive diseases. The goal of this review was to summarise the role of asprosin, a recently discovered adipokine, and compare its role in ovarian steroidogenesis with that of other adipokines including adiponectin, leptin, resistin, apelin, visfatin, chemerin, irisin, and gremlin 1. The summary of concentrations of these adipokines in humans, rats and other animals will help researchers identify appropriate doses to test in future studies. Review of the literature indicated that asprosin increases androstenedione production in theca cells (Tc), and when cotreated with FSH increases oestradiol production in granulosa cells (Gc). In comparison, other adipokines (1) stimulate Gc oestradiol production but inhibit Tc androgen production (adiponectin), (2) inhibit Gc oestradiol production and Tc androstenedione production (leptin and chemerin), (3) inhibit Gc steroidogenesis with no effect on Tc (resistin), (4) inhibit Gc oestradiol production but stimulate Tc androgen production (gremlin 1), and (5) increase steroid secretion by Gc, with unknown effects on Tc steroidogenesis (apelin and visfatin). Irisin has direct effects on Gc but its precise role (inhibitory or stimulatory) may be species dependent and its effects on Tc will require additional research. Thus, most adipokines have direct effects (either positive or negative) on steroid production in ovarian cells, but how they all work together to create a cumulative effect or disease will require further research.
Collapse
Affiliation(s)
- Excel Rio S Maylem
- Philippine Carabao Center, National Headquarters and Gene Pool, Science City of Munoz, Nueva Ecija, Philippines
| | - Luis Fernando Schütz
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
| | - Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
6
|
Shephard AM, Lagon SR, Ledón-Rettig CC. Early life nutrient restriction affects hypothalamic-pituitary-interrenal axis gene expression in a diet type-specific manner. Gen Comp Endocrinol 2024; 352:114490. [PMID: 38460737 DOI: 10.1016/j.ygcen.2024.114490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
Stressful experiences in early life can alter phenotypic expression later in life. For instance, in vertebrates, early life nutrient restriction can modify later life activity of the hypothalamic-pituitary-adrenal/interrenal axis (the HPI in amphibians), including the up- and downstream regulatory components of glucocorticoid signaling. Early life nutrient restriction can also influence later life behavior and metabolism (e.g., fat accumulation). Yet, less is known about whether nutrient stress-induced carryover effects on HPA/HPI axis regulation can vary across environmental contexts, such as the type of diet on which nutrient restriction occurs. Here, we experimentally address this question using the plains spadefoot toad (Spea bombifrons), whose larvae develop in ephemeral habitats that impose intense competition over access to two qualitatively distinct diet types: detritus and live shrimp prey. Consistent with diet type-specific carryover effects of early life nutrient restriction on later life HPI axis regulation, we found that temporary nutrient restriction at the larval stage reduced juvenile (i.e., post-metamorphic) brain gene expression of an upstream glucocorticoid regulator (corticotropin-releasing hormone) and two downstream regulators (glucocorticoid and mineralocorticoid receptors) only on the shrimp diet. These patterns are consistent with known diet type-specific effects of larval nutrient restriction on juvenile corticosterone and behavior. Additionally, larval nutrient restriction increased juvenile body fat levels. Our study indicates that HPA/HPI axis regulatory responses to nutrient restriction can vary remarkably across diet types. Such diet type-specific regulation of the HPA/HPI axis might provide a basis for developmental or evolutionary decoupling of stress-induced carryover effects.
Collapse
Affiliation(s)
- Alexander M Shephard
- Department of Biology, Indiana University at Bloomington, Bloomington, IN, USA; Department of Biology, Indiana University at Bloomington, 915 East 3(rd) Street, Myers Hall, Bloomington, IN 47405, USA.
| | - Sarah R Lagon
- Department of Biology, Indiana University at Bloomington, Bloomington, IN, USA
| | | |
Collapse
|
7
|
Rossi GS, Welch KC. Leptin Resistance Does Not Facilitate Migratory Fattening in Ruby-Throated Hummingbirds (Archilochus Colubris). Integr Comp Biol 2023; 63:1075-1086. [PMID: 37248054 DOI: 10.1093/icb/icad046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/12/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023] Open
Abstract
In mammals, leptin is an important energy homeostasis hormone produced by adipose tissue. Circulating leptin concentrations correlate positively with fat mass and act in a negative feedback fashion to inhibit food intake and increase energy expenditure, thereby preventing fat gain. For some species, leptin resistance is advantageous during times of year where fat gain is necessary (e.g., prior to hibernation). While the function of leptin in birds remains controversial, seasonal leptin resistance may similarly benefit migratory species. Here, we used the ruby-throated hummingbird (Archilochus colubris) to test the hypothesis that leptin resistance promotes fattening prior to migration. We predicted that during the migratory fattening period, leptin levels should correlate positively with fat mass but should not inhibit food intake or increase energy expenditure, resulting in fattening. We tracked the body (fat) mass, the concentration of leptin-like protein in the urine, and the food intake of 12 captive hummingbirds from August 2021 to January 2022. In a subset of hummingbirds, we also quantified voluntary physical activity as a proxy for energy expenditure. We found remarkable age-related variation in fattening strategies, with juveniles doubling their body fat by mid-September and adults exhibiting only a 50% increase. Changes in fat mass were strongly associated with increased food intake and reduced voluntary activity. However, we found no correlation between leptin-like protein concentration and fat mass, food intake, or voluntary activity. Since increased torpor use has been shown to accelerate migratory fattening in ruby-throated hummingbirds, we also hypothesized that leptin is a mediator of torpor use. In an experimental manipulation of circulating leptin, however, we found no change in torpor use, body fat, or food intake. Overall, our findings suggest that leptin may not act as an adipostat in hummingbirds, nor does leptin resistance regulate how hummingbirds fatten prior to migration.
Collapse
Affiliation(s)
- Giulia S Rossi
- Departmant of Biological Sciences, University of Toronto Scarborough, Scarborough, ON M1C 1A4, Canada
| | - Kenneth C Welch
- Departmant of Biological Sciences, University of Toronto Scarborough, Scarborough, ON M1C 1A4, Canada
| |
Collapse
|
8
|
Xie M, Gao J, Wu H, Cheng X, Zhang Z, Song R, Li S, Zhou J, Li C, Zeng G. Molecular Characterization and Expression Pattern of leptin in Yellow Cheek Carp ( Elopichthys bambusa) and Its Transcriptional Changes in Response to Fasting and Refeeding. BIOLOGY 2023; 12:biology12050758. [PMID: 37237570 DOI: 10.3390/biology12050758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Leptin, a secretory protein encoded by obese genes, plays an important role in regulating feeding and energy metabolism in fish. To study the structure and function of the Leptin gene in yellow cheek carp (Elopichthys bambusa), the full-length cDNA sequence of leptin was cloned, named EbLep. The full-length cDNA of Eblep was 1140 bp, and the length of the open reading frame (ORF), which can encode a protein of 174 amino acids, was 525 bp. The signal peptide was predicted to contain 33 amino acids. Sequence alignment showed that the amino acid sequence of Leptin was conserved in cyprinid fish. Despite large differences between primary structures, the tertiary structure of the EbLep protein was similar to that of the human protein and had four α-helices. The EbLep mRNA transcript was detected in all tested tissues, with the highest expression in the liver and lowest expression in the spleen. In this study, short-term fasting significantly increased the mRNA expression of EbLep in the liver, which returned to a normal level after 6 days of refeeding and was significantly lower than the normal level after 28 days of refeeding. In the brain, the mRNA expression of EbLep significantly decreased during short-term fasting and significantly increased to a higher value than the control group after 1 h of refeeding. It then rapidly decreased to a lower value than the control group after 6 h of refeeding, returning to the normal level after 1 day of refeeding, and significantly decreasing to a lower value than the control group after 28 days of refeeding. To sum up, the change in the mRNA expression of EbLep in the brain and liver may be an adaptive strategy for different energy levels.
Collapse
Affiliation(s)
- Min Xie
- Hunan Fisheries Science Institute, Changsha 410153, China
| | - Jinwei Gao
- Hunan Fisheries Science Institute, Changsha 410153, China
| | - Hao Wu
- Hunan Fisheries Science Institute, Changsha 410153, China
| | - Xiaofei Cheng
- Hunan Fisheries Science Institute, Changsha 410153, China
| | - Zhou Zhang
- Hunan Fisheries Science Institute, Changsha 410153, China
| | - Rui Song
- Hunan Fisheries Science Institute, Changsha 410153, China
| | - Shaoming Li
- Hunan Fisheries Science Institute, Changsha 410153, China
| | - Jie Zhou
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410125, China
| | - Cheng Li
- Hunan Fisheries Science Institute, Changsha 410153, China
- Hunan Aquatic Foundation Seed Farm, Changsha 410153, China
| | - Guoqing Zeng
- Hunan Fisheries Science Institute, Changsha 410153, China
| |
Collapse
|
9
|
De la Cruz-Concepción B, Flores-Cortez YA, Barragán-Bonilla MI, Mendoza-Bello JM, Espinoza-Rojo M. Insulin: A connection between pancreatic β cells and the hypothalamus. World J Diabetes 2023; 14:76-91. [PMID: 36926659 PMCID: PMC10011898 DOI: 10.4239/wjd.v14.i2.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/13/2022] [Accepted: 01/17/2023] [Indexed: 02/14/2023] Open
Abstract
Insulin is a hormone secreted by pancreatic β cells. The concentration of glucose in circulation is proportional to the secretion of insulin by these cells. In target cells, insulin binds to its receptors and activates phosphatidylinositol-3-kinase/protein kinase B, inducing different mechanisms depending on the cell type. In the liver it activates the synthesis of glycogen, in adipose tissue and muscle it allows the capture of glucose, and in the hypothalamus, it regulates thermogenesis and appetite. Defects in insulin function [insulin resistance (IR)] are related to the development of neurodegenerative diseases in obese people. Furthermore, in obesity and diabetes, its role as an anorexigenic hormone in the hypothalamus is diminished during IR. Therefore, hyperphagia prevails, which aggravates hyper-glycemia and IR further, becoming a vicious circle in which the patient cannot regulate their need to eat. Uncontrolled calorie intake induces an increase in reactive oxygen species, overcoming cellular antioxidant defenses (oxidative stress). Reactive oxygen species activate stress-sensitive kinases, such as c-Jun N-terminal kinase and p38 mitogen-activated protein kinase, that induce phos-phorylation in serine residues in the insulin receptor, which blocks the insulin signaling pathway, continuing the mechanism of IR. The brain and pancreas are organs mainly affected by oxidative stress. The use of drugs that regulate food intake and improve glucose metabolism is the conventional therapy to improve the quality of life of these patients. Currently, the use of antioxidants that regulate oxidative stress has given good results because they reduce oxidative stress and inflammatory processes, and they also have fewer side effects than synthetic drugs.
Collapse
Affiliation(s)
- Brenda De la Cruz-Concepción
- Molecular and Genomic Biology Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico
| | - Yaccil Adilene Flores-Cortez
- Molecular and Genomic Biology Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico
| | - Martha Isela Barragán-Bonilla
- Molecular and Genomic Biology Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico
| | - Juan Miguel Mendoza-Bello
- Molecular and Genomic Biology Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico
| | - Monica Espinoza-Rojo
- Molecular and Genomic Biology Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico
| |
Collapse
|
10
|
Hue I, Capilla E, Rosell-Moll E, Balbuena-Pecino S, Goffette V, Gabillard JC, Navarro I. Recent advances in the crosstalk between adipose, muscle and bone tissues in fish. Front Endocrinol (Lausanne) 2023; 14:1155202. [PMID: 36998471 PMCID: PMC10043431 DOI: 10.3389/fendo.2023.1155202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Control of tissue metabolism and growth involves interactions between organs, tissues, and cell types, mediated by cytokines or direct communication through cellular exchanges. Indeed, over the past decades, many peptides produced by adipose tissue, skeletal muscle and bone named adipokines, myokines and osteokines respectively, have been identified in mammals playing key roles in organ/tissue development and function. Some of them are released into the circulation acting as classical hormones, but they can also act locally showing autocrine/paracrine effects. In recent years, some of these cytokines have been identified in fish models of biomedical or agronomic interest. In this review, we will present their state of the art focusing on local actions and inter-tissue effects. Adipokines reported in fish adipocytes include adiponectin and leptin among others. We will focus on their structure characteristics, gene expression, receptors, and effects, in the adipose tissue itself, mainly regulating cell differentiation and metabolism, but in muscle and bone as target tissues too. Moreover, lipid metabolites, named lipokines, can also act as signaling molecules regulating metabolic homeostasis. Regarding myokines, the best documented in fish are myostatin and the insulin-like growth factors. This review summarizes their characteristics at a molecular level, and describes both, autocrine effects and interactions with adipose tissue and bone. Nonetheless, our understanding of the functions and mechanisms of action of many of these cytokines is still largely incomplete in fish, especially concerning osteokines (i.e., osteocalcin), whose potential cross talking roles remain to be elucidated. Furthermore, by using selective breeding or genetic tools, the formation of a specific tissue can be altered, highlighting the consequences on other tissues, and allowing the identification of communication signals. The specific effects of identified cytokines validated through in vitro models or in vivo trials will be described. Moreover, future scientific fronts (i.e., exosomes) and tools (i.e., co-cultures, organoids) for a better understanding of inter-organ crosstalk in fish will also be presented. As a final consideration, further identification of molecules involved in inter-tissue communication will open new avenues of knowledge in the control of fish homeostasis, as well as possible strategies to be applied in aquaculture or biomedicine.
Collapse
Affiliation(s)
- Isabelle Hue
- Laboratory of Fish Physiology and Genomics, UR1037, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Rennes, France
| | - Encarnación Capilla
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Enrique Rosell-Moll
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Sara Balbuena-Pecino
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Valentine Goffette
- Laboratory of Fish Physiology and Genomics, UR1037, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Rennes, France
| | - Jean-Charles Gabillard
- Laboratory of Fish Physiology and Genomics, UR1037, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Rennes, France
| | - Isabel Navarro
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Best C, Jennings K, Culbert BM, Flear K, Volkoff H, Gilmour KM. Too stressed to eat: Investigating factors associated with appetite loss in subordinate rainbow trout. Mol Cell Endocrinol 2023; 559:111798. [PMID: 36243201 DOI: 10.1016/j.mce.2022.111798] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/23/2022] [Accepted: 10/09/2022] [Indexed: 11/18/2022]
Abstract
Juvenile rainbow trout (Oncorhynchus mykiss) form dominance hierarchies in which subordinates experience chronic social stress and suppression of food intake. Here we tested the hypothesis that inhibition of food intake reflects increased expression of anorexigenic (appetite inhibiting) signals and decreased expression of orexigenic (appetite stimulating) signals. Trout were confined in pairs for 1 or 4 days, or were confined in pairs for 4 days and then allowed to recover from social interactions for 2 or 4 days; sham fish were handled identically but held alone. Subordinates did not feed during social interaction and had lower food intake than dominants or shams during recovery. In parallel, plasma cortisol (∼18-26x) and liver leptin (lep-a1) transcript abundance (∼10-14x) were elevated in subordinates during social interaction but not recovery, suggesting that these factors contributed to the suppression of food intake. Fish deemed likely to become subordinate based on inhibition of food intake in response to a mild stressor also showed elevated liver lep-a1 transcript abundance (∼5x). The moderate response in these fish coupled with a correlation between liver lep-a1 and cortisol suggest that stress-induced elevation of cortisol increased liver lep-a1 transcript abundance in subordinate trout, contributing to stress-induced suppression of food intake.
Collapse
Affiliation(s)
- C Best
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - K Jennings
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - B M Culbert
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - K Flear
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - H Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - K M Gilmour
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
12
|
Jiménez-Cortegana C, Hontecillas-Prieto L, García-Domínguez DJ, Zapata F, Palazón-Carrión N, Sánchez-León ML, Tami M, Pérez-Pérez A, Sánchez-Jiménez F, Vilariño-García T, de la Cruz-Merino L, Sánchez-Margalet V. Obesity and Risk for Lymphoma: Possible Role of Leptin. Int J Mol Sci 2022; 23:15530. [PMID: 36555171 PMCID: PMC9779026 DOI: 10.3390/ijms232415530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Obesity, which is considered a pandemic due to its high prevalence, is a risk factor for many types of cancers, including lymphoma, through a variety of mechanisms by promoting an inflammatory state. Specifically, over the last few decades, obesity has been suggested not only to increase the risk of lymphoma but also to be associated with poor clinical outcomes and worse responses to different treatments for those diseases. Within the extensive range of proinflammatory mediators that adipose tissue releases, leptin has been demonstrated to be a key adipokine due to its pleotropic effects in many physiological systems and diseases. In this sense, different studies have analyzed leptin levels and leptin/leptin receptor expressions as a probable bridge between obesity and lymphomas. Since both obesity and lymphomas are prevalent pathophysiological conditions worldwide and their incidences have increased over the last few years, here we review the possible role of leptin as a promising proinflammatory mediator promoting lymphomas.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY 10065, USA
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Daniel J. García-Domínguez
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Fernando Zapata
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Natalia Palazón-Carrión
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - María L. Sánchez-León
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Malika Tami
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Flora Sánchez-Jiménez
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Teresa Vilariño-García
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Luis de la Cruz-Merino
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| |
Collapse
|
13
|
Chronic Leptin Deficiency Improves Tolerance of Physiological Damage and Host-Pathogen Cooperation during Yersinia pseudotuberculosis Infection. Infect Immun 2022; 90:e0024222. [PMID: 35924898 PMCID: PMC9476980 DOI: 10.1128/iai.00242-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To combat infections, hosts employ a combination of antagonistic and cooperative defense strategies. The former refers to pathogen killing mediated by resistance mechanisms, while the latter refers to physiological defense mechanisms that promote host health during infection independent of pathogen killing, leading to an apparent cooperation between the host and the pathogen. Previous work has shown that Leptin, a pleiotropic hormone that plays a central role in regulating appetite and energy metabolism, is indispensable for resistance mechanisms, while a role for Leptin signaling in cooperative host-pathogen interactions remains unknown. Using a mouse model of Yersinia pseudotuberculosis (Yptb) infection, an emerging pathogen that causes fever, diarrhea, and mesenteric lymphadenitis in humans, we found that the physiological effects of chronic Leptin-signaling deficiency conferred protection from Yptb infection due to increased host-pathogen cooperation rather than greater resistance defenses. The protection against Yptb infection was independent of differences in food consumption, lipolysis, or fat mass. Instead, we found that the chronic absence of Leptin signaling protects from a shift to lipid utilization during infection that contributes to Yptb lethality. Furthermore, we found that the survival advantage conferred by Leptin deficiency was associated with increased liver and kidney damage. Our work reveals an additional level of complexity for the role of Leptin in infection defense and demonstrates that in some contexts, in addition to tolerating the pathogen, tolerating organ damage is more beneficial for survival than preventing the damage.
Collapse
|
14
|
Kozlov AP. Mammalian tumor-like organs. 2. Mammalian adipose has many tumor features and obesity is a tumor-like process. Infect Agent Cancer 2022; 17:15. [PMID: 35395810 PMCID: PMC8994355 DOI: 10.1186/s13027-022-00423-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/03/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In previous publications, the author developed the theory of carcino-evo-devo, which predicts that evolutionarily novel organs should recapitulate some features of tumors in their development. MAIN TEXT Mammalian adipose is currently recognized as a multi-depot metabolic and endocrine organ consisting of several adipose tissues. Although lipid-storing cells and proteins are ancient, the adipose organ as a whole is evolutionarily novel to mammals. The adipose expansion has remarkable similarities with the growth of solid tumors. These similarities are the following: (1) The capability to unlimited expansion; (2) Reversible plasticity; (3) Induction of angiogenesis; (4) Chronic inflammation; (5) Remodeling and disfunction; (6) Systemic influence on the organism; (7) Hormone production; (8) Production of miRNAs that influence other tissues; (9) Immunosuppression; (10) DNA damage and resistance to apoptosis; (11) Destructive infiltration in other organs and tissues. These similarities include the majority of "hallmarks of cancer". In addition, lipomas are the most frequent soft tissue tumors, and similar drugs may be used for the treatment of obesity and cancer by preventing infiltration. This raises the possibility that obesity, at least in part, may represent an oncological problem. The existing similarities between adipose and tumors suggest the possible evolutionary origin of mammalian adipose from some ancestral benign mesenchymal hereditary tumors. Indeed, using a transgenic inducible zebrafish tumor model, we described many genes, which originated in fish and were expressed in fish tumors. Their human orthologs LEP, NOTCH1, SPRY1, PPARG, ID2, and CIDEA acquired functions connected with the adipose organ. They are also involved in tumor development in humans. CONCLUSION If the hypothesis of the evolutionary origin of the adipose organ from the ancestral hereditary tumor is correct, it may open new opportunities to resolve the oncological problem and the problem of the obesity epidemic. New interventions targeting LEP, NOTCH1, SPRY1, PPARG, ID2, and CIDEA gene network, in addition to what already is going on, can be designed for treatment and prevention of both obesity and tumors.
Collapse
Affiliation(s)
- A P Kozlov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3, Gubkina Street, Moscow, Russia, 117971.
- Peter the Great St. Petersburg Polytechnic University, 29, Polytekhnicheskaya Street, St. Petersburg, Russia, 195251.
- The Biomedical Center, 8, Viborgskaya Street, St. Petersburg, Russia, 194044.
| |
Collapse
|
15
|
Li Y, Zhou Y, Lei L, Deng X, Duan Y, Xu J, Fu S, Long R, Yuan D, Zhou C. Molecular cloning and tissue distribution of the leptin gene in gibel carp (Carassius auratus gibelio): Regulation by postprandial and long-term fasting treatment. Comp Biochem Physiol A Mol Integr Physiol 2022; 266:111156. [PMID: 35077899 DOI: 10.1016/j.cbpa.2022.111156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022]
Abstract
Leptin is a multifunctional hormone that serves as a feeding regulator in mammals. However, the effect of leptin on fish remains unclear. We sequenced the leptin gene from gibel carp (Carassius auratus gibelio) and designated it gLEP. The length of the gLEP cDNA sequence was 562 bp, including an open reading frame (ORF) of 516 bp. The ORF putatively encodes a peptide of 171 amino acids, including a signal peptide of 20 amino acids. gLEP shared low primary amino acid sequence homology with leptin genes in vertebrates, whereas three-dimensional (3D) structural modeling revealed strong identity with the structures in other vertebrates. gLEP mRNA was widely distributed in all of the tissue that we examined, with the highest levels of expression in the hepatopancreas. Hepatopancreas gLEP mRNA expression levels showed no changes following postprandial treatment. However, hepatopancreas gLEP mRNA expression levels greatly decreased (P < 0.05) after fasting but substantially increased (P < 0.05) after refeeding in the long-term fasting treatment. In summary, these results indicate that leptin expression could be influenced by the regulation of food intake. These results provide the initial step toward elucidating the appetite regulatory systems associated with leptin in gibel carp.
Collapse
Affiliation(s)
- Yan Li
- Department of Aquaculture, College of Fisheries, Southwest University, Chongqing 402460, China; Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, 400700, China
| | - Yan Zhou
- Department of Aquaculture, College of Fisheries, Southwest University, Chongqing 402460, China; Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, 400700, China
| | - Luo Lei
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Xingxing Deng
- Livestock and Aquatic Products Affairs Center of Lengshuitan District, Yongzhou 425000, Hunan, China
| | - Yuting Duan
- Department of Aquaculture, College of Fisheries, Southwest University, Chongqing 402460, China; Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, 400700, China
| | - Jianfei Xu
- Department of Aquaculture, College of Fisheries, Southwest University, Chongqing 402460, China; Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, 400700, China
| | - Suxing Fu
- Department of Aquaculture, College of Fisheries, Southwest University, Chongqing 402460, China; Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, 400700, China
| | - Rui Long
- Department of Aquaculture, College of Fisheries, Southwest University, Chongqing 402460, China; Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, 400700, China
| | - Dengyue Yuan
- Department of Aquaculture, College of Fisheries, Southwest University, Chongqing 402460, China; Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, 400700, China
| | - Chaowei Zhou
- Department of Aquaculture, College of Fisheries, Southwest University, Chongqing 402460, China; Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, 400700, China.
| |
Collapse
|
16
|
Mankiewicz JL, Picklo MJ, Idso J, Cleveland BM. Leptin Receptor Deficiency Results in Hyperphagia and Increased Fatty Acid Mobilization during Fasting in Rainbow Trout (Oncorhynchus mykiss). Biomolecules 2022; 12:biom12040516. [PMID: 35454105 PMCID: PMC9028016 DOI: 10.3390/biom12040516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/15/2022] [Accepted: 03/26/2022] [Indexed: 12/19/2022] Open
Abstract
Leptin is a pleiotropic hormone known for regulating appetite and metabolism. To characterize the role of leptin signaling in rainbow trout, we used CRISPR/Cas9 genome editing to disrupt the leptin receptor (LepR) genes, lepra1 and lepra2. We compared wildtype (WT) and mutant fish that were either fed to satiation or feed deprived for six weeks. The LepR mutants exhibited a hyperphagic phenotype, which led to heavier body weight, faster specific growth rate, increased viscero- and hepatosomatic indices, and greater condition factor. Muscle glycogen, plasma leptin, and leptin transcripts (lepa1) were also elevated in fed LepR mutant fish. Expression levels of several hypothalamic genes involved in feed regulation were analyzed (agrp, npy, orexin, cart-1, cart-2, pomc-a1, pomc-b). No differences were detected between fed WT and mutants except for pomc-b (proopiomelanocortin-b), where levels were 7.5-fold higher in LepR fed mutants, suggesting that pomc-b expression is regulated by leptin signaling. Fatty acid (FA) content did not statistically differ in muscle of fed mutant fish compared to WT. However, fasted mutants exhibited significantly lower muscle FA concentrations, suggesting that LepR mutants exhibit increased FA mobilization during fasting. These data demonstrate a key role for leptin signaling in lipid and energy mobilization in a teleost fish.
Collapse
Affiliation(s)
- Jamie L. Mankiewicz
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, Kearneysville, WV 25430, USA;
| | - Matthew J. Picklo
- Human Nutrition Research Center, USDA/ARS, 2420 2nd Ave. North, Grand Forks, ND 58203, USA; (M.J.P.); (J.I.)
| | - Joseph Idso
- Human Nutrition Research Center, USDA/ARS, 2420 2nd Ave. North, Grand Forks, ND 58203, USA; (M.J.P.); (J.I.)
| | - Beth M. Cleveland
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, Kearneysville, WV 25430, USA;
- Correspondence:
| |
Collapse
|
17
|
Li X, Zhang Y, Wang S, Shi C, Wang S, Wang X, Lü X. A review on the potential use of natural products in overweight and obesity. Phytother Res 2022; 36:1990-2015. [DOI: 10.1002/ptr.7426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/21/2022] [Accepted: 02/05/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Xin Li
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Yu Zhang
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Shuxuan Wang
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Caihong Shi
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Shuang Wang
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Xin Wang
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Xin Lü
- College of Food Science and Engineering Northwest A&F University Yangling China
| |
Collapse
|
18
|
Viral Infection Drives the Regulation of Feeding Behavior Related Genes in Salmo salar. Int J Mol Sci 2021; 22:ijms222111391. [PMID: 34768822 PMCID: PMC8583931 DOI: 10.3390/ijms222111391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
The feeding behavior in fish is a complex activity that relies on the ability of the brain to integrate multiple signals to produce appropriate responses in terms of food intake, energy expenditure, and metabolic activity. Upon stress cues including viral infection or mediators such as the proinflammatory cytokines, prostaglandins, and cortisol, both Pomc and Npy/Agrp neurons from the hypothalamus are stimulated, thus triggering a response that controls both energy storage and expenditure. However, how appetite modulators or neuro-immune cues link pathogenesis and energy homeostasis in fish remains poorly understood. Here, we provide the first evidence of a molecular linkage between inflammation and food intake in Salmon salar. We show that in vivo viral challenge with infectious pancreatic necrosis virus (IPNV) impacts food consumption by activating anorexic genes such as mc4r, crf, and pomcb and 5-HT in the brain of S. salar. At the molecular level, viral infection induces an overall reduction in lipid content in the liver, favoring the production of AA and EPA associated with the increment of elovl2 gene. In addition, infection upregulates leptin signaling and inhibits insulin signaling. These changes are accompanied by a robust inflammatory response represented by the increment of Il-1b, Il-6, Tnfa, and Pge2 as well as an increased cortisol level in vivo. Thus, we propose a model in which hypothalamic neurons respond to inflammatory cytokines and stress-related molecules and interact with appetite induction/inhibition. These findings provide evidence of crosstalk between pathogenesis-driven inflammation and hypothalamic-pituitary-adrenocortical axes in stress-induced food intake behavior in fish.
Collapse
|
19
|
Bakshi A, Singh R, Rai U. Trajectory of leptin and leptin receptor in vertebrates: Structure, function and their regulation. Comp Biochem Physiol B Biochem Mol Biol 2021; 257:110652. [PMID: 34343670 DOI: 10.1016/j.cbpb.2021.110652] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/23/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022]
Abstract
The present review provides a comparative insight into structure, function and control of leptin system in fishes, herptiles, birds and mammals. In general, leptin acts as an anorexigenic hormone since its administration results in decrease of food intake in vertebrates. Nonetheless, functional paradox arises in fishes from contradictory observations on level of leptin during fasting and re-feeding. In addition, leptin is shown to modulate metabolic functions in fishes, reptiles, birds and mammals. Leptin also regulates reproductive and immune functions though more studies are warranted in non-mammalian vertebrates. The expression of leptin and its receptor is influenced by numerous factors including sex steroids, stress and stress-induced catecholamines and glucocorticoids though their effect in non-mammalian vertebrates is hard to be generalized due to limited studies.
Collapse
Affiliation(s)
- Amrita Bakshi
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Rajeev Singh
- Satyawati College, University of Delhi, Delhi 110052, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
20
|
Nourbakhsh-Rey M, Markham MR. Leptinergic Regulation of Vertebrate Communication Signals. Integr Comp Biol 2021; 61:1946-1954. [PMID: 34329470 DOI: 10.1093/icb/icab173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Animal communication signals are regulated by multiple hormonal axes that ensure appropriate signal targeting, timing, and information content. The regulatory roles of steroid hormones and many peptide hormones are well understood and documented across a wide range of vertebrate taxa. Two recent studies have reported a novel function for leptin, a peptide hormone central to energy balance regulation: regulating communication signals of weakly electric fish and singing mice. With only limited evidence available at this time, a key question is just how widespread leptinergic regulation of communication signals is within and across taxa. A second important question is what features of communication signals are subject to leptinergic regulation. Here we consider the functional significance of leptinergic regulation of animal communication signals in the context of both direct and indirect signal metabolic costs. Direct costs arise from metabolic investment in signal production, while indirect costs arise from the predation and social conflict consequences of the signal's information content. We propose a preliminary conceptual framework for predicting which species will exhibit leptinergic regulation of their communication signals and which signal features leptin will regulate. This framework suggests a number of directly testable predictions within and across taxa. Accounting for additional factors such as life history and the potential co-regulation of communication signals by leptin and glucocorticoids will likely require modification or elaboration of this model.
Collapse
Affiliation(s)
| | - Michael R Markham
- Department of Biology, University of Oklahoma, Norman OK 73019 USA.,Cellular & Behavioral Neurobiology Graduate Program, University of Oklahoma, Norman OK 73019 USA
| |
Collapse
|
21
|
Mankiewicz JL, Cleveland BM. Characterization of a Leptin Receptor Paralog and Its Response to Fasting in Rainbow Trout ( Oncorhynchus mykiss). Int J Mol Sci 2021; 22:7732. [PMID: 34299350 PMCID: PMC8303650 DOI: 10.3390/ijms22147732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/30/2022] Open
Abstract
Leptin is a cytokine that regulates appetite and energy expenditure, where in fishes it is primarily produced in the liver and acts to mobilize carbohydrates. Most fishes have only one leptin receptor (LepR/LepRA1), however, paralogs have recently been documented in a few species. Here we reveal a second leptin receptor (LepRA2) in rainbow trout that is 77% similar to trout LepRA1. Phylogenetic analyses show a salmonid specific genome duplication event as the probable origin of the second LepR in trout. Tissues distributions showed tissue specific expression of these receptors, with lepra1 highest in the ovaries, nearly 50-fold higher than lepra2. Interestingly, lepra2 was most highly expressed in the liver while hepatic lepra1 levels were low. Feed deprivation elicited a decline in plasma leptin, an increase in hepatic lepra2 by one week and remained elevated at two weeks, while liver expression of lepra1 remained low. By contrast, muscle lepra1 mRNA increased at one and two weeks of fasting, while adipose lepra1 was concordantly lower in fasted fish. lepra2 transcript levels were not affected in muscle and fat. These data show lepra1 and lepra2 are differentially expressed across tissues and during feed deprivation, suggesting paralog- and tissue-specific functions for these leptin receptors.
Collapse
Affiliation(s)
| | - Beth M. Cleveland
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV 25430, USA;
| |
Collapse
|
22
|
Jiménez-Cortegana C, García-Galey A, Tami M, del Pino P, Carmona I, López S, Alba G, Sánchez-Margalet V. Role of Leptin in Non-Alcoholic Fatty Liver Disease. Biomedicines 2021; 9:biomedicines9070762. [PMID: 34209386 PMCID: PMC8301314 DOI: 10.3390/biomedicines9070762] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), which affects about a quarter of the global population, poses a substantial health and economic burden in all countries, yet there is no approved pharmacotherapy to treat this entity, nor well-established strategies for its diagnosis. Its prevalence has been rapidly driven by increased physical inactivity, in addition to excessive calorie intake compared to energy expenditure, affecting both adults and children. The increase in the number of cases, together with the higher morbimortality that this disease entails with respect to the general population, makes NAFLD a serious public health problem. Closely related to the development of this disease, there is a hormone derived from adipocytes, leptin, which is involved in energy homeostasis and lipid metabolism. Numerous studies have verified the relationship between persistent hyperleptinemia and the development of steatosis, fibrinogenesis and liver carcinogenesis. Therefore, further studies of the role of leptin in the NAFLD spectrum could represent an advance in the management of this set of diseases.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41073 Seville, Spain; (C.J.-C.); (A.G.-G.); (M.T.); (S.L.); (G.A.)
| | - Alba García-Galey
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41073 Seville, Spain; (C.J.-C.); (A.G.-G.); (M.T.); (S.L.); (G.A.)
| | - Malika Tami
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41073 Seville, Spain; (C.J.-C.); (A.G.-G.); (M.T.); (S.L.); (G.A.)
| | - Pilar del Pino
- Unit of Digestive Diseases, Virgen Macarena University Hospital, 41073 Seville, Spain; (P.d.P.); (I.C.)
| | - Isabel Carmona
- Unit of Digestive Diseases, Virgen Macarena University Hospital, 41073 Seville, Spain; (P.d.P.); (I.C.)
| | - Soledad López
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41073 Seville, Spain; (C.J.-C.); (A.G.-G.); (M.T.); (S.L.); (G.A.)
| | - Gonzalo Alba
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41073 Seville, Spain; (C.J.-C.); (A.G.-G.); (M.T.); (S.L.); (G.A.)
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41073 Seville, Spain; (C.J.-C.); (A.G.-G.); (M.T.); (S.L.); (G.A.)
- Correspondence:
| |
Collapse
|
23
|
Dissimilar regulation of glucose and lipid metabolism by leptin in two strains of gibel carp ( Carassius gibelio). Br J Nutr 2021; 125:1215-1229. [PMID: 32921323 DOI: 10.1017/s0007114520003608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Previous nutritional studies have shown that insulin regulation is different between DT and A strains of gibel carp. As leptin plays a pivotal role in the effects of insulin, we hypothesised that leptin regulation of glucose and lipid metabolism would differ between the two strains. To test our hypothesis, recombinant human leptin was injected into two strains. The results showed that leptin activated the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT), AMP-activated protein kinase-acetyl coenzyme A carboxylase and Janus kinase 2 (JAK2)-signal transducer and activator of transcription (STAT) signalling pathways in both strains. Hypoglycaemia induced by leptin might be due to higher glucose uptake by the liver and muscles together with enhanced glycolytic potential and reduced gluconeogenic potential. Decreased lipogenesis and up-regulated fatty acid oxidation were induced by leptin. In terms of genotype, the PI3K-AKT signalling pathway was more strongly activated by leptin in the muscle tissue of the A strain, as reflected by the heightened phosphorylation of AKT. Furthermore, glycogen content, glycolytic enzyme activity and gluconeogenic capability were higher in the A strain than the DT strain. Strain A had higher levels of fatty acid synthesis and lipolytic capacity in the liver than the DT strain, but the opposite was true in white muscle. Regarding leptin-genotype interactions, the DT strain displayed stronger regulation of glucose metabolism in the liver by leptin as compared with the A strain. Moreover, a more active JAK2-STAT signalling pathway accompanied by enhanced inhibition of fatty acid synthesis by leptin was observed in the DT strain. Overall, the regulation of glucose and lipid metabolism by leptin differed between the two strains, as expected.
Collapse
|
24
|
Blanco AM, Soengas JL. Leptin signalling in teleost fish with emphasis in food intake regulation. Mol Cell Endocrinol 2021; 526:111209. [PMID: 33588023 DOI: 10.1016/j.mce.2021.111209] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/14/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022]
Abstract
Leptin, the product of the obese (ob or Lep) gene, was first cloned in teleost fish in 2005, more than a decade after its identification in mammals. This was because bony fish and mammalian leptins share a very low amino acid sequence identity, which suggests different functionality of the leptin system in fish compared to that of mammals. Indeed, major differences are evident between the mammalian and fish leptin system. Thus, for instance, mammalian leptin is synthesized and released by the adipose tissue in response to the amount of fat depots, while several tissues (mainly the liver) are the main sources of leptin in fish, whose determining factors of production are still unclear. In mammals, the main physiological role for leptin is its involvement in the maintenance of energy balance by decreasing food intake and increasing energy expenditure, although a wide variety of actions have been attributed to this hormone (e.g., regulation of lipid and carbohydrate metabolism, reproduction and immune functions). In fish, available literature also points towards a multifunctional nature for leptin, although knowledge on its functions is limited. In this review, we offer an overview of teleostean leptin structure and mechanism of action, and discuss the available knowledge on the role of this hormone in food intake regulation in teleost fish, aiming to provide a comparative overview between the functioning of the teleostean and mammalian leptin systems.
Collapse
Affiliation(s)
- Ayelén Melisa Blanco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Pontevedra, Spain
| | - José Luis Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Pontevedra, Spain.
| |
Collapse
|
25
|
Zarantoniello M, Randazzo B, Cardinaletti G, Truzzi C, Chemello G, Riolo P, Olivotto I. Possible Dietary Effects of Insect-Based Diets across Zebrafish ( Danio rerio) Generations: A Multidisciplinary Study on the Larval Phase. Animals (Basel) 2021; 11:ani11030751. [PMID: 33803315 PMCID: PMC8000180 DOI: 10.3390/ani11030751] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
Insects represent a valuable and sustainable alternative ingredient for aquafeed formulation. However, insect-based diets have often highlighted controversial results in different fish species, especially when high inclusion levels were used. Several studies have demonstrated that nutritional programming through parental feeding may allow the production of fish better adapted to use sub-optimal aquafeed ingredients. To date, this approach has never been explored on insect-based diets. In the present study, five experimental diets characterized by increasing fish meal substitution levels with full-fat Black Soldier Fly (Hermetia illucens; BSF) prepupae meal (0%, 25%, 50%, 75% and 100%) were used to investigate the effects of programming via broodstock nutrition on F1 zebrafish larvae development. The responses of offspring were assayed through biometric, gas chromatographic, histological, and molecular analyses. The results evidenced that the same BSF-based diets provided to adults were able to affect F1 zebrafish larvae fatty acid composition without impairing growth performances, hepatic lipid accumulation and gut health. Groups challenged with higher BSF inclusion with respect to fish meal (50%, 75% and 100%) showed a significant downregulation of stress response markers and a positive modulation of inflammatory cytokines gene expression. The present study evidences that nutritional programming through parental feeding may make it possible to extend the fish meal substitution level with BSF prepupae meal in the diet up to almost 100% without incurring the well-known negative side effects of BSF-based diets.
Collapse
Affiliation(s)
- Matteo Zarantoniello
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (M.Z.); (B.R.); (C.T.); (G.C.)
| | - Basilio Randazzo
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (M.Z.); (B.R.); (C.T.); (G.C.)
| | - Gloriana Cardinaletti
- Dipartimento di Scienze Agro-Alimentari, Ambientali e Animali (Di4A), Università di Udine, via Sondrio 2/A, 33100 Udine, Italy;
| | - Cristina Truzzi
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (M.Z.); (B.R.); (C.T.); (G.C.)
| | - Giulia Chemello
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (M.Z.); (B.R.); (C.T.); (G.C.)
| | - Paola Riolo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy;
| | - Ike Olivotto
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (M.Z.); (B.R.); (C.T.); (G.C.)
- Correspondence:
| |
Collapse
|
26
|
Effects of Tyrosine and Tryptophan in Rats with Diet-Induced Obesity. Int J Mol Sci 2021; 22:ijms22052429. [PMID: 33670919 PMCID: PMC7957688 DOI: 10.3390/ijms22052429] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
Amino acids tyrosine (Tyr) and tryptophan (Trp) play a significant role in the regulation of energy metabolism, locomotor activity, and eating behavior. We studied the possibility of modulating these processes in obesity by increasing the pool of Tyr and Trp in the experimental diet. As a model of obesity, we used Wistar rats fed a diet with an excess specific energy value (HFCD) for 64 days. Trp led to a normalization of the rats’ body weight almost to the control level, but increased anxiety-like behavior and decreased long-term memory. The consumption of amino acids resulted in increased grip strength and impairment of short-term memory. The locomotor activity of animals decreased with age as a result of Tyr consumption, while Trp, on the contrary, prevented this. The Tyr supplementation led to the normalization of triglycerides and LDL. In the spleen cell lysates, amino acids suppressed the production of proinflammatory cytokines. The liver tissue morphology showed that the consumption of Tyr noticeably weakened the signs of fatty degeneration. The addition of Trp, on the contrary, led to an unfavorable effect, consisting of the appearance of a high number of large rounded fatty vacuoles. The data obtained indicate a more pronounced anti-inflammatory effect of Tyr as compared to Trp.
Collapse
|
27
|
Mankiewicz JL, Deck CA, Taylor JD, Douros JD, Borski RJ. Epinephrine and glucose regulation of leptin synthesis and secretion in a teleost fish, the tilapia (Oreochromis mossambicus). Gen Comp Endocrinol 2021; 302:113669. [PMID: 33242479 DOI: 10.1016/j.ygcen.2020.113669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 12/24/2022]
Abstract
Acute stress is regulated through the sympathetic adrenergic axis where catecholamines mobilize energy stores including carbohydrates as a principal element of the endocrine stress response. Leptin is a cytokine critical for regulating energy expenditure in vertebrates and is stimulated by various stressors in fish such as fasting, hyperosmotic challenge, and hypoxia. However, little is known about the regulatory interactions between leptin and the endocrine stress axis in fishes and other ectothermic vertebrates. We evaluated the actions of epinephrine and glucose in regulating leptin A (LepA) in vivo and in vitro in tilapia. Using hepatocyte incubations and a homologous LepA ELISA, we show that LepA synthesis and secretion decline as ambient glucose levels increase (10-25 mM). By contrast, bolus glucose administration in tilapia increases lepa mRNA levels 14-fold at 6 h, suggesting systemic factors regulated by glucose may counteract the direct inhibitory effects of glucose on hepatic lepa mRNA observed in vitro. Epinephrine stimulated glucose and LepA secretion from hepatocytes in a dose-dependent fashion within 15 min but had little effect on lepa mRNA levels. An in vivo injection of epinephrine into tilapia stimulated a rapid rise in blood glucose which was followed by a 4-fold increase in hepatic lepa mRNA levels at 2.5 and 6 h. Plasma LepA was also elevated by 6 h relative to controls. Recombinant tilapia LepA administration in vivo did not have any significant effect on plasma epinephrine levels. The results of this study demonstrate LepA is negatively regulated by rises in extracellular glucose at the level of the hepatocyte but stimulated by hyperglycemia in vivo. Further, epinephrine increases LepA. This, along with previous work demonstrating a hyperglycemic and glycogenolytic effect of LepA in tilapia, suggests that epinephrine may stimulate leptin secretion to augment and fine tune glucose mobilization and homeostasis as part of the integrated, adaptive stress response.
Collapse
Affiliation(s)
- Jamie L Mankiewicz
- North Carolina State University, Department of Biological Sciences, Raleigh, NC 27695, USA
| | - Courtney A Deck
- North Carolina State University, Department of Biological Sciences, Raleigh, NC 27695, USA
| | - Jordan D Taylor
- North Carolina State University, Department of Biological Sciences, Raleigh, NC 27695, USA
| | - Jonathan D Douros
- Duke University, Molecular Physiology Institute, Durham, NC 27701, USA
| | - Russell J Borski
- North Carolina State University, Department of Biological Sciences, Raleigh, NC 27695, USA.
| |
Collapse
|
28
|
Zheng R, Liu R, Wu M, Wang H, Xie L. Effects of sodium perchlorate and exogenous L-thyroxine on growth, development and leptin signaling pathway of Bufo gargarizans tadpoles during metamorphosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111410. [PMID: 33007540 DOI: 10.1016/j.ecoenv.2020.111410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Sodium perchlorate (NaClO4) and exogenous L-thyroxine (T4), two kinds of endocrine-disrupting chemicals (EDCs), mainly affect the circulating thyroid hormones, which regulate the initiation and rate of metamorphosis in amphibian. The aim of this study is to evaluate the potential role of EDCs in regulating the development of tadpoles and leptin signaling pathway of liver during the metamorphosis of Bufo gargarizans. There was completely opposite result of average development stage of tadpoles and morphological parameters between the NaClO4 and T4 exposure groups. Histological analysis revealed that NaClO4 and T4 exposure both caused liver injury, such as the decreased size of hepatocytes, atrophy of nucleus, increased melanomacrophage centres and disappearance of hepatocyte membranes. In addition, the results of RT-qPCR revealed that NaClO4 treatment significantly inhibited the transcript levels of genes related to thyroid hormone (D2, TRα and TRβ) and leptin signaling pathway (LepR, JAK1, JAK2, and TYK2), while there was an increase of mRNA expression of these genes in the liver of tadpoles administrated with T4 compared with control. This work lays an important foundation for assessing the risk of EDCs in relation to amphibian development during metamorphosis.
Collapse
Affiliation(s)
- Rui Zheng
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Rong Liu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Minyao Wu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Lei Xie
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, 325035, Wenzhou, China; College of Life and Environmental Science, Wenzhou University, 325035, Wenzhou, China.
| |
Collapse
|
29
|
Biddinger JE, Lazarenko RM, Scott MM, Simerly R. Leptin suppresses development of GLP-1 inputs to the paraventricular nucleus of the hypothalamus. eLife 2020; 9:59857. [PMID: 33206596 PMCID: PMC7673779 DOI: 10.7554/elife.59857] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
The nucleus of the solitary tract (NTS) is critical for the central integration of signals from visceral organs and contains preproglucagon (PPG) neurons, which express leptin receptors in the mouse and send direct projections to the paraventricular nucleus of the hypothalamus (PVH). Here, we visualized projections of PPG neurons in leptin-deficient Lepob/ob mice and found that projections from PPG neurons are elevated compared with controls, and PPG projections were normalized by targeted rescue of leptin receptors in LepRbTB/TB mice, which lack functional neuronal leptin receptors. Moreover, Lepob/ob and LepRbTB/TB mice displayed increased levels of neuronal activation in the PVH following vagal stimulation, and whole-cell patch recordings of GLP-1 receptor-expressing PVH neurons revealed enhanced excitatory neurotransmission, suggesting that leptin acts cell autonomously to suppress representation of excitatory afferents from PPG neurons, thereby diminishing the impact of visceral sensory information on GLP-1 receptor-expressing neurons in the PVH.
Collapse
Affiliation(s)
- Jessica E Biddinger
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, United States
| | - Roman M Lazarenko
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, United States
| | - Michael M Scott
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, United States
| | - Richard Simerly
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, United States
| |
Collapse
|
30
|
Hongfang G, Khan R, Raza SHA, Nurgulsim K, Suhail SM, Rahman A, Ahmed I, Ijaz A, Ahmad I, Linsen Z. Transcriptional regulation of adipogenic marker genes for the improvement of intramuscular fat in Qinchuan beef cattle. Anim Biotechnol 2020; 33:776-795. [PMID: 33151113 DOI: 10.1080/10495398.2020.1837847] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The intramuscular fat content plays a crucial role in meat quality traits. Increasing the degree of adipogenesis in beef cattle leads to an increase in the content of intramuscular fat. Adipogenesis a complex biochemical process which is under firm genetic control. Over the last three decades, the Qinchuan beef cattle have been extensively studied for the improvement of meat production and quality traits. In this study, we reviewed the literature regarding adipogenesis and intramuscular fat deposition. Then, we summarized the research conducted on the transcriptional regulation of key adipogenic marker genes, and also reviewed the roles of adipogenic marker genes in adipogenesis of Qinchuan beef cattle. This review will elaborate our understanding regarding transcriptional regulation which is a vital physiological process regulated by a cascade of transcription factors (TFs), key target marker genes, and regulatory proteins. This synergistic action of TFs and target genes ensures the accurate and diverse transmission of the genetic information for the accomplishment of central physiological processes. This information will provide an insight into the transcriptional regulation of the adipogenic marker genes and its role in bovine adipogenesis for the breed improvement programs especially for the trait of intramuscular fat deposition.
Collapse
Affiliation(s)
- Guo Hongfang
- Medical College of Xuchang University, Xuchang City, Henan Province, P. R. China
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China.,Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Kaster Nurgulsim
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Syed Muhammad Suhail
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Abdur Rahman
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Ijaz Ahmed
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Asim Ijaz
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Iftikhar Ahmad
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Zan Linsen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
31
|
Trusov NV, Apryatin SA, Shipelin VA, Gmoshinski IV. [Full transcriptome analysis of gene expression in liver of mice in a comparative study of quercetin efficiency on two obesity models]. ACTA ACUST UNITED AC 2020; 66:31-47. [PMID: 33369371 DOI: 10.14341/probl12561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Quercetin (Q; 3,3',4',5,7 - pentahydroxyflavone) can help alleviate the pathological effects of nutritional obesity and metabolic syndrome when taken as part of products for special dietary needs and food supplements. The mechanisms of action of Q at the genetic level are not well understood. AIMS To study gene expression in liver tissue of mice with alimentary and genetically determined obesity upon intake of Q with diet. MATERIALS AND METHODS During 46 days of the experiment on 32 male C57Bl/6J mice fed a diet with an excess of fat and fructose and 24 male genetically obese db/db mice the effect of Q in dose of 25 or 100 mg/kg of body weight was studied on differential expression of 39430 genes in mice livers by full transcriptome profiling on microchip according to the Agilent One-Color Microarray-Based Gene Expression Analysis Low Input Quick Amp Labeling protocol (version 6.8). To identify metabolic pathways (KEGGs) that were targets of Q exposure, transcriptomic data were analyzed using bioinformatics methods in an "R" environment. RESULTS Differences were revealed in the nature of Q supplementation action in animals with dietary induced and genetically determined obesity on a number of key metabolic pathways, including the metabolism of lipids and steroids (Saa3, Cidec, Scd1, Apoa4, Acss2, Fabp5, Car3, Acacb, Insig2 genes), amino acids and nitrogen bases (Ngef, Gls2), carbohydrates (G6pdx, Pdk4), regulation of cell growth, apoptosis and proliferation (Btg3, Cgref1, Fst, Nrep Tuba8), neurotransmission (Grin2d, Camk2b), immune system reactions (CD14i, Jchain, Ifi27l2b). CONCLUSIONS The data obtained help to explain the ambiguous effectiveness of Q, like other polyphenols, in the dietary treatment of various forms of obesity in humans, as well as to form a set of sensitive biomarkers that allow us to elucidate the effectiveness of minor biologically active food substances in preclinical trials of new means of metabolic correction of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- N V Trusov
- Federal Research Centre of Nutrition, Biotechnology and Food Safety
| | - S A Apryatin
- Federal Research Centre of Nutrition, Biotechnology and Food Safety
| | - V A Shipelin
- Federal Research Centre of Nutrition, Biotechnology and Food Safety; Plekhanov Russian University of Economics
| | - I V Gmoshinski
- Federal Research Centre of Nutrition, Biotechnology and Food Safety
| |
Collapse
|
32
|
Tolchennikova VV, Nikolskaya KA, Kondashevskaya MV. "Behavior" of the Hormonal Ensemble through the Prism of Cluster Analysis. Bull Exp Biol Med 2020; 169:531-534. [PMID: 32910384 DOI: 10.1007/s10517-020-04923-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Indexed: 01/24/2023]
Abstract
The serum hormone concentrations were studied in a group of male F1 (C57BL/6×DBA/2) mice in different states of food activity (satiety, 24-h food deprivation, and cognitive load against the background of food deprivation). The hormonal response depended on food activity: the content of leptin, triiodothyronine, and testosterone decreased in hungry animals, while during cognitive load (learning), we observed a decrease in the concentrations of ghrelin, leptin, thyroxine, and testosterone. The exceptions were neuropeptide Y (its concentration increased in hungry animals) and corticosterone (its level remained unchanged). The use of hierarchical cluster analysis allowed identifying functional organization of the relationships within the hormonal ensemble that underwent plastic changes depending on the state of the organism. It was shown that the hormonal ensemble was system-organized in the form of a "core" that determines stability of the system and the "field", within which functional interactions of the hormones are preserved.
Collapse
Affiliation(s)
| | | | - M V Kondashevskaya
- Research Institute of Human Morphology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
33
|
Apryatin SA, Shipelin VA, Trusov NV, Mzhel’skaya KV, Kirbaeva NV, Soto JS, Riger NA, Gmoshinski IV. The Effect of Quercetin on Metabolism and Behavioral Responses in Mice with Normal and Impaired Leptin Reception. BIOL BULL+ 2020. [DOI: 10.1134/s1062359020040020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Parker CG, Cheung E. Metabolic control of teleost reproduction by leptin and its complements: Understanding current insights from mammals. Gen Comp Endocrinol 2020; 292:113467. [PMID: 32201232 DOI: 10.1016/j.ygcen.2020.113467] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/05/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022]
Abstract
Reproduction is expensive. Hence, reproductive physiology is sensitive to an array of endogenous signals that provide information on metabolic and nutritional sufficiency. Although metabolic gating of reproductive function in mammals, as evidenced by studies demonstrating delayed puberty and perturbed fertility, has long been understood to be a function of energy sufficiency, an understanding of the endocrine regulators of this relationship have emerged only within recent decades. Peripheral signals including leptin and cortisol have long been implicated in the physiological integration of metabolism and reproduction. Recent studies have begun to explore possible roles for these two hormones in the regulation of reproduction in teleost fishes, as well as a role for leptin as a catabolic stress hormone. In this review, we briefly explore the reproductive actions of leptin and cortisol in mammals and teleost fishes and possible role of both hormones as putative modulators of the reproductive axis during stress events.
Collapse
Affiliation(s)
- Coltan G Parker
- Neuroscience Program, Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, IL, USA
| | - Eugene Cheung
- Department of Biological Sciences, David Clark Labs, 100 Brooks Avenue, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
35
|
Volkoff H, Rønnestad I. Effects of temperature on feeding and digestive processes in fish. Temperature (Austin) 2020; 7:307-320. [PMID: 33251280 PMCID: PMC7678922 DOI: 10.1080/23328940.2020.1765950] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 12/11/2022] Open
Abstract
As most fish are ectotherms, their physiology is strongly affected by temperature. Temperature affects their metabolic rate and thus their energy balance and behavior, including locomotor and feeding behavior. Temperature influences the ability/desire of the fish to obtain food, and how they process food through digestion, absorb nutrients within the gastrointestinal tract, and store excess energy. As fish display a large variability in habitats, feeding habits, and anatomical and physiological features, the effects of temperature are complex and species-specific. The effects of temperature depend on the timing, intensity, and duration of exposure as well as the speed at which temperature changes occur. Whereas acute short-term variations of temperature might have drastic, often detrimental, effects on fish physiology, long-term gradual variations might lead to acclimation, e.g. variations in metabolic and digestive enzyme profiles. The goal of this review is to summarize our current knowledge on the effects of temperature on energy homeostasis, with specific focus on metabolism, feeding, digestion, and how fish are often able to "adapt" to changing environments through phenotypic and physiological changes.
Collapse
Affiliation(s)
- Helene Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
36
|
Lipid Deposition and Mobilisation in Atlantic Salmon Adipocytes. Int J Mol Sci 2020; 21:ijms21072332. [PMID: 32230940 PMCID: PMC7177889 DOI: 10.3390/ijms21072332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
The present study aimed to elucidate how Atlantic salmon adipocytes pre-enriched with palmitic (16:0, PA), oleic (18:1n−9, OA), or eicosapentaenoic (20:5n−3, EPA) acid respond to a fasting condition mimicked by nutrient deprivation and glucagon. All experimental groups were supplemented with radiolabeled PA to trace secreted lipids and distribution of radioactivity in different lipid classes. There was a higher content of intracellular lipid droplets in adipocytes pre-enriched with OA than in adipocytes pre-enriched with PA or EPA. In the EPA group, the radiolabeled PA was mainly esterified in phospholipids and triacylglycerols, whereas in the OA and PA groups, the radioactivity was mainly recovered in phospholipids and cholesterol-ester. By subjecting the experimental groups to nutrient-deprived media supplemented with glucagon, lipolysis occurred in all groups, although to a lower extent in the OA group. The lipids were mainly secreted as esterified lipids in triacylglycerols and phospholipids, indicating mobilization in lipoproteins. A significant proportion was secreted as free fatty acids and glycerol. Leptin secretion was reduced in all experimental groups in response to fasting, while the mitochondria area responded to changes in the energy supply and demand by increasing after 3 h of fasting. Overall, different lipid classes in adipocytes influenced their mobilization during fasting.
Collapse
|
37
|
Paolucci M, Coccia E, Imperatore R, Varricchio E. A cross-talk between leptin and 17β-estradiol in vitellogenin synthesis in rainbow trout Oncorhynchus mykiss liver. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:331-344. [PMID: 31713703 DOI: 10.1007/s10695-019-00720-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
The existence of nutritional and energy reserves is fundamental for fish female fertility, so that the existence of a correlation between metabolic reserves and reproductive capacity is suggested. Leptin regulates body weight and energy homeostasis. Estradiol induces the synthesis of vitellogenin, a phospholipoglycoprotein produced by the liver and taken up by the growing oocytes. The objective of this study was to investigate the possible existence of a crosstalk between 17β-estradiol (E2) and leptin in the modulation of E2-induced vtg in the rainbow trout Oncorhynchus mykiss. Liver slices were incubated with recombinant trout leptin (rt-lep) at three different concentrations (1-10-100 ng/ml). rt-lep brought about the decrease of E2-induced vtg secretion in the medium and the down-regulation of vtg mRNA expression. Moreover, rt-lep stimulated the lipase activity and diminished the liver fatty acid content. The combined employment of signal transduction inhibitors and the analysis of signal transduction phosphorylated factors revealed that rt-lep effect on E2-induced vtg occurred through the activation of phosphodiesterase, protein kinase C, MAP kinases, and protein kinase A. In conclusion, our study suggests that leptin influences E2-induced vtg synthesis in the rainbow trout Oncorhynchus mykiss by modifying both the protein and the lipid components.
Collapse
Affiliation(s)
- Marina Paolucci
- Department of Sciences and Technologies, University of Sannio, Via Port'Arsa, 11, 82100, Benevento, Italy.
| | - Elena Coccia
- Department of Sciences and Technologies, University of Sannio, Via Port'Arsa, 11, 82100, Benevento, Italy
| | - Roberta Imperatore
- Department of Sciences and Technologies, University of Sannio, Via Port'Arsa, 11, 82100, Benevento, Italy
| | - Ettore Varricchio
- Department of Sciences and Technologies, University of Sannio, Via Port'Arsa, 11, 82100, Benevento, Italy
| |
Collapse
|
38
|
Wen ZY, Qin CJ, Wang J, He Y, Li HT, Li R, Wang XD. Molecular characterization of two leptin genes and their transcriptional changes in response to fasting and refeeding in Northern snakehead (Channa argus). Gene 2020; 736:144420. [PMID: 32007585 DOI: 10.1016/j.gene.2020.144420] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
Leptin has been proved to play critical roles in energy metabolism, body weight regulation, food intake, reproduction and immunity in mammals. However, its roles are still largely unclear in fish. Here, we report two leptin genes (lepA and lepB) from the Northern snakehead (Channa argus) and their transcriptions in response to different feeding status. The snakehead lepA is 781 bp in length and contains a 480 bp open reading frame (ORF) encoding a 159-aa protein, while the snakehead lepB is 553 bp in length and contains a 477 bp ORF encoding a 158-aa protein. Multi-sequences alignment, three-dimensional (3D) model prediction, syntenic and genomic comparison, and phylogenetic analysis confirm two leptin genes are widely existing in teleost. Tissue distribution revealed that the two leptin genes exhibit different patterns. In a post-prandial experiment, the hepatic lepA and brain lepB showed a similar transcription pattern. In a long-term (2-week) fasting and refeeding experiment, the hepatic lepA and brain lepB showed a similar transcription change pattern induced by food deprivation stimulation but differential changes after refeeding. These findings suggest snakehead lepA and lepB are differential both in tissue distribution and molecular functions, and they might play as an important regulator in energy metabolism and food intake in fish, respectively.
Collapse
Affiliation(s)
- Zheng-Yong Wen
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China; College of Life Science, Neijiang Normal University, Neijiang 641000, China; BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
| | - Chuan-Jie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China; College of Life Science, Neijiang Normal University, Neijiang 641000, China
| | - Jun Wang
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China; College of Life Science, Neijiang Normal University, Neijiang 641000, China
| | - Yang He
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China; College of Life Science, Neijiang Normal University, Neijiang 641000, China
| | - Hua-Tao Li
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China; College of Life Science, Neijiang Normal University, Neijiang 641000, China
| | - Rui Li
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China; College of Life Science, Neijiang Normal University, Neijiang 641000, China
| | - Xiao-Dong Wang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
39
|
Nadermann N, Volkoff H. Effects of short-term exercise on food intake and the expression of appetite-regulating factors in goldfish. Peptides 2020; 123:170182. [PMID: 31678371 DOI: 10.1016/j.peptides.2019.170182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/30/2022]
Abstract
In mammals, growing evidence indicates that exercise affects food intake, metabolism and the expression and blood levels of appetite regulators. In this study, we examined the effects of short-term (30 min, at low and high water flow) exercise on food intake, glucose levels and the expressions of appetite regulators in goldfish hypothalamus (irisin, orexin, CART, leptin), intestine (CCK, PYY, proglucagon/GLP-1), muscle (irisin) and liver (leptin), of brain-derived neurotrophic factor (BDNF) in brain, interleukin-6 (IL6) in muscle and hypothalamus, and major metabolic enzymes, the glycolytic enzyme glucokinase (GCK) and its regulatory protein (GCKR) in liver, the lipolytic enzyme lipoprotein lipase in intestine and muscle, and trypsin in intestine. Fish submitted to high flow exercise had a lower post-exercise food intake compared to control fish but no differences were seen in glucose levels between groups. Exercise induced an increase in hypothalamic expression levels of CART, IL6 and BDNF, but not orexin, irisin, CRF, leptin and NPY. High flow exercise induced an increase in intestine CCK, PYY and GLP-1, and muscle irisin and IL-6 expression levels. Exercise had no effects on expression levels of hepatic leptin or any of the metabolic enzymes examined. Our results suggest that, in goldfish, short-term exercise might decrease feeding in part by affecting the expressions of myokines and peripheral, but not central appetite regulators or metabolic enzyme/hormones.
Collapse
Affiliation(s)
- Noelle Nadermann
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada; Hochschule Mannheim University, Mannheim, 68163, Germany
| | - Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
40
|
Friedman-Einat M, Seroussi E. Avian Leptin: Bird's-Eye View of the Evolution of Vertebrate Energy-Balance Control. Trends Endocrinol Metab 2019; 30:819-832. [PMID: 31699239 DOI: 10.1016/j.tem.2019.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/13/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022]
Abstract
Discovery of the satiety hormone leptin in 1994 and its characterization in mammals provided a key tool to deciphering the complex mechanism governing adipose tissue regulation of appetite and energy expenditure. Surprisingly, despite the perfectly logical notion of an energy-storing tissue announcing the amount of fat stores using leptin signaling, alternate mechanisms were chosen in bird evolution. This conclusion emerged based on the recent discovery and characterization of genuine avian leptin - after it had been assumed missing by some, and erroneously identified by others. Critical evaluation of the past and present indications of the role of leptin in Aves provides a new perspective on the evolution of energy-balance control in vertebrates; proposing a regulation strategy alternative to the adipostat mechanism.
Collapse
Affiliation(s)
- Miriam Friedman-Einat
- Department of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeTsiyon, Israel.
| | - Eyal Seroussi
- Department of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeTsiyon, Israel
| |
Collapse
|
41
|
Effects of quercetin on the neuromotor function and behavioral responses of Wistar and Zucker rats fed a high-fat and high-carbohydrate diet. Behav Brain Res 2019; 378:112270. [PMID: 31585131 DOI: 10.1016/j.bbr.2019.112270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/10/2019] [Accepted: 09/30/2019] [Indexed: 11/21/2022]
Abstract
Quercetin can affect some pathological manifestations in obesity. The mechanism underlying the presumed therapeutic effect of quercetin is probably related to the influence on the central processes regulating energy homeostasis. Thus, the purpose of this study was to examine the effect of quercetin on the neuromotor and behavioral functions in Zucker (Z) and Wistar (W) rats with genetically and/or diet-induced obesity. Rats of both strains received balanced or high fat and fructose diet (HFCD) in a 62-day experiment or the same diets supplemented with quercetin at the dose of 50 mg/kg body weight per day. The neuromotor function and behavioral responses were examined using the grip strength test, open field test, elevated plus maze test and conditioned passive avoidance response (CPAR) test. The quercetin potentiated a decrease in anxiety in W rats consumed HFCD and this effect was absent in Z rats with a defect in the leptin receptor gene. In contrast, quercetin increased locomotor activity and impaired short-term memory in the CPAR test only in Z rats with the absence of normal leptin reception. Against the background of the identified changes quercetin exerted significant effects on the lipid and nitrogen metabolism indices such as HDL cholesterol, AsAT/AlAT activities ratio, urea level as well as body and fat mass that were different in Z and W rats. The data obtained show that the effects of quercetin on behavior vary significantly between two strains of rat and consequently are mediated by processes of leptin reception.
Collapse
|
42
|
Small Ruminants: Farmers' Hope in a World Threatened by Water Scarcity. Animals (Basel) 2019; 9:ani9070456. [PMID: 31323882 PMCID: PMC6680725 DOI: 10.3390/ani9070456] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Water is one of the most important nutrients to livestock. It is so essential that more than half the volume of the animal's body is water. However, its availability is threatened by the irreversible changes in climate, which has culminated into reduced rainfall in most regions of the world. Such an increasing threat to regular water supply, and by extension to food security and livelihood has forced a shift from large to small ruminant production, especially in regions experiencing low rainfall, with farmers taking advantage of their adaptive process and efficiency of water use. Small ruminants, especially desert goats, can adaptively survive in water-limited areas while trekking long distance in search of feed and they will regain any weight loss at the next watering point. Further research is needed on adaptive indigenous breeds of small ruminants since tolerance to water scarcity is breed dependent, so that improvements can be made through effective selection and breeding program. Abstract The availability and sustainability of suitable and good quality drinking water is a global concern. Such uncertainties threaten livestock production with an attendant ripple effect on food security. Small ruminants, including sheep and goats, appear to be promising to smallholder farmers in solving this problem because of their ability to survive in water-limited areas and harsh environment when compared with large ruminants. Their small body size is also seen as an advantage, because less water will be required for proper digestion and feed utilization. Therefore, this review will provide information regarding the adaptive responses of small ruminants on thermoregulation, blood metabolites, immune status, drug pharmacokinetics, reproduction and hormonal indices during the period of water stress. Adaptable and indigenous breeds are known to be more tolerant to water stress than selected breeds. A drop in feed intake and weight reduced respiratory rate and increased concentration of blood metabolites are the general effects and/or observations that are encountered by small ruminants during the period of water stress. The concept of water tolerance either as deprivation and/or restriction of indigenous and adaptable breeds of small ruminants is gaining ground in research studies around the world. However, more research, however, seeking to explore water tolerance capacity of adaptable breeds especially in arid and water limiting areas are still needed.
Collapse
|
43
|
Sindiani AM, Obeidat R, Jbarah O, Hazaimeh E. Relationship between newborn leptin levels and selected growth parameters. J Int Med Res 2019; 47:2591-2597. [PMID: 31109218 PMCID: PMC6567724 DOI: 10.1177/0300060519848613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objectives This study aimed to determine leptin levels in term newborns who were born in the north of Jordan. We also aimed to investigate the relationships of leptin levels with fetal growth parameters, and to assess the difference in leptin levels according to sex and gestational age. Methods A cross-sectional descriptive study that involved 170 term newborns was conducted. A working sheet for data collection was created for each newborn and included sex, weight, length, head circumference, gestational age, and Apgar score. Blood samples were obtained from the umbilical cord vein of newborns after delivery to measure serum leptin levels. Data are shown as frequency, percentages, means, and standard deviations. Results We found that the mean leptin level was 1.17 ± 0.48 ng/mL. The independent t-test showed that the mean leptin level in boys (0.93 ± 0. 34 ng/mL) was significantly lower than that in girls (1.38 ± 0.47 ng/mL). Pearson’s correlations showed that leptin levels of newborns were positively and significantly correlated with weight, length, and head circumference. Conclusion In Jordanian healthy term newborns, leptin levels correlate with sex and intrauterine growth parameters.
Collapse
Affiliation(s)
- Amer Mahmoud Sindiani
- Amer Mahmoud Sindiani, Department of Obstetrics and Gynecology, Faculty of Medicine, Jordan University of Science and University, P.O. box 3030, Jordan Street, Irbid, 22110 Jordan.
| | | | | | | |
Collapse
|
44
|
Model JFA, Dos Santos JT, Da Silva RSM, Vinagre AS. Metabolic effects of epinephrine on the crab Neohelice granulata. Comp Biochem Physiol A Mol Integr Physiol 2019; 231:111-118. [PMID: 30735703 DOI: 10.1016/j.cbpa.2019.01.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/29/2022]
Abstract
Although widely known for their involvement in the control of carbohydrate and lipid metabolism of vertebrates, the participation of catecholamines (CAs) in the metabolism of invertebrates is less understood. This study was designed to identify the physiological role of Epinephrine (E) in the intermediary metabolism of the burrowing crab Neohelice granulata and how E regulates the metabolism in crabs fed with a high-carbohydrate (HC) or a high-protein (HP) diet. To answer these questions, we evaluated in vivo the effects of E injections on glucose and triglycerides in the hemolymph and tissue glycogen levels of crabs fed with HC or HP diet. An in vitro investigation was carried out to assess the direct effects of E on glycogenolysis, lipolysis and glycolysis pathways in the hepatopancreas, mandibular muscle and anterior and posterior gills of this crab. E injections increased glucose and did not affect triglycerides levels in the hemolymph of either group of crabs, and E decreased glycogen in the hepatopancreas and mandibular muscle only in HP crabs, suggesting that these effects may be mediated by the crustacean hyperglycemic hormone (CHH). When the tissues were incubated with different concentrations of E, the concentration of glucose released to the medium decreased in the hepatopancreas and posterior gills, while glucose oxidation increased in the posterior gills of HP crabs. Incubation with E did not alter any parameter in tissues of HC crabs. These effects suggest that E may be involved in the metabolic response to osmotic stress.
Collapse
|
45
|
Marques-Oliveira GH, Silva TM, Lima WG, Valadares HMS, Chaves VE. Insulin as a hormone regulator of the synthesis and release of leptin by white adipose tissue. Peptides 2018; 106:49-58. [PMID: 29953915 DOI: 10.1016/j.peptides.2018.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/20/2018] [Accepted: 06/24/2018] [Indexed: 02/09/2023]
Abstract
Leptin and its receptor are widely distributed in several tissues, mainly in white adipose tissue. The serum leptin is highly correlated with body mass index in rodents and humans, being documented that leptin levels reduces in the fasting state and increase during refeeding, similarly to insulin release by pancreatic islets. Insulin appears to increase leptin mRNA and protein expression and its release by adipocytes. Some studies have suggested that insulin acts through the activation of the transcription factors: sterol regulatory element binding protein 1 (SREBP1), CCAAT enhancer binding protein-α (C/EBP-α) and specificity protein 1 (Sp1). Insulin stimulates the release of preformed and newly synthesized leptin by adipocytes through its signaling cascade. Its effects are blocked by inhibitors of the insulin signaling pathway, as well as by inhibitors of protein synthesis and agents that increase the intracellular cAMP. The literature data suggest that chronic hyperinsulinemia increases serum leptin levels in humans and rodents. In this review, we summarized the most updated knowledge on the effects of insulin on serum leptin levels, presenting the cell mechanisms that control leptin synthesis and release by the white adipose tissue.
Collapse
Affiliation(s)
| | - Thaís Marques Silva
- Laboratory of Physiology, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | - William Gustavo Lima
- Laboratory of Physiology, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | | | - Valéria Ernestânia Chaves
- Laboratory of Physiology, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil.
| |
Collapse
|
46
|
Álvarez-Rodríguez M, Pereiro P, Reyes-López FE, Tort L, Figueras A, Novoa B. Analysis of the Long-Lived Responses Induced by Immunostimulants and Their Effects on a Viral Infection in Zebrafish ( Danio rerio). Front Immunol 2018; 9:1575. [PMID: 30038625 PMCID: PMC6047052 DOI: 10.3389/fimmu.2018.01575] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022] Open
Abstract
In recent years, the innate immune response has gained importance since evidence indicates that after an adequate priming protocol, it is possible to obtain some prolonged and enhanced immune responses. Nevertheless, several factors, such as the timing and method of administration of the immunostimulants, must be carefully considered. An inappropriate protocol can transform the treatments into a double-edged sword for the teleost immune system, resulting in a stressful and immunosuppressive state. In this work, we analyzed the long-term effects of different stimuli (β-glucans, lipopolysaccharide, and polyinosinic:polycytidylic acid) on the transcriptome modulation induced by Spring Viremia Carp Virus (SVCV) in adult zebrafish (Danio rerio) and on the mortality caused by this infection. At 35 days post-immunostimulation, the transcriptome was found to be highly altered compared to that of the control fish, and these stimuli also conditioned the response to SVCV challenge, especially in the case of β-glucans. No protection against SVCV was found with any of the stimuli, and non-significant higher mortalities were even observed, especially with β-glucans. However, in the short term (pre-stimulation with β-glucan and infection after 7 days), slight protection was observed after infection. The transcriptome response in the zebrafish kidney at 35 days posttreatment with β-glucans revealed a significant response associated with stress and immunosuppression. The identification of genes that were differentially expressed before and after the infection seemed to indicate a high energy cost of the immunostimulation that was prolonged over time and could explain the lack of protection against SVCV. Differential responses to stress and alterations in lipid metabolism, the tryptophan–kynurenine pathway, and interferon-gamma signaling seem to be some of the mechanisms involved in this response, which represents the end of trained immunity and the beginning of a stressful state characterized by immunosuppression.
Collapse
Affiliation(s)
| | - Patricia Pereiro
- Institute of Marine Research (IIM), National Research Council (CSIC), Vigo, Spain
| | - Felipe E Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universidad Autónoma de Barcelona, Bellaterra, Spain
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universidad Autónoma de Barcelona, Bellaterra, Spain
| | - Antonio Figueras
- Institute of Marine Research (IIM), National Research Council (CSIC), Vigo, Spain
| | - Beatriz Novoa
- Institute of Marine Research (IIM), National Research Council (CSIC), Vigo, Spain
| |
Collapse
|
47
|
Conde-Sieira M, Chivite M, Míguez JM, Soengas JL. Stress Effects on the Mechanisms Regulating Appetite in Teleost Fish. Front Endocrinol (Lausanne) 2018; 9:631. [PMID: 30405535 PMCID: PMC6205965 DOI: 10.3389/fendo.2018.00631] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/04/2018] [Indexed: 12/29/2022] Open
Abstract
The homeostatic regulation of food intake relies on a complex network involving peripheral and central signals that are integrated in the hypothalamus which in turn responds with the release of orexigenic or anorexigenic neuropeptides that eventually promote or inhibit appetite. Under stress conditions, the mechanisms that control food intake in fish are deregulated and the appetite signals in the brain do not operate as in control conditions resulting in changes in the expression of the appetite-related neuropeptides and usually a decreased food intake. The effect of stress on the mechanisms that regulate food intake in fish seems to be mediated in part by the corticotropin-releasing factor (CRF), an anorexigenic neuropeptide involved in the activation of the HPI axis during the physiological stress response. Furthermore, the melanocortin system is also involved in the connection between the HPI axis and the central control of appetite. The dopaminergic and serotonergic systems are activated during the stress response and they have also been related to the control of food intake. In addition, the central and peripheral mechanisms that mediate nutrient sensing capacity and hence implicated in the metabolic control of appetite are inhibited in fish under stress conditions. Finally, stress also affects peripheral endocrine signals such as leptin. In the present minireview, we summarize the knowledge achieved in recent years regarding the interaction of stress with the different mechanisms that regulate food intake in fish.
Collapse
|
48
|
Liu CZ, He AY, Ning LJ, Luo Y, Li DL, Zhang ML, Chen LQ, Du ZY. Leptin Selectively Regulates Nutrients Metabolism in Nile Tilapia Fed on High Carbohydrate or High Fat Diet. Front Endocrinol (Lausanne) 2018; 9:574. [PMID: 30405527 PMCID: PMC6201848 DOI: 10.3389/fendo.2018.00574] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/10/2018] [Indexed: 01/31/2023] Open
Abstract
Leptin is known to inhibit appetite and promote energy metabolism in vertebrates. Leptin resistance (LR) commonly occurs in diet-induced obesity (DIO) in mammals. However, the roles of leptin in the energy homeostasis in DIO animals with LR remain unclear. Here we first verified the high expression of leptin in subcutaneous adipose tissue (SCAT) as in liver in Nile tilapia. Furthermore, we produced two types of DIO Nile tilapia by using a high-carbohydrate diet (HCD) or a high-fat diet (HFD), and confirmed the existence of LR in both models. Notably, we found that HCD-DIO fish retained leptin action in the activation of lipid metabolism and showed LR in glucose metabolism regulation, while this selective leptin action between lipid and glucose metabolism was reversed in HFD-DIO fish. Fasting the fish for 1 week completely recovered leptin actions in the regulation of lipid and glucose metabolism. Therefore, leptin may retain more of its activities in animals with LR than previously believed. Evolutionally, this selective regulation of leptin in nutrients metabolism could be an adaptive mechanism in animals to store surplus calories when different types of food are abundant.
Collapse
Affiliation(s)
- Cai-Zhi Liu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - An-Yuan He
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, Saint Louis, MO, United States
| | - Li-Jun Ning
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yuan Luo
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Dong-Liang Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Mei-Ling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Li-Qiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
- *Correspondence: Li-Qiao Chen
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
- Zhen-Yu Du
| |
Collapse
|