1
|
Zhang W, Suo J, Yan Y, Yang R, Lu Y, Jin Y, Gao S, Li S, Gao J, Zhang M, Dai Q. iSMOD: an integrative browser for image-based single-cell multi-omics data. Nucleic Acids Res 2023; 51:8348-8366. [PMID: 37439331 PMCID: PMC10484677 DOI: 10.1093/nar/gkad580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023] Open
Abstract
Genomic and transcriptomic image data, represented by DNA and RNA fluorescence in situ hybridization (FISH), respectively, together with proteomic data, particularly that related to nuclear proteins, can help elucidate gene regulation in relation to the spatial positions of chromatins, messenger RNAs, and key proteins. However, methods for image-based multi-omics data collection and analysis are lacking. To this end, we aimed to develop the first integrative browser called iSMOD (image-based Single-cell Multi-omics Database) to collect and browse comprehensive FISH and nucleus proteomics data based on the title, abstract, and related experimental figures, which integrates multi-omics studies focusing on the key players in the cell nucleus from 20 000+ (still growing) published papers. We have also provided several exemplar demonstrations to show iSMOD's wide applications-profiling multi-omics research to reveal the molecular target for diseases; exploring the working mechanism behind biological phenomena using multi-omics interactions, and integrating the 3D multi-omics data in a virtual cell nucleus. iSMOD is a cornerstone for delineating a global view of relevant research to enable the integration of scattered data and thus provides new insights regarding the missing components of molecular pathway mechanisms and facilitates improved and efficient scientific research.
Collapse
Affiliation(s)
- Weihang Zhang
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Jinli Suo
- Department of Automation, Tsinghua University, Beijing 100084, China
- Institute of Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
| | - Yan Yan
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division, BNRist; Center for Synthetic & Systems Biology, Tsinghua University, Beijing 100084, China
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Runzhao Yang
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yiming Lu
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yiqi Jin
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Shuochen Gao
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Shao Li
- Department of Automation, Tsinghua University, Beijing 100084, China
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division, BNRist; Center for Synthetic & Systems Biology, Tsinghua University, Beijing 100084, China
| | - Juntao Gao
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division, BNRist; Center for Synthetic & Systems Biology, Tsinghua University, Beijing 100084, China
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Michael Zhang
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division, BNRist; Center for Synthetic & Systems Biology, Tsinghua University, Beijing 100084, China
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing 100084, China
- Institute of Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Vlaardingerbroek H, Joustra SD, Oostdijk W, de Bruin C, Wit JM. Assessment of Nutritional Status in the Diagnostic Evaluation of the Child with Growth Failure. Horm Res Paediatr 2023; 97:11-21. [PMID: 37054683 DOI: 10.1159/000530644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/23/2023] [Indexed: 04/15/2023] Open
Abstract
Current clinical guidelines provide information about the diagnostic workup of children with growth failure. This mini-review focuses on the nutritional assessment, which has received relatively little attention in such guidelines. The past medical history, in particular a low birth size and early feeding problems, can provide information that can increase the likelihood of nutritional deficits or several genetic causes. The current medical history should include a dietary history and can thereby reveal a poorly planned or severely restricted diet, which can be associated with nutritional deficiencies. Children on a vegan diet should receive various nutritional supplements, but insufficient compliance has been reported in one-third of cases. While proper use of nutritional supplements in children consuming a vegan diet appears to be associated with normal growth and development, insufficient intake of supplements may impede growth and bone formation. Physical examination and analysis of height and weight over time can help differentiating between endocrine causes, gastrointestinal disorders, psychosocial problems, or underlying genetic conditions that prevent adequate nutritional intake. Laboratory screening should be part of the workup in every child with short stature, and further laboratory tests can be indicated if warranted by the dietary history, especially in children on a poorly planned vegan diet.
Collapse
Affiliation(s)
- Hester Vlaardingerbroek
- Division of Paediatric Endocrinology, Department of Paediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands
| | - Sjoerd D Joustra
- Division of Paediatric Endocrinology, Department of Paediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands
| | - Wilma Oostdijk
- Division of Paediatric Endocrinology, Department of Paediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands
| | - Christiaan de Bruin
- Division of Paediatric Endocrinology, Department of Paediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jan M Wit
- Division of Paediatric Endocrinology, Department of Paediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
3
|
IGF2: Development, Genetic and Epigenetic Abnormalities. Cells 2022; 11:cells11121886. [PMID: 35741015 PMCID: PMC9221339 DOI: 10.3390/cells11121886] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023] Open
Abstract
In the 30 years since the first report of parental imprinting in insulin-like growth factor 2 (Igf2) knockout mouse models, we have learnt much about the structure of this protein, its role and regulation. Indeed, many animal and human studies involving innovative techniques have shed light on the complex regulation of IGF2 expression. The physiological roles of IGF-II have also been documented, revealing pleiotropic tissue-specific and developmental-stage-dependent action. Furthermore, in recent years, animal studies have highlighted important interspecies differences in IGF-II function, gene expression and regulation. The identification of human disorders due to impaired IGF2 gene expression has also helped to elucidate the major role of IGF-II in growth and in tumor proliferation. The Silver-Russell and Beckwith-Wiedemann syndromes are the most representative imprinted disorders, as they constitute both phenotypic and molecular mirrors of IGF2-linked abnormalities. The characterization of patients with either epigenetic or genetic defects altering IGF2 expression has confirmed the central role of IGF-II in human growth regulation, particularly before birth, and its effects on broader body functions, such as metabolism or tumor susceptibility. Given the long-term health impact of these rare disorders, it is important to understand the consequences of IGF2 defects in these patients.
Collapse
|
4
|
Liao J, Zeng TB, Pierce N, Tran DA, Singh P, Mann JR, Szabó PE. Prenatal correction of IGF2 to rescue the growth phenotypes in mouse models of Beckwith-Wiedemann and Silver-Russell syndromes. Cell Rep 2021; 34:108729. [PMID: 33567274 PMCID: PMC7968144 DOI: 10.1016/j.celrep.2021.108729] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 12/02/2020] [Accepted: 01/15/2021] [Indexed: 12/19/2022] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS) are imprinting disorders manifesting as aberrant fetal growth and severe postnatal-growth-related complications. Based on the insulator model, one-third of BWS cases and two-thirds of SRS cases are consistent with misexpression of insulin-like growth factor 2 (IGF2), an important facilitator of fetal growth. We propose that the IGF2-dependent BWS and SRS cases can be identified by prenatal diagnosis and can be prevented by prenatal intervention targeting IGF2. We test this hypothesis using our mouse models of IGF2-dependent BWS and SRS. We find that genetically normalizing IGF2 levels in a double rescue experiment corrects the fetal overgrowth phenotype in the BWS model and the growth retardation in the SRS model. In addition, we pharmacologically rescue the BWS growth phenotype by reducing IGF2 signaling during late gestation. This animal study encourages clinical investigations to target IGF2 for prenatal diagnosis and prenatal prevention in human BWS and SRS. Liao et al. use mouse models to test a prenatal approach for correcting growth anomalies in two imprinting diseases, BWS and SRS. They find that cases where the fetal growth factor IGF2 is misregulated can be diagnosed, and growth can be corrected by prenatally adjusting IGF2 or its signaling output.
Collapse
Affiliation(s)
- Ji Liao
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Tie-Bo Zeng
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Nicholas Pierce
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Diana A Tran
- Division of Molecular and Cellular Biology, City of Hope Cancer Center, Duarte, CA 91010, USA; Irell and Manella Graduate School, City of Hope, Duarte, CA 91010, USA
| | - Purnima Singh
- Division of Molecular and Cellular Biology, City of Hope Cancer Center, Duarte, CA 91010, USA
| | - Jeffrey R Mann
- Division of Molecular and Cellular Biology, City of Hope Cancer Center, Duarte, CA 91010, USA
| | - Piroska E Szabó
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
5
|
Forbes BE, Blyth AJ, Wit JM. Disorders of IGFs and IGF-1R signaling pathways. Mol Cell Endocrinol 2020; 518:111035. [PMID: 32941924 DOI: 10.1016/j.mce.2020.111035] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022]
Abstract
The insulin-like growth factor (IGF) system comprises two ligands, IGF-I and IGF-II, that regulate multiple physiological processes, including mammalian development, metabolism and growth, through the type 1 IGF receptor (IGF-1R). The growth hormone (GH)-IGF-I axis is the major regulator of longitudinal growth. IGF-II is expressed in many tissues, notably the placenta, to regulate human pre- and post-natal growth and development. This review provides a brief introduction to the IGF system and summarizes findings from reports arising from recent larger genomic sequencing studies of human genetic mutations in IGF1 and IGF2 and genes of proteins regulating IGF action, namely the IGF-1R, IGF-1R signaling pathway components and the IGF binding proteins (IGFBPs). A perspective on the effect of homozygous mutations on structure and function of the IGFs and IGF-1R is also given and this is related to the effects on growth.
Collapse
Affiliation(s)
- Briony E Forbes
- Discipline of Medical Biochemistry, Flinders Health and Medical Research Institute, Flinders University, Australia.
| | - Andrew J Blyth
- Discipline of Medical Biochemistry, Flinders Health and Medical Research Institute, Flinders University, Australia
| | - Jan M Wit
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
6
|
Karuppan MKM, Ojha CR, Rodriguez M, Lapierre J, Aman MJ, Kashanchi F, Toborek M, Nair M, El-Hage N. Reduced-Beclin1-Expressing Mice Infected with Zika-R103451 and Viral-Associated Pathology during Pregnancy. Viruses 2020; 12:v12060608. [PMID: 32498399 PMCID: PMC7354588 DOI: 10.3390/v12060608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/24/2020] [Accepted: 05/29/2020] [Indexed: 12/14/2022] Open
Abstract
Here, we used a mouse model with defective autophagy to further decipher the role of Beclin1 in the infection and disease of Zika virus (ZIKV)-R103451. Hemizygous (Becn1+/−) and wild-type (Becn1+/+) pregnant mice were transiently immunocompromised using the anti-interferon alpha/beta receptor subunit 1 monoclonal antibody MAR1-5A3. Despite a low mortality rate among the infected dams, 25% of Becn1+/− offspring were smaller in size and had smaller, underdeveloped brains. This phenotype became apparent after 2-to 3-weeks post-birth. Furthermore, the smaller-sized pups showed a decrease in the mRNA expression levels of insulin-like growth factor (IGF)-1 and the expression levels of several microcephaly associated genes, when compared to their typical-sized siblings. Neuronal loss was also noticeable in brain tissues that were removed postmortem. Further analysis with murine mixed glia, derived from ZIKV-infected Becn1+/− and Becn1+/+ pups, showed greater infectivity in glia derived from the Becn1+/− genotype, along with a significant increase in pro-inflammatory molecules. In the present study, we identified a link by which defective autophagy is causally related to increased inflammatory molecules, reduced growth factor, decreased expression of microcephaly-associated genes, and increased neuronal loss. Specifically, we showed that a reduced expression of Beclin1 aggravated the consequences of ZIKV infection on brain development and qualifies Becn1 as a susceptibility gene of ZIKV congenital syndrome.
Collapse
Affiliation(s)
- Mohan Kumar Muthu Karuppan
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (M.K.M.K.); (C.R.O.); (M.R.); (J.L.); (M.N.)
| | - Chet Raj Ojha
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (M.K.M.K.); (C.R.O.); (M.R.); (J.L.); (M.N.)
| | - Myosotys Rodriguez
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (M.K.M.K.); (C.R.O.); (M.R.); (J.L.); (M.N.)
| | - Jessica Lapierre
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (M.K.M.K.); (C.R.O.); (M.R.); (J.L.); (M.N.)
| | - M. Javad Aman
- Integrated Biotherapeutics, Rockville, MD 20850, USA;
| | - Fatah Kashanchi
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA 20110, USA;
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Madhavan Nair
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (M.K.M.K.); (C.R.O.); (M.R.); (J.L.); (M.N.)
| | - Nazira El-Hage
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (M.K.M.K.); (C.R.O.); (M.R.); (J.L.); (M.N.)
- Correspondence: ; Tel.: +1-(305)-348-4346; Fax: +1-(305)-348-1109
| |
Collapse
|
7
|
Abstract
The insulin-like growth factors (IGFs; IGF1/IGF2), known for their regulation of cell and organismal growth and development, are evolutionarily conserved ligands with equivalent peptides present in flies (
D. melanogaster), worms (
C. elegans) among others. Two receptor tyrosine kinases, the IGF1 receptor and the insulin receptor mediate the actions of these ligands with a family of IGF binding proteins serving as selective inhibitors of IGF1/2. This treatise reviews recent findings on IGF signaling in cancer biology and central nervous system function. This includes overexpression of IGF1 receptors in enhancing tumorigenesis, acquired resistance and contributions to metastasis in multiple cancer types. There is accumulating evidence that insulin resistance, a hallmark of type 2 diabetes, occurs in the central nervous system, independent of systemic insulin resistance and characterized by reduced insulin and IGF1 receptor signaling, and may contribute to dementias including Alzheimer’s Disease and cognitive impairment. Controversy over the role(s) of IGF signaling in cancer and whether its inhibition would be of benefit, still persist and extend to IGF1’s role in longevity and central nervous system function.
Collapse
Affiliation(s)
- Steven A Rosenzweig
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
8
|
Argente J, Tatton-Brown K, Lehwalder D, Pfäffle R. Genetics of Growth Disorders-Which Patients Require Genetic Testing? Front Endocrinol (Lausanne) 2019; 10:602. [PMID: 31555216 PMCID: PMC6742727 DOI: 10.3389/fendo.2019.00602] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022] Open
Abstract
The second 360° European Meeting on Growth Hormone Disorders, held in Barcelona, Spain, in June 2017, included a session entitled Pragmatism vs. Curiosity in Genetic Diagnosis of Growth Disorders, which examined current concepts of genetics and growth in the clinical setting, in terms of both growth failure and overgrowth. For patients with short stature, multiple genes have been identified that result in GH deficiency, which may be isolated or associated with additional pituitary hormone deficiencies, or in growth hormone resistance, primary insulin-like growth factor (IGF) acid-labile subunit deficiency, IGF-I deficiency, IGF-II deficiency, IGF-I resistance, and primary PAPP-A2 deficiency. While genetic causes of short stature were previously thought to primarily be associated with the GH-IGF-I axis, it is now established that multiple genetic anomalies not associated with the GH-IGF-I axis can result in short stature. A number of genetic anomalies have also been shown to be associated with overgrowth, some of which involve the GH-IGF-I axis. In patients with overgrowth in combination with an intellectual disability, two predominant gene families, the epigenetic regulator genes, and PI3K/AKT pathway genes, have now been identified. Specific processes should be followed for decisions on which patients require genetic testing and which genes should be examined for anomalies. The decision to carry out genetic testing should be directed by the clinical process, not merely for research purposes. The intention of genetic testing should be to direct the clinical options for management of the growth disorder.
Collapse
Affiliation(s)
- Jesús Argente
- Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III and IMDEA Institute, Madrid, Spain
- *Correspondence: Jesús Argente
| | - Katrina Tatton-Brown
- Institute of Cancer Research, St George's University Hospital NHS Foundation Trust, London and St George's University of London, London, United Kingdom
| | - Dagmar Lehwalder
- Global Medical Affairs, Merck Healthcare KGaA, Darmstadt, Germany
| | - Roland Pfäffle
- Department of Pediatrics, University of Leipzig, Leipzig, Germany
- Roland Pfäffle
| |
Collapse
|