1
|
Zhang X, Zeng Y, Ying H, Hong Y, Xu J, Lin R, Chen Y, Wu X, Cai W, Xia Z, Zhao Q, Wang Y, Zhou R, Zhu D, Yu F. AdipoRon mitigates liver fibrosis by suppressing serine/glycine biosynthesis through ATF4-dependent glutaminolysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 289:117511. [PMID: 39662457 DOI: 10.1016/j.ecoenv.2024.117511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 11/22/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
AdipoRon has been validated for its ability to reverse liver fibrosis, yet the underlying mechanisms remain to be thoroughly investigated. Collagen, predominantly synthesized and secreted in hepatic stellate cells (HSCs), relies on glycine as a crucial constituent. Activating transcription factor 4 (ATF4) serves as a pivotal transcriptional regulator in amino acid metabolism. Therefore, our objective is to explore the impact of AdipoRon on ATF4-mediated endoplasmic reticulum stress and amino acid metabolism in HSCs. We induced liver fibrosis in mice through intraperitoneal injection of CCl4 and administered AdipoRon (50 mg/kg) via gavage. In vitro studies were predominantly conducted using LX-2 cells. Our findings demonstrated that AdipoRon effectively suppressed ATF4-mediated endoplasmic reticulum stress in HSCs and assumed a crucial role in hindering serine/glycine biosynthesis. Interestingly, this inhibitory effect of AdipoRon on serine/glycine biosynthesis is regulated by PSAT1-mediated glutaminolysis, resulting in a subsequent decrease in collagen synthesis within HSCs. This study provides potential mechanistic insights into the treatment of liver fibrosis with AdipoRon.
Collapse
Affiliation(s)
- Xiangting Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuan Zeng
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huiya Ying
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiwen Hong
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jun Xu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rong Lin
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuhao Chen
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao Wu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weimin Cai
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ziqiang Xia
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qian Zhao
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yixiao Wang
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ruoru Zhou
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dandan Zhu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fujun Yu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Liu Y, Fu X, Sun J, Cui R, Yang W. AdipoRon exerts an antidepressant effect by inhibiting NLRP3 inflammasome activation in microglia via promoting mitophagy. Int Immunopharmacol 2024; 141:113011. [PMID: 39213872 DOI: 10.1016/j.intimp.2024.113011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Depression is a serious mental disorder that threatens patients' physical and mental health worldwide. The activation of the NLR family pyrin domain-containing 3 (NLRP3) inflammasome is essential for microglia-mediated neuroinflammation and neuronal damage in depression. Numerous pathophysiological factors, such as mitochondrial dysfunction and impaired mitophagy, have an essential role in activating the NLRP3 inflammasome. AdipoRon is a potent adiponectin receptor agonist; however, its antidepressant effects have not been thoroughly investigated. In this study, we found that AdipoRon ameliorated depression-like behavior and neuronal damage induced by chronic unpredictable mild stress (CUMS). Further research demonstrated that AdipoRon inhibited the activation of the NLRP3 inflammasome and protected hippocampal neurons from microglial cytotoxicity by promoting mitophagy, increasing the clearance of damaged mitochondria, and reducing mtROS accumulation. Importantly, inhibition of mitophagy attenuated the antidepressant and neuroprotective effects of AdipoRon. Overall, these findings indicate that AdipoRon alleviates depression by inhibiting NLRP3 inflammasome activation in microglia via improving mitophagy.
Collapse
Affiliation(s)
- Yaqi Liu
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin Province, China; Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiying Fu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin Province, China; Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jiangjin Sun
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin Province, China; Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Wei Yang
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin Province, China; Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
3
|
Tang J, Lei Y, Pignalosa A, Hsu HH, Abdul-Sater AA, Sweeney G. Development of a non-invasive bioassay for adiponectin target engagement in mice. iScience 2024; 27:110994. [PMID: 39435143 PMCID: PMC11492082 DOI: 10.1016/j.isci.2024.110994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/23/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024] Open
Abstract
Adiponectin-based therapeutic strategies are promising for managing metabolic diseases and reducing inflammation, prompting the development of adiponectin receptor agonists. However, monitoring their pharmacodynamic actions in clinical applications is challenging. This study aimed to identify peripheral biomarkers to monitor adiponectin actions using ALY688, an adiponectin receptor agonist peptide. RNA sequencing analysis of whole blood identified a cluster of genes that were significantly increased in the ALY688-treated group compared to the control. This gene cluster was validated by qPCR and further confirmed in human peripheral blood mononuclear cells treated with ALY688 ex vivo. We also confirmed a functional outcome of ALY688 action in mice as our study also demonstrated the anti-inflammatory effect of ALY688 in a sublethal LPS mouse model. In summary, a newly identified gene cluster signature is suitable for assessing the pharmacodynamic action of adiponectin or its mimetics in blood samples.
Collapse
Affiliation(s)
- Jialing Tang
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Yubin Lei
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Angelica Pignalosa
- Allysta Pharmaceuticals Inc., 500 108th Avenue NE, Suite 1100, Bellevue, WA 98004, USA
| | - Henry H. Hsu
- Allysta Pharmaceuticals Inc., 500 108th Avenue NE, Suite 1100, Bellevue, WA 98004, USA
| | - Ali A. Abdul-Sater
- School of Kinesiology and Health Science, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Gary Sweeney
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
4
|
Gandhi S, Sweeney G, Perry CGR. Recent Advances in Pre-Clinical Development of Adiponectin Receptor Agonist Therapies for Duchenne Muscular Dystrophy. Biomedicines 2024; 12:1407. [PMID: 39061981 PMCID: PMC11274162 DOI: 10.3390/biomedicines12071407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by genetic mutations in the cytoskeletal-sarcolemmal anchor protein dystrophin. Repeated cycles of sarcolemmal tearing and repair lead to a variety of secondary cellular and physiological stressors that are thought to contribute to weakness, atrophy, and fibrosis. Collectively, these stressors can contribute to a pro-inflammatory milieu in locomotor, cardiac, and respiratory muscles. Given the many unwanted side effects that accompany current anti-inflammatory steroid-based approaches for treating DMD (e.g., glucocorticoids), there is a need to develop new therapies that address inflammation and other cellular dysfunctions. Adiponectin receptor (AdipoR) agonists, which stimulate AdipoR1 and R2 isoforms on various cell types, have emerged as therapeutic candidates for DMD due to their anti-inflammatory, anti-fibrotic, and pro-myogenic properties in pre-clinical human and rodent DMD models. Although these molecules represent a new direction for therapeutic intervention, the mechanisms through which they elicit their beneficial effects are not yet fully understood, and DMD-specific data is limited. The overarching goal of this review is to investigate how adiponectin signaling may ameliorate pathology associated with dystrophin deficiency through inflammatory-dependent and -independent mechanisms and to determine if current data supports their future progression to clinical trials.
Collapse
Affiliation(s)
- Shivam Gandhi
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada;
| | - Gary Sweeney
- Department of Biology and Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada;
| | - Christopher G. R. Perry
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada;
| |
Collapse
|
5
|
Fawaz S, Martin Alonso A, Qiu Y, Ramnath R, Stowell-Connolly H, Gamez M, May C, Down C, Coward RJ, Butler MJ, Welsh GI, Satchell SC, Foster RR. Adiponectin Reduces Glomerular Endothelial Glycocalyx Disruption and Restores Glomerular Barrier Function in a Mouse Model of Type 2 Diabetes. Diabetes 2024; 73:964-976. [PMID: 38530908 DOI: 10.2337/db23-0455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
Adiponectin has vascular anti-inflammatory and protective effects. Although adiponectin protects against the development of albuminuria, historically, the focus has been on podocyte protection within the glomerular filtration barrier (GFB). The first barrier to albumin in the GFB is the endothelial glycocalyx (eGlx), a surface gel-like barrier covering glomerular endothelial cells (GEnCs). In diabetes, eGlx dysfunction occurs before podocyte damage; hence, we hypothesized that adiponectin could protect from eGlx damage to prevent early vascular damage in diabetic kidney disease (DKD). Globular adiponectin (gAd) activated AMPK signaling in human GEnCs through AdipoR1. It significantly reduced eGlx shedding and the tumor necrosis factor-α (TNF-α)-mediated increase in syndecan-4 (SDC4) and MMP2 mRNA expression in GEnCs in vitro. It protected against increased TNF-α mRNA expression in glomeruli isolated from db/db mice and against expression of genes associated with glycocalyx shedding (namely, SDC4, MMP2, and MMP9). In addition, gAd protected against increased glomerular albumin permeability (Ps'alb) in glomeruli isolated from db/db mice when administered intraperitoneally and when applied directly to glomeruli (ex vivo). Ps'alb was inversely correlated with eGlx depth in vivo. In summary, adiponectin restored eGlx depth, which was correlated with improved glomerular barrier function, in diabetes. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Sarah Fawaz
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Aldara Martin Alonso
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Yan Qiu
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Raina Ramnath
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Holly Stowell-Connolly
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Monica Gamez
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Carl May
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Colin Down
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Richard J Coward
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Matthew J Butler
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Gavin I Welsh
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Simon C Satchell
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Rebecca R Foster
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| |
Collapse
|
6
|
Han Y, Sun Q, Chen W, Gao Y, Ye J, Chen Y, Wang T, Gao L, Liu Y, Yang Y. New advances of adiponectin in regulating obesity and related metabolic syndromes. J Pharm Anal 2024; 14:100913. [PMID: 38799237 PMCID: PMC11127227 DOI: 10.1016/j.jpha.2023.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/18/2023] [Accepted: 12/07/2023] [Indexed: 05/29/2024] Open
Abstract
Obesity and related metabolic syndromes have been recognized as important disease risks, in which the role of adipokines cannot be ignored. Adiponectin (ADP) is one of the key adipokines with various beneficial effects, including improving glucose and lipid metabolism, enhancing insulin sensitivity, reducing oxidative stress and inflammation, promoting ceramides degradation, and stimulating adipose tissue vascularity. Based on those, it can serve as a positive regulator in many metabolic syndromes, such as type 2 diabetes (T2D), cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), sarcopenia, neurodegenerative diseases, and certain cancers. Therefore, a promising therapeutic approach for treating various metabolic diseases may involve elevating ADP levels or activating ADP receptors. The modulation of ADP genes, multimerization, and secretion covers the main processes of ADP generation, providing a comprehensive orientation for the development of more appropriate therapeutic strategies. In order to have a deeper understanding of ADP, this paper will provide an all-encompassing review of ADP.
Collapse
Affiliation(s)
- Yanqi Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qianwen Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Wei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yue Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanmin Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Tingting Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Lili Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
7
|
Bellissimo CA, Gandhi S, Castellani LN, Murugathasan M, Delfinis LJ, Thuhan A, Garibotti MC, Seo Y, Rebalka IA, Hsu HH, Sweeney G, Hawke TJ, Abdul-Sater AA, Perry CGR. The slow-release adiponectin analog ALY688-SR modifies early-stage disease development in the D2. mdx mouse model of Duchenne muscular dystrophy. Am J Physiol Cell Physiol 2024; 326:C1011-C1026. [PMID: 38145301 DOI: 10.1152/ajpcell.00638.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Fibrosis is associated with respiratory and limb muscle atrophy in Duchenne muscular dystrophy (DMD). Current standard of care partially delays the progression of this myopathy but there remains an unmet need to develop additional therapies. Adiponectin receptor agonism has emerged as a possible therapeutic target to lower inflammation and improve metabolism in mdx mouse models of DMD but the degree to which fibrosis and atrophy are prevented remain unknown. Here, we demonstrate that the recently developed slow-release peptidomimetic adiponectin analog, ALY688-SR, remodels the diaphragm of murine model of DMD on DBA background (D2.mdx) mice treated from days 7-28 of age during early stages of disease. ALY688-SR also lowered interleukin-6 (IL-6) mRNA but increased IL-6 and transforming growth factor-β1 (TGF-β1) protein contents in diaphragm, suggesting dynamic inflammatory remodeling. ALY688-SR alleviated mitochondrial redox stress by decreasing complex I-stimulated H2O2 emission. Treatment also attenuated fibrosis, fiber type-specific atrophy, and in vitro diaphragm force production in diaphragm suggesting a complex relationship between adiponectin receptor activity, muscle remodeling, and force-generating properties during the very early stages of disease progression in murine model of DMD on DBA background (D2.mdx) mice. In tibialis anterior, the modest fibrosis at this young age was not altered by treatment, and atrophy was not apparent at this young age. These results demonstrate that short-term treatment of ALY688-SR in young D2.mdx mice partially prevents fibrosis and fiber type-specific atrophy and lowers force production in the more disease-apparent diaphragm in relation to lower mitochondrial redox stress and heterogeneous responses in certain inflammatory markers. These diverse muscle responses to adiponectin receptor agonism in early stages of DMD serve as a foundation for further mechanistic investigations.NEW & NOTEWORTHY There are limited therapies for the treatment of Duchenne muscular dystrophy. As fibrosis involves an accumulation of collagen that replaces muscle fibers, antifibrotics may help preserve muscle function. We report that the novel adiponectin receptor agonist ALY688-SR prevents fibrosis in the diaphragm of D2.mdx mice with short-term treatment early in disease progression. These responses were related to altered inflammation and mitochondrial functions and serve as a foundation for the development of this class of therapy.
Collapse
MESH Headings
- Animals
- Mice
- Mice, Inbred mdx
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Adiponectin/genetics
- Disease Models, Animal
- Interleukin-6/metabolism
- Mice, Inbred C57BL
- Hydrogen Peroxide/metabolism
- Receptors, Adiponectin/genetics
- Receptors, Adiponectin/metabolism
- Mice, Inbred DBA
- Muscle, Skeletal/metabolism
- Diaphragm/metabolism
- Fibrosis
- Inflammation/metabolism
- Disease Progression
- Atrophy/metabolism
- Atrophy/pathology
Collapse
Affiliation(s)
- Catherine A Bellissimo
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Shivam Gandhi
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Laura N Castellani
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Mayoorey Murugathasan
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Luca J Delfinis
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Arshdeep Thuhan
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Madison C Garibotti
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Yeji Seo
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Irena A Rebalka
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Henry H Hsu
- Allysta Pharmaceuticals Inc, Bellevue, Washington, United States
| | - Gary Sweeney
- Department of Biology, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ali A Abdul-Sater
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Christopher G R Perry
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Laurindo LF, Sosin AF, Lamas CB, de Alvares Goulart R, Dos Santos Haber JF, Detregiachi CRP, Barbalho SM. Exploring the logic and conducting a comprehensive evaluation of AdipoRon-based adiponectin replacement therapy against hormone-related cancers-a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2067-2082. [PMID: 37864589 DOI: 10.1007/s00210-023-02792-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023]
Abstract
The potential benefits of adiponectin replacement therapy extend to numerous human diseases, with current research showing particular interest in its effectiveness against specific cancer forms, especially hormone-related. However, limitations in the pharmacological use of the intact protein have led to a focus on alternative options. AdipoRon is an extensively studied non-peptidic drug candidate for adiponectin replacement therapy. While researchers have explored the efficacy and therapeutic applications of AdipoRon in various disease conditions, their effects against cancer models advanced more, with no review regarding AdipoRon's efficacy against hormone-related cancers being published. The present systematic review aims to fill this gap. Preclinical evidence was compiled from PubMed, EMBASE, COCHRANE, and Google Scholar following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and the manuscript's quality assessment was conducted using the Joanna Briggs Institute (JBI) Checklist Critical Appraisal Tool for Systematic Reviews' Quality. The included nine studies incorporated various cell and animal models of the pancreas, gynaecological system, and osteosarcoma cancers. AdipoRon demonstrated effectiveness against pancreatic cancer by activating p44/42 MAPK, mitochondrial dysfunction, and AMPK-mediated inhibition of ACC1. In gynaecological cancers, it exhibited promising anticancer effects through the activation of AMPK, potential inhibition of mTOR, and modulation of the SET1B/BOD1/AdipoR1 signaling cascade. Against osteosarcoma, AdipoRon worked by perturbing ERK1/2 signaling and reducing p70S6K phosphorylation. AdipoRon shows promise in preclinical studies, but human trials are crucial for clinical safety and effectiveness. Caution is needed due to potential off-target effects, especially in cancer therapy with multi-target approaches. Structural biology and computational methods can help predict these effects.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil.
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil.
| | - Andreline Franchi Sosin
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil
| | - Caroline Barbalho Lamas
- Department of Gerontology, School of Gerontology, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, 13565-905, Brazil
| | - Ricardo de Alvares Goulart
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | | | - Claudia Rucco Penteado Detregiachi
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, 17500-000, Brazil
| |
Collapse
|
9
|
Otvos L, Wade JD. Big peptide drugs in a small molecule world. Front Chem 2023; 11:1302169. [PMID: 38144886 PMCID: PMC10740154 DOI: 10.3389/fchem.2023.1302169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
A quarter of a century ago, designer peptide drugs finally broke through the glass ceiling. Despite the resistance by big pharma, biotechnology companies managed to develop injectable peptide-based drugs, first against orphan or other small volume diseases, and later for conditions affecting large patient populations such as type 2 diabetes. Even their lack of gastrointestinal absorption could be utilized to enable successful oral dosing against chronic constipation. The preference of peptide therapeutics over small molecule competitors against identical medical conditions can be achieved by careful target selection, intrachain and terminal amino acid modifications, appropriate conjugation to stability enhancers and chemical space expansion, innovative delivery and administration techniques and patient-focused marketing strategies. Unfortunately, however, pharmacoeconomical considerations, including the strength of big pharma to develop competing small molecule drugs, have somewhat limited the success of otherwise smart peptide-based therapeutics. Yet, with increasing improvement in peptide drug modification and formulation, these are continuing to gain significant, and growing, acceptance as desirable alternatives to small molecule compounds.
Collapse
Affiliation(s)
- Laszlo Otvos
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
- OLPE Pharmaceutical Consultants, Audubon, PA, United States
| | - John D. Wade
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- School of Chemistry, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
10
|
Barbalho SM, Méndez-Sánchez N, Fornari Laurindo L. AdipoRon and ADP355, adiponectin receptor agonists, in Metabolic-associated Fatty Liver Disease (MAFLD) and Nonalcoholic Steatohepatitis (NASH): A systematic review. Biochem Pharmacol 2023; 218:115871. [PMID: 37866803 DOI: 10.1016/j.bcp.2023.115871] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Adiponectin replacement therapy holds the potential to benefit numerous human diseases, and ongoing research applies particular interest in how adiponectin acts against Metabolic-associated Fatty Liver Disease (MAFLD) and Nonalcoholic Steatohepatitis (NASH). However, the pharmacological limitations of the intact protein have prompted a focus on alternative options, specifically peptidic and small molecule agonists targeting the adiponectin receptor. AdipoRon is an extensively researched non-peptidic drug candidate in adiponectin replacement therapy. In turn, ADP355 is an adiponectin-based active short peptide. They have garnered significant attention due to their potential as substitutes for adiponectin. Researchers have studied AdipoRon's and ADP355's efficacy and therapeutic applications in various disease conditions. However, the effects of AdipoRon and ADP355 against NAFLD and NASH models advanced more, and no systematic review explored this area before. This systematic review was conceived to address the deficiency mentioned above and consider the lack of clinical evidence. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were utilized. To assess the risk of bias in systematic review, The Joanna Briggs Institute (JBI) Critical Appraisal Checklist was employed. Results from pre-clinical evidence show that AdipoRon and ADP355 represent promising effects in NAFLD and NASH-related models, including reducing hepatic steatosis, modulating inflammation, improving insulin sensitivity, enhancing mitochondrial function, and protecting against liver fibrosis. While AdipoRon and ADP355 exhibit promise in pre-clinical studies and experimental models, additional clinical trials are necessary to assess their effectiveness, safety, and potential translational therapeutic potential uses in NAFLD and NASH human cases.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), São Paulo, Brazil.
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico; Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo, Brazil; Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, Brazil
| |
Collapse
|
11
|
Bian J, Liu Y, Zhao X, Meng C, Zhang Y, Duan Y, Wang G. Research progress in the mechanism and treatment of osteosarcoma. Chin Med J (Engl) 2023; 136:2412-2420. [PMID: 37649421 PMCID: PMC10586865 DOI: 10.1097/cm9.0000000000002800] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Indexed: 09/01/2023] Open
Abstract
ABSTRACT Osteosarcoma (OS) is the most common primary malignant bone tumor that more commonly occurs in children and adolescents. The most commonly used treatment for OS is surgery combined with chemotherapy, but the treatment outcomes are typically unsatisfactory. High rates of metastasis and post-treatment recurrence rates are major challenges in the treatment of OS. This underlines the need for studying the in-depth characterization of the pathogenetic mechanisms of OS and development of more effective therapeutic modalities. Previous studies have demonstrated the important role of the bone microenvironment and the regulation of signaling pathways in the occurrence and development of OS. In this review, we discussed the available evidence pertaining to the mechanisms of OS development and identified therapeutic targets for OS. We also summarized the available treatment modalities for OS and identified future priorities for therapeutics research.
Collapse
Affiliation(s)
- Jichao Bian
- Department of Joint and Sports Medicine, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Yang Liu
- Department of Pathology, The Second People's Hospital Of Jining, Jining, Shandong 272049, China
| | - Xiaowei Zhao
- Department of Joint and Sports Medicine, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Chunyang Meng
- Department of Spine, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Yuanmin Zhang
- Department of Joint and Sports Medicine, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Yangmiao Duan
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Guodong Wang
- Department of Joint and Sports Medicine, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| |
Collapse
|
12
|
Dubuisson N, Versele R, Davis-López de Carrizosa MA, Selvais CM, Noel L, Planchon C, Van den Bergh PYK, Brichard SM, Abou-Samra M. The Adiponectin Receptor Agonist, ALY688: A Promising Therapeutic for Fibrosis in the Dystrophic Muscle. Cells 2023; 12:2101. [PMID: 37626911 PMCID: PMC10453606 DOI: 10.3390/cells12162101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is one of the most devastating myopathies, where severe inflammation exacerbates disease progression. Previously, we demonstrated that adiponectin (ApN), a hormone with powerful pleiotropic effects, can efficiently improve the dystrophic phenotype. However, its practical therapeutic application is limited. In this study, we investigated ALY688, a small peptide ApN receptor agonist, as a potential novel treatment for DMD. Four-week-old mdx mice were subcutaneously treated for two months with ALY688 and then compared to untreated mdx and wild-type mice. In vivo and ex vivo tests were performed to assess muscle function and pathophysiology. Additionally, in vitro tests were conducted on human DMD myotubes. Our results showed that ALY688 significantly improved the physical performance of mice and exerted potent anti-inflammatory, anti-oxidative and anti-fibrotic actions on the dystrophic muscle. Additionally, ALY688 hampered myonecrosis, partly mediated by necroptosis, and enhanced the myogenic program. Some of these effects were also recapitulated in human DMD myotubes. ALY688's protective and beneficial properties were mainly mediated by the AMPK-PGC-1α axis, which led to suppression of NF-κβ and TGF-β. Our results demonstrate that an ApN mimic may be a promising and effective therapeutic prospect for a better management of DMD.
Collapse
Affiliation(s)
- Nicolas Dubuisson
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research (IREC), Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium; (N.D.); (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (L.N.); (C.P.); (S.M.B.)
- Neuromuscular Reference Center, Department of Neurology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium;
| | - Romain Versele
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research (IREC), Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium; (N.D.); (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (L.N.); (C.P.); (S.M.B.)
| | - Maria A. Davis-López de Carrizosa
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research (IREC), Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium; (N.D.); (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (L.N.); (C.P.); (S.M.B.)
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Camille M. Selvais
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research (IREC), Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium; (N.D.); (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (L.N.); (C.P.); (S.M.B.)
| | - Laurence Noel
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research (IREC), Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium; (N.D.); (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (L.N.); (C.P.); (S.M.B.)
| | - Chloé Planchon
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research (IREC), Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium; (N.D.); (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (L.N.); (C.P.); (S.M.B.)
| | - Peter Y. K. Van den Bergh
- Neuromuscular Reference Center, Department of Neurology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium;
| | - Sonia M. Brichard
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research (IREC), Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium; (N.D.); (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (L.N.); (C.P.); (S.M.B.)
| | - Michel Abou-Samra
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research (IREC), Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium; (N.D.); (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (L.N.); (C.P.); (S.M.B.)
| |
Collapse
|
13
|
Abdalla MMI, Mohanraj J, Somanath SD. Adiponectin as a therapeutic target for diabetic foot ulcer. World J Diabetes 2023; 14:758-782. [PMID: 37383591 PMCID: PMC10294063 DOI: 10.4239/wjd.v14.i6.758] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 04/24/2023] [Indexed: 06/14/2023] Open
Abstract
The global burden of diabetic foot ulcers (DFUs) is a significant public health concern, affecting millions of people worldwide. These wounds cause considerable suffering and have a high economic cost. Therefore, there is a need for effective strategies to prevent and treat DFUs. One promising therapeutic approach is the use of adiponectin, a hormone primarily produced and secreted by adipose tissue. Adiponectin has demonstrated anti-inflammatory and anti-atherogenic properties, and researchers have suggested its potential therapeutic applications in the treatment of DFUs. Studies have indicated that adiponectin can inhibit the production of pro-inflammatory cytokines, increase the production of vascular endothelial growth factor, a key mediator of angiogenesis, and inhibit the activation of the intrinsic apoptotic pathway. Additionally, adiponectin has been found to possess antioxidant properties and impact glucose metabolism, the immune system, extracellular matrix remodeling, and nerve function. The objective of this review is to summarize the current state of research on the potential role of adiponectin in the treatment of DFUs and to identify areas where further research is needed in order to fully understand the effects of adiponectin on DFUs and to establish its safety and efficacy as a treatment for DFUs in the clinical setting. This will provide a deeper understanding of the underlying mechanisms of DFUs that can aid in the development of new and more effective treatment strategies.
Collapse
Affiliation(s)
- Mona Mohamed Ibrahim Abdalla
- Department of Physiology, Human Biology Division, School of Medicine, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Jaiprakash Mohanraj
- Department of Biochemistry, Human Biology Division, School of Medicine, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Sushela Devi Somanath
- Department of Microbiology, School of Medicine, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
14
|
Moyce Gruber BL, Dolinsky VW. The Role of Adiponectin during Pregnancy and Gestational Diabetes. Life (Basel) 2023; 13:301. [PMID: 36836658 PMCID: PMC9958871 DOI: 10.3390/life13020301] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Pregnancy involves a range of metabolic adaptations to supply adequate energy for fetal growth and development. Gestational diabetes (GDM) is defined as hyperglycemia with first onset during pregnancy. GDM is a recognized risk factor for both pregnancy complications and long-term maternal and offspring risk of cardiometabolic disease development. While pregnancy changes maternal metabolism, GDM can be viewed as a maladaptation by maternal systems to pregnancy, which may include mechanisms such as insufficient insulin secretion, dysregulated hepatic glucose output, mitochondrial dysfunction and lipotoxicity. Adiponectin is an adipose-tissue-derived adipokine that circulates in the body and regulates a diverse range of physiologic mechanisms including energy metabolism and insulin sensitivity. In pregnant women, circulating adiponectin levels decrease correspondingly with insulin sensitivity, and adiponectin levels are low in GDM. In this review, we summarize the current state of knowledge about metabolic adaptations to pregnancy and the role of adiponectin in these processes, with a focus on GDM. Recent studies from rodent model systems have clarified that adiponectin deficiency during pregnancy contributes to GDM development. The upregulation of adiponectin alleviates hyperglycemia in pregnant mice, although much remains to be understood for adiponectin to be utilized clinically for GDM.
Collapse
Affiliation(s)
- Brittany L. Moyce Gruber
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Research Theme of the Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
| | - Vernon W. Dolinsky
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Research Theme of the Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
| |
Collapse
|
15
|
Dezonne RS, Pereira CM, de Moraes Martins CJ, de Abreu VG, Francischetti EA. Adiponectin, the adiponectin paradox, and Alzheimer's Disease: Is this association biologically plausible? Metab Brain Dis 2023; 38:109-121. [PMID: 35921057 DOI: 10.1007/s11011-022-01064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/19/2022] [Indexed: 02/03/2023]
Abstract
Dementia, especially Alzheimer's Disease (AD) and vascular dementia, is a major public health problem that continues to expand in both economically emerging and hegemonic countries. In 2017, the World Alzheimer Report estimated that over 50 million people were living with dementia globally. Metabolic dysfunctions of brain structures such as the hippocampus and cerebral cortex have been implicated as risk factors for dementia. Several well-defined metabolic risk factors for AD include visceral obesity, chronic inflammation, peripheral and brain insulin resistance, type 2 diabetes mellitus (T2DM), hypercholesterolemia, and others. In this review, we describe the relationship between the dysmetabolic mechanisms, although still unknown, and dementia, particularly AD. Adiponectin (ADPN), the most abundant circulating adipocytokine, acts as a protagonist in the metabolic dysfunction associated with AD, with unexpected and intriguing dual biological functions. This contradictory role of ADPN has been termed the adiponectin paradox. Some evidence suggests that the adiponectin paradox is important in amyloidogenic evolvability in AD. We present cumulative evidence showing that AD and T2DM share many common features. We also review the mechanistic pathways involving brain insulin resistance. We discuss the importance of the evolvability of amyloidogenic proteins (APs), defined as the capacity of a system for adaptive evolution. Finally, we describe potential therapeutic strategies in AD, based on the adiponectin paradox.
Collapse
Affiliation(s)
- Rômulo Sperduto Dezonne
- Neuropathology and Molecular Genetics Laboratory, State Institute of the Brain Paulo Niemeyer, State Health Department, Rio de Janeiro, Brazil
| | | | - Cyro José de Moraes Martins
- Laboratory of Clinical and Experimental Pathophysiology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Virgínia Genelhu de Abreu
- Laboratory of Clinical and Experimental Pathophysiology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Emilio Antonio Francischetti
- Laboratory of Clinical and Experimental Pathophysiology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
Nehme R, Diab-Assaf M, Decombat C, Delort L, Caldefie-Chezet F. Targeting Adiponectin in Breast Cancer. Biomedicines 2022; 10:2958. [PMID: 36428526 PMCID: PMC9687473 DOI: 10.3390/biomedicines10112958] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Obesity and breast cancer are two major health issues that could be categorized as sincere threats to human health. In the last few decades, the relationship between obesity and cancer has been well established and extensively investigated. There is strong evidence that overweight and obesity increase the risk of postmenopausal breast cancer, and adipokines are the central players in this relationship. Produced and secreted predominantly by white adipose tissue, adiponectin is a bioactive molecule that exhibits numerous protective effects and is considered the guardian angel of adipokine. In the obesity-cancer relationship, more and more evidence shows that adiponectin may prevent and protect individuals from developing breast cancer. Recently, several updates have been published on the implication of adiponectin in regulating tumor development, progression, and metastases. In this review, we provide an updated overview of the metabolic signaling linking adiponectin and breast cancer in all its stages. On the other hand, we critically summarize all the available promising candidates that may reactivate these pathways mainly by targeting adiponectin receptors. These molecules could be synthetic small molecules or plant-based proteins. Interestingly, the advances in genomics have made it possible to create peptide sequences that could specifically replace human adiponectin, activate its receptor, and mimic its function. Thus, the obvious anti-cancer activity of adiponectin on breast cancer should be better exploited, and adiponectin must be regarded as a serious biomarker that should be targeted in order to confront this threatening disease.
Collapse
Affiliation(s)
- Rawan Nehme
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Moléculaire et Pharmacologie Anticancéreuse, Faculté des Sciences II, Université Libanaise Fanar, Beyrouth 1500, Lebanon
| | - Caroline Decombat
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Florence Caldefie-Chezet
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
17
|
Marchianò S, Biagioli M, Roselli R, Zampella A, Di Giorgio C, Bordoni M, Bellini R, Urbani G, Morretta E, Monti MC, Distrutti E, Fiorucci S. Beneficial effects of UDCA and norUDCA in a rodent model of steatosis are linked to modulation of GPBAR1/FXR signaling. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159218. [PMID: 35985473 DOI: 10.1016/j.bbalip.2022.159218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 12/12/2022]
Abstract
Non-alcoholic steatosis (NAFLD) and steatohepatitis (NASH) are two highly prevalent human disorders for which therapy remains suboptimal. Bile acids play an essential role in regulating liver metabolism, and several bile acids-based therapy are currently investigated for their potential therapeutic efficacy in NAFLD/NASH. Bile acids exert their functions, at least in part, by modulating two main receptors the Farnesoid-x-receptor (FXR) and the G protein-coupled receptor, GPBAR1. In the present study we have compared the pharmacological effects of two bile acids, the ursodeoxycholic acid (UDCA) and its derivative norUDCA, in a model of NAFLD/NASH induced by feeding mice with a Western diet for 12 weeks. The results of these studies demonstrated that both UDCA and norUDCA protected against development of steatosis and fibrosis, but did not reduce the hepatocytes ballooning nor the development of a pro-atherogenic lipid profile. Both agents reduced liver lipogenesis and ameliorated insulin sensitivity and adipocytes signaling as shown by increased expression of adiponectin. Mechanistically, UDCA acts as weak GPBAR1 agonist, while norUDCA exerted no effect on both GPBAR1 and FXR. In vivo administration of UDCA resets bile acid synthesis and promotes a shift toward bile acids species that are GPBAR1 agonists, UDCA, TUDCA and hyodeoxycholic acid, and increases GLP1 expression in the ileum. In contrast norUDCA is poorly metabolized exerting a minimal impact on GPBAR1 signaling. Together, these data, highlight the potential role of UDCA and norUDCA in treating of NAFLD, though these beneficial effects are supported by different mechanisms.
Collapse
Affiliation(s)
- Silvia Marchianò
- University of Perugia, Department of Medicine and Surgery, Perugia, Italy
| | - Michele Biagioli
- University of Perugia, Department of Medicine and Surgery, Perugia, Italy
| | - Rosalinda Roselli
- University of Naples Federico II, Department of Pharmacy, Naples, Italy
| | - Angela Zampella
- University of Naples Federico II, Department of Pharmacy, Naples, Italy
| | | | - Martina Bordoni
- University of Perugia, Department of Medicine and Surgery, Perugia, Italy
| | - Rachele Bellini
- University of Perugia, Department of Medicine and Surgery, Perugia, Italy
| | - Ginevra Urbani
- University of Perugia, Department of Medicine and Surgery, Perugia, Italy
| | - Elva Morretta
- Department of Pharmacy, University of Salerno, Italy
| | | | | | - Stefano Fiorucci
- University of Perugia, Department of Medicine and Surgery, Perugia, Italy.
| |
Collapse
|
18
|
The Complex Roles of Adipokines in Polycystic Ovary Syndrome and Endometriosis. Biomedicines 2022; 10:biomedicines10102503. [PMID: 36289764 PMCID: PMC9598769 DOI: 10.3390/biomedicines10102503] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) and endometriosis are frequent diseases of the female reproductive tract causing high morbidity as they can significantly affect fertility and quality of life. Adipokines are pleiotropic signaling molecules secreted by white or brown adipose tissues with a central role in energy metabolism. More recently, their involvement in PCOS and endometriosis has been demonstrated. In this review article, we provide an update on the role of adipokines in both diseases and summarize previous findings. We also address the results of multi-omics approaches in adipokine research to examine the role of single nucleotide polymorphisms (SNPs) in genes coding for adipokines and their receptors, the secretome of adipocytes and to identify epigenetic alterations of adipokine genes that might be conferred from mother to child. Finally, we address novel data on the role of brown adipose tissue (BAT), which seems to have notable effects on PCOS. For this review, original research articles on adipokine actions in PCOS and endometriosis are considered, which are listed in the PubMed database.
Collapse
|
19
|
Clain J, Couret D, Planesse C, Krejbich-Trotot P, Meilhac O, Lefebvre d’Hellencourt C, Viranaicken W, Diotel N. Distribution of Adiponectin Receptors in the Brain of Adult Mouse: Effect of a Single Dose of the Adiponectin Receptor Agonist, AdipoRON, on Ischemic Stroke. Brain Sci 2022; 12:brainsci12050680. [PMID: 35625066 PMCID: PMC9139333 DOI: 10.3390/brainsci12050680] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/08/2022] [Accepted: 05/16/2022] [Indexed: 12/10/2022] Open
Abstract
Adiponectin exhibits pleiotropic effects, including anti-inflammatory, anti-apoptotic, anti-oxidant, and neuroprotective ones. Although some studies have documented brain expression in different rodent models of its receptors, AdipoR1 and AdipoR2, their global distribution remains incomplete. Here, we demonstrated that both AdipoR are widely distributed in the brains of adult mice. Furthermore, by double immunostaining studies, we showed that AdipoR1 and AdipoR2 are mainly expressed in neurons and blood vessels. Then, considering the wide distribution of both receptors and the neuroprotective effects of adiponectin, we tested the therapeutic effect of a single injection of the adiponectin receptor agonist, AdipoRON (5 mg.kg−1), 24 h after stroke in a model of middle cerebral artery occlusion technique (MCAO). Under our experimental conditions, we demonstrated that AdipoRON did not modulate the infarct volume, cell death, neuroinflammatory parameters including microglia activation and oxidative stress. This study suggests that a protocol based on multiple injections of AdipoRON at a higher dose after MCAO could be considered to promote the therapeutic properties of AdipoRON on the brain repair mechanism and recovery.
Collapse
Affiliation(s)
- Julien Clain
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Plateforme CYROI, 97490 Sainte-Clotilde, France; (J.C.); (D.C.); (C.P.); (O.M.); (C.L.d.)
| | - David Couret
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Plateforme CYROI, 97490 Sainte-Clotilde, France; (J.C.); (D.C.); (C.P.); (O.M.); (C.L.d.)
- CHU de La Réunion, 97400 Saint-Denis, France
| | - Cynthia Planesse
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Plateforme CYROI, 97490 Sainte-Clotilde, France; (J.C.); (D.C.); (C.P.); (O.M.); (C.L.d.)
| | - Pascale Krejbich-Trotot
- Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM, UMR 1187, CNRS UMR9192, IRD UMR249, Université de La Réunion, 94791 Sainte-Clotilde, France;
| | - Olivier Meilhac
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Plateforme CYROI, 97490 Sainte-Clotilde, France; (J.C.); (D.C.); (C.P.); (O.M.); (C.L.d.)
- CHU de La Réunion, 97400 Saint-Denis, France
| | - Christian Lefebvre d’Hellencourt
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Plateforme CYROI, 97490 Sainte-Clotilde, France; (J.C.); (D.C.); (C.P.); (O.M.); (C.L.d.)
| | - Wildriss Viranaicken
- Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM, UMR 1187, CNRS UMR9192, IRD UMR249, Université de La Réunion, 94791 Sainte-Clotilde, France;
- Correspondence: (W.V.); (N.D.)
| | - Nicolas Diotel
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Plateforme CYROI, 97490 Sainte-Clotilde, France; (J.C.); (D.C.); (C.P.); (O.M.); (C.L.d.)
- Correspondence: (W.V.); (N.D.)
| |
Collapse
|
20
|
Li Q, Jiang F, Guan Y, Jiang X, Wu J, Huang M, Zhong G. Development, validation, and application of an UHPLC-MS/MS method for quantification of the adiponectin-derived active peptide ADP355 in rat plasma. Biomed Chromatogr 2022; 36:e5358. [PMID: 35187696 DOI: 10.1002/bmc.5358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/12/2022]
Abstract
An UHPLC-MS/MS method for quantification of ADP355, an adiponectin-derived active peptide, was developed and validated. The extraction method employed simple protein precipitation using methanol and the chromatographic separation was achieved on the Accucore™ RP-MS C18 column (100 × 2.1mm, 2.6 μm, 80 Å), using 0.1% formic acid in both water and acetonitrile with gradient elution at the flow rate of 400 μL/min within 4.0 min. Detections were performed under positive ion mode with MRM ion transitions m/z 1109.2→309.8 and 871.4→310.1 for ADP355 and Jt003 respectively at unit resolution. The linearity range of the calibration curve was 2-1000 ng/mL with lower limit detection of 0.5 ng/mL. Selectivity, linearity, precision, accuracy, recovery, matrix effect, and stability were validated, and all items met the requirement of FDA guidance. This method has been successfully applied to an intravenous pharmacokinetic study of ADP355 in rats and the in-vitro stability in rat serum, plasma, and whole blood was also assessed.
Collapse
Affiliation(s)
- Qiaoxi Li
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou City, Guangdong Province, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Fulin Jiang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou City, Guangdong Province, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yanping Guan
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xianxing Jiang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Junyan Wu
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Min Huang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou City, Guangdong Province, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Guoping Zhong
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou City, Guangdong Province, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
21
|
Cohen KE, Katunaric B, SenthilKumar G, McIntosh JJ, Freed JK. Vascular endothelial adiponectin signaling across the life span. Am J Physiol Heart Circ Physiol 2022; 322:H57-H65. [PMID: 34797171 PMCID: PMC8698498 DOI: 10.1152/ajpheart.00533.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cardiovascular disease risk increases with age regardless of sex. Some of this risk is attributable to alterations in natural hormones throughout the life span. The quintessential example of this being the dramatic increase in cardiovascular disease following the transition to menopause. Plasma levels of adiponectin, a "cardioprotective" adipokine released primarily by adipose tissue and regulated by hormones, also fluctuate throughout one's life. Plasma adiponectin levels increase with age in both men and women, with higher levels in both pre- and postmenopausal women compared with men. Younger cohorts seem to confer cardioprotective benefits from increased adiponectin levels yet elevated levels in the elderly and those with existing heart disease are associated with poor cardiovascular outcomes. Here, we review the most recent data regarding adiponectin signaling in the vasculature, highlight the differences observed between the sexes, and shed light on the apparent paradox regarding increased cardiovascular disease risk despite rising plasma adiponectin levels over time.
Collapse
Affiliation(s)
- Katie E. Cohen
- 1Division of Cardiology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin,5Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Boran Katunaric
- 2Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin,5Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Gopika SenthilKumar
- 2Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin,3Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin,5Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jennifer J. McIntosh
- 3Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin,4Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin,5Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Julie K. Freed
- 2Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin,3Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin,5Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
22
|
Sung HK, Mitchell PL, Gross S, Marette A, Sweeney G. ALY688 elicits adiponectin-mimetic signaling and improves insulin action in skeletal muscle cells. Am J Physiol Cell Physiol 2021; 322:C151-C163. [PMID: 34910600 DOI: 10.1152/ajpcell.00603.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adiponectin is well established to mediate many beneficial metabolic effects, and this has stimulated great interest in development and validation of adiponectin receptor agonists as pharmaceutical tools. This study investigated the effects of ALY688, a peptide-based adiponectin receptor agonist, in rat L6 skeletal muscle cells. ALY688 significantly increased phosphorylation of several adiponectin downstream effectors, including AMPK, ACC and p38MAPK, assessed by immunoblotting and immunofluorescence microscopy. Temporal analysis using cells expressing an Akt biosensor demonstrated that ALY688 enhanced insulin sensitivity. This effect was associated with increased insulin-stimulated Akt and IRS-1 phosphorylation. The functional metabolic significance of these signaling effects was examined by measuring glucose uptake in myoblasts stably overexpressing the glucose transporter GLUT4. ALY688 treatment both increased glucose uptake itself and enhanced insulin-stimulated glucose uptake. In the model of high glucose/high insulin (HGHI)-induced insulin resistant cells, both temporal studies using the Akt biosensor as well as immunoblotting assessing Akt and IRS-1 phosphorylation indicated that ALY688 significantly reduced insulin resistance. Importantly, we observed that ALY688 administration to high-fat high sucrose fed mice also improve glucose handling, validating its efficacy in vivo. In summary, these data indicate that ALY688 activates adiponectin signaling pathways in skeletal muscle, leading to improved insulin sensitivity and beneficial metabolic effects.
Collapse
Affiliation(s)
| | - Patricia L Mitchell
- Quebec Heart and Lung Institute (IUCPQ), and Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec, Canada
| | - Sean Gross
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Knight Cancer Institute, Oregon Health and Sciences University, Portland, OR, United States
| | - Andre Marette
- Quebec Heart and Lung Institute (IUCPQ), and Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
23
|
An Explanation for the Adiponectin Paradox. Pharmaceuticals (Basel) 2021; 14:ph14121266. [PMID: 34959666 PMCID: PMC8703455 DOI: 10.3390/ph14121266] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/20/2022] Open
Abstract
The adipokine adiponectin improves insulin sensitivity. Functional signal transduction of adiponectin requires at least one of the receptors AdipoR1 or AdipoR2, but additionally the glycosyl phosphatidylinositol-anchored molecule, T-cadherin. Overnutrition causes a reduction in adiponectin synthesis and an increase in the circulating levels of the enzyme glycosyl phosphatidylinositol-phospholipase D (GPI-PLD). GPI-PLD promotes the hydrolysis of T-cadherin. The functional consequence of T-cadherin hydrolysis is a reduction in adiponectin sequestration by responsive tissues, an augmentation of adiponectin levels in circulation and a (further) reduction in signal transduction. This process creates the paradoxical situation that adiponectin levels are augmented, whereas the adiponectin signal transduction and insulin sensitivity remain strongly impaired. Although both hypoadiponectinemia and hyperadiponectinemia reflect a situation of insulin resistance, the treatments are likely to be different.
Collapse
|
24
|
Ohn J, Been KW, Kim JY, Kim EJ, Park T, Yoon H, Ji JS, Okada‐Iwabu M, Iwabu M, Yamauchi T, Kim YK, Seok C, Kwon O, Kim KH, Lee HH, Chung JH. Discovery of a transdermally deliverable pentapeptide for activating AdipoR1 to promote hair growth. EMBO Mol Med 2021; 13:e13790. [PMID: 34486824 PMCID: PMC8495455 DOI: 10.15252/emmm.202013790] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 11/09/2022] Open
Abstract
Alopecia induced by aging or side effects of medications affects millions of people worldwide and impairs the quality of life; however, there is a limit to the current medications. Here, we identify a small transdermally deliverable 5-mer peptide (GLYYF; P5) that activates adiponectin receptor 1 (AdipoR1) and promotes hair growth. P5 sufficiently reproduces the biological effect of adiponectin protein via AMPK signaling pathway, increasing the expression of hair growth factors in the dermal papilla cells of human hair follicle. P5 accelerates hair growth ex vivo and induces anagen hair cycle in mice in vivo. Furthermore, we elucidate a key spot for the binding between AdipoR1 and adiponectin protein using docking simulation and mutagenesis studies. This study suggests that P5 could be used as a topical peptide drug for alleviating pathological conditions, which can be improved by adiponectin protein, such as alopecia.
Collapse
Affiliation(s)
- Jungyoon Ohn
- Department of Translational MedicineSeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University HospitalSeoulKorea
- Institute of Human‐Environment Interface BiologySeoul National UniversitySeoulKorea
| | - Kyung Wook Been
- Department of ChemistryCollege of Natural SciencesSeoul National UniversitySeoulKorea
| | - Jin Yong Kim
- Department of DermatologySeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University HospitalSeoulKorea
- Institute of Human‐Environment Interface BiologySeoul National UniversitySeoulKorea
| | - Eun Ju Kim
- Department of DermatologySeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University HospitalSeoulKorea
- Institute of Human‐Environment Interface BiologySeoul National UniversitySeoulKorea
| | - Taeyong Park
- Department of ChemistryCollege of Natural SciencesSeoul National UniversitySeoulKorea
| | - Hye‐Jin Yoon
- Department of ChemistryCollege of Natural SciencesSeoul National UniversitySeoulKorea
| | - Jeong Seok Ji
- Department of ChemistryCollege of Natural SciencesSeoul National UniversitySeoulKorea
| | - Miki Okada‐Iwabu
- Department of Diabetes and Metabolic DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Masato Iwabu
- Department of Diabetes and Metabolic DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Yeon Kyung Kim
- Department of DermatologySeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University HospitalSeoulKorea
- Institute of Human‐Environment Interface BiologySeoul National UniversitySeoulKorea
| | - Chaok Seok
- Department of ChemistryCollege of Natural SciencesSeoul National UniversitySeoulKorea
| | - Ohsang Kwon
- Department of DermatologySeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University HospitalSeoulKorea
- Institute of Human‐Environment Interface BiologySeoul National UniversitySeoulKorea
| | - Kyu Han Kim
- Department of Translational MedicineSeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University HospitalSeoulKorea
- Institute of Human‐Environment Interface BiologySeoul National UniversitySeoulKorea
| | - Hyung Ho Lee
- Department of ChemistryCollege of Natural SciencesSeoul National UniversitySeoulKorea
| | - Jin Ho Chung
- Department of DermatologySeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University HospitalSeoulKorea
- Institute of Human‐Environment Interface BiologySeoul National UniversitySeoulKorea
| |
Collapse
|
25
|
Sharma A, Mah M, Ritchie RH, De Blasio MJ. The adiponectin signalling pathway - A therapeutic target for the cardiac complications of type 2 diabetes? Pharmacol Ther 2021; 232:108008. [PMID: 34610378 DOI: 10.1016/j.pharmthera.2021.108008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/17/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
Diabetes is associated with an increased risk of heart failure (HF). This is commonly termed diabetic cardiomyopathy and is often characterised by increased cardiac fibrosis, pathological hypertrophy, increased oxidative and endoplasmic reticulum stress as well as diastolic dysfunction. Adiponectin is a cardioprotective adipokine that is downregulated in settings of type 2 diabetes (T2D) and obesity. Furthermore, both adiponectin receptors (AdipoR1 and R2) are also downregulated in these settings which further results in impaired cardiac adiponectin signalling and reduced cardioprotection. In many cardiac pathologies, adiponectin signalling has been shown to protect against cardiac remodelling and lipotoxicity, however its cardioprotective actions in T2D-induced cardiomyopathy remain unresolved. Diabetic cardiomyopathy has historically lacked effective treatment options. In this review, we summarise the current evidence for links between the suppressed adiponectin signalling pathway and cardiac dysfunction, in diabetes. We describe adiponectin receptor-mediated signalling pathways that are normally associated with cardioprotection, as well as current and potential future therapeutic approaches that could target this pathway as possible interventions for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Abhipree Sharma
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Michael Mah
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia; Department of Medicine, Monash University, Clayton, VIC 3800, Australia
| | - Miles J De Blasio
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
26
|
Samant NP, Gupta GL. Adiponectin: a potential target for obesity-associated Alzheimer's disease. Metab Brain Dis 2021; 36:1565-1572. [PMID: 34047927 DOI: 10.1007/s11011-021-00756-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/19/2021] [Indexed: 11/29/2022]
Abstract
Obesity and dementia are two growing problems worldwide. Obesity act as a crucial risk factor for various diseases including Alzheimer's disease (AD). Several preclinical studies showed that middle-age obesity can be act as a possible feature of mild cognitive impairment in later years. Some studies have also demonstrated that a high-fat diet causes AD pathology, including extracellular amyloid-beta accumulation, hyperphosphorylation of tau, and cognition impairment. The correlation and molecular mechanism related to obesity-associated AD needs to be better evaluated. Presently, obesity results in an altered expression of several hormones, growth factors, and adipokines. Multiple signaling pathways such as leptin, insulin, adiponectin, and glutamate are involved to regulate vital functions in the brain and act as neuroprotective mediators for AD in a normal state. In obesity, altered adiponectin (APN) level and its associated downstream pathway could result in multiple signaling pathway disruption. Presently, Adiponectin and its inducers or agonist are considered as potential therapeutics for obesity-associated AD. This review mainly focuses on the pleiotropic effects of adiponectin and its potential to treat obesity-associated AD.
Collapse
Affiliation(s)
- Nikita Patil Samant
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400 056, Maharashtra, India
| | - Girdhari Lal Gupta
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400 056, Maharashtra, India.
- School of Pharmacy & Technology Management, SVKM'S NMIMS, Shirpur Campus, Shirpur, 425 405, Maharashtra, India.
| |
Collapse
|
27
|
Lindfors S, Polianskyte-Prause Z, Bouslama R, Lehtonen E, Mannerla M, Nisen H, Tienari J, Salmenkari H, Forsgård R, Mirtti T, Lehto M, Groop PH, Lehtonen S. Adiponectin receptor agonist AdipoRon ameliorates renal inflammation in diet-induced obese mice and endotoxin-treated human glomeruli ex vivo. Diabetologia 2021; 64:1866-1879. [PMID: 33987714 PMCID: PMC8245393 DOI: 10.1007/s00125-021-05473-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/01/2021] [Indexed: 11/10/2022]
Abstract
AIMS/HYPOTHESIS Chronic low-grade inflammation with local upregulation of proinflammatory molecules plays a role in the progression of obesity-related renal injury. Reduced serum concentration of anti-inflammatory adiponectin may promote chronic inflammation. Here, we investigated the potential anti-inflammatory and renoprotective effects and mechanisms of action of AdipoRon, an adiponectin receptor agonist. METHODS Wild-type DBA/2J mice were fed with high-fat diet (HFD) supplemented or not with AdipoRon to model obesity-induced metabolic endotoxaemia and chronic low-grade inflammation and we assessed changes in the glomerular morphology and expression of proinflammatory markers. We also treated human glomeruli ex vivo and human podocytes in vitro with AdipoRon and bacterial lipopolysaccharide (LPS), an endotoxin upregulated in obesity and diabetes, and analysed the secretion of inflammatory cytokines, activation of inflammatory signal transduction pathways, apoptosis and migration. RESULTS In HFD-fed mice, AdipoRon attenuated renal inflammation, as demonstrated by reduced expression of glomerular activated NF-κB p65 subunit (NF-κB-p65) (70%, p < 0.001), TNFα (48%, p < 0.01), IL-1β (51%, p < 0.001) and TGFβ (46%, p < 0.001), renal IL-6 and IL-4 (21% and 20%, p < 0.05), and lowered glomerular F4/80-positive macrophage infiltration (31%, p < 0.001). In addition, AdipoRon ameliorated HFD-induced glomerular hypertrophy (12%, p < 0.001), fibronectin accumulation (50%, p < 0.01) and podocyte loss (12%, p < 0.001), and reduced podocyte foot process effacement (15%, p < 0.001) and thickening of the glomerular basement membrane (18%, p < 0.001). In cultured podocytes, AdipoRon attenuated the LPS-induced activation of the central inflammatory signalling pathways NF-κB-p65, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38-MAPK) (30%, 36% and 22%, respectively, p < 0.001), reduced the secretion of TNFα (32%, p < 0.01), and protected against podocyte apoptosis and migration. In human glomeruli ex vivo, AdipoRon reduced the LPS-induced secretion of inflammatory cytokines IL-1β, IL-18, IL-6 and IL-10. CONCLUSIONS/INTERPRETATION AdipoRon attenuated the renal expression of proinflammatory cytokines in HFD-fed mice and LPS-stimulated human glomeruli, which apparently contributed to the amelioration of glomerular inflammation and injury. Mechanistically, based on assays on cultured podocytes, AdipoRon reduced LPS-induced activation of the NF-κB-p65, JNK and p38-MAPK pathways, thereby impelling the decrease in apoptosis, migration and secretion of TNFα. We conclude that the activation of the adiponectin receptor by AdipoRon is a potent strategy to attenuate endotoxaemia-associated renal inflammation.
Collapse
Affiliation(s)
- Sonja Lindfors
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Zydrune Polianskyte-Prause
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Rim Bouslama
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eero Lehtonen
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Miia Mannerla
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Harry Nisen
- Abdominal Center, Urology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jukka Tienari
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hanne Salmenkari
- Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Richard Forsgård
- Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tuomas Mirtti
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Markku Lehto
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Per-Henrik Groop
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Sanna Lehtonen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Pathology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
28
|
Signoriello E, Mallardo M, Nigro E, Polito R, Casertano S, Di Pietro A, Coletta M, Monaco ML, Rossi F, Lus G, Daniele A. Adiponectin in Cerebrospinal Fluid from Patients Affected by Multiple Sclerosis Is Correlated with the Progression and Severity of Disease. Mol Neurobiol 2021; 58:2663-2670. [PMID: 33486671 PMCID: PMC8128828 DOI: 10.1007/s12035-021-02287-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022]
Abstract
Adiponectin exerts relevant actions in immunity and is modulated in several disorders, such as multiple sclerosis (MS). In this study, we characterized adiponectin expression and profiles in cerebrospinal fluid (CSF) from MS patients to investigate its potential relationship with the severity and progression of the disease. Total adiponectin in CSF was measured by ELISA in 66 unrelated CSF MS patients and compared with 24 age- and sex-matched controls. Adiponectin oligomer profiles were analysed by Western blotting and FPLC chromatography. Total CSF adiponectin was significantly increased in MS patients compared with controls (9.91 ng/mL vs 6.02 ng/mL) (p < 0.001). Interestingly, CSF adiponectin positively correlated with CSF IgG, and CSF/serum albumin directly correlated with CSF/serum adiponectin. Our data demonstrated that CSF adiponectin predicts a worse prognosis: patients with the progressive form of MS had higher levels compared with the relapsing remitting form; patients with higher EDSS at baseline and a higher MS severity score at 4.5-year follow-up had significantly elevated adiponectin levels with respect to patients with a less severe phenotype. Finally, the adiponectin oligomerization profile was altered in CSF from MS patients, with a significant increase in HMW and MMW. The correlation of CSF adiponectin with the severity and prognosis of MS disease confirmed the role of this adipokine in the inflammatory/immune processes of MS and suggested its use as a complementary tool to assess the severity, progression and prognosis of the disease. Further studies on larger MS cohorts are needed to clarify the contribution of adiponectin to the etiopathogenesis of MS.
Collapse
Affiliation(s)
- Elisabetta Signoriello
- Centro di Sclerosi Multipla, II Clinica Neurologica, Università della Campania "Luigi Vanvitelli", Via S. Pansini 5, 80131, Naples, Italy
| | - Marta Mallardo
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Università degli Studi della Campania, "Luigi Vanvitelli", Via G. Vivaldi 42, 81100, Caserta, Italy
- CEINGE-Biotecnologie Avanzate Scarl, Via G. Salvatore 486, 80145, Naples, Italy
| | - Ersilia Nigro
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Università degli Studi della Campania, "Luigi Vanvitelli", Via G. Vivaldi 42, 81100, Caserta, Italy
- CEINGE-Biotecnologie Avanzate Scarl, Via G. Salvatore 486, 80145, Naples, Italy
| | - Rita Polito
- CEINGE-Biotecnologie Avanzate Scarl, Via G. Salvatore 486, 80145, Naples, Italy
- Dipartimento di Sanità Pubblica, Università degli Studi di Napoli "Federico II", via Pansini 5, 80145, Naples, Italy
| | - Sara Casertano
- Centro di Sclerosi Multipla, II Clinica Neurologica, Università della Campania "Luigi Vanvitelli", Via S. Pansini 5, 80131, Naples, Italy
| | - Andrea Di Pietro
- Centro di Sclerosi Multipla, II Clinica Neurologica, Università della Campania "Luigi Vanvitelli", Via S. Pansini 5, 80131, Naples, Italy
| | - Marcella Coletta
- Centro di Sclerosi Multipla, II Clinica Neurologica, Università della Campania "Luigi Vanvitelli", Via S. Pansini 5, 80131, Naples, Italy
| | | | - Fabiana Rossi
- Centro di Sclerosi Multipla, II Clinica Neurologica, Università della Campania "Luigi Vanvitelli", Via S. Pansini 5, 80131, Naples, Italy
| | - Giacomo Lus
- Centro di Sclerosi Multipla, II Clinica Neurologica, Università della Campania "Luigi Vanvitelli", Via S. Pansini 5, 80131, Naples, Italy
| | - Aurora Daniele
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Università degli Studi della Campania, "Luigi Vanvitelli", Via G. Vivaldi 42, 81100, Caserta, Italy.
- CEINGE-Biotecnologie Avanzate Scarl, Via G. Salvatore 486, 80145, Naples, Italy.
| |
Collapse
|
29
|
Nigro E, Daniele A, Salzillo A, Ragone A, Naviglio S, Sapio L. AdipoRon and Other Adiponectin Receptor Agonists as Potential Candidates in Cancer Treatments. Int J Mol Sci 2021; 22:ijms22115569. [PMID: 34070338 PMCID: PMC8197554 DOI: 10.3390/ijms22115569] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 12/18/2022] Open
Abstract
The high mortality rate together with an ever-growing number of annual cases have defined neoplastic disorders as “the real 21st-century disease”. Its dubious distinction also results from conventional therapy failure, which has made cancer an orphan disease. Therefore, innovative and alternative therapeutic strategies are mandatory. The ability to leverage human naturally occurring anti-tumor defenses has always represented a fascinating perspective, and the immuno blockage approval in cancer treatment represents in timeline the latest success. As a multifunctional organ, adipose tissue releases a large amount of adipokines having both carcinogenic and antitumor properties. The negative correlation between serum levels and risk for developing malignancies, as well as the huge number of existing preclinical studies, have identified adiponectin as a potential anticancer adipokine. Nevertheless, its usage in clinical has constantly clashed with the inability to reproduce a mimic synthetic compound. Between 2011 and 2013, two distinct adiponectin receptor agonists were recognized, opening new scenarios even in cancer. Here, we review the first orally active adiponectin receptor agonists AdipoRon, from the discovery to the anticancer evidence. Including our latest findings in osteosarcoma models, we summarize AdipoRon and other existing agonists state-of-art, questioning about the feasibility assessment of this strategy in cancer treatment.
Collapse
Affiliation(s)
- Ersilia Nigro
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (E.N.); (A.D.)
- CEINGE-Biotecnologie Avanzate Scarl, 80145 Napoli, Italy
| | - Aurora Daniele
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (E.N.); (A.D.)
- CEINGE-Biotecnologie Avanzate Scarl, 80145 Napoli, Italy
| | - Alessia Salzillo
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (A.S.); (A.R.); (L.S.)
| | - Angela Ragone
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (A.S.); (A.R.); (L.S.)
| | - Silvio Naviglio
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (A.S.); (A.R.); (L.S.)
- Correspondence:
| | - Luigi Sapio
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (A.S.); (A.R.); (L.S.)
| |
Collapse
|
30
|
da Silva Rosa SC, Liu M, Sweeney G. Adiponectin Synthesis, Secretion and Extravasation from Circulation to Interstitial Space. Physiology (Bethesda) 2021; 36:134-149. [PMID: 33904786 PMCID: PMC8461789 DOI: 10.1152/physiol.00031.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adiponectin, an adipokine that circulates as multiple multimeric complexes at high levels in serum, has antidiabetic, anti-inflammatory, antiatherogenic, and cardioprotective properties. Understanding the mechanisms regulating adiponectin's physiological effects is likely to provide critical insight into the development of adiponectin-based therapeutics to treat various metabolic-related diseases. In this review, we summarize our current understanding on adiponectin action in its various target tissues and in cellular models. We also focus on recent advances in two particular regulatory aspects; namely, the regulation of adiponectin gene expression, multimerization, and secretion, as well as extravasation of circulating adiponectin to the interstitial space and its degradation. Finally, we discuss some potential therapeutic approaches using adiponectin as a target and the current challenges facing adiponectin-based therapeutic interventions.
Collapse
Affiliation(s)
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Gary Sweeney
- Department of Biology, York University, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Li L, Aslam M, Siegler BH, Niemann B, Rohrbach S. Comparative Analysis of CTRP-Mediated Effects on Cardiomyocyte Glucose Metabolism: Cross Talk between AMPK and Akt Signaling Pathway. Cells 2021; 10:cells10040905. [PMID: 33919975 PMCID: PMC8070942 DOI: 10.3390/cells10040905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/25/2022] Open
Abstract
C1q/tumor necrosis factor -alpha-related proteins (CTRPs) have been shown to mediate protective cardiovascular effects, but no data exists on their effects on glucose and fatty acid (FA) metabolism in cardiomyocytes. In the present study, adult rat cardiomyocytes and H9C2 cardiomyoblasts were stimulated with various recombinant CTRPs. Glucose or FA uptake, expression of genes involved in glucose or FA metabolism and the role of the AMP-activated protein kinase (AMPK) and Akt were investigated. Although most CTRPs induced an increase in phosphorylation of AMPK and Akt in cardiomyocytes, mainly CTRP2, 7, 9 and 13 induced GLUT1 and GLUT4 translocation and glucose uptake in cardiomyocytes, despite high structural similarities among CTRPs. AMPK inhibition reduced the CTRPs-mediated activation of Akt, while Akt inhibition did not impair AMPK activation. In addition, CTRP2, 7, 9 and 13 mediated strong effects on the expression of enzymes involved in glucose or FA metabolism. Loss of adiponectin receptor 1, which has been suggested to be involved in CTRP-induced signal transduction, abolished the effects of some but not all CTRPs on glucose metabolism. Targeting the AMPK signaling pathway via CTRPs may offer a therapeutic principle to restore glucose homeostasis by acting on glucose uptake independent of the Akt pathway.
Collapse
Affiliation(s)
- Ling Li
- Institute of Physiology, Justus Liebig University Giessen, 35392 Giessen, Germany; (B.H.S.); (S.R.)
- Correspondence: ; Tel.: +49-641-99-47342
| | - Muhammad Aslam
- Experimental Cardiology, Department of Cardiology and Angiology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Benedikt H. Siegler
- Institute of Physiology, Justus Liebig University Giessen, 35392 Giessen, Germany; (B.H.S.); (S.R.)
| | - Bernd Niemann
- Department of Cardiac and Vascular Surgery, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Susanne Rohrbach
- Institute of Physiology, Justus Liebig University Giessen, 35392 Giessen, Germany; (B.H.S.); (S.R.)
| |
Collapse
|
32
|
Lee IK, Kim G, Kim DH, Kim BB. PEG-BHD1028 Peptide Regulates Insulin Resistance and Fatty Acid β-Oxidation, and Mitochondrial Biogenesis by Binding to Two Heterogeneous Binding Sites of Adiponectin Receptors, AdipoR1 and AdipoR2. Int J Mol Sci 2021; 22:ijms22020884. [PMID: 33477324 PMCID: PMC7830917 DOI: 10.3390/ijms22020884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/17/2022] Open
Abstract
Adiponectin plays multiple critical roles in modulating various physiological processes by binding to its receptors. The functions of PEG-BHD1028, a potent novel peptide agonist to AdipoRs, was evaluated using in vitro and in vivo models based on the reported action spectrum of adiponectin. To confirm the design concept of PEG-BHD1028, the binding sites and their affinities were analyzed using the SPR (Surface Plasmon Resonance) assay. The results revealed that PEG-BHD1028 was bound to two heterogeneous binding sites of AdipoR1 and AdipoR2 with a relatively high affinity. In C2C12 cells, PEG-BHD1028 significantly activated AMPK and subsequent pathways and enhanced fatty acid β-oxidation and mitochondrial biogenesis. Furthermore, it also facilitated glucose uptake by lowering insulin resistance in insulin-resistant C2C12 cells. PEG-BHD1028 significantly reduced the fasting plasma glucose level in db/db mice following a single s.c. injection of 50, 100, and 200 μg/Kg and glucose tolerance at a dose of 50 μg/Kg with significantly decreased insulin production. The animals received 5, 25, and 50 μg/Kg of PEG-BHD1028 for 21 days significantly lost their weight after 18 days in a range of 5-7%. These results imply the development of PEG-BHD1028 as a potential adiponectin replacement therapeutic agent.
Collapse
Affiliation(s)
| | | | | | - Brian B. Kim
- Correspondence: ; Tel.: +82-31-360-3132; Fax: +82-31-360-3133
| |
Collapse
|
33
|
Da Eira D, Jani S, Sung H, Sweeney G, Ceddia RB. Effects of the adiponectin mimetic compound ALY688 on glucose and fat metabolism in visceral and subcutaneous rat adipocytes. Adipocyte 2020; 9:550-562. [PMID: 32897149 PMCID: PMC7714433 DOI: 10.1080/21623945.2020.1817230] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adiponectin regulates white adipose tissue (WAT) metabolism and promotes insulin-sensitizing and anti-atherosclerotic effects in vivo. In this context, small molecule adiponectin receptor agonists have become of great therapeutic value for the treatment of metabolic diseases. Here, we investigated the effects of the adiponectin mimetic compound ALY688 on WAT metabolism. To accomplish this, rat epididymal (Epid) and subcutaneous inguinal (Sc Ing) adipocytes were isolated and incubated with ALY688. Subsequently, several parameters of glucose and fat metabolism were assessed. ALY688 promoted AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation, enhanced glucose oxidation, and suppressed fat oxidation in adipocytes from both fat depots. ALY688 did not affect basal and insulin-stimulated rates of glucose uptake, glucose incorporation into lipids, and AKTSer473 and p38 mitogen-activated protein kinase (MAPK) phosphorylations in either Epid or Sc Ing adipocytes. ALY688 did not alter basal lipolysis in Epid and Sc Ing adipocytes, but it enhanced isoproterenol-induced lipolysis in Epid adipocytes. Adiponectin receptor 2 (AdipoR2) mRNA was the prevalent isoform expressed in all adipocytes, and Epid adipocytes displayed significantly higher AdipoR2 mRNA expression than Sc Ing adipocytes. In conclusion, ALY688 can regulate adiposity and affect glycaemic control by altering substrate portioning in the WAT in a fat depot-specific manner.
Collapse
Affiliation(s)
- Daniel Da Eira
- School of Kinesiology and Health Science, York University, North York, Canada
| | - Shailee Jani
- School of Kinesiology and Health Science, York University, North York, Canada
| | - Hyekyoung Sung
- Department of Biology, York University, North York, Canada
| | - Gary Sweeney
- Department of Biology, York University, North York, Canada
| | - Rolando B. Ceddia
- School of Kinesiology and Health Science, York University, North York, Canada
| |
Collapse
|
34
|
A Potential Theragnostic Regulatory Axis for Arthrofibrosis Involving Adiponectin (ADIPOQ) Receptor 1 and 2 (ADIPOR1 and ADIPOR2), TGFβ1, and Smooth Muscle α-Actin (ACTA2). J Clin Med 2020; 9:jcm9113690. [PMID: 33213041 PMCID: PMC7698546 DOI: 10.3390/jcm9113690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Arthrofibrosis is a common cause of patient debility and dissatisfaction after total knee arthroplasty (TKA). The diversity of molecular pathways involved in arthrofibrosis disease progression suggest that effective treatments for arthrofibrosis may require a multimodal approach to counter the complex cellular mechanisms that direct disease pathogenesis. In this study, we leveraged RNA-seq data to define genes that are suppressed in arthrofibrosis patients and identified adiponectin (ADIPOQ) as a potential candidate. We hypothesized that signaling pathways activated by ADIPOQ and the cognate receptors ADIPOR1 and ADIPOR2 may prevent fibrosis-related events that contribute to arthrofibrosis. (2) Methods: Therefore, ADIPOR1 and ADIPOR2 were analyzed in a TGFβ1 inducible cell model for human myofibroblastogenesis by both loss- and gain-of-function experiments. (3) Results: Treatment with AdipoRon, which is a small molecule agonist of ADIPOR1 and ADIPOR2, decreased expression of collagens (COL1A1, COL3A1, and COL6A1) and the myofibroblast marker smooth muscle α-actin (ACTA2) at both mRNA and protein levels in basal and TGFβ1-induced cells. (4) Conclusions: Thus, ADIPOR1 and ADIPOR2 represent potential drug targets that may attenuate the pathogenesis of arthrofibrosis by suppressing TGFβ-dependent induction of myofibroblasts. These findings also suggest that AdipoRon therapy may reduce the development of arthrofibrosis by mediating anti-fibrotic effects in joint capsular tissues.
Collapse
|
35
|
Francischetti EA, Dezonne RS, Pereira CM, de Moraes Martins CJ, Celoria BMJ, de Oliveira PAC, de Abreu VG. Insights Into the Controversial Aspects of Adiponectin in Cardiometabolic Disorders. Horm Metab Res 2020; 52:695-707. [PMID: 32927496 DOI: 10.1055/a-1239-4349] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In 2016, the World Health Organization estimated that more than 1.9 billion adults were overweight or obese. This impressive number shows that weight excess is pandemic. Overweight and obesity are closely associated with a high risk of comorbidities, such as insulin resistance and its most important outcomes, including metabolic syndrome, type 2 diabetes mellitus, and cardiovascular disease. Adiponectin has emerged as a salutary adipocytokine, with insulin-sensitizing, anti-inflammatory, and cardiovascular protective properties. However, under metabolically unfavorable conditions, visceral adipose tissue-derived inflammatory cytokines might reduce the transcription of the adiponectin gene and consequently its circulating levels. Low circulating levels of adiponectin are negatively associated with various conditions, such as insulin resistance, type 2 diabetes mellitus, metabolic syndrome, and cardiovascular disease. In contrast, several recent clinical trials and meta-analyses have reported high circulating adiponectin levels positively associated with cardiovascular mortality and all-cause mortality. These results are biologically intriguing and counterintuitive, and came to be termed "the adiponectin paradox". Adiponectin paradox is frequently associated with adiponectin resistance, a concept related with the downregulation of adiponectin receptors in insulin-resistant states. We review this contradiction between the apparent role of adiponectin as a health promoter and the recent evidence from Mendelian randomization studies indicating that circulating adiponectin levels are an unexpected predictor of increased morbidity and mortality rates in several clinical conditions. We also critically review the therapeutic perspective of synthetic peptide adiponectin receptors agonist that has been postulated as a promising alternative for the treatment of metabolic syndrome and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Emilio Antonio Francischetti
- Laboratory of Clinical and Experimental Pathophysiology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Rômulo Sperduto Dezonne
- Postgraduate Program in Translational Biomedicine, Grande Rio University, Duque de Caxias, Brazil
| | - Cláudia Maria Pereira
- Postgraduate Program in Translational Biomedicine, Grande Rio University, Duque de Caxias, Brazil
| | - Cyro José de Moraes Martins
- Laboratory of Clinical and Experimental Pathophysiology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | | | - Virgínia Genelhu de Abreu
- Laboratory of Clinical and Experimental Pathophysiology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|