1
|
Bautista-Abad Á, García-Magro N, Pinto-Benito D, Cáceres-Pajuelo JE, Alises CV, Ganchala D, Lagunas N, Negredo P, García-Segura LM, Arevalo MA, Grassi D. Aging is associated with sex-specific alteration in the expression of genes encoding for neuroestradiol synthesis and signaling proteins in the mouse trigeminal somatosensory input. GeroScience 2024; 46:6459-6472. [PMID: 38954130 PMCID: PMC11493896 DOI: 10.1007/s11357-024-01268-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
Pain perception is influenced by sex and aging, with previous studies indicating the involvement of aromatase, the estradiol synthase enzyme, in regulating pain perception. Previous research has established the presence of aromatase in dorsal root ganglia sensory neurons and its role in modulating pain perception. The present study aims to explore the implications of aging and sex on the expression of aromatase and estrogen receptors in the trigeminal ganglion. The study examined mRNA levels of aromatase, ERs, and the androgen receptor (AR) in the trigeminal ganglion of 3-month-old and 27-month-old male and female mice, as well as 3-month-old mice from the four-core genotype (FCG) transgenic model. The latter facilitates the assessment of gonadal hormone and sex chromosome implications for sex-specific traits. Aromatase localization in the ganglion was further assessed through immunohistochemistry. Aromatase immunoreactivity was observed for the first time in sensory neurons within the trigeminal ganglion. Trigeminal ganglion gene expressions were detected for aromatase, ERs, and AR in both sexes. Aromatase, ERβ, and GPER gene expressions were higher in young males versus young females. Analyses of the FCG model indicated that sex differences depended solely on gonadal sex. The aging process induced an enhancement in the expression of aromatase, ERs, and AR genes across both sexes, culminating in a reversal of the previously observed gender-based differences. the potential impact of estrogen synthesis and signaling in the trigeminal ganglion on age and sex differences warrants consideration, particularly in relation to trigeminal sensory functions and pain perception.
Collapse
MESH Headings
- Animals
- Female
- Aromatase/genetics
- Aromatase/metabolism
- Male
- Trigeminal Ganglion/metabolism
- Aging/genetics
- Aging/metabolism
- Aging/physiology
- Mice
- Estradiol/metabolism
- Mice, Transgenic
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Estrogen/genetics
- Sex Factors
- Pain Perception/physiology
- Signal Transduction/genetics
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Sensory Receptor Cells/metabolism
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- Mice, Inbred C57BL
- Estrogen Receptor beta/genetics
- Estrogen Receptor beta/metabolism
Collapse
Affiliation(s)
- Álvaro Bautista-Abad
- Department of Anatomy, Histology and Neuroscience, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, Madrid, Spain
| | - Nuria García-Magro
- Department of Anatomy, Histology and Neuroscience, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1,800, Pozuelo de Alarcón, Madrid, Spain
| | - Daniel Pinto-Benito
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Avenida Doctor Arce 37, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Julio Eduardo Cáceres-Pajuelo
- Department of Anatomy, Histology and Neuroscience, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, Madrid, Spain
| | - Carlos Vicente Alises
- Department of Anatomy, Histology and Neuroscience, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, Madrid, Spain
| | - Danny Ganchala
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Avenida Doctor Arce 37, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Natalia Lagunas
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Madrid, Spain
| | - Pilar Negredo
- Department of Anatomy, Histology and Neuroscience, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, Madrid, Spain
| | - Luis Miguel García-Segura
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Avenida Doctor Arce 37, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria-Angeles Arevalo
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Avenida Doctor Arce 37, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.
| | - Daniela Grassi
- Department of Anatomy, Histology and Neuroscience, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, Madrid, Spain.
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Avenida Doctor Arce 37, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Li Y, Jiang Z, Zuo W, Huang C, Zhao J, Liu P, Wang J, Guo J, Zhang X, Wang M, Lu Y, Hou W, Wang Q. Sexual dimorphic distribution of G protein-coupled receptor 30 in pain-related regions of the mouse brain. J Neurochem 2024; 168:2423-2442. [PMID: 37924265 DOI: 10.1111/jnc.15995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/24/2023] [Accepted: 10/04/2023] [Indexed: 11/06/2023]
Abstract
Sex differences in pain sensitivity have contributed to the fact that medications for curing chronic pain are unsatisfactory. However, the underlying mechanism remains to be elucidated. Brain-derived estrogen participates in modulation of sex differences in pain and related emotion. G protein-coupled receptor 30 (GPR30), identified as a novel estrogen receptor with a different distribution than traditional receptors, has been proved to play a vital role in regulating pain affected by estrogen. However, the contribution of its distribution to sexually dimorphic pain-related behaviors has not been fully explored. In the current study, immunofluorescence assays were applied to mark the neurons expressing GPR30 in male and female mice (in metestrus and proestrus phase) in pain-related brain regions. The neurons that express CaMKIIα or VGAT were also labeled to observe overlap with GPR30. We found that females had more GPR30-positive (GPR30+) neurons in the primary somatosensory (S1) and insular cortex (IC) than males. In the lateral habenula (LHb) and the nucleus tractus solitarius (NTS), males had more GPR30+ neurons than females. Moreover, within the LHb, the expression of GPR30 varied with estrous cycle phase; females in metestrus had fewer GPR30+ neurons than those in proestrus. In addition, females had more GPR30+ neurons, which co-expressed CaMKIIα in the medial preoptic nucleus (mPOA) than males, while males had more than females in the basolateral complex of the amygdala (BLA). These findings may partly explain the different modulatory effects of GPR30 in pain and related emotional phenotypes between sexes and provide a basis for comprehension of sexual dimorphism in pain related to estrogen and GPR30, and finally provide new targets for exploiting new treatments of sex-specific pain.
Collapse
Affiliation(s)
- You Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Zhenhua Jiang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
- Department of Nursing, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Wenqiang Zuo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Chenchen Huang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jianshuai Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Peizheng Liu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jiajia Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jingzhi Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiao Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Minghui Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yan Lu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Wugang Hou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Qun Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
3
|
Jia M, Ning F, Wen J, Wang X, Chen J, Hu J, Chen X, Liu Z. Secoisolariciresinol diglucoside attenuates neuroinflammation and cognitive impairment in female Alzheimer's disease mice via modulating gut microbiota metabolism and GPER/CREB/BDNF pathway. J Neuroinflammation 2024; 21:201. [PMID: 39135052 PMCID: PMC11320852 DOI: 10.1186/s12974-024-03195-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Gender is a significant risk factor for late-onset Alzheimer's disease (AD), often attributed to the decline of estrogen. The plant estrogen secoisolariciresinol diglucoside (SDG) has demonstrated anti-inflammatory and neuroprotective effects. However, the protective effects and mechanisms of SDG in female AD remain unclear. METHODS Ten-month-old female APPswe/PSEN1dE9 (APP/PS1) transgenic mice were treated with SDG to assess its potential ameliorative effects on cognitive impairments in a female AD model through a series of behavioral and biochemical experiments. Serum levels of gut microbial metabolites enterodiol (END) and enterolactone (ENL) were quantified using HPLC-MS. Correlation analysis and broad-spectrum antibiotic cocktail (ABx) treatment were employed to demonstrate the involvement of END and ENL in SDG's cognitive improvement effects in female APP/PS1 mice. Additionally, an acute neuroinflammation model was constructed in three-month-old C57BL/6J mice treated with lipopolysaccharide (LPS) and subjected to i.c.v. injection of G15, an inhibitor of G protein-coupled estrogen receptor (GPER), to investigate the mediating role of the estrogen receptor GPER in the cognitive benefits conferred by SDG. RESULTS SDG administration resulted in significant improvements in spatial, recognition, and working memory in female APP/PS1 mice. Neuroprotective effects were observed, including enhanced expression of CREB/BDNF and PSD-95, reduced β-amyloid (Aβ) deposition, and decreased levels of TNF-α, IL-6, and IL-10. SDG also altered gut microbiota composition, increasing serum levels of END and ENL. Correlation analysis indicated significant associations between END, ENL, cognitive performance, hippocampal Aβ-related protein mRNA expression, and cortical neuroinflammatory cytokine levels. The removal of gut microbiota inhibited END and ENL production and eliminated the neuroprotective effects of SDG. Furthermore, GPER was found to mediate the inhibitory effects of SDG on neuroinflammatory responses. CONCLUSION These findings suggest that SDG promotes the production of gut microbial metabolites END and ENL, which inhibit cerebral β-amyloid deposition, activate GPER to enhance CREB/BDNF signaling pathways, and suppress neuroinflammatory responses. Consequently, SDG exerts neuroprotective effects and ameliorates cognitive impairments associated with AD in female mice.
Collapse
Affiliation(s)
- Mengzhen Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fangjie Ning
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Junqing Wen
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaorui Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiao Chen
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518000, Guangdong, China
| | - Jun Hu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518000, Guangdong, China
| | - Xuhui Chen
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518000, Guangdong, China.
| | - Zhigang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Northwest A&F University Shenzhen Research Institute, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
4
|
Cioffi L, Grassi D, Diviccaro S, Caruso D, Pinto-Benito D, Arevalo MA, Garcia-Segura LM, Melcangi RC, Giatti S. Sex chromosome complement interacts with gonadal hormones in determining regional-specific neuroactive steroid levels in plasma, hippocampus, and hypothalamus. A study using the four core genotype mouse model. J Steroid Biochem Mol Biol 2024; 241:106514. [PMID: 38554982 DOI: 10.1016/j.jsbmb.2024.106514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
An important aspect of the neuromodulatory and neuroprotective actions exerted by neuroactive steroids is that they are sex-specific, as determined by the sexually dimorphic levels of these molecules in plasma and the nervous tissue. Thus, the identification of the factors that generate the sex-dimorphic levels of neuroactive steroids may be crucial from a neuroprotectant perspective. The main driver for sex determination in mammals is the SRY gene and the subsequent presence of a specific gonad: testes for males and ovaries for females, thus producing hormonal compounds, primarily androgens and estrogens, respectively. Nowadays, it is well established that despite the relevance of gonads, other factors control sexual features, and, among them, sex chromosome complement is highly relevant. In this study, neuroactive steroids were evaluated by liquid chromatography-tandem mass spectrometry in the hypothalamus, the hippocampus, and plasma of the four core genotype mouse model, to determine the relative contribution of sex chromosome complement and gonads in determining their sex dimorphic levels. The data obtained reveal that although gonads are the main contributing factor for sex differences in neuroactive steroid levels, the levels of some neuroactive steroids, including testosterone, are also influenced in brain and plasma by tissue-specific actions of sex chromosomes. The data presented here adds a new piece to the puzzle of steroid level regulation, which may be useful in designing sex-specific neuroprotective approaches to pathological conditions affecting the nervous system.
Collapse
Affiliation(s)
- Lucia Cioffi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Itlay
| | - Daniela Grassi
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, Madrid 28029, Spain
| | - Silvia Diviccaro
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Itlay
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Itlay
| | - Daniel Pinto-Benito
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain and Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Maria-Angeles Arevalo
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain and Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Luis Miguel Garcia-Segura
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain and Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Roberto Cosimo Melcangi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Itlay
| | - Silvia Giatti
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Itlay
| |
Collapse
|
5
|
Jabra S, Rietsche M, Muellerleile J, O'Leary A, Slattery DA, Deller T, Fellenz M. Sex- and cycle-dependent changes in spine density and size in hippocampal CA2 neurons. Sci Rep 2024; 14:12252. [PMID: 38806649 PMCID: PMC11133407 DOI: 10.1038/s41598-024-62951-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024] Open
Abstract
Sex hormones affect structural and functional plasticity in the rodent hippocampus. However, hormone levels not only differ between males and females, but also fluctuate across the female estrous cycle. While sex- and cycle-dependent differences in dendritic spine density and morphology have been found in the rodent CA1 region, but not in the CA3 or the dentate gyrus, comparable structural data on CA2, i.e. the hippocampal region involved in social recognition memory, is so far lacking. In this study, we, therefore, used wildtype male and female mice in diestrus or proestrus to analyze spines on dendritic segments from identified CA2 neurons. In basal stratum oriens, we found no differences in spine density, but a significant shift towards larger spine head areas in male mice compared to females. Conversely, in apical stratum radiatum diestrus females had a significantly higher spine density, and females in either cycle stage had a significant shift towards larger spine head areas as compared to males, with diestrus females showing the larger shift. Our results provide further evidence for the sexual dimorphism of hippocampal area CA2, and underscore the importance of considering not only the sex, but also the stage of the estrous cycle when interpreting morphological data.
Collapse
Affiliation(s)
- Sharif Jabra
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Michael Rietsche
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Julia Muellerleile
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University Frankfurt, University Hospital, Heinrich-Hoffmann-Straße 10, 60528, Frankfurt am Main, Germany
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University Frankfurt, University Hospital, Heinrich-Hoffmann-Straße 10, 60528, Frankfurt am Main, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Meike Fellenz
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
6
|
Machado GDB, Schnitzler AL, Fleischer AW, Beamish SB, Frick KM. G protein-coupled estrogen receptor (GPER) in the dorsal hippocampus regulates memory consolidation in gonadectomized male mice, likely via different signaling mechanisms than in female mice. Horm Behav 2024; 161:105516. [PMID: 38428223 PMCID: PMC11065565 DOI: 10.1016/j.yhbeh.2024.105516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
Studies in ovariectomized (OVX) female rodents suggest that G protein-coupled estrogen receptor (GPER) is a key regulator of memory, yet little is known about its importance to memory in males or the cellular mechanisms underlying its mnemonic effects in either sex. In OVX mice, bilateral infusion of the GPER agonist G-1 into the dorsal hippocampus (DH) enhances object recognition and spatial memory consolidation in a manner dependent on rapid activation of c-Jun N-terminal kinase (JNK) signaling, cofilin phosphorylation, and actin polymerization in the DH. However, the effects of GPER on memory consolidation and DH cell signaling in males are unknown. Thus, the present study first assessed effects of DH infusion of G-1 or the GPER antagonist G-15 on object recognition and spatial memory consolidation in gonadectomized (GDX) male mice. As in OVX mice, immediate post-training bilateral DH infusion of G-1 enhanced, whereas G-15 impaired, memory consolidation in the object recognition and object placement tasks. However, G-1 did not increase levels of phosphorylated JNK (p46, p54) or cofilin in the DH 5, 15, or 30 min after infusion, nor did it affect phosphorylation of ERK (p42, p44), PI3K, or Akt. Levels of phospho-cAMP-responsive element binding protein (CREB) were elevated in the DH 30 min following G-1 infusion, indicating that GPER in males activates a yet unknown signaling mechanism that triggers CREB-mediated gene transcription. Our findings show for the first time that GPER in the DH regulates memory consolidation in males and suggests sex differences in underlying signaling mechanisms.
Collapse
Affiliation(s)
- Gustavo D B Machado
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI 53211, United States of America
| | - Alexis L Schnitzler
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI 53211, United States of America
| | - Aaron W Fleischer
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI 53211, United States of America
| | - Sarah B Beamish
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI 53211, United States of America
| | - Karyn M Frick
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI 53211, United States of America.
| |
Collapse
|
7
|
Carter JS, Costa CC, Kearns AM, Reichel CM. Inhibition of Estradiol Signaling in the Basolateral Amygdala Impairs Extinction Memory Recall for Heroin-Conditioned Cues in a Sex-Specific Manner. Neuroendocrinology 2023; 114:207-222. [PMID: 37848008 PMCID: PMC10922099 DOI: 10.1159/000534647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
INTRODUCTION Relapse is a major treatment barrier for opioid use disorder. Environmental cues become associated with the rewarding effects of opioids and can precipitate relapse, even after numerous unreinforced cue presentations, due to deficits in extinction memory recall (EMR). Estradiol (E2) modulates EMR of fear-related cues, but it is unknown whether E2 impacts EMR of reward cues and what brain region(s) are responsible for E2s effects. Here, we hypothesize that inhibition of E2 signaling in the basolateral amygdala (BLA) will impair EMR of a heroin-associated cue in both male and female rats. METHODS We pharmacologically manipulated E2 signaling to characterize the role of E2 in the BLA on heroin-cue EMR. Following heroin self-administration, during which a light/tone cue was co-presented with each heroin infusion, rats underwent cued extinction to extinguish the conditioned association between the light/tone and heroin. During extinction, E2 signaling in the BLA was blocked by an aromatase inhibitor or specific estrogen receptor (ER) antagonists. The next day, subjects underwent a cued test to assess heroin-cue EMR. RESULTS In both experiments, females took more heroin than males (mg/kg) and had higher operant responding during cued extinction. Inhibition of E2 synthesis in the BLA impaired heroin-cue EMR in both sexes. Notably, E2s actions are mediated by different ER mechanisms, ERα in males but ERβ in females. CONCLUSIONS This study is the first to demonstrate a behavioral role for centrally-produced E2 in the BLA and that E2 also impacts EMR of reward-associated stimuli in both sexes.
Collapse
Affiliation(s)
- Jordan S. Carter
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Caitlyn C. Costa
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Angela M. Kearns
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Carmela M. Reichel
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
8
|
Fernandez-Garcia JM, Carrillo B, Tezanos P, Pinos H, Collado P. Genistein early in life Modifies the arcuate nucleus of the hypothalamus morphology differentially in male and female rats. Mol Cell Endocrinol 2023; 570:111933. [PMID: 37080379 DOI: 10.1016/j.mce.2023.111933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/16/2023] [Accepted: 04/16/2023] [Indexed: 04/22/2023]
Abstract
In the present work we analyzed the effects of postnatal exposure to two doses of genistein (10 μg/g or 50 μg/g) from postnatal (P) day 6 to P13, on the morphology of the arcuate nucleus (Arc). The analyses of Arc coronal brain sections at 90 days showed that the ArcMP had higher values in volume, Nissl-stained neurons and GPER-ir neurons in males than in females and the treatment with genistein abolished these sex differences in most of the parameters studied. Moreover, in males, but not in females, the GPER-ir neurons decreased in the ArcMP but increased in the ArcL with both doses of genistein. In the ArcLP, GPER-ir population increased with the lowest doses and decreased with the highest one in males. Our results confirm that the Arc subdivisions have differential vulnerability to the effects of genistein during development, depending on which neuromorphological parameters, dose and sex are analyzed.
Collapse
Affiliation(s)
- Jose Manuel Fernandez-Garcia
- Departamento de Psicobiología, Facultad Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain; Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), Madrid, Spain
| | - Beatriz Carrillo
- Departamento de Psicobiología, Facultad Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain; Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), Madrid, Spain
| | - Patricia Tezanos
- Departamento de Neurociencia Traslacional, Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28002, Spain
| | - Helena Pinos
- Departamento de Psicobiología, Facultad Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain; Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), Madrid, Spain.
| | - Paloma Collado
- Departamento de Psicobiología, Facultad Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain; Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), Madrid, Spain
| |
Collapse
|
9
|
Luo W, Yan Y, Cao Y, Zhang Y, Zhang Z. The effects of GPER on age-associated memory impairment induced by decreased estrogen levels. Front Mol Biosci 2023; 10:1097018. [PMID: 37021109 PMCID: PMC10069632 DOI: 10.3389/fmolb.2023.1097018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/08/2023] [Indexed: 04/07/2023] Open
Abstract
Estrogen, as a pleiotropic endocrine hormone, not only regulates the physiological functions of peripheral tissues but also exerts vital neuroregulatory effects in the central nervous system (CNS), such as the development of neurons and the formation of neural network connections, wherein rapid estrogen-mediated reactions positively stimulate spinogenesis and regulate synaptic plasticity and synaptic transmission to facilitate cognitive and memory performance. These fast non-genomic effects can be initiated by membrane-bound estrogen receptors (ERs), three best known of which are ERα, ERβ, and G protein-coupled estrogen receptor (GPER). To date, the effects of ERα and ERβ have been well studied in age-associated memory impairment, whereas there is still a lack of attention to the role of GPER in age-associated memory impairment, and there are still disputes about whether GPER indeed functions as an ER to enhance learning and memory. In this review, we provide a systematic overview of the role of GPER in age-associated memory impairment based on its expression, distribution, and signaling pathways, which might bring some inspiration for translational drugs targeting GPER for age-related diseases and update knowledge on the role of estrogen and its receptor system in the brain.
Collapse
Affiliation(s)
- Wenyu Luo
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yudie Yan
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yunpeng Cao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, China
- *Correspondence: Zhen Zhang, ; Yunpeng Cao, ; Yanbo Zhang,
| | - Yanbo Zhang
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Zhen Zhang, ; Yunpeng Cao, ; Yanbo Zhang,
| | - Zhen Zhang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning, China
- *Correspondence: Zhen Zhang, ; Yunpeng Cao, ; Yanbo Zhang,
| |
Collapse
|
10
|
Choi Y, Min HY, Hwang J, Jo YH. Magel2 knockdown in hypothalamic POMC neurons innervating the medial amygdala reduces susceptibility to diet-induced obesity. Life Sci Alliance 2022; 5:5/11/e202201502. [PMID: 36007929 PMCID: PMC9418835 DOI: 10.26508/lsa.202201502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Hyperphagia and obesity profoundly affect the health of children with Prader-Willi syndrome (PWS). The Magel2 gene among the genes in the Prader-Willi syndrome deletion region is expressed in proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC). Knockout of the Magel2 gene disrupts POMC neuronal circuits and functions. Here, we report that loss of the Magel2 gene exclusively in ARCPOMC neurons innervating the medial amygdala (MeA) causes a reduction in body weight in both male and female mice fed with a high-fat diet. This anti-obesity effect is associated with an increased locomotor activity. There are no significant differences in glucose and insulin tolerance in mice without the Magel2 gene in ARCPOMC neurons innervating the MeA. Plasma estrogen levels are higher in female mutant mice than in controls. Blockade of the G protein-coupled estrogen receptor (GPER), but not estrogen receptor-α (ER-α), reduces locomotor activity in female mutant mice. Hence, our study provides evidence that knockdown of the Magel2 gene in ARCPOMC neurons innervating the MeA reduces susceptibility to diet-induced obesity with increased locomotor activity through activation of central GPER.
Collapse
Affiliation(s)
- Yuna Choi
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY, USA.,Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York City, NY, USA
| | - Hyeon-Young Min
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY, USA.,Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York City, NY, USA
| | - Jiyeon Hwang
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY, USA.,Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York City, NY, USA
| | - Young-Hwan Jo
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY, USA .,Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York City, NY, USA.,Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York City, NY, USA
| |
Collapse
|
11
|
Lagunas N, Fernández-García JM, Blanco N, Ballesta A, Carrillo B, Arevalo MA, Collado P, Pinos H, Grassi D. Organizational Effects of Estrogens and Androgens on Estrogen and Androgen Receptor Expression in Pituitary and Adrenal Glands in Adult Male and Female Rats. Front Neuroanat 2022; 16:902218. [PMID: 35815333 PMCID: PMC9261283 DOI: 10.3389/fnana.2022.902218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/11/2022] [Indexed: 01/15/2023] Open
Abstract
Sex steroid hormones, such as androgens and estrogens, are known to exert organizational action at perinatal periods and activational effects during adulthood on the brain and peripheral tissues. These organizational effects are essential for the establishment of biological axes responsible for regulating behaviors, such as reproduction, stress, and emotional responses. Estradiol (E2), testosterone, and their metabolites exert their biological action through genomic and non-genomic mechanisms, bounding to canonical receptors, such as estrogen receptor (ER)α, ERβ, and androgen receptor (AR) or membrane receptors, such as the G protein-coupled estrogen receptor (GPER), respectively. Expression of ERs and AR was found to be different between males and females both in the brain and peripheral tissues, suggesting a sex-dependent regulation of their expression and function. Therefore, studying the ERs and AR distribution and expression levels is key to understand the central and peripheral role of sex steroids in the establishment of sex-specific behaviors in males and females. We investigated the organizational effects of estrogens and androgens in the pituitary and adrenal glands of adult male and female rats. For this, selective blockade of AR with flutamide or 5α-reductase with finasteride or aromatase with letrozole during the first 5 days of life has been performed in male and female pups and then quantification of ERs and AR expression in both glands has been carried out in adulthood. Data show that inhibition of dihydrotestosterone (DHT) and E2 production during the first five postnatal days mainly decreases the ER expression in male to female values and AR expression in female to male levels in the pituitary gland and increases AR expression in female to male levels in the adrenal gland. In contrast, blocking the action of androgens differentially modulates the ERs in males and females and decreases AR in both males and females in both glands. Altogether, the results suggest that neonatal modifications of the androgen and estrogen pathways can potentially lead to permanent modifications of the neuroendocrine functions of the pituitary and adrenal glands in the adulthood of both sexes.
Collapse
Affiliation(s)
- Natalia Lagunas
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - José Manuel Fernández-García
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
- Department of Psychology, Universidad Villanueva, Madrid, Spain
| | - Noemí Blanco
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
| | - Antonio Ballesta
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
- Department of Psychology, Faculty of Biomedical Science and Health, European University of Madrid, Madrid, Spain
| | - Beatriz Carrillo
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
- University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), Madrid, Spain
| | - Maria-Angeles Arevalo
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Paloma Collado
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
- University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), Madrid, Spain
| | - Helena Pinos
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
- University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), Madrid, Spain
| | - Daniela Grassi
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Department of Anatomy, Histology and Neuroscience, Autonomous University of Madrid, Madrid, Spain
- *Correspondence: Daniela Grassi
| |
Collapse
|
12
|
Grassi D, Marraudino M, Garcia-Segura LM, Panzica GC. The hypothalamic paraventricular nucleus as a central hub for the estrogenic modulation of neuroendocrine function and behavior. Front Neuroendocrinol 2022; 65:100974. [PMID: 34995643 DOI: 10.1016/j.yfrne.2021.100974] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022]
Abstract
Estradiol and hypothalamic paraventricular nucleus (PVN) help coordinate reproduction with body physiology, growth and metabolism. PVN integrates hormonal and neural signals originating in the periphery, generating an output mediated both by its long-distance neuronal projections, and by a variety of neurohormones produced by its magnocellular and parvocellular neurosecretory cells. Here we review the cyto-and chemo-architecture, the connectivity and function of PVN and the sex-specific regulation exerted by estradiol on PVN neurons and on the expression of neurotransmitters, neuromodulators, neuropeptides and neurohormones in PVN. Classical and non-classical estrogen receptors (ERs) are expressed in neuronal afferents to PVN and in specific PVN interneurons, projecting neurons, neurosecretory neurons and glial cells that are involved in the input-output integration and coordination of neurohormonal signals. Indeed, PVN ERs are known to modulate body homeostatic processes such as autonomic functions, stress response, reproduction, and metabolic control. Finally, the functional implications of the estrogenic modulation of the PVN for body homeostasis are discussed.
Collapse
Affiliation(s)
- D Grassi
- Department of Anatomy, Histology and Neuroscience, Universidad Autonoma de Madrid, Madrid, Spain
| | - M Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Torino, Italy
| | - L M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - G C Panzica
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Torino, Italy; Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy.
| |
Collapse
|
13
|
Effects of circulating estradiol on physiological, behavioural, and subjective correlates of anxiety: A double-blind, randomized, placebo-controlled trial. Psychoneuroendocrinology 2022; 138:105682. [PMID: 35123210 DOI: 10.1016/j.psyneuen.2022.105682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 12/17/2021] [Accepted: 01/27/2022] [Indexed: 12/15/2022]
Abstract
Anxiety-related behaviours as well as the prevalence of anxiety disorders show a large sex difference in humans. Clinical studies in humans as well as behavioural studies in rodents suggest that estradiol may have anxiolytic properties. In line with this, anxiety symptoms fluctuate with estradiol levels along the menstrual cycle. However, the influence of estradiol on subjective, behavioural, as well as physiological correlates of anxiety has never been systematically addressed in humans. We ran a double-blind, randomized, placebo-controlled study (N = 126) to investigate the effects of estradiol on anxiety in men and women. In healthy volunteers, circulating estradiol levels were elevated through estradiol administration over two consecutive days to simulate the rise in estradiol levels around ovulation. Subjective, behavioral, as well as, physiological correlates of anxiety were assessed using a virtual reality elevated plus-maze (EPM). Estradiol treatment reduced the physiological stress response with blunted heart rate response and lower cortisol levels compared to placebo treatment in both sexes. In contrast, respiration frequency was only reduced in women after estradiol treatment. Behavioural measures of anxiety as well as subjective anxiety on the EPM were not affected by estradiol treatment. In general, women showed more avoidance and less approach behavior and reported higher subjective anxiety levels on the EPM than men. These results highlight the limited anxiolytic properties of circulating levels of estradiol in humans, which influence physiological markers of anxiety but not approach and avoidance behaviour or subjective anxiety levels.
Collapse
|
14
|
Aspesi D, Choleris E. Neuroendocrine underpinning of social recognition in males and females. J Neuroendocrinol 2022; 34:e13070. [PMID: 34927288 DOI: 10.1111/jne.13070] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 11/14/2021] [Accepted: 11/24/2021] [Indexed: 12/28/2022]
Abstract
Social recognition is an essential skill for the expression of appropriate behaviors towards conspecifics in most social species. Several studies point to oxytocin (OT) and arginine vasopressin (AVP) as key mediators of social recognition in males and females. However, sex differences in social cognitive behaviors highlight an important interplay between OT, AVP and the sex steroids. Estrogens facilitate social recognition by regulating OT action in the hypothalamus and that of OT receptor in the medial amygdala. The role of OT in these brain regions appears to be essential for social recognition in both males and females. Conversely, social recognition in male rats and mice is more dependent on AVP release in the lateral septum than in females. The AVP system comprises a series of highly sexually dimorphic brain nuclei, including the bed nucleus of the stria terminalis, the amygdala and the lateral septum. Various studies suggest that testosterone and its metabolites, including estradiol, influence social recognition in males by modulating the activity of the AVP at V1a receptor. Intriguingly, both estrogens and androgens can affect social recognition very rapidly, through non-genomic mechanisms. In addition, the androgen metabolites, namely 3α-diol and 3β-diol, may also have an impact on social behaviors either by interacting with the estrogen receptors or through other mechanisms. Overall, the regulation of OT and AVP by sex steroids fine tunes social recognition and the behaviors that depend upon it (e.g., social bond, hierarchical organization, aggression) in a sex-dependent manner. Elucidating the sex-dependent interaction between sex steroids and neuroendocrine systems is essential for understanding sex differences in the normal and abnormal expression of social behaviors.
Collapse
Affiliation(s)
- Dario Aspesi
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
15
|
Dennison JL, Volmar CH, Ke D, Wang J, Gravel E, Hammond-Vignini S, Li Z, Timmons JA, Lohse I, Hayward MA, Brothers SP, Wahlestedt C. JOTROL, a Novel Formulation of Resveratrol, Shows Beneficial Effects in the 3xTg-AD Mouse Model. J Alzheimers Dis 2022; 86:173-190. [PMID: 35034905 DOI: 10.3233/jad-215370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) has minimally effective treatments currently. High concentrations of resveratrol, a polyphenol antioxidant found in plants, have been reported to affect several AD-related and neuroprotective genes. To address the low bioavailability of resveratrol, we investigated a novel oral formulation of resveratrol, JOTROL™, that has shown increased pharmacokinetic properties compared to non-formulated resveratrol in animals and in humans. OBJECTIVE We hypothesized that equivalent doses of JOTROL, compared to non-formulated resveratrol, would result in greater brain exposure to resveratrol, and more efficacious responses on AD biomarkers. METHODS For sub-chronic reversal studies, 15-month-old male triple transgenic (APPSW/PS1M146V/TauP301L; 3xTg-AD) AD mice were treated orally with vehicle or 50 mg/kg JOTROL for 36 days. For prophylactic studies, male and female 3xTg-AD mice were similarly administered vehicle, 50 mg/kg JOTROL, or 50 mg/kg resveratrol for 9 months starting at 4 months of age. A behavioral battery was run, and mRNA and protein from brain and blood were analyzed for changes in AD-related gene and protein expression. RESULTS JOTROL displays significantly increased bioavailability over non-formulated resveratrol. Treatment with JOTROL resulted in AD-related gene expression changes (Adam10, Bace1, Bdnf, Psen1) some of which were brain region-dependent and sex-specific, as well as changes in inflammatory gene and cytokine levels. CONCLUSION JOTROL may be effective as a prophylaxis and/or treatment for AD through increased expression and/or activation of neuroprotective genes, suppression of pro-inflammatory genes, and regulation of central and peripheral cytokine levels.
Collapse
Affiliation(s)
- Jessica L Dennison
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Claude-Henry Volmar
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Danbing Ke
- KDM Laboratories Inc., Montreal, QC, Canada
| | - James Wang
- KDM Laboratories Inc., Montreal, QC, Canada
| | | | | | - Zuomei Li
- NuChem Sciences Inc., St. Laurent, QC, Canada
| | | | - Ines Lohse
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Shaun P Brothers
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Claes Wahlestedt
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
16
|
Reddy V, McCarthy M, Raval AP. Xenoestrogens impact brain estrogen receptor signaling during the female lifespan: A precursor to neurological disease? Neurobiol Dis 2021; 163:105596. [PMID: 34942334 DOI: 10.1016/j.nbd.2021.105596] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/08/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023] Open
Abstract
Xenoestrogens, foreign synthetic chemicals mimicking estrogens, are lurking in our surroundings. Climate change may alter their toxicity and bioavailability. Since xenoestrogens have extremely high lipid solubility and are structurally similar to natural endogenous estrogens, they can bind to estrogen receptors (ERs) -alpha (ER-α) and -beta (ER-β). Scientific evidence accumulated over the past decades have suggested that natural 17β-estradiol (E2; a potent estrogen), via activation of its receptors, plays a pivotal role in regulation of brain development, differentiation, metabolism, synaptic plasticity, neuroprotection, cognition, anxiety, body temperature, feeding and sexual behavior. In the brain, ER-β is predominantly expressed in the various regions, including cerebral cortex and hippocampus, that have been shown to play a key role in cognition. Therefore, disturbances in function of ER-β mediated E2 signaling by xenoestrogens can lead to deleterious effects that potentiate a variety of neurological diseases starting from prenatal to post-menopause in women. The goal of this review is to identify the possible neurological effects of xenoestrogens that can alter estrogen receptor-mediated signaling in the brain during different stages of the female lifespan.
Collapse
Affiliation(s)
- Varun Reddy
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Micheline McCarthy
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
17
|
Balthazart J. Membrane-initiated actions of sex steroids and reproductive behavior: A historical account. Mol Cell Endocrinol 2021; 538:111463. [PMID: 34582978 DOI: 10.1016/j.mce.2021.111463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/25/2023]
Abstract
It was assumed for a long time that sex steroids are activating reproductive behaviors by the same mechanisms that produce their morphological and physiological effects in the periphery. However during the last few decades an increasing number of examples were identified where behavioral effects of steroids were just too fast to be mediated via changes in DNA transcription. This progressively forced behavioral neuroendocrinologists to recognize that part of the effects of steroids on behavior are mediated by membrane-initiated events. In this review we present a selection of these early data that changed the conceptual landscape and we provide a summary the different types of membrane-associated receptors (estrogens, androgens and progestagens receptors) that are playing the most important role in the control of reproductive behaviors. Then we finally describe in more detail three separate behavioral systems in which membrane-initiated events have clearly been established to contribute to behavior control.
Collapse
|
18
|
Ferreira-Sgobbi R, de Figueiredo RM, Frias AT, Matthiesen M, Batistela MF, Falconi-Sobrinho LL, Vilela-Costa HH, Sá SI, Lovick TA, Zangrossi H, Coimbra NC. Panic-like responses of female Wistar rats confronted by Bothrops alternatus pit vipers, or exposure to acute hypoxia: Effect of oestrous cycle. Eur J Neurosci 2021; 55:32-48. [PMID: 34850475 DOI: 10.1111/ejn.15548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/22/2021] [Accepted: 11/14/2021] [Indexed: 02/02/2023]
Abstract
Anxiety-related diseases are more than twice as common in women than in men, and in women, symptoms may be exacerbated during the late luteal phase of the menstrual cycle. Despite this, most research into the underlying mechanisms, which drives drug development, have been carried out using male animals. In an effort to redress this imbalance, we compared responses of male and female Wistar rats during exposure to two unconditioned threatening stimuli that evoke panic-related defensive behaviours: confrontation with a predator (Bothrops alternatus) and acute exposure to hypoxia (7% O2 ). Threatened by venomous snake, male and female rats initially displayed defensive attention, risk assessment, and cautious interaction with the snake, progressing to defensive immobility to overt escape. Both males and females displayed higher levels of risk assessment but less interaction with the predator. They also spent more time in the burrow, displaying inhibitory avoidance, and more time engaged in defensive attention, and non-oriented escape behaviour. In females, anxiety-like behaviour was most pronounced in the oestrous and proestrus phases whereas panic-like behaviour was more pronounced during the dioestrus phase, particularly during late dioestrus. Acute hypoxia evoked panic-like behaviour (undirected jumping) in both sexes, but in females, responsiveness in late dioestrus was significantly greater than at other stages of the cycle. The results reveal that females respond in a qualitatively similar manner to males during exposure to naturally occurring threatening stimuli, but the responses of females is oestrous cycle dependent with a significant exacerbation of panic-like behaviour in the late dioestrus phase.
Collapse
Affiliation(s)
- Renata Ferreira-Sgobbi
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil.,Laboratory of Neuropsychopharmacology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil.,Department of Psychology, Division of Psychobiology, Ribeirão Preto School of Philosophy, Sciences and Literature of the University of São Paulo, Ribeirão Preto, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo, Ribeirão Preto, Brazil.,Behaviour of Snakes Division-MEDUSA Project, Behavioural Neurosciences Institute (INeC), Ribeirão Preto, Brazil
| | - Rebeca Machado de Figueiredo
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo, Ribeirão Preto, Brazil
| | - Alana Tercino Frias
- Laboratory of Neuropsychopharmacology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil
| | - Melina Matthiesen
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil.,Laboratory of Neuropsychopharmacology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil
| | - Matheus Fitipaldi Batistela
- Laboratory of Neuropsychopharmacology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz Luciano Falconi-Sobrinho
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo, Ribeirão Preto, Brazil.,Behaviour of Snakes Division-MEDUSA Project, Behavioural Neurosciences Institute (INeC), Ribeirão Preto, Brazil.,Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo, Ribeirão Preto, Brazil
| | - Heloísa Helena Vilela-Costa
- Laboratory of Neuropsychopharmacology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil
| | - Susana Isabel Sá
- Unidade de Anatomia, Departamento de Biomedicina, Faculdade de Medicina da Universidade de Porto, Porto, Portugal
| | - Thelma Anderson Lovick
- Behaviour of Snakes Division-MEDUSA Project, Behavioural Neurosciences Institute (INeC), Ribeirão Preto, Brazil.,School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Hélio Zangrossi
- Laboratory of Neuropsychopharmacology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo, Ribeirão Preto, Brazil.,Behaviour of Snakes Division-MEDUSA Project, Behavioural Neurosciences Institute (INeC), Ribeirão Preto, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo, Ribeirão Preto, Brazil.,Behaviour of Snakes Division-MEDUSA Project, Behavioural Neurosciences Institute (INeC), Ribeirão Preto, Brazil.,Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
19
|
Nuclear Receptors in Myocardial and Cerebral Ischemia-Mechanisms of Action and Therapeutic Strategies. Int J Mol Sci 2021; 22:ijms222212326. [PMID: 34830207 PMCID: PMC8617737 DOI: 10.3390/ijms222212326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Nearly 18 million people died from cardiovascular diseases in 2019, of these 85% were due to heart attack and stroke. The available therapies although efficacious, have narrow therapeutic window and long list of contraindications. Therefore, there is still an urgent need to find novel molecular targets that could protect the brain and heart against ischemia without evoking major side effects. Nuclear receptors are one of the promising targets for anti-ischemic drugs. Modulation of estrogen receptors (ERs) and peroxisome proliferator-activated receptors (PPARs) by their ligands is known to exert neuro-, and cardioprotective effects through anti-apoptotic, anti-inflammatory or anti-oxidant action. Recently, it has been shown that the expression of aryl hydrocarbon receptor (AhR) is strongly increased after brain or heart ischemia and evokes an activation of apoptosis or inflammation in injury site. We hypothesize that activation of ERs and PPARs and inhibition of AhR signaling pathways could be a promising strategy to protect the heart and the brain against ischemia. In this Review, we will discuss currently available knowledge on the mechanisms of action of ERs, PPARs and AhR in experimental models of stroke and myocardial infarction and future perspectives to use them as novel targets in cardiovascular diseases.
Collapse
|
20
|
Hormonal influences in migraine - interactions of oestrogen, oxytocin and CGRP. Nat Rev Neurol 2021; 17:621-633. [PMID: 34545218 DOI: 10.1038/s41582-021-00544-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2021] [Indexed: 02/07/2023]
Abstract
Migraine is ranked as the second highest cause of disability worldwide and the first among women aged 15-49 years. Overall, the incidence of migraine is threefold higher among women than men, though the frequency and severity of attacks varies during puberty, the menstrual cycle, pregnancy, the postpartum period and menopause. Reproductive hormones are clearly a key influence in the susceptibility of women to migraine. A fall in plasma oestrogen levels can trigger attacks of migraine without aura, whereas higher oestrogen levels seem to be protective. The basis of these effects is unknown. In this Review, we discuss what is known about sex hormones and their receptors in migraine-related areas in the CNS and the peripheral trigeminovascular pathway. We consider the actions of oestrogen via its multiple receptor subtypes and the involvement of oxytocin, which has been shown to prevent migraine attacks. We also discuss possible interactions of these hormones with the calcitonin gene-related peptide (CGRP) system in light of the success of anti-CGRP treatments. We propose a simple model to explain the hormone withdrawal trigger in menstrual migraine, which could provide a foundation for improved management and therapy for hormone-related migraine in women.
Collapse
|
21
|
Li X, Johann S, Rune GM, Bender RA. Sex-specific Regulation of Spine Density and Synaptic Proteins by G-protein-coupled Estrogen Receptor (GPER)1 in Developing Hippocampus. Neuroscience 2021; 472:35-50. [PMID: 34364953 DOI: 10.1016/j.neuroscience.2021.07.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/19/2022]
Abstract
G-protein-coupled-estrogen-receptor 1 (GPER1) is a membrane-bound receptor that mediates estrogen signaling via intracellular signaling cascades. We recently showed that GPER1 promotes the distal dendritic enrichment of hyperpolarization activated and cyclic nucleotide-gated (HCN)1 channels in CA1 stratum lacunosum-moleculare (SLM), suggesting a role of GPER1-mediated signaling in neuronal plasticity. Here we studied whether this role involves processes of structural plasticity, such as the regulation of spine and synapse density in SLM. In organotypic entorhino-hippocampal cultures from mice expressing eGFP, we analyzed spine densities in SLM after treatment with GPER1 agonist G1 (20 nM). G1 significantly increased the density of "non-stubby" spines (maturing spines with a spine head and a neck), but did so only in cultures from female mice. In support of this finding, the expression of synaptic proteins was sex-specifically altered in the cultures: G1 increased the protein (but not mRNA) expression of PSD95 and reduced the p-/n-cofilin ratio only in cultures from females. Application of E2 (2 nM) reproduced the sex-specific effect on spine density in SLM, but only partially on the expression of synaptic proteins. Spine synapse density was, however, not altered after G1-treatment, suggesting that the increased spine density did not translate into an increased spine synapse density in the culture model. Taken together, our results support a role of GPER1 in mediating structural plasticity in CA1 SLM, but suggest that in developing hippocampus, this role is sex-specific.
Collapse
Affiliation(s)
- Xiaoyu Li
- Institute of Neuroanatomy, University Medical Center Hamburg, 20246 Hamburg, Germany
| | - Sonja Johann
- Institute of Neuroanatomy, University Medical Center Hamburg, 20246 Hamburg, Germany
| | - Gabriele M Rune
- Institute of Neuroanatomy, University Medical Center Hamburg, 20246 Hamburg, Germany
| | - Roland A Bender
- Institute of Neuroanatomy, University Medical Center Hamburg, 20246 Hamburg, Germany.
| |
Collapse
|