1
|
Nie P, Lan Y, You T, Jia T, Xu H. F-53B mediated ROS affects uterine development in rats during puberty by inducing apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116399. [PMID: 38677070 DOI: 10.1016/j.ecoenv.2024.116399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs), as pollutants, can cause palpable environmental and health impacts around the world, as endocrine disruptors, can disrupt endocrine homeostasis and increase the risk of diseases. Chlorinated polyfluoroalkyl ether sulfonate (F-53B), as a substitute for PFAS, was determined to have potential toxicity. Puberty is the stage when sexual organs develop and hormones change dramatically, and abnormal uterine development can increase the risk of uterine lesions and lead to infertility. This study was designed to explore the impact of F-53B on uterine development during puberty. Four-week-old female SD rats were exposed to 0.125 and 6.25 mg/L F-53B during puberty. The results showed that F-53B interfered with growth and sex hormone levels and bound to oestrogen-related receptors, which affected their function, contributed to the accumulation of reactive oxygen species, promoted cell apoptosis and inhibited cell proliferation, ultimately causing uterine dysplasia.
Collapse
Affiliation(s)
- Penghui Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yuzhi Lan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Tao You
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Tiantian Jia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang 330200, PR China.
| |
Collapse
|
2
|
Lonc G, Hrabia A, Krakowska I, Korzekwa AJ, Zarzycka M, Wolak D, Wajdzik M, Kotula-Balak M. Is membrane androgen and estrogen receptor signaling imperative in the governing function of the adrenal cortex in the Eurasian beaver (Castor fiber L.)? JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:587-596. [PMID: 38497306 DOI: 10.1002/jez.2806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 03/19/2024]
Abstract
There is a need to fully know the physiology of Eurasian beaver due to its essential role in environmental homeostasis. However, a "human factor" impacts this, including stress conditions and environmental pollution. Adrenal glands protect these all. The regulation of endocrine processes by nonclassical androgen and estrogen signaling, the first and fastest control, is still a matter of research. The specific analyses performed here in mature female and male beaver adrenals contained: anatomical and histological examinations, expression and localization of membrane androgen receptor (zinc transporter, Zinc- and Iron-like protein 9; ZIP9) and membrane estrogen receptor coupled with G protein (GPER), and measurement of zinc (Zn2+) and copper (Ca2+) ion levels and corticosterone levels. We revealed normal anatomical localization, size, and tissue histology in female and male beavers, respectively. Equally, ZIP9 and GPER were localized in the membrane of all adrenal cortex cells. The protein expression of these receptors was higher (p < 0.001) in male than female adrenal cortex cells. Similarly, Zn2+ and Ca2+ ion levels were higher (p < 0.05, p < 0.01) in male than female adrenal cortex. The increased corticosterone levels (p < 0.001) were detected in the adrenal cortex of females when compared to males. The present study is the first to report the presence of nonclassical androgen and estrogen signaling and its possible regulatory function in the adrenal cortex of Eurasian beavers. We assume that this first-activated and fast-transmitted regulation can be important in the context of the effect of environmental physical and chemical stressors especially on adrenal cortex cells. The beaver adrenals may constitute an additional supplementary model for searching for universal mechanisms of adrenal cortex physiology and diseases.
Collapse
Affiliation(s)
- G Lonc
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Krakow, Poland
| | - A Hrabia
- Department of Animal Physiology and Endocrinology, Faculty of Animal Science, University of Agriculture in Krakow, Krakow, Poland
| | - I Krakowska
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Krakow, Poland
| | - A J Korzekwa
- Department of Biodiversity Protection, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - M Zarzycka
- Department of Medical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | - D Wolak
- Department of Animal Physiology and Endocrinology, Faculty of Animal Science, University of Agriculture in Krakow, Krakow, Poland
| | - M Wajdzik
- Department of Forest Biodiversity, Faculty of Forestry, University of Agriculture, Krakow, Poland
| | - M Kotula-Balak
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Krakow, Poland
| |
Collapse
|
3
|
Płotka-Wasylka J, Mulkiewicz E, Lis H, Godlewska K, Kurowska-Susdorf A, Sajid M, Lambropoulou D, Jatkowska N. Endocrine disrupting compounds in the baby's world - A harmful environment to the health of babies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163350. [PMID: 37023800 DOI: 10.1016/j.scitotenv.2023.163350] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 06/01/2023]
Abstract
Globally, there has been a significant increase in awareness of the adverse effects of chemicals with known or suspected endocrine-acting properties on human health. Human exposure to endocrine disrupting compounds (EDCs) mainly occurs by ingestion and to some extent by inhalation and dermal uptake. Although it is difficult to assess the full impact of human exposure to EDCs, it is well known that timing of exposure is of importance and therefore infants are more vulnerable to EDCs and are at greater risk compared to adults. In this regard, infant safety and assessment of associations between prenatal exposure to EDCs and growth during infancy and childhood has been received considerable attention in the last years. Hence, the purpose of this review is to provide a current update on the evidence from biomonitoring studies on the exposure of infants to EDCs and a comprehensive view of the uptake, the mechanisms of action and biotransformation in baby/human body. Analytical methods used and concentration levels of EDCs in different biological matrices (e.g., placenta, cord plasma, amniotic fluid, breast milk, urine, and blood of pregnant women) are also discussed. Finally, key issues and recommendations were provided to avoid hazardous exposure to these chemicals, taking into account family and lifestyle factors related to this exposure.
Collapse
Affiliation(s)
- Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland; BioTechMed Center, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland.
| | - Ewa Mulkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | - Hanna Lis
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | - Klaudia Godlewska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | | | - Muhammad Sajid
- Applied Research Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Dimitra Lambropoulou
- Department of Chemistry, Environmental Pollution Control Laboratory, Aristotle University of Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki GR-57001, Greece
| | - Natalia Jatkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland.
| |
Collapse
|
4
|
Alva-Gallegos R, Carazo A, Mladěnka P. Toxicity overview of endocrine disrupting chemicals interacting in vitro with the oestrogen receptor. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104089. [PMID: 36841273 DOI: 10.1016/j.etap.2023.104089] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The oestrogen receptor (ER) from the nuclear receptor family is involved in different physiological processes, which can be affected by multiple xenobiotics. Some of these compounds, such as bisphenols, pesticides, and phthalates, are widespread as consequence of human activities and are commonly present also in human organism. Xenobiotics able to interact with ER and trigger a hormone-like response, are known as endocrine disruptors. In this review, we aim to summarize the available knowledge on products derived from human industrial activity and other xenobiotics reported to interact with ER. ER-disrupting chemicals behave differently towards oestrogen-dependent cell lines than endogenous oestradiol. In low concentrations, they stimulate proliferation, whereas at higher concentrations, are toxic to cells. In addition, most of the knowledge on the topic is based on individual compound testing, and only a few studies assess xenobiotic combinations, which better resemble real circumstances. Confirmation from in vivo models is lacking also.
Collapse
Affiliation(s)
- Raul Alva-Gallegos
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
5
|
Pawlicki P, Koziorowska A, Koziorowski M, Pawlicka B, Duliban M, Wieczorek J, Płachno BJ, Pardyak L, Korzekwa AJ, Kotula-Balak M. Senescence and autophagy relation with the expressional status of non-canonical estrogen receptors in testes and adrenals of roe deer (Capreolus capreolus) during the pre-rut period. Theriogenology 2023; 198:141-152. [PMID: 36586352 DOI: 10.1016/j.theriogenology.2022.12.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
The roe deer bucks represent a spontaneous model to study the synchronized testicular involution and recrudescence cycles. However, cellular processes and hormonal control of steroidogenic glands are scarcely known. For the present study testes and adrenal glands obtained from roe deer during the pre-rut season were used. We aimed to determine (i) senescence and autophagy involvement in testis atrophy (immunohistochemical analysis for tumor suppressor protein encoded by the cyclin-dependent kinase inhibitor 2A; p16 and microtubule-associated protein 1A/1B-light chain 3; LC3, respectively), (ii) the size of the adrenal cortex and medulla (morphometric analysis), (iii) G-protein coupled estrogen receptor (GPER) and estrogen-related receptors (ERRs; type α, β, and Y) distribution and expression (qRT-PCR and immunohistochemical analyses) and (iv) serum testosterone and estradiol levels (immunoassay ELISA). This study revealed pre-rut characteristics of testis structure with the presence of both senescence and autophagy-positive cells and higher involvement of senescence, especially in spermatogenic cells (P < 0.05). In the adrenal cortex, groups of cells exhibiting shrinkage were observed. The presence of ERRs in cells of the seminiferous epithelium and interstitial Leydig cells and GPER presence distinctly in Leydig cells was revealed. In adrenals, these receptors were localized in groups of normal-looking cells and those with shrinkage. Morphometric analysis showed differences in cortex width which was smaller (P < 0.05) than that of the medulla. A weak immunohistochemical signal was observed for ERRβ when compared to ERRα and ERRγ. The mRNA expression level of ERRα and ERRγ was lower (P < 0.001 and P < 0.05, respectively) while ERRβ was higher (P < 0.001) in adrenals when compared to testes. mRNA GPER expression was similar in both glands. In the pre-rut season, the testosterone level was 4.89 ng/ml while the estradiol level was 0.234 ng/ml. We postulate that: (i) senescence and autophagy may be involved in both reinitiation of testis function and/or induction of abnormal processes, (ii) hormonal modulation of testis inactivity may affect adrenal cortex causing cell shrinkage, (iii) ERRs and GPER localization in spermatogenic cells and interstitial cells, as well as cortex cells, may maintain and control the morpho-functional status of both glands, and (iv) androgens and estrogens (via ERRs and GPER) drive cellular processes in the testis and adrenal pre-rut physiology.
Collapse
Affiliation(s)
- Piotr Pawlicki
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, Redzina 1c, 30-248, Krakow, Poland
| | - Anna Koziorowska
- College of Natural Sciences, Institute of Material Engineering, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland; College of Natural Sciences, Institute of Biology and Biotechnology, University of Rzeszów, Pigonia 1, 35-310, Rzeszów, Poland
| | - Marek Koziorowski
- College of Natural Sciences, Institute of Material Engineering, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland; Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310, Rzeszów, Poland
| | - Bernadetta Pawlicka
- Department of Genetics and Evolutionism, Institute of Zoology and Biomedical Research, Gronostajowa 9, 30-387, Jagiellonian University in Krakow, Krakow, Poland
| | - Michal Duliban
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Gronostajowa 9, 30-387, Jagiellonian University in Krakow, Krakow, Poland
| | - Jarosław Wieczorek
- Department of Clinical Diagnostics and Internal Animal Diseases, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Bartosz J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Laura Pardyak
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, Redzina 1c, 30-248, Krakow, Poland
| | - Anna J Korzekwa
- Department of Biodiversity Protection, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Malgorzata Kotula-Balak
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Kraków, 30-059, Krakow, Poland.
| |
Collapse
|
6
|
Wang L, Huang C, Li L, Pang Q, Wang C, Fan R. In vitro and in silico assessment of GPER-dependent neurocytotoxicity of emerging bisphenols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160762. [PMID: 36502987 DOI: 10.1016/j.scitotenv.2022.160762] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/27/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
To rapidly assess the toxicity of bisphenols (BPs) via the activation of G protein-coupled estrogen receptor (GPER), eight BPs action on GPER were evaluated by molecular docking and molecular dynamics (MD) simulation and then confirmed with IMR-32 cells. The target BPs significantly promoted the production of reactive oxygen species (ROS), reduced cell viability, activated the expression of apoptosis-related proteins and increased the apoptosis rate of IMR-32 cells. Intracellular Ca2+ level increased significantly after the treatments with bisphenol A (BPA), bisphenol E (BPE), bisphenol C (BPC) and bisphenol AP (BPAP), suggesting the activation of GPER. Moreover, the stable binding conformations between GPER and BPA, BPE, BPC and BPAP and their dynamic changes of GPER-BPs via MD simulation also suggest that these BPs may activate GPER. The interaction between bisphenol G/bisphenol P/bisphenol PH and GPER are weak, which is consistent with their low GPER activity in vitro. Notably, after the pretreatment of GPER antagonist, Ca2+ accumulation and ROS production induced by BPA, BPE, BPC and BPAP in IMR-32 cells were attenuated. Overall, MD simulation and in vitro results mutually verified the activation of GPER by BPs, and MD simulation can rapidly evaluate the neurocytotoxicity of BPs.
Collapse
Affiliation(s)
- Lei Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Chengmeng Huang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Leizi Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qihua Pang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Congcong Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
7
|
Wnuk A, Przepiórska K, Pietrzak BA, Kajta M. Emerging Evidence on Membrane Estrogen Receptors as Novel Therapeutic Targets for Central Nervous System Pathologies. Int J Mol Sci 2023; 24:ijms24044043. [PMID: 36835454 PMCID: PMC9968034 DOI: 10.3390/ijms24044043] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Nuclear- and membrane-initiated estrogen signaling cooperate to orchestrate the pleiotropic effects of estrogens. Classical estrogen receptors (ERs) act transcriptionally and govern the vast majority of hormonal effects, whereas membrane ERs (mERs) enable acute modulation of estrogenic signaling and have recently been shown to exert strong neuroprotective capacity without the negative side effects associated with nuclear ER activity. In recent years, GPER1 was the most extensively characterized mER. Despite triggering neuroprotective effects, cognitive improvements, and vascular protective effects and maintaining metabolic homeostasis, GPER1 has become the subject of controversy, particularly due to its participation in tumorigenesis. This is why interest has recently turned toward non-GPER-dependent mERs, namely, mERα and mERβ. According to available data, non-GPER-dependent mERs elicit protective effects against brain damage, synaptic plasticity impairment, memory and cognitive dysfunctions, metabolic imbalance, and vascular insufficiency. We postulate that these properties are emerging platforms for designing new therapeutics that may be used in the treatment of stroke and neurodegenerative diseases. Since mERs have the ability to interfere with noncoding RNAs and to regulate the translational status of brain tissue by affecting histones, non-GPER-dependent mERs appear to be attractive targets for modern pharmacotherapy for nervous system diseases.
Collapse
Affiliation(s)
- Agnieszka Wnuk
- Correspondence: (A.W.); (M.K.); Tel.: +48-12-662-3339 (A.W.); +48-12-662-3235 (M.K.); Fax: +48-12-637-4500 (A.W. & M.K.)
| | | | | | - Małgorzata Kajta
- Correspondence: (A.W.); (M.K.); Tel.: +48-12-662-3339 (A.W.); +48-12-662-3235 (M.K.); Fax: +48-12-637-4500 (A.W. & M.K.)
| |
Collapse
|
8
|
Yang X, Jiang H, Ning J, Zhang S, Cai Y, Wang L, Yang J, Xu G, Chen W, Wang J. Inhibition of GPR30 sensitized gefitinib to NSCLC cells via regulation of epithelial-mesenchymal transition. Int J Immunopathol Pharmacol 2023; 37:3946320231210737. [PMID: 37890097 PMCID: PMC10612443 DOI: 10.1177/03946320231210737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Introduction: G-protein coupled receptor 30 (GPR30) is associated with cell metastasis and drug resistance in many different cancer cells. The present study aimed to reveal the sensitivity of GPR30 to gefitinib in non-small cell lung cancer (NSCLC) cells.Methods: Cell viability and proliferation were detected using cell counting kit 8 and 5-ethynyl-2'-deoxyuridine assays, respectively. Western blotting and quantitative real-time reverse transcription PCR were used to detect GPR30 or epithelial-mesenchyme transition (EMT)-related mRNA and protein expression.Results: The results showed that GPR30 expression is associated with gefitinib sensitivity. G15, as a GPR30 antagonist, reduced GPR30 expression. We chose the maximum concentration of G15 with minimal cytotoxicity to detect cell viability after combined treatment with gefitinib in NSCLC cells, which indicated that G15 could increase sensitivity to gefitinib. However, the effect of G15 on gefitinib sensitivity disappeared after treatment with a small interfering RNA targeting GPR30. Further research showed that G15 or GPR30 siRNA treatment could upregulate E-cadherin and downregulate vimentin levels.Conclusion: Taken together, these data suggested that G15 could enhance NSCLC sensitivity to gefitinib by inhibition of GPR30 and EMT.
Collapse
Affiliation(s)
- Xiaomin Yang
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hongyan Jiang
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiang Ning
- Department of Pharmacy, Zi Yang Street Community Health Service Center, Hangzhou, Zhejiang, China
| | - Shufen Zhang
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Ying Cai
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Liang Wang
- The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Jinsong Yang
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guodong Xu
- Department of Cardiothoracic Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Jianfei Wang
- Department of Pharmacy, Tongxiang Third People's Hospital, Tongxiang, Zhejiang, China
| |
Collapse
|
9
|
Yu M, Xu L, Lei B, Sun S, Yang Y. Tetrachlorobisphenol A and bisphenol AF induced cell migration by activating PI3K/Akt signaling pathway via G protein-coupled estrogen receptor 1 in SK-BR-3 cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:126-135. [PMID: 36190352 DOI: 10.1002/tox.23669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/24/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Different subtypes of breast cancer express positively G protein-coupled estrogen receptor 1 (GPER1). Our previous studies found that tetrachlorobisphenol A (TCBPA) and bisphenol AF (BPAF) significantly promoted SK-BR-3 cell proliferation by activating GPER1-regulated signals. The present study further investigated the effects of TCBPA and BPAF on the migration of SK-BR-3 cells and examined the role of phosphatidylinositol 3-kinase-protein kinase B (PI3K/Akt) and its downstream signal targets in this process. We found that low-concentration BPAF and TCBPA markedly accelerated the migration of SK-BR-3 cells and elevated the mRNA levels of target genes associated with PI3K/Akt and mitogen-activated protein kinase (MAPK) signals. TCBPA- and BPAF-induced upregulation of target genes was significantly reduced by GPER1 inhibitor G15, the PI3K/Akt inhibitor wortmannin (WM), and the epidermal growth factor receptor (EGFR) inhibitor ZD1839 (ZD). G15 and WM also decreased cell migration induced by TCBPA and BPAF. The findings revealed that TCBPA and BPAF promoted SK-BR-3 cell migration ability by activating PI3K/Akt signaling pathway via GPER1-EGFR.
Collapse
Affiliation(s)
- Mengjie Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Lanbing Xu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Bingli Lei
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Su Sun
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Yingxin Yang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| |
Collapse
|
10
|
Casarini L, Simoni M. Membrane estrogen receptor and follicle-stimulating hormone receptor. VITAMINS AND HORMONES 2022; 123:555-585. [PMID: 37717998 DOI: 10.1016/bs.vh.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Follicle-stimulating hormone (FSH) and estrogens are fundamental to support reproductive functions. Beside the well-known FSH membrane receptor (FSHR), a G protein-coupled estrogen receptor (GPER) has been found, over the last two decades, in several tissues. It may trigger rapid, non-genomic responses of estradiol, activating proliferative and survival stimuli. The two receptors were co-characterized in the ovary, where they modulate different intracellular signaling cascades, according to the expression level and developmental stage of ovarian follicles. Moreover, they may physically interact to form heteromeric assemblies, suggestive of a new mode of action to regulate FSH-specific signals, and likely determining the follicular fate between atresia and dominance. The knowledge of FSH and estrogen membrane receptors provides a new, deeper level of comprehension of human reproduction.
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Dept. Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Manuela Simoni
- Unit of Endocrinology, Dept. Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
11
|
Li X, He S, Xiao H, He TT, Zhang JD, Luo ZR, Ma JZ, Yin YL, Luo L, Cao LY. Neonicotinoid insecticides promote breast cancer progression via G protein-coupled estrogen receptor: In vivo, in vitro and in silico studies. ENVIRONMENT INTERNATIONAL 2022; 170:107568. [PMID: 36240625 DOI: 10.1016/j.envint.2022.107568] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/02/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Neonicotinoid insecticides (NIs) have been widely detected in environmental media and human body with concentrations reaching hundreds of nanomolar to micromolar levels. However, the information about their human health toxicology and mechanism is deficient. Previous studies have implied that NIs might exert estrogenic disruption and promote breast cancer progression, but the molecular mechanism is unclear, especially the molecular initiating event. G protein-coupled estrogen receptor (GPER), as a candidate therapeutic target, plays vital roles in the development of breast cancer. This work aimed to reveal the potential mechanism through GPER pathway. Firstly, we screened the activities of seven most common NIs on GPER signal pathway by calcium mobilization assay. Clothianidin, acetamiprid (ACE), and dinotefuran activated GPER most potently and ACE displayed the highest agonistic activity with the lowest observed effective concentration (LOEC) of 1 μM. The molecular docking and dynamics simulation showed favored interaction trend between the NIs and GPER. The three NIs with GPER activity induced 4T1 breast cancer cells migration and ACE showed the highest potency with LOEC of 100 nM. ACE also induced 4T1 cells proliferation at high concentration of 50 μM and up-regulated GPER expression in a dose-dependent manner. We speculated that both the induction effects of ACE on 4T1 cells proliferation and migration might be owing to the activation and up-regulation of GPER. By using 4T1-Luc cells injected orthotopic tumor model, we found that ACE also promoted in-situ breast cancer growth and lung metastasis in normal mouse dependent on GPER. However, ACE only promoted in-situ breast cancer growth through GPER but not lung metastasis in ovariectomized mice, implying that the ACE-induced lung metastasis should be related to endogenous estrogen from ovary. Overall, we demonstrated that NIs promoted breast cancer progression via GPER pathway at human related exposure levels and their female health risks need urgent concerns.
Collapse
Affiliation(s)
- Xin Li
- College of Resources and Environment, Hunan Agricultural University, 1, Nongda Road, Furong District, Changsha 410128, China
| | - Sen He
- College of Resources and Environment, Hunan Agricultural University, 1, Nongda Road, Furong District, Changsha 410128, China
| | - Han Xiao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Ting-Ting He
- College of Resources and Environment, Hunan Agricultural University, 1, Nongda Road, Furong District, Changsha 410128, China
| | - Jia-Da Zhang
- College of Resources and Environment, Hunan Agricultural University, 1, Nongda Road, Furong District, Changsha 410128, China
| | - Zi-Rui Luo
- College of Resources and Environment, Hunan Agricultural University, 1, Nongda Road, Furong District, Changsha 410128, China
| | - Jie-Zhi Ma
- Department of Obstetrics and Gynecology, Xiangya Third Hospital, Central South University, Changsha 410013, China
| | - Yu-Long Yin
- College of Resources and Environment, Hunan Agricultural University, 1, Nongda Road, Furong District, Changsha 410128, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, 1, Nongda Road, Furong District, Changsha 410128, China
| | - Lin-Ying Cao
- College of Resources and Environment, Hunan Agricultural University, 1, Nongda Road, Furong District, Changsha 410128, China.
| |
Collapse
|
12
|
Pesonen M, Vähäkangas K. Contribution of common plastic-related endocrine disruptors to epithelial-mesenchymal transition (EMT) and tumor progression. CHEMOSPHERE 2022; 309:136560. [PMID: 36152835 DOI: 10.1016/j.chemosphere.2022.136560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/15/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Many chemicals, including many endocrine disruptors (EDCs) are known to leach out from various plastic consumer products and waste, and are widespread in the environment. EDCs are a large group of contaminants that can interfere with hormonal metabolism or function. In addition, there are in the literature implications of contribution by EDCs in tumor progression, the last stage of carcinogenesis driven by cells with a metastatic phenotype. The process of epithelial cells losing their apical-basal polarity and cell-to-cell contacts, and acquiring migration and invasive properties typical of mesenchymal cells is called epithelial-mesenchymal transition (EMT). It is essential for tumor progression. In human cells, plastic-related EDCs, (phthalates, bisphenol A, and the alkylphenols: nonylphenol and octylphenol) reduce epithelial E-cadherin, and increase mesenchymal N-cadherin and extracellular matrix metalloproteinases. These changes are hallmarks of EMT. In xenograft mouse studies, EDCs increase migration of cells and metastatic growth in distant tissues. Their contribution to EMT and tumor progression, the topic of this review, is important from public health perspective, because of the ubiquitous exposure to these EDCs. In this mini-review we also discuss molecular mechanisms associated with EDC-induced EMT and tumor progression.
Collapse
Affiliation(s)
- Maija Pesonen
- Faculty of Health Sciences, School of Pharmacy/Toxicology, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland.
| | - Kirsi Vähäkangas
- Faculty of Health Sciences, School of Pharmacy/Toxicology, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
13
|
Lv X, Wu Y, Chen G, Yu L, Zhou Y, Yu Y, Lan S, Hu J. The strategy for estrogen receptor mediated-risk assessment in environmental water: A combination of species sensitivity distributions and in silico approaches. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119763. [PMID: 35841995 DOI: 10.1016/j.envpol.2022.119763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/03/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Risk assessment for molecular toxicity endpoints of environmental matrices may be a pressing issue. Here, we combined chemical analysis with species sensitivity distributions (SSD) and in silico docking for multi-species estrogen receptor mediated-risk assessment in water from Dongjiang River, China. The water contains high levels of phenolic endocrine-disrupting chemicals (PEDCs) and phthalic acid esters (PAEs). The concentration of ∑4PEDCs and ∑6PAEs ranged from 2202 to 3404 ng/L and 834-4368 ng/L, with an average of 3241 and 2215 ng/L, respectively. The SSD approach showed that 4-NP, BPA, E2 of PEDCs, and DBP, DOP, and DEHP could severely threaten the aquatic ecosystems, while most other target compounds posed low-to-medium risks. Moreover, binding affinities from molecular docking among PEDCs, PAEs, and estrogen receptors (ERα, Erβ, and GPER) were applied as toxic equivalency factors. Estrogen receptor-mediated risk suggested that PEDCs were the main contributors, containing 53.37-69.79% of total risk. They potentially pose more severe estrogen-receptor toxicity to zebrafish, turtles, and frogs. ERβ was the major contributor, followed by ERα and GPER. This study is the first attempt to assess the estrogen receptor-mediated risk of river water in multiple aquatic organisms. The in silico simulation approach could complement toxic effect evaluations in molecular endpoints.
Collapse
Affiliation(s)
- Xiaomei Lv
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, China
| | - Yicong Wu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, China
| | - Guilian Chen
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, China
| | - Lili Yu
- Shenzhen People's Hospital, The 2nd Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Yi Zhou
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, China
| | - Yingxin Yu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Shanhong Lan
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, China
| | - Junjie Hu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, China.
| |
Collapse
|
14
|
Xu KJ, Loganathan N, Belsham DD. Bisphenol S induces Agrp expression through GPER1 activation and alters transcription factor expression in immortalized hypothalamic neurons: A mechanism distinct from BPA-induced upregulation. Mol Cell Endocrinol 2022; 552:111630. [PMID: 35569583 DOI: 10.1016/j.mce.2022.111630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/09/2022] [Accepted: 03/25/2022] [Indexed: 11/22/2022]
Abstract
The increasing prevalence of obesity around the world has brought concern upon ubiquitously present obesogenic environmental compounds, such as bisphenol A (BPA). Increasingly tightened regulations on the industrial use of BPA have prompted a transition to a structurally similar alternative, bisphenol S (BPS). BPS displays endocrine-disrupting behaviours similar to those of BPA and increases body weight, food intake and the hypothalamic expression of Agrp in vivo. However, the mechanisms behind this deleterious effect are unclear. Here, we report an increase in the mRNA level of Agrp at 4 h following BPS treatment in immortalized murine hypothalamic cell lines of embryonic and adult origin (mHypoE-41, mHypoA-59). BPS-induced changes in the expression of transcription factors and estrogen receptors that occurred concurrently with Agrp upregulation demonstrated similarities to BPA-induced changes, however, there were also changes that were unique to BPS. Specifically, while Chop, Atf3, Atf4, Atf6, Klf4, and Creb1 were upregulated and Gper1 was downregulated by both BPA and BPS, Esr1 mRNA levels were upregulated and Foxo1 and Stat3 levels remained unchanged by BPS. Finally, inhibition of GPER1 by G15 prevented BPS-mediated Agrp upregulation, independent of Atf3 and Klf4 upregulation. Overall, our results demonstrate the ability of BPS to increase Agrp mRNA expression through GPER1 signaling and to alter transcription factor expression in hypothalamic neurons, further elucidating the endocrine-disrupting potential of this alternative industrial chemical.
Collapse
Affiliation(s)
- Katherine J Xu
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Neruja Loganathan
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
15
|
Drouault M, Delalande C, Bouraïma-Lelong H, Seguin V, Garon D, Hanoux V. Deoxynivalenol enhances estrogen receptor alpha-induced signaling by ligand-independent transactivation. Food Chem Toxicol 2022; 165:113127. [DOI: 10.1016/j.fct.2022.113127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/08/2022] [Accepted: 05/06/2022] [Indexed: 11/26/2022]
|
16
|
Combarnous Y, Nguyen TMD. Membrane Hormone Receptors and Their Signaling Pathways as Targets for Endocrine Disruptors. J Xenobiot 2022; 12:64-73. [PMID: 35466213 PMCID: PMC9036253 DOI: 10.3390/jox12020007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
The endocrine disruptors are mostly small organic molecules developed for numerous and very diverse industrial applications. They essentially act through nuclear receptors with small and hydrophobic endogenous ligands. Nevertheless, potential adverse effects through membrane hormone receptors cannot be ruled out, and have indeed been observed. The present paper reviews how orthosteric and allosteric binding sites of the different families of membrane receptors can be targets for man-made hydrophobic molecules (components of plastics, paints, flame retardants, herbicides, pesticides, etc.). We also review potential target proteins for such small hydrophobic molecules downstream of membrane receptors at the level of their intracellular signaling pathways. From the currently available information, although endocrine disruptors primarily affect nuclear receptors’ signaling, membrane receptors for hormones, cytokines, neuro-mediators, and growth factors can be affected as well and deserve attention.
Collapse
Affiliation(s)
- Yves Combarnous
- INRAe, CNRS, Tours University Joint Unit, Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France;
- Correspondence: ; Tel.: +33-(0)24-7427-650
| | - Thi Mong Diep Nguyen
- INRAe, CNRS, Tours University Joint Unit, Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France;
- Faculty of Natural Sciences, Quy Nhon University, Quy Nhon 820000, Vietnam
| |
Collapse
|
17
|
Takesono A, Kudoh T, Tyler CR. Application of Transgenic Zebrafish Models for Studying the Effects of Estrogenic Endocrine Disrupting Chemicals on Embryonic Brain Development. Front Pharmacol 2022; 13:718072. [PMID: 35264948 PMCID: PMC8900011 DOI: 10.3389/fphar.2022.718072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Endocrine disrupting chemicals (EDCs) are environmental pollutants that mimic hormones and/or disrupt their function. Estrogenic EDCs (eEDCs) interfere with endogenous estrogen signalling pathway(s) and laboratory animal and human epidemiological studies have provided evidence for a causal link between exposure to them during embryonic/early life and neurological impairments. However, our understanding of the molecular and cellular mechanism(s) underlying eEDCs exposure effects on brain development, tissue architecture and function and behaviour are limited. Transgenic (TG) zebrafish models offer new approach methodologies (NAMs) to help identify the modes of action (MoAs) of EDCs and their associated impacts on tissue development and function. Estrogen biosensor TG zebrafish models have been applied to study eEDC interactions and resulting transcriptional activation (via a fluorescent reporter expression) across the entire body of the developing zebrafish embryo, including in real time. These estrogen biosensor TG zebrafish models are starting to deepen our understanding of the spatiotemporal actions of eEDCs and their resulting impacts on neurological development, brain function and behaviour. In this review, we first investigate the links between early life exposure to eEDCs and neurodevelopmental alterations in model organisms (rodents and zebrafish) and humans. We then present examples of the application of estrogen biosensor and other TG zebrafish models for elucidating the mechanism(s) underlying neurodevelopmental toxicities of eEDCs. In particular we illustrate the utility of combining estrogen biosensor zebrafish models with other TG zebrafish models for understanding the effects of eEDCs on the brain, spanning cellular processes, brain circuitry, neurophysiology and behaviour. Finally, we discuss the future prospects of TG zebrafish models as experimental models for studying more complex scenarios for exposure to contaminant mixtures on neurological development and function.
Collapse
Affiliation(s)
- Aya Takesono
- *Correspondence: Aya Takesono, ; Charles R. Tyler,
| | | | | |
Collapse
|
18
|
Galuszka A, Pawlicki P, Pardyak L, Chmurska-Gąsowska M, Pietsch-Fulbiszewska A, Duliban M, Turek W, Dubniewicz K, Ramisz G, Kotula-Balak M. Abundance of estrogen receptors involved in non-canonical signaling in the dog testis. Anim Reprod Sci 2021; 235:106888. [PMID: 34839117 DOI: 10.1016/j.anireprosci.2021.106888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/28/2022]
Abstract
With estrogen regulation of the reproductive system, G-protein-coupled membrane estrogen receptor (GPER) and estrogen-related receptors (ERRs) are implicated. Non-canonical receptors can bind estrogens such as environmental and pharmacological chemicals. These compounds induce rapid non-genomic pathways or receptor interaction including autoactivation. Testicular tumors occur in dogs more frequently than in other domestic animals. Also, in recent decades there were increased occurrences of various tumor types in dogs. Using qRT-PCR, Western blot and immunohistochemistry procedures in the present study, there was determination of abundance pattern of GPER, ERRα, β and γ in dog tests when there were intratubular germ cell tumors. There was quantitation of estradiol, cyclic GMP and calcium ions (Ca2+). There were changes (P < 0.01; P < 0.001) in GPER, ERRα and β in both mRNA transcript and protein abundances including less (P < 0.001) co-abundance of ERRγ mRNA transcript and protein. Receptors were mainly located in Leydig cells with there being receptor delocalization to the cell cytoplasm or occasionally detections in the seminiferous tubule epithelia, especially of testicular tumor tissues. There were also greater estradiol (P < 0.05) and lesser cGMP and Ca2+ concentrations in testicular tumor tissues indicating there was a disrupted sex steroid milieu and tumor cell metastasis. Results from the present study provide further evidence that ERRγ has marked actions in testicular germ cell tumor initiation and development and in further structural-functional disruptions of dog testis. Concomitantly, abundance pattern of GPER and ERRs, relative to concentrations of cGMP and Ca2+, may be an additional indicator of intratubular germ cell tumors in dogs.
Collapse
Affiliation(s)
- Anna Galuszka
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Piotr Pawlicki
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, Redzina 1c, 30-248 Krakow, Poland
| | - Laura Pardyak
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, Redzina 1c, 30-248 Krakow, Poland
| | - Maria Chmurska-Gąsowska
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Agnieszka Pietsch-Fulbiszewska
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Michal Duliban
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland
| | - Wiktor Turek
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Klaudia Dubniewicz
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Grzegorz Ramisz
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Malgorzata Kotula-Balak
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland.
| |
Collapse
|
19
|
Molecular Characterization of Membrane Steroid Receptors in Hormone-Sensitive Cancers. Cells 2021; 10:cells10112999. [PMID: 34831222 PMCID: PMC8616056 DOI: 10.3390/cells10112999] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer is one of the most common causes of death worldwide, and its development is a result of the complex interaction of genetic factors, environmental cues, and aging. Hormone-sensitive cancers depend on the action of one or more hormones for their development and progression. Sex steroids and corticosteroids can regulate different physiological functions, including metabolism, growth, and proliferation, through their interaction with specific nuclear receptors, that can transcriptionally regulate target genes via their genomic actions. Therefore, interference with hormones’ activities, e.g., deregulation of their production and downstream pathways or the exposition to exogenous hormone-active substances such as endocrine-disrupting chemicals (EDCs), can affect the regulation of their correlated pathways and trigger the neoplastic transformation. Although nuclear receptors account for most hormone-related biologic effects and their slow genomic responses are well-studied, less-known membrane receptors are emerging for their ability to mediate steroid hormones effects through the activation of rapid non-genomic responses also involved in the development of hormone-sensitive cancers. This review aims to collect pre-clinical and clinical data on these extranuclear receptors not only to draw attention to their emerging role in cancer development and progression but also to highlight their dual role as tumor microenvironment players and potential candidate drug targets.
Collapse
|
20
|
Buoso E, Kenda M, Masi M, Linciano P, Galbiati V, Racchi M, Dolenc MS, Corsini E. Effects of Bisphenols on RACK1 Expression and Their Immunological Implications in THP-1 Cells. Front Pharmacol 2021; 12:743991. [PMID: 34621174 PMCID: PMC8490885 DOI: 10.3389/fphar.2021.743991] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/08/2021] [Indexed: 01/11/2023] Open
Abstract
Receptor for activated C kinase 1 (RACK1) has an important role in immune activation, and is regulated through a balance between glucocorticoid and androgen levels. We have previously demonstrated that RACK1 expression can serve as a marker for evaluation of immunotoxic profiles of hormone-active substances, such as endocrine-disrupting chemicals (EDCs). In this study, we investigated the effects of three bisphenols (BPA, BPAF, BPS) on RACK1 expression and on the innate immune responses in the THP-1 human promyelocytic cell line, a validated model for this investigation. BPA and BPAF reduced RACK1 promoter transcriptional activity, mRNA expression, and protein levels. However, BPS had the opposite effect. As expected, these results on RACK1 were paralleled by lipopolysaccharide (LPS)-induced interleukin-8 (IL-8) and tumor necrosis factor-α (TNFα) production. Since BPA and BPAF induced RACK1 expression in the presence of glucocorticoid receptor (GR) antagonist mifepristone, a role of G-protein-coupled estrogen receptor (GPER) has been considered due to their known estrogenic profile. Therefore, additional molecular effects of BPA and BPAF were unmasked after treatment with different inhibitors of well-known pivotal players of GPER-mediated signaling. BPA exerted its effects on RACK1 via NF-κB, as shown using the NF-κB inhibitor BAY11-7085 and NF-κB-specific luciferase reporter assay. Conversely, BPAF induced RACK1 up-regulation via androgen receptor (AR) activation, as confirmed by treatment with AR antagonist flutamide. Indeed, a biased agonism profile for BPA and BPAF for GPER was suggested based on their different binding modes revealed by our molecular docking. Altogether, our data suggest that RACK1 could represent an important target of EDCs and serves as a screening tool for their immunotoxic potential. Furthermore, RACK1 can be exploited to unmask multiple molecular interactions of hormone-active substances to better dissect out their mechanisms of action.
Collapse
Affiliation(s)
- Erica Buoso
- Università Degli Studi di Pavia, Dipartimento di Scienze del Farmaco, Pavia, Italy
| | - Maša Kenda
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Mirco Masi
- Università Degli Studi di Pavia, Dipartimento di Scienze del Farmaco, Pavia, Italy.,Scuola Universitaria Superiore IUSS, Pavia, Italy
| | - Pasquale Linciano
- Università Degli Studi di Pavia, Dipartimento di Scienze del Farmaco, Pavia, Italy
| | - Valentina Galbiati
- Università Degli Studi di Milano, Laboratory of Toxicology, Dipartimento di Scienze Politiche ed Ambientali, Milan, Italy
| | - Marco Racchi
- Università Degli Studi di Pavia, Dipartimento di Scienze del Farmaco, Pavia, Italy
| | | | - Emanuela Corsini
- Università Degli Studi di Milano, Laboratory of Toxicology, Dipartimento di Scienze Politiche ed Ambientali, Milan, Italy
| |
Collapse
|
21
|
Lei B, Xu L, Tang Q, Sun S, Yu M, Huang Y. Molecular mechanism study of BPAF-induced proliferation of ERα-negative SKBR-3 human breast cancer cells in vitro/in vivo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145814. [PMID: 33621883 DOI: 10.1016/j.scitotenv.2021.145814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol AF (BPAF) is a known estrogen disruptor of the ERα pathway. The aim of the present study was to characterize the proliferation effects of BPAF on ERα-negative SKBR-3 breast cancer cells with mechanistic insights. BPAF at low concentrations (0.001-0.1 μM) significantly induced the proliferation of SKBR-3 cells. In a SKBR-3 tumor model in BALB/c nude mice, BPAF at 100 mg/kg body weight/day also significantly promoted the growth of SKBR-3 tumors. Low concentrations of BPAF markedly increased the expression of G protein-coupled estrogen receptor (GPER1), c-Myc, CyclinD1 and c-Fos proteins, and enhanced phosphorylation of extracellular signal-regulated kinase (Erk) and protein kinase B (Akt) in SKBR-3 cells. Further, BPAF significantly upregulated mRNA levels of related target genes in SKBR-3 cells and SKBR-3 tumor tissues in nude mice. The GPER1 inhibitor G15 and phosphatidylinositide 3-kinase (PI3K) inhibitor wortmannin (WM) inhibited phosphorylation of Erk and Akt. The specific signal inhibitors also markedly decreased the expression of target genes and weakened the cell proliferation induced by low-concentration BPAF. The findings showed that GPER1 could independently regulate BPAF-induced proliferation of SKBR-3 cells without requiring ERα. These results provide mechanistic insights into the effects of BPAF regarding ERα-negative human breast cancer development.
Collapse
Affiliation(s)
- Bingli Lei
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| | - Lanbing Xu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Qianqian Tang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Su Sun
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Mengjie Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yaoyao Huang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
22
|
Lisco G, Giagulli VA, Iovino M, Guastamacchia E, Pergola GD, Triggiani V. Endocrine-Disrupting Chemicals: Introduction to the Theme. Endocr Metab Immune Disord Drug Targets 2021; 22:677-685. [PMID: 33847259 DOI: 10.2174/1871530321666210413124425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/03/2021] [Accepted: 02/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Endocrine-disrupting chemicals (EDCs) are natural or synthetic compounds deriving from different human activities and are widely spread into the environment, contributing to indoor and outdoor pollution. EDCs may be conveyed by food and water consumption and skin, airways, placental, and breastfeeding. Upon entering the circulation, they can interfere with endocrine system homeostasis by several mechanisms. AIM In this narrative review, the authors overviewed the leading mechanisms by which EDCs interact and disrupt the endocrine system, leading to possible human health concerns. RESULTS The leading mechanisms of EDCs-related toxicity have been illustrated in in vitro studies and animal models and may be summarized as follows: receptor agonism and antagonism; modulation of hormone receptor expression; interference with signal transduction in hormone-responsive cells; epigenetic modifications in hormone-producing or hormone-responsive cells; interference with hormone synthesis; interference with hormone transport across cell membranes; interference with hormone metabolism or clearance; interference with the destiny of hormone-producing or hormone-responsive cells. DISCUSSION Despite these well-defined mechanisms, some limitations do not allow for conclusive assumptions. Indeed, epidemiological and ecological studies are currently lacking and usually refer to a specific cluster of patients (occupational exposure). Methodological aspects could further complicate the issue since these studies could require a long time to provide useful information. The lack of a real unexposed group in environmental conditions, possible interference of EDCs mixture on biological results, and unpredictable dose-response curves for some EDCs should also be considered significant limitations. CONCLUSION Given these limitations, specific observational and long-term studies are needed to identify at-risk populations for adequate treatment of exposed patients and effective prevention plans against excessive exposure to EDCs.
Collapse
Affiliation(s)
- Giuseppe Lisco
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari. Italy
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari. Italy
| | - Michele Iovino
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari. Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari. Italy
| | - Giovanni De Pergola
- Clinical Nutrition Unit, Medical Oncology, Department of Internal Medicine and Clinical Oncology, University of Bari, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari. Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari. Italy
| |
Collapse
|