1
|
Gupta S, Afzal M, Agrawal N, Almalki WH, Rana M, Gangola S, Chinni SV, Kumar K B, Ali H, Singh SK, Jha SK, Gupta G. Harnessing the FOXO-SIRT1 axis: insights into cellular stress, metabolism, and aging. Biogerontology 2025; 26:65. [PMID: 40011269 DOI: 10.1007/s10522-025-10207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/15/2025] [Indexed: 02/28/2025]
Abstract
Aging and metabolic disorders share intricate molecular pathways, with the Forkhead box O (FOXO)- Sirtuin 1 (SIRT1) axis emerging as a pivotal regulator of cellular stress adaptation, metabolic homeostasis, and longevity. This axis integrates nutrient signaling with oxidative stress defence, modulating glucose and lipid metabolism, mitochondrial function, and autophagy to maintain cellular stability. FOXO transcription factors, regulated by SIRT1 deacetylation, enhance antioxidant defence mechanisms, activating genes such as superoxide dismutase (SOD) and catalase, thereby counteracting oxidative stress and metabolic dysregulation. Recent evidence highlights the dynamic role of reactive oxygen species (ROS) as secondary messengers in redox signaling, influencing FOXO-SIRT1 activity in metabolic adaptation. Additionally, key redox-sensitive regulators such as nuclear factor erythroid 2-related factor 2 (Nrf2) and Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) interact with this pathway, orchestrating mitochondrial biogenesis and adaptive stress responses. Pharmacological interventions, including alpha-lipoic acid (ALA), resveratrol, curcumin and NAD+ precursors, exhibit therapeutic potential by enhancing insulin sensitivity, reducing oxidative burden, and restoring metabolic balance. This review synthesizes current advancements in FOXO-SIRT1 regulation, its emerging role in redox homeostasis, and its therapeutic relevance, offering insights into future strategies for combating metabolic dysfunction and aging-related diseases.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Pharmacology, Chameli Devi Institute of Pharmacy, Khandwa Road, Village Umrikheda, Near Tollbooth, Indore, Madhya Pradesh, 452020, India
| | - Muhammad Afzal
- Pharmacy Program, Department of Pharmaceutical Sciences, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | - Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Saurabh Gangola
- Department of Microbiology, Graphic Era Deemed to be University, Dehradun, 248002, India
| | - Suresh V Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, 42610, Jenjarom, Selangor, Malaysia
| | - Benod Kumar K
- Department of General Surgery, Consultant Head and Neck Surgical Oncology, Dr.D.Y.Patil Medical College, Hospital and Research Centre, Pimpri, Pune, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, New Delhi, India
- Centre for Himalayan Studies, University of Delhi, Delhi, 110007, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
2
|
Yokoyama I. Biological effects of Maillard reaction products: Use of Caenorhabditis elegans as an in vivo model. Biosci Biotechnol Biochem 2025; 89:332-337. [PMID: 39562281 DOI: 10.1093/bbb/zbae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Maillard reaction products (MRPs), including melanoidins and volatile odor compounds, are associated with distinct flavors and colors during food processing and cooking. Although MRPs have health benefits, such as antioxidant activity, they are also associated with pathophysiological effects. Several in vivo models, especially rodents, are used to demonstrate physiological effects. Caenorhabditis elegans (C. elegans), an easy-to-rear free-living nematode with a short lifespan, has been used as a promising in vivo organism for the evaluation of functional properties in food components, including antiaging, antioxidant, and antiobesity properties. Furthermore, the high olfactory discrimination of this organism allows for the basic elucidation of behavior and regulation of aging. In this minireview, I discuss the various attributes of C. elegans that make it a promising in vivo model for studying the biological effects of MRPs.
Collapse
Affiliation(s)
- Issei Yokoyama
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| |
Collapse
|
3
|
Breusegem SY, Houghton J, Romero-Bueno R, Fragoso-Luna A, Kentistou KA, Ong KK, Janssen AFJ, Bright NA, Riedel CG, Perry JRB, Askjaer P, Larrieu D. A multiparametric anti-aging CRISPR screen uncovers a role for BAF in protein synthesis regulation. Nat Commun 2025; 16:1681. [PMID: 39956852 PMCID: PMC11830792 DOI: 10.1038/s41467-025-56916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/28/2025] [Indexed: 02/18/2025] Open
Abstract
Progeria syndromes are very rare, incurable premature aging conditions recapitulating most aging features. Here, we report a whole genome, multiparametric CRISPR screen, identifying 43 genes that can rescue multiple cellular phenotypes associated with progeria. We implement the screen in fibroblasts from Néstor-Guillermo Progeria Syndrome male patients, carrying a homozygous A12T mutation in BAF. The hits are enriched for genes involved in protein synthesis, protein and RNA transport and osteoclast formation and are validated in a whole-organism Caenorhabditis elegans model. We further confirm that BAF A12T can disrupt protein synthesis rate and fidelity, which could contribute to premature aging in patients. This work highlights the power of multiparametric genome-wide suppressor screens to identify genes enhancing cellular resilience in premature aging and provide insights into the biology underlying progeria-associated cellular dysfunction.
Collapse
Affiliation(s)
- Sophia Y Breusegem
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Road, Cambridge, UK
- Sophia Y. Breusegem: MRC toxicology Unit, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Jack Houghton
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Road, Cambridge, UK
- Jack Houghton: Imperial College London, Exhibition Road, South Kensington, London, UK
| | - Raquel Romero-Bueno
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Adrián Fragoso-Luna
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Katherine A Kentistou
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Ken K Ong
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Anne F J Janssen
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Road, Cambridge, UK
- Anne F. J. Janssen: Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Nicholas A Bright
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Road, Cambridge, UK
| | | | - John R B Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Peter Askjaer
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Delphine Larrieu
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Road, Cambridge, UK.
- Delphine Larrieu: Altos Labs, Cambridge Institute of Science, Cambridge, UK.
| |
Collapse
|
4
|
Borchers C, Osburn K, Roh HC, Aoki ST. In vivo pulse-chase in C. elegans reveals intestinal histone turnover changes upon starvation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638128. [PMID: 39990428 PMCID: PMC11844474 DOI: 10.1101/2025.02.13.638128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The ability to study protein dynamics and function in the authentic context of a multicellular organism is paramount to better understand biological phenomena in animal health and disease. Pulse-chase of self-labeling fusion protein tags provide the opportunity to label proteins of interest and track those proteins over time. There are currently several challenges associated with performing in vivo protein pulse-chase in animals, such as cost, reproducibility, and accurate detection methods. The C. elegans model organism has attributes that alleviate many of these challenges. This work tests the feasibility of applying the Halo modified enzyme (HaloTag) for in vivo protein pulse-chase in C. elegans. HaloTag intestinal histone reporters were created in the worm and used to demonstrate that reporter protein could be efficiently pulse-labeled by soaking animals in ligand. Labeled protein stability could be monitored over time by fluorescent confocal microscopy. Further investigation revealed reporter protein stability was dependent on the animal's nutritional state. Chromatin Immunoprecipitation and sequencing (ChIP-seq) of the reporters showed incorporation in chromatin with little change hours into starvation, implying a lack of chromatin regulation at the time point tested. Collectively, this work presents a straightforward method to label and track proteins of interest in C. elegans that can address a multitude of biological questions surrounding protein stability and dynamics in this animal model.
Collapse
Affiliation(s)
- Christopher Borchers
- Department of Biochemistry and Molecular Biology; School of Medicine; Indiana University Indianapolis; Indianapolis, IN, 46202
- Indiana BioMedical Gateway (IBMG) Program; School of Medicine; Indiana University Indianapolis; Indianapolis, IN, 46202
| | - Kara Osburn
- Department of Biochemistry and Molecular Biology; School of Medicine; Indiana University Indianapolis; Indianapolis, IN, 46202
| | - Hyun Cheol Roh
- Department of Biochemistry and Molecular Biology; School of Medicine; Indiana University Indianapolis; Indianapolis, IN, 46202
| | - Scott T. Aoki
- Department of Biochemistry and Molecular Biology; School of Medicine; Indiana University Indianapolis; Indianapolis, IN, 46202
| |
Collapse
|
5
|
Cai Y, Wang Y, He Y, Ren K, Liu Z, Zhao L, Wei T. Utilizing alternative in vivo animal models for food safety and toxicity: A focus on thermal process contaminant acrylamide. Food Chem 2025; 465:142135. [PMID: 39579401 DOI: 10.1016/j.foodchem.2024.142135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/07/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
Rodent models have traditionally been used to assess the toxicity of food chemicals, but this approach is costly, time-consuming, and raises ethical concerns. Alternatively, non-mammalian models such as Drosophila melanogaster, Danio rerio, and Caenorhabditis elegans have been shown to be suitable for studying the toxicity of food hazards. Their advantages include low cost, short life cycles, adaptability to high-throughput screening, and adherence to the 3R principles of replacement, reduction, and refinement. These models have been extensively studied in the context of acrylamide toxicity, a common food contaminant. This article comprehensively reviews the biological characteristics of non-mammalian models, recent advances and challenges in acrylamide toxicity research using these models, and explores the potential of natural plant compounds in ameliorating acrylamide toxicity. The review aims to guide research using non-mammalian models for food safety assessment.
Collapse
Affiliation(s)
- Yang Cai
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Yuhan Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Yanfei He
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Kefeng Ren
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Zongzhong Liu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Lingli Zhao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
| | - Tian Wei
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
| |
Collapse
|
6
|
Yu T, Xu X, Li Y, Zhang N, Zhang N, Wang X. Improved particle filter algorithm combined with culture algorithm for collision Caenorhabditis elegans tracking. Sci Rep 2025; 15:3270. [PMID: 39863688 PMCID: PMC11762314 DOI: 10.1038/s41598-025-87970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/23/2025] [Indexed: 01/27/2025] Open
Abstract
In order to address the issue of tracking errors of collision Caenorhabditis elegans, this research proposes an improved particle filter tracking method integrated with cultural algorithm. The particle filter algorithm is enhanced through the integration of the sine cosine algorithm, thereby facilitating uninterrupted tracking of the target C. elegans. Furthermore, the cultural algorithm is employed to facilitate recognition of the target C. elegans following a collision. In addition, this method integrates the concepts of down-sample and marking to reduce the average processing time of the image. Ultimately, the experiment was conducted on two strains of C. elegans of six ages. The experimental results demonstrate that the proposed method can accurately identify the target worm in the post-collision stage. The proposed method has the potential to be utilized in the field of worm tracking, offering a novel method into the acquisition of collision C. elegans behavior.
Collapse
Affiliation(s)
- Taoyuan Yu
- School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun, Jilin, China
| | - Xiping Xu
- School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun, Jilin, China.
| | - Yuanpeng Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Ning Zhang
- School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun, Jilin, China
| | - Naiyu Zhang
- School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun, Jilin, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| |
Collapse
|
7
|
Ding F, Zhao Y. Astaxanthin promotes the longevity of Caenorhabditis elegans via modulation of the intracellular redox status and PHA-4-mediated autophagy. Food Funct 2025; 16:617-627. [PMID: 39711123 DOI: 10.1039/d4fo03490b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Astaxanthin is a xanthophyll carotenoid which has been associated with a number of health-promoting effects, including anti-aging; however, the underlying mechanisms are not fully understood. In the present study, it was found that astaxanthin promoted the longevity of wild-type (N2) Caenorhabditis elegans (C. elegans). The lifespan-extending effect of astaxanthin was associated with a significant decrease of lipofuscin accumulation and the reduction of the age-related decline in spontaneous motility. Meanwhile, astaxanthin enhanced the oxidative stress resistance in C. elegans, preventing the elevation of the reactive oxygen species and alleviating juglone-induced toxicity. Further studies revealed that astaxanthin treatment induced the expression of the skn-1 gene; besides, the lifespan-extending effect of astaxanthin relied on SKN-1. Additionally, the expression of age-1, a PI3K homolog gene, and let-363, a target of the rapamycin (TOR) homolog gene, was decreased, while the expression of PHA-4, a transcription factor negatively regulated by TOR signaling, was increased by astaxanthin treatment. PHA-4 has been demonstrated to regulate the expression of genes playing critical roles in the autophagy-lysosome pathway (ALP). Consistently, several key genes related to ALP, including lgg-1, atg-5, vps-34, ncr-1 and asm-1 were upregulated in C. elegans treated with astaxanthin. Knockdown of pha-4 expression by siRNA prevented the elevation of the above ALP-related genes, while diminishing the lifespan-extension effect of astaxanthin. Overall, these results indicated that astaxanthin prolonged the lifespan of C. elegans via modulating the intracellular redox status and promoting PHA-4-mediated autophagy.
Collapse
Affiliation(s)
- Feng Ding
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
- Department of Bioengineering, Harbin Institute of Technology, Weihai, Shandong, 264209, China
| | - Yan Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
- Department of Bioengineering, Harbin Institute of Technology, Weihai, Shandong, 264209, China
| |
Collapse
|
8
|
Obafemi OT, Ayeleso AO, Adewale OB, Unuofin J, Ekundayo BE, Ntwasa M, Lebelo SL. Animal models in biomedical research: Relevance of Drosophila melanogaster. Heliyon 2025; 11:e41605. [PMID: 39850441 PMCID: PMC11754520 DOI: 10.1016/j.heliyon.2024.e41605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025] Open
Abstract
Animal models have become veritable tools in gaining insight into the pathogenesis and progression of several human diseases. These models could range in complexity from Caenorhabditis elegans to non-human primates. With the aid of these animal models, a lot of new knowledge has been gained about several diseases which otherwise would not have been possible. Most times, the utilization of these animal models is predicated on the level of homology they share with humans, which suggests that outcomes of studies using them could be extrapolated to humans. However, this has not always been the case. Drosophila melanogaster is becoming increasingly relevant as preferred model for understanding the biochemical basis of several human diseases. Apart from its relatively short lifespan, high fecundity and ease of rearing, the simplicity of its genome and lower redundancy of its genes when compared with vertebrate models, as well as availability of genetic tool kit for easy manipulation of its genome, have all contributed to its emergence as a valid animal model of human diseases. This review aimed at highlighting the contributions of selected animal models in biomedical research with a focus on the relevance of Drosophila melanogaster in understanding the biochemical basis of some diseases that have continued to plague mankind.
Collapse
Affiliation(s)
- Olabisi Tajudeen Obafemi
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 1710, Johannesburg, South Africa
| | - Ademola Olabode Ayeleso
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 1710, Johannesburg, South Africa
- Biochemistry Programme, College of Agriculture, Engineering and Science, Bowen University, PMB 284, Iwo, Osun State, Nigeria
| | | | - Jeremiah Unuofin
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 1710, Johannesburg, South Africa
| | | | - Monde Ntwasa
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 1710, Johannesburg, South Africa
| | - Sogolo Lucky Lebelo
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 1710, Johannesburg, South Africa
| |
Collapse
|
9
|
Tortajada-Pérez J, Carranza ADV, Trujillo-del Río C, Collado-Pérez M, Millán JM, García-García G, Vázquez-Manrique RP. Lipid Oxidation at the Crossroads: Oxidative Stress and Neurodegeneration Explored in Caenorhabditis elegans. Antioxidants (Basel) 2025; 14:78. [PMID: 39857412 PMCID: PMC11762898 DOI: 10.3390/antiox14010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Lipid metabolism plays a critical role in maintaining cellular integrity, especially within the nervous system, where lipids support neuronal structure, function, and synaptic plasticity. However, this essential metabolic pathway is highly susceptible to oxidative stress, which can lead to lipid peroxidation, a damaging process induced by reactive oxygen species. Lipid peroxidation generates by-products that disrupt many cellular functions, with a strong impact on proteostasis. In this review, we explore the role of lipid oxidation in protein folding and its associated pathological implications, with a particular focus on findings in neurodegeneration from Caenorhabditis elegans studies, an animal model that remains underutilized. Additionally, we highlight the effectiveness of different methodologies applied in this nematode to deepen our understanding of this intricate process. In the nervous system of any animal, including mammals and invertebrates, lipid oxidation can disturb the delicate balance of cellular homeostasis, leading to oxidative stress, the build-up of toxic by-products, and protein misfolding, key factors in neurodegenerative diseases. This disruption contributes to the pathogenesis of neurodegenerative disorders such as Alzheimer's, Parkinson's, or Huntington's disease. The findings from Caenorhabditis elegans studies offer valuable insights into these complex processes and highlight potential avenues for developing targeted therapies to mitigate neurodegenerative disease progression.
Collapse
Affiliation(s)
- Julia Tortajada-Pérez
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (J.T.-P.); (C.T.-d.R.); (M.C.-P.); (J.M.M.); (G.G.-G.)
- Joint Unit for Rare Diseases IIS La Fe—CIPF, 46026 Valencia, Spain
| | - Andrea del Valle Carranza
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (J.T.-P.); (C.T.-d.R.); (M.C.-P.); (J.M.M.); (G.G.-G.)
- Joint Unit for Rare Diseases IIS La Fe—CIPF, 46026 Valencia, Spain
| | - Cristina Trujillo-del Río
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (J.T.-P.); (C.T.-d.R.); (M.C.-P.); (J.M.M.); (G.G.-G.)
- Joint Unit for Rare Diseases IIS La Fe—CIPF, 46026 Valencia, Spain
| | - Mar Collado-Pérez
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (J.T.-P.); (C.T.-d.R.); (M.C.-P.); (J.M.M.); (G.G.-G.)
- Joint Unit for Rare Diseases IIS La Fe—CIPF, 46026 Valencia, Spain
| | - José María Millán
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (J.T.-P.); (C.T.-d.R.); (M.C.-P.); (J.M.M.); (G.G.-G.)
- Joint Unit for Rare Diseases IIS La Fe—CIPF, 46026 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Gema García-García
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (J.T.-P.); (C.T.-d.R.); (M.C.-P.); (J.M.M.); (G.G.-G.)
- Joint Unit for Rare Diseases IIS La Fe—CIPF, 46026 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rafael Pascual Vázquez-Manrique
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (J.T.-P.); (C.T.-d.R.); (M.C.-P.); (J.M.M.); (G.G.-G.)
- Joint Unit for Rare Diseases IIS La Fe—CIPF, 46026 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
10
|
Fukushima Y, Kagami A, Sonoda H, Shimokawa K, Suico MA, Kai H, Shuto T. Dietary state and impact of DMSO on Caenorhabditis elegans aging: Insights from healthspan analysis. Biochem Biophys Res Commun 2025; 742:151156. [PMID: 39657354 DOI: 10.1016/j.bbrc.2024.151156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/07/2024] [Indexed: 12/12/2024]
Abstract
Caenorhabditis elegans (C. elegans) is a robust model organism in cell biology, physiology, pharmacology, and toxicology. It is widely recognized for its short lifespan (about 30 days), rapid life cycle, and genetic similarities to mammals. Known for their utility in lifespan research, compounds identified in C. elegans studies have shown lifespan-extending effects in higher organisms, making them invaluable for aging research. Recent work has highlighted the importance of food source conditions, specifically whether C. elegans is fed live or dead Escherichia coli (E. coli) OP50, and solvents like dimethyl sulfoxide (DMSO) in evaluating compound efficacy and organismal health. In this study, we employed C. elegans health lifespan auto-monitoring system (C-HAS), an automated imaging technology capable of objectively analyzing lifespan and healthspan by tracking movement patterns in real-time. Our results reveal that C. elegans fed dead bacteria, specifically heat-killed (HK) and freeze-dried (Fd) E. coli, display extended lifespan and healthspan compared to those fed live bacteria, reducing the proportion of short-lived, unhealthy nematodes. Moreover, 0.1 % DMSO treatment, a concentration previously reported as not affecting nematode longevity, notably shortens both lifespan and healthspan in C. elegans under dead bacterial conditions, with similar negative effects observed across different dead bacteria types. These findings highlight the importance of considering bacterial food state and DMSO presence when conducting lifespan and healthspan studies in C. elegans. This work provides foundational insights into how specific experimental conditions impact the health quality of C. elegans, advancing our understanding of environmental influences on organismal aging.
Collapse
Affiliation(s)
- Yutaro Fukushima
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Health Life Science S-HIGO Professional Fellowship Program, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 862-8555, Japan
| | - Asuka Kagami
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Program for Fostering Innovators to Lead a Better Co-being Society, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 862-8555, Japan
| | - Hirotaka Sonoda
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Kotomi Shimokawa
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
11
|
Okselni T, Septama AW, Juliadmi D, Dewi RT, Angelina M, Yuliani T, Saragih GS, Saputri A. Quercetin as a therapeutic agent for skin problems: a systematic review and meta-analysis on antioxidant effects, oxidative stress, inflammation, wound healing, hyperpigmentation, aging, and skin cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03722-3. [PMID: 39738831 DOI: 10.1007/s00210-024-03722-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025]
Abstract
Quercetin is abundant in plants and has notable pharmacological properties for skin health. This review aims to comprehensively evaluate the effects of quercetin on skin-related issues, adhering to the PRISMA guidelines and analyzing studies from ScienceDirect, Web of Science, Scopus, and PubMed. Of the 1,398 studies identified, 65 studies met the criteria for meta-analysis. The meta-analysis indicated that quercetin had powerful antioxidant properties, protecting against oxidative stress by significantly lowering levels of MDA (Z-score, 2.51), ROS (Z-score, 3.81), and LPO (Z-score, 4.46), and enhancing enzymes of GSH (Z-score, 5.46), CAT (Z-score, 5.20), and SOD (Z-score, 4.37). Quercetin acted as an anti-inflammatory by significantly suppressing protein regulators such as NF-κβ, AP-1, and MAPKs (ERK and JNK), cytokines of TNFα, IL-6, IL-1β, IL-8, and MCP-1, and enzymes of COX-2, iNOS, and MPO, while upregulating the cytokine IL-10. Additionally, quercetin significantly suppressed IL-4 (Z-score, 3.16) and IFNγ (Z-score, 3.76) cytokines involved in chronic inflammation of atopic dermatitis. Quercetin also supported wound healing by significantly decreasing inflammatory cells (Z-score, 5.60) and enhancing fibroblast distribution (Z-score, 5.98), epithelialization (Z-score, 8.57), collagen production (Z-score, 4.20), and angiogenesis factors of MVD (Z-score, 5.66) and VEGF (Z-score, 3.86). Furthermore, quercetin significantly inhibited tyrosinase activity (Z-score, 1.95), resulting in a significantly reduced melanin content (Z-score, 2.56). A significant reduction in DNA damage (Z-score, 3.27), melanoma cell viability (Z-score, 2.97), and tumor formation was also observed to ensure the promising activity of quercetin for skin issues. This review highlights quercetin's potential as a multifaceted agent in skin care and treatment.
Collapse
Affiliation(s)
- Tia Okselni
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia.
- BRIN-Kawasan BJ Habibie, Serpong, Banten, Indonesia.
| | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| | - Dian Juliadmi
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Cibinong, 16911, Indonesia
| | - Rizna Triana Dewi
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| | - Marissa Angelina
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| | - Tri Yuliani
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| | - Grace Serepina Saragih
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| | - Ariyanti Saputri
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| |
Collapse
|
12
|
Schiksnis E, Nicastro I, Pasquinelli A. Full-length direct RNA sequencing reveals extensive remodeling of RNA expression, processing and modification in aging Caenorhabditis elegans. Nucleic Acids Res 2024; 52:13896-13913. [PMID: 39558169 PMCID: PMC11662692 DOI: 10.1093/nar/gkae1064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/12/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024] Open
Abstract
Organismal aging is marked by decline in cellular function and anatomy, ultimately resulting in death. To inform our understanding of the mechanisms underlying this degeneration, we performed standard RNA sequencing (RNA-seq) and Oxford Nanopore Technologies direct RNA-seq over an adult time course in Caenorhabditis elegans. Long reads allowed for identification of hundreds of novel isoforms and age-associated differential isoform accumulation, resulting from alternative splicing and terminal exon choice. Genome-wide analysis reveals a decline in RNA processing fidelity. Finally, we identify thousands of inosine and hundreds of pseudouridine edits genome-wide. In this first map of pseudouridine modifications for C. elegans, we find that they largely reside in coding sequences and that the number of genes with this modification increases with age. Collectively, this analysis discovers transcriptomic signatures associated with age and is a valuable resource to understand the many processes that dictate altered gene expression patterns and post-transcriptional regulation in aging.
Collapse
Affiliation(s)
- Erin C Schiksnis
- Department ofMolecular Biology, School of Biological Sciences, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | - Ian A Nicastro
- Department ofMolecular Biology, School of Biological Sciences, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | - Amy E Pasquinelli
- Department ofMolecular Biology, School of Biological Sciences, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093-0349, USA
| |
Collapse
|
13
|
Martínez-López AL, Reboredo C, González-Navarro CJ, Solas M, Puerta E, Javier Ramírez M, Vizmanos JL, Irache JM. Zein nanoparticles extend lifespan in C. elegans and SAMP8 mice. Int J Pharm 2024; 666:124798. [PMID: 39366528 DOI: 10.1016/j.ijpharm.2024.124798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Empty zein nanoparticles (NP) have been shown to lower glycemia in rats by stimulating the secretion of endogenous GLP-1. This study evaluated the effect of these nanoparticles on the lifespan of two animal models: C. elegans fed with a glucose-rich diet and the senescence accelerated mouse-prone 8 (SAMP8 mice). In C. elegans, NP increased the mean lifespan of worms by 7 days (from 17.1 for control to 24.5 days). This observation was in line with the observed significant reductions of glucose and fat contents, lipofuscin accumulation, and ROS expression. Furthermore, NP supplementation led to an upregulation of the expression of daf-16 and skn-1 genes. DAF-16 (orthologue of the FOXO family) and SKN-1 (orthologue of mammalian Nrf/CNC proteins) are implicated in activating detoxification mechanisms against oxidative damage. In SAMP8, oral administration of NP also extended the mean lifespan of mice (by 28 % compared to controls), corroborating the protective effect of these nanoparticles.
Collapse
Affiliation(s)
- Ana L Martínez-López
- Department of Pharmaceutical Sciences, University of Navarra, 31008, Pamplona, Spain
| | - Cristian Reboredo
- Department of Pharmaceutical Sciences, University of Navarra, 31008, Pamplona, Spain
| | | | - Maite Solas
- Department of Pharmaceutical Sciences, University of Navarra, 31008, Pamplona, Spain; Institute for Health Research (IdiSNA), Pamplona 31080, Spain
| | - Elena Puerta
- Department of Pharmaceutical Sciences, University of Navarra, 31008, Pamplona, Spain; Institute for Health Research (IdiSNA), Pamplona 31080, Spain
| | - María Javier Ramírez
- Department of Pharmaceutical Sciences, University of Navarra, 31008, Pamplona, Spain; Institute for Health Research (IdiSNA), Pamplona 31080, Spain
| | - José L Vizmanos
- Department of Biochemistry & Genetics, University of Navarra, 31008, Pamplona, Spain
| | - Juan M Irache
- Department of Pharmaceutical Sciences, University of Navarra, 31008, Pamplona, Spain; Institute for Health Research (IdiSNA), Pamplona 31080, Spain.
| |
Collapse
|
14
|
Liang Q, Zhao G. The Effect of glna Loss on the Physiological and Pathological Phenotype of Parkinson's Disease C. elegans. J Clin Lab Anal 2024; 38:e25129. [PMID: 39600125 DOI: 10.1002/jcla.25129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/15/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a common neurodegenerative disease. Glutamate(Glu) excitotoxicity is one of the main pathogenesis of PD. Glutaminase (Gls) is an enzyme primarily responsible for catalyzing the hydrolysis and deamidation of glutamine (Gln) to produce Glu and ammonia. Inhibiting the function of Gls may have a beneficial effect on the treatment of PD by reducing the production of Glu. The homologous gene of Gls in C. elegans is glna. AIMS To explore the effects of glna loss on physiological and pathological phenotype of PD C. elegans, and to provide new ideas and references for the research and treatment of PD. MATERIALS & METHODS We used PD C. elegans UA44 and QIN27 to detect development and lifespan, behavior, degeneration of dopaminergic neurons, lipid levels, ROS levels, expression levels of common amino acids. RESULTS Glna loss had no significant impact on the development and lifespan of PD C. elegans. Glna loss saved part of the decline of motor function, including the head thrash frequency and the body bend frequency, and the difference was significant. There was a trend of improvement in some motor behaviors, such as the ethanol avoidance experiment, while no improvement was observed in other experiments. Glna loss slowed down the degeneration of dopaminergic neurons. Glna loss increased the lipid levels and ROS levels in C. elegans. Glna loss decreased Glu content and increased Gln content in C. elegans. DISCUSSION The effect of glna loss on PD C. elegans may be the result of multiple factors, such as the tissue types of α-syn expression in C. elegans, the PD C. elegans model used, the adverse effects of glna loss on other systems, and the changes in ROS levels in C. elegans. The specific mechanisms causing these phenomena are still unclear and need to be further explored. CONCLUSION Glna loss has a certain protective effect on dopaminergic neurons in PD C. elegans, while the improvement effect on movement and behavior is limited.
Collapse
Affiliation(s)
- Qifei Liang
- Tongji University School of Medicine, Shanghai, China
- Nanjing Drum Tower Hospital, Nanjing, China
| | | |
Collapse
|
15
|
Wang Z, Arnold JC. Cannabinoids and healthy ageing: the potential for extending healthspan and lifespan in preclinical models with an emphasis on Caenorhabditis elegans. GeroScience 2024; 46:5643-5661. [PMID: 38696056 PMCID: PMC11493940 DOI: 10.1007/s11357-024-01162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/11/2024] [Indexed: 10/23/2024] Open
Abstract
There is a significant global upsurge in the number and proportion of older persons in the population. With this comes an increasing prevalence of age-related conditions which pose a major challenge to healthcare systems. The development of anti-ageing treatments may help meet this challenge by targeting the ageing process which is a common denominator to many health problems. Cannabis-like compounds (cannabinoids) are reported to improve quality of life and general well-being in human trials, and there is increasing preclinical research highlighting that they have anti-ageing activity. Moreover, preclinical evidence suggests that endogenous cannabinoids regulate ageing processes. Here, we review the anti-ageing effects of the cannabinoids in various model systems, including the most extensively studied nematode model, Caenorhabditis elegans. These studies highlight that the cannabinoids lengthen healthspan and lifespan, with emerging evidence that they may also hinder the development of cellular senescence. The non-psychoactive cannabinoid cannabidiol (CBD) shows particular promise, with mechanistic studies demonstrating it may work through autophagy induction and activation of antioxidative systems. Furthermore, CBD improves healthspan parameters such as diminishing age-related behavioural dysfunction in models of both healthy and accelerated ageing. Translation into mammalian systems provides an important next step. Moreover, looking beyond CBD, future studies could probe the multitude of other cannabis constituents for their anti-ageing activity.
Collapse
Affiliation(s)
- Zhizhen Wang
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Jonathon C Arnold
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
16
|
Kim HJ, Mun JS, Oh SH, Kim JH. Antioxidant and Antiaging Activity of Houttuynia cordata Thunb. Ethyl Acetate Fraction in Caenorhabditis elegans. Nutrients 2024; 16:4168. [PMID: 39683560 DOI: 10.3390/nu16234168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES In aerobic organisms, such as humans, oxygen radicals are inevitably produced. To counteract oxidation, the body generates antioxidant substances that suppress free radicals. However, levels of reactive oxygen species (ROS) increase due to aging and lifestyle factors, leading to exposure to various diseases. While synthetic antioxidants offer advantages like high stability, low cost, and availability, their safety remains controversial. This study aimed to investigate the antioxidant and antiaging activities of Houttuynia cordata (HC), which is rich in flavonoids and has excellent antioxidant properties, using Caenorhabditis elegans as a model. METHODS Extraction and fractionation of HC were performed to evaluate antioxidant activities (DPPH, ABTS, superoxide radical scavenging activity) and antiaging effects (lifespan). The ethyl acetate fraction (EAF) with the highest activity was selected for further investigation. RESULTS The EAF of HC exhibited high levels of polyphenols and flavonoids, presenting the highest DPPH, ABTS, and superoxide radical scavenging activities. This fraction increased the activity of antioxidant enzymes in nematodes in a concentration-dependent manner and provided resistance to oxidative stress, reducing ROS accumulation. Additionally, the fraction enhanced the lifespan of nematodes, improved resistance to heat stress, increased survival rates, and decreased the accumulation of aging pigments (lipofuscin). The expression of daf-2, daf-16, and sir-2.1, proteins directly involved in nematode aging, was confirmed. Liquid chromatography/tandem mass spectrometry identified quercitrin in the HC extract, which may contribute to its antioxidant and antiaging effects. CONCLUSIONS The EAF of HC demonstrates significant potential for influencing antioxidant and antiaging, as evidenced by functional investigations using C. elegans.
Collapse
Affiliation(s)
- Hyeon-Ji Kim
- Department of Food and Biotechnology, Woosuk University, Wanju 55338, Jeonbuk-do, Republic of Korea
| | - Ji-Su Mun
- Department of Food and Biotechnology, Woosuk University, Wanju 55338, Jeonbuk-do, Republic of Korea
- BIOMAYSIN, Jeongeup 56212, Jeonbuk-do, Republic of Korea
| | - Suk-Heung Oh
- Department of Food and Biotechnology, Woosuk University, Wanju 55338, Jeonbuk-do, Republic of Korea
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju 55338, Jeonbuk-do, Republic of Korea
| | - Jun-Hyung Kim
- Department of Food and Biotechnology, Woosuk University, Wanju 55338, Jeonbuk-do, Republic of Korea
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju 55338, Jeonbuk-do, Republic of Korea
| |
Collapse
|
17
|
Anwar A, Ramis De Ayreflor Reyes S, John AA, Breiling E, O'Connor AM, Reis S, Shim JH, Shah AA, Srinivasan J, Farny NG. Nucleic acid aptamers protect against lead (Pb(II)) toxicity. N Biotechnol 2024; 83:36-45. [PMID: 38925526 DOI: 10.1016/j.nbt.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/12/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Lead (Pb(II)) is a pervasive heavy metal toxin with many well-established negative effects on human health. Lead toxicity arises from cumulative, repeated environmental exposures. Thus, prophylactic strategies to protect against the bioaccumulation of lead could reduce lead-associated human pathologies. Here we show that DNA and RNA aptamers protect C. elegans from toxic phenotypes caused by lead. Reproductive toxicity, as measured by brood size assays, is prevented by co-feeding of animals with DNA or RNA aptamers. Similarly, lead-induced neurotoxicity, measured by behavioral assays, are also normalized by aptamer feeding. Further, cultured human HEK293 and primary murine osteoblasts are protected from lead toxicity by transfection with DNA aptamers. The osteogenic development, which is decreased by lead exposure, is maintained by prior transfection of lead-binding DNA aptamers. Aptamers may be an effective strategy for the protection of human health in the face of increasing environmental toxicants.
Collapse
Affiliation(s)
- Afreen Anwar
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA; Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, J&K, India
| | | | - Aijaz Ahmad John
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Erik Breiling
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Abigail M O'Connor
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Stephanie Reis
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Jae-Hyuck Shim
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ali Asghar Shah
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, J&K, India
| | - Jagan Srinivasan
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA; Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA; Program in Neuroscience, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Natalie G Farny
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA; Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA; Program in Neuroscience, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA.
| |
Collapse
|
18
|
Mansfield L, Ramponi V, Gupta K, Stevenson T, Mathew AB, Barinda AJ, Herbstein F, Morsli S. Emerging insights in senescence: pathways from preclinical models to therapeutic innovations. NPJ AGING 2024; 10:53. [PMID: 39578455 PMCID: PMC11584693 DOI: 10.1038/s41514-024-00181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
Senescence is a crucial hallmark of ageing and a significant contributor to the pathology of age-related disorders. As committee members of the young International Cell Senescence Association (yICSA), we aim to synthesise recent advancements in the identification, characterisation, and therapeutic targeting of senescence for clinical translation. We explore novel molecular techniques that have enhanced our understanding of senescent cell heterogeneity and their roles in tissue regeneration and pathology. Additionally, we delve into in vivo models of senescence, both non-mammalian and mammalian, to highlight tools available for advancing the contextual understanding of in vivo senescence. Furthermore, we discuss innovative diagnostic tools and senotherapeutic approaches, emphasising their potential for clinical application. Future directions of senescence research are explored, underscoring the need for precise, context-specific senescence classification and the integration of advanced technologies such as machine learning, long-read sequencing, and multifunctional senoprobes and senolytics. The dual role of senescence in promoting tissue homoeostasis and contributing to chronic diseases highlights the complexity of targeting these cells for improved clinical outcomes.
Collapse
Affiliation(s)
- Luke Mansfield
- The Bateson Centre, School of Medicine and Population Health, The University of Sheffield, Western Bank, Sheffield, UK
| | - Valentina Ramponi
- Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Kavya Gupta
- Department of Cellular and Molecular Biology and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Abraham Binoy Mathew
- Department of Developmental Biology and Genetics, Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Agian Jeffilano Barinda
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Metabolic, Cardiovascular, and Aging Cluster, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Florencia Herbstein
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| | - Samir Morsli
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum Q6A, Stockholm, Sweden.
| |
Collapse
|
19
|
Zhang Y, Samuelson AV. Antiviral defense in aged Caenorhabditis elegans declines due to loss of DRH-1/RIG-I deSUMOylation via ULP-4/SENP7. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623310. [PMID: 39605404 PMCID: PMC11601531 DOI: 10.1101/2024.11.12.623310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Innate host defense mechanisms require posttranslational modifications (PTM) to protect against viral infection. Age-associated immunosenescence results in increased pathogenesis and mortality in the elderly, but the contribution of altered PTM regulation to immunosenescence is unknown. SUMOylation is a rapid and reversible post-translational modification that has been implicated in age-associated disease and plays conflicting roles in viral replication and antiviral defenses in mammals. We have discovered in Caenorhabditis elegans that induction of antiviral defense is regulated through SUMOylation of DRH-1, the ortholog of the DEAD/H-box helicase and cytosolic pattern recognition receptor RIG-I, and that this regulation breaks down during aging. We find the SUMO isopeptidase ULP-4 is essential for deSUMOylation of DRH-1 and activation of the intracellular pathogen response (IPR) after exposure to Orsay virus (OV), a natural enteric C. elegans pathogen. ULP-4 promotes stabilization of DRH-1, which translocates to the mitochondria to activate the IPR in young animals exposed to virus. Loss of either drh-1 or ulp-4 compromises antiviral defense resulting in a failure to clear the virus and signs of intestinal pathogenesis. During aging, expression of ulp-4 decreases, which results in increased proteosomal degradation of DRH-1 and loss of the IPR. Mutating the DRH-1 SUMOylated lysines resulted in the constitutive activation of the IPR in young animals and partially rescued the age-associated lost inducibility of the IPR. Our work establishes that aging results in dysregulated SUMOylation and loss of DRH-1, which compromises antiviral defense and creates a physiological shift to favor chronic pathological infection in older animals.
Collapse
|
20
|
Braendle C, Paaby A. Life history in Caenorhabditis elegans: from molecular genetics to evolutionary ecology. Genetics 2024; 228:iyae151. [PMID: 39422376 PMCID: PMC11538407 DOI: 10.1093/genetics/iyae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Life history is defined by traits that reflect key components of fitness, especially those relating to reproduction and survival. Research in life history seeks to unravel the relationships among these traits and understand how life history strategies evolve to maximize fitness. As such, life history research integrates the study of the genetic and developmental mechanisms underlying trait determination with the evolutionary and ecological context of Darwinian fitness. As a leading model organism for molecular and developmental genetics, Caenorhabditis elegans is unmatched in the characterization of life history-related processes, including developmental timing and plasticity, reproductive behaviors, sex determination, stress tolerance, and aging. Building on recent studies of natural populations and ecology, the combination of C. elegans' historical research strengths with new insights into trait variation now positions it as a uniquely valuable model for life history research. In this review, we summarize the contributions of C. elegans and related species to life history and its evolution. We begin by reviewing the key characteristics of C. elegans life history, with an emphasis on its distinctive reproductive strategies and notable life cycle plasticity. Next, we explore intraspecific variation in life history traits and its underlying genetic architecture. Finally, we provide an overview of how C. elegans has guided research on major life history transitions both within the genus Caenorhabditis and across the broader phylum Nematoda. While C. elegans is relatively new to life history research, significant progress has been made by leveraging its distinctive biological traits, establishing it as a highly cross-disciplinary system for life history studies.
Collapse
Affiliation(s)
- Christian Braendle
- Université Côte d’Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Annalise Paaby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
21
|
Rautela U, Sarkar GC, Chaudhary A, Chatterjee D, Rosh M, Arimbasseri AG, Mukhopadhyay A. A non-canonical role of somatic Cyclin D/CYD-1 in oogenesis and in maintenance of reproductive fidelity, dependent on the FOXO/DAF-16 activation state. PLoS Genet 2024; 20:e1011453. [PMID: 39546504 PMCID: PMC11602045 DOI: 10.1371/journal.pgen.1011453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/27/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024] Open
Abstract
For the optimal survival of a species, an organism coordinates its reproductive decisions with the nutrient availability of its niche. Thus, nutrient-sensing pathways like insulin-IGF-1 signaling (IIS) play an important role in modulating cell division, oogenesis, and reproductive aging. Lowering of the IIS leads to the activation of the downstream FOXO transcription factor (TF) DAF-16 in Caenorhabditis elegans which promotes oocyte quality and delays reproductive aging. However, less is known about how the IIS axis responds to changes in cell cycle proteins, particularly in the somatic tissues. Here, we show a new aspect of the regulation of the germline by this nutrient-sensing axis. First, we show that the canonical G1-S cyclin, Cyclin D/CYD-1, regulates reproductive fidelity from the uterine tissue of wild-type worms. Then, we show that knocking down cyd-1 in the uterine tissue of an IIS receptor mutant arrests oogenesis at the pachytene stage of meiosis-1 in a DAF-16-dependent manner. We observe activated DAF-16-dependent deterioration of the somatic gonadal tissues like the sheath cells, and transcriptional de-regulation of the sperm-to-oocyte switch genes which may be the underlying reason for the absence of oogenesis. Deleting DAF-16 releases the arrest and leads to restoration of the somatic gonad but poor-quality oocytes are produced. Together, our study reveals the unrecognized cell non-autonomous interaction of Cyclin D/CYD-1 and FOXO/DAF-16 in the regulation of oogenesis and reproductive fidelity.
Collapse
Affiliation(s)
- Umanshi Rautela
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Gautam Chandra Sarkar
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ayushi Chaudhary
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Debalina Chatterjee
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Mohtashim Rosh
- Molecular Genetics Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Arnab Mukhopadhyay
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
22
|
Lei M, Wu J, Tan Y, Shi Y, Yang W, Tu H, Tan W. β-asarone protects against age-related motor decline via activation of SKN-1/Nrf2 and subsequent induction of GST-4. Pharmacol Res 2024; 209:107450. [PMID: 39366648 DOI: 10.1016/j.phrs.2024.107450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Decelerating motor decline is important for promoting healthy aging in the elderly population. Acorus tatarinowii Schott is a traditional Chinese medicine that contains β-asarone as a pharmacologically active constituent. We found that β-asarone can decelerate motor decline in various age groups of Caenorhabditis elegans, while concurrently prolonging their lifespan and modulating synaptic transmission. To understand the mechanisms of its efficacy in motor improvement, we investigated and discovered that mitochondrial fragmentation, a marker for aging, is delayed after β-asarone treatment. Moreover, their efficacy is blocked by dysfunctional mitochondria. Corresponding to their role in regulating mitochondrial homeostasis, we found that SKN-1/Nrf2 and GST-4 are critical in the β-asarone treatment, and they appear to be activated via the insulin/IGF-1 signaling pathway. Well-developed intestinal microvilli are required for this process. Our study demonstrates the efficacy and mechanism of β-asarone treatment in age-related motor decline, contributing to the discovery of drugs for achieving healthy aging.
Collapse
Affiliation(s)
- Ming Lei
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China; The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Jiayu Wu
- College of Biology and Environmental Science, Jishou, Jishou University, Jishou, Hunan, China.
| | - Yanheng Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China.
| | - Yang Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China.
| | - Wuyan Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China.
| | - Haijun Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China.
| | - Weihong Tan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China; The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| |
Collapse
|
23
|
Zhang Y, Li Y, Ren T, Duan JA, Xiao P. Promising tools into oxidative stress: A review of non-rodent model organisms. Redox Biol 2024; 77:103402. [PMID: 39437623 PMCID: PMC11532775 DOI: 10.1016/j.redox.2024.103402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
Oxidative stress is a crucial concept in redox biology, and significant progress has been made in recent years. Excessive levels of reactive oxygen species (ROS) can lead to oxidative damage, heightening vulnerability to various diseases. By contrast, ROS maintained within a moderate range plays a role in regulating normal physiological metabolism. Choosing suitable animal models in a complex research context is critical for enhancing research efficacy. While rodents are frequently utilized in medical experiments, they pose challenges such as high costs and ethical considerations. Alternatively, non-rodent model organisms like zebrafish, Drosophila, and C. elegans offer promising avenues into oxidative stress research. These organisms boast advantages such as their small size, high reproduction rate, availability for live imaging, and ease of gene manipulation. This review highlights advancements in the detection of oxidative stress using non-rodent models. The oxidative homeostasis regulatory pathway, Kelch-like ECH-associated protein 1-Nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2), is systematically reviewed alongside multiple regulation of Nrf2-centered pathways in different organisms. Ultimately, this review conducts a comprehensive comparative analysis of different model organisms and further explores the combination of novel techniques with non-rodents. This review aims to summarize state-of-the-art findings in oxidative stress research using non-rodents and to delineate future directions.
Collapse
Affiliation(s)
- Yuhao Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yun Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tianyi Ren
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
24
|
Wang Q, Lan X, Ke H, Xu S, Huang C, Wang J, Wang X, Huang T, Wu X, Chen M, Guo Y, Zeng L, Tian X, Xiang Y. Histone β-hydroxybutyrylation is critical in reversal of sarcopenia. Aging Cell 2024; 23:e14284. [PMID: 39076122 PMCID: PMC11561670 DOI: 10.1111/acel.14284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Sarcopenia, a leading cause for global disability and mortality, is an age-related muscular disorder, characterized by accelerated muscle mass loss and functional decline. It is known that caloric restriction (CR), ketogenic diet or endurance exercise lessen sarcopenia and elevate circulating β-hydroxybutyrate (β-HB) levels. Whether the elevated β-HB is essential to the reversal of sarcopenia, however, remains unclear. Here we show in both Caenorhabditis elegans and mouse models that an increase of β-HB reverse myofiber atrophy and improves motor functions at advanced ages. β-HB-induced histone lysine β-hydroxybutyrylation (Kbhb) is indispensable for the reversal of sarcopenia. Histone Kbhb enhances transcription of genes associated with mitochondrial pathways, including oxidative phosphorylation, ATP metabolic process and aerobic respiration. This ultimately leads to improve mitochondrial integrity and enhance mitochondrial respiration. The histone Kbhb are validated in mouse model with CR. Thus, we demonstrate that β-HB induces histone Kbhb, increases mitochondrial function, and reverses sarcopenia.
Collapse
Affiliation(s)
- Qiquan Wang
- Metabolic Control and AgingHuman Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and DiseasesNanchangChina
| | - Xinqiang Lan
- Metabolic Control and AgingHuman Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and DiseasesNanchangChina
| | - Hao Ke
- Metabolic Control and AgingHuman Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and DiseasesNanchangChina
| | - Siman Xu
- Metabolic Control and AgingHuman Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and DiseasesNanchangChina
| | - Chunping Huang
- Metabolic Control and AgingHuman Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and DiseasesNanchangChina
| | - Jiali Wang
- Metabolic Control and AgingHuman Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and DiseasesNanchangChina
| | - Xiang Wang
- Metabolic Control and AgingHuman Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and DiseasesNanchangChina
| | - Tiane Huang
- Metabolic Control and AgingHuman Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and DiseasesNanchangChina
| | - Xia Wu
- Metabolic Control and AgingHuman Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and DiseasesNanchangChina
| | - Mengxin Chen
- Metabolic Control and AgingHuman Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and DiseasesNanchangChina
| | - Yingqi Guo
- Institutional Center for Shared Technologies and Facilities of the Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Lin Zeng
- Institutional Center for Shared Technologies and Facilities of the Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Xiao‐Li Tian
- Aging and Vascular DiseasesHuman Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and DiseasesNanchangChina
| | - Yang Xiang
- Metabolic Control and AgingHuman Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and DiseasesNanchangChina
| |
Collapse
|
25
|
Loo J, Gunasekaran G, Tan JK, Goon JA. Elucidating the effective age for dietary restriction and the key metabolites involved. Exp Gerontol 2024; 197:112601. [PMID: 39362416 DOI: 10.1016/j.exger.2024.112601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Dietary restriction (DR) extends lifespan in various species, but its effect at different ages, especially when started later, is unclear. This study used Caenorhabditis elegans to explore the impact of DR at different ages. Worms were divided into control and DR groups, with daily survival monitored. To confirm the occurrence of DR, the expression of DR-sensitive genes namely acdh-1, pyk-1, pck-2 and cts-1 were determined using RT-qPCR. Liquid chromatography mass spectrometry (LC-MS) was employed to observe the changes in metabolites affected by DR. The results indicated that young worms subjected to mild DR displayed the longest lifespan, highlighting the effectiveness of initiating DR at a young age. Increased expression of acdh-1 and pck-2 suggests activation of beta-oxidation and gluconeogenesis, while decreased cts-1 expression indicates a reduced citric acid cycle, further supporting the observed effects of DR in these worms. Metabolomic results indicated that DR decreased the activity of mechanistic Target of Rapamycin (mTOR) and the synthesis of amino acids namely leucine, tyrosine and tryptophan to conserve energy for cell repair and survival. DR also decreased levels of N-acetyl-L-methionine and S-adenosyl-methionine (SAM) in methionine metabolism, thereby promoting autophagy, reducing inflammation, and facilitating the removal of damaged cells and proteins. In conclusion, initiating dietary restriction early in life extends the lifespan by modulating amino acid metabolism and enhancing the autophagy pathway, thereby maintaining cellular wellbeing.
Collapse
Affiliation(s)
- Jazween Loo
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Geetha Gunasekaran
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Jo Aan Goon
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
26
|
Anjaneyulu J, Godbole A. Small organism models for mode of action research on anti-ageing and nootropic herbs, foods, and formulations. Nutr Neurosci 2024:1-19. [PMID: 39432435 DOI: 10.1080/1028415x.2024.2409128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
With global increase in ageing population along with increasing age-related neurodegenerative diseases (NDs), development of sustainable, safe and effective solutions for promoting healthy ageing and preventing diseases has become a priority. Traditional healthcare systems/medicines prescribe several herbs, foods and formulations to promote healthy ageing and prevent and/or treat age-related diseases. However, the scientific data elucidating their mechanism of action is very limited and deeper research using different models is warranted for timely and wider use. The clinical studies and research with higher model organisms, although useful, have several practical, technical, and financial limitations. Conversely, small organism models like Yeast, Roundworm, Fruit fly, and Zebrafish, which have genetic similarities to humans, can replicate the disease features and provide behavioural, cellular and molecular insights. The common features of ageing and NDs, like amyloid protein aggregations, oxidative stress, energy dysregulation, inflammation and neurodegeneration can be mimicked in the small organism models for Alzheimer's, Parkinson's, Huntington's diseases, and Amyotrophic Lateral Sclerosis. This review focuses on small organism model- based research unveiling interesting modes of action and synergistic effects of herbal extracts, foods, and formulations, which are indicated especially for healthy ageing and management of NDs. This will provide leads for the quick and sustainable development of scientifically evaluated solutions for clinically relevant, age-related conditions.
Collapse
Affiliation(s)
- Jalagam Anjaneyulu
- The University of Trans-disciplinary Health Sciences and Technology (TDU), Bengaluru, India
| | - Ashwini Godbole
- The University of Trans-disciplinary Health Sciences and Technology (TDU), Bengaluru, India
| |
Collapse
|
27
|
Duan H, Yu Q, Ni Y, Li J, Yu L, Yan X, Fan L. Synergistic anti-aging effect of Dendrobium officinale polysaccharide and spermidine: A metabolomics analysis focusing on the regulation of lipid, nucleotide and energy metabolism. Int J Biol Macromol 2024; 278:135098. [PMID: 39197612 DOI: 10.1016/j.ijbiomac.2024.135098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
The importance of synergy has been underscored in recent medical research for augmenting the efficacy of therapeutic interventions, targeting multiple biological pathways simultaneously. Our prior research elucidated that Dendrobium officinale polysaccharide (DOP) has the potential to prolong the lifespan of Caenorhabditis elegans (C. elegans) via regulating gut microbiota. Concurrently, spermidine (Spd), as a mimicking caloric restriction, facilitates autophagy and exerts a pronounced anti-aging effect. To enhance the anti-aging capabilities of DOP, we conducted a comprehensive study examining the combined effects of DOP and Spd in C. elegans, incorporating metabolomics analysis to investigate the underlying mechanisms. A combination of 250 mg/L DOP and 29.0 mg/L Spd yielded the most favorable outcomes in lifespan extension, evidencing a synergistic effect with a combination index (CI) of 0.65. In oxidative and heat stress tolerance assays, the observed CIs were 0.50 and 0.33, respectively. Metabolomic analysis highlighted significant alterations in metabolites related to lipid, nucleotide and energy metabolism, notably regulating glycerol 3-phosphate, linoleoyl glycerol, docosapentaenoic acid and β-nicotinamide mononucleotide, nicotinamide adenine dinucleotide. The effects of DS on lipid metabolism were further validated using Oil Red O staining and triglyceride level in C. elegans. The results indicated that DS may primarily be via modulating lipid metabolism. To further confirm these findings, a high-fat diet-induced mouse model was employed. Consequently, it can be inferred that the synergistic anti-aging impact of DOP and Spd is likely mediated primarily through alterations in lipid metabolic processes.
Collapse
Affiliation(s)
- Hui Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qun Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yang Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xiaowei Yan
- Guangxi Key Laboratory of Health Care Food Science and Technology, Hezhou University, Hezhou, Guangxi 542899, China.
| | - Liuping Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
28
|
Elsayyid M, Tanis JE, Yu Y. In-cell processing enables rapid and in-depth proteome analysis of low-input Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613705. [PMID: 39345438 PMCID: PMC11429863 DOI: 10.1101/2024.09.18.613705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Caenorhabditis elegans is a widely used genetic model organism, however, the worm cuticle complicates extraction of intracellular proteins, a prerequisite for typical bottom-up proteomics. Conventional physical disruption procedures are not only time-consuming, but can also cause significant sample loss, making it difficult to perform proteomics with low-input samples. Here, for the first time, we present an on-filter in-cell (OFIC) processing approach, which can digest C. elegans proteins directly in the cells of the organism after methanol fixation. With OFIC processing and single-shot LCMS analysis, we identified over 9,400 proteins from a sample of only 200 worms, the largest C. elegans proteome reported to date that did not require fractionation or enrichment. We systematically evaluated the performance of the OFIC approach by comparing it with conventional lysis-based methods. Our data suggest equivalent and unbiased performance of OFIC processing for C. elegans proteome identification and quantitation. We further evaluated the OFIC approach with even lower input samples, then used this method to determine how the proteome is impacted by loss of superoxide dismutase sod-1, the ortholog of human SOD-1, a gene associated with amyotrophic lateral sclerosis (ALS). Analysis of 8,800 proteins from only 50 worms as the initial input showed that loss of sod-1 affects the abundance of proteins required for stress response, ribosome biogenesis, and metabolism. In conclusion, our streamlined OFIC approach, which can be broadly applied to other systems, minimizes sample loss while offering the simplest workflow reported to date for C. elegans proteomics analysis.
Collapse
Affiliation(s)
- Malek Elsayyid
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Jessica E. Tanis
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yanbao Yu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
29
|
Kumar A, Saha MK, Kumar V, Bhattacharya A, Barge S, Mukherjee AK, Kalita MC, Khan MR. Heat-killed probiotic Levilactobacillus brevis MKAK9 and its exopolysaccharide promote longevity by modulating aging hallmarks and enhancing immune responses in Caenorhabditis elegans. Immun Ageing 2024; 21:52. [PMID: 39095841 PMCID: PMC11295351 DOI: 10.1186/s12979-024-00457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Proteostasis is a critical aging hallmark responsible for removing damaged or misfolded proteins and their aggregates by improving proteasomal degradation through the autophagy-lysosome pathway (ALP) and the ubiquitin-proteasome system (UPS). Research on the impact of heat-killed probiotic bacteria and their structural components on aging hallmarks and innate immune responses is scarce, yet enhancing these effects could potentially delay age-related diseases. RESULTS This study introduces a novel heat-killed Levilactobacillus brevis strain MKAK9 (HK MKAK9), along with its exopolysaccharide (EPS), demonstrating their ability to extend longevity by improving proteostasis and immune responses in wild-type Caenorhabditis elegans. We elucidate the underlying mechanisms through a comprehensive approach involving mRNA- and small RNA sequencing, proteomic analysis, lifespan assays on loss-of-function mutants, and quantitative RT-PCR. Mechanistically, HK MKAK9 and its EPS resulted in downregulation of the insulin-like signaling pathway in a DAF-16-dependent manner, enhancing protein ubiquitination and subsequent proteasomal degradation through activation of the ALP pathway, which is partially mediated by microRNA mir-243. Importantly, autophagosomes engulf ubiquitinylated proteins, as evidenced by increased expression of the autophagy receptor sqst-3, and subsequently fuse with lysosomes, facilitated by increased levels of the lysosome-associated membrane protein (LAMP) lmp-1, suggesting the formation of autolysosomes for degradation of the selected cargo. Moreover, HK MKAK9 and its EPS activated the p38 MAPK pathway and its downstream SKN-1 transcription factor, which are known to regulate genes involved in innate immune response (thn-1, ilys-1, cnc-2, spp-9, spp-21, clec-47, and clec-266) and antioxidation (sod-3 and gst-44), thereby reducing the accumulation of reactive oxygen species (ROS) at both cellular and mitochondrial levels. Notably, SOD-3 emerged as a transcriptional target of both DAF-16 and SKN-1 transcription factors. CONCLUSION Our research sets a benchmark for future investigations by demonstrating that heat-killed probiotic and its specific cellular component, EPS, can downregulate the insulin-signaling pathway, potentially improving the autophagy-lysosome pathway (ALP) for degrading ubiquitinylated proteins and promoting organismal longevity. Additionally, we discovered that increased expression of microRNA mir-243 regulates insulin-like signaling and its downstream ALP pathway. Our findings also indicate that postbiotic treatment may bolster antioxidative and innate immune responses, offering a promising avenue for interventions in aging-related diseases.
Collapse
Affiliation(s)
- Arun Kumar
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
| | | | - Vipin Kumar
- Application Specialist, Research Business Cytiva, Gurugram, Haryana, India
| | - Anupam Bhattacharya
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
| | - Sagar Barge
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
| | - Ashis K Mukherjee
- Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam, 784028, India
| | - Mohan C Kalita
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - Mojibur R Khan
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India.
| |
Collapse
|
30
|
Kanungo J, Sorkin BC, Krzykwa J, Mitchell CA, Embry M, Spencer P, Harry GJ, Cannon J, Liu F, McPherson CA, Gafner S, Westerink RH. Screening tools to evaluate the neurotoxic potential of botanicals: building a strategy to assess safety. Expert Opin Drug Metab Toxicol 2024; 20:629-646. [PMID: 38984683 PMCID: PMC11542175 DOI: 10.1080/17425255.2024.2378895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024]
Abstract
AREAS COVERED This paper outlines the selection of NAMs, including in vitro assays using primary rat cortical neurons, zebrafish embryos, and Caenorhabditis elegans. These assays aim to assess neurotoxic endpoints such as neuronal activity and behavioral responses. Microelectrode array recordings of rat cortical neurons provide insights into the impact of botanical extracts on neuronal function, while the zebrafish embryos and C. elegans assays evaluate neurobehavioral responses. The paper also provides an account of the selection of botanical case studies based on expert judgment and existing neuroactivity/toxicity information. The proposed battery of assays will be tested with these case studies to evaluate their utility for neurotoxicity screening. EXPERT OPINION The complexity of botanicals necessitates the use of multiple NAMs for effective neurotoxicity screening. This paper discusses the evaluation of methodologies to develop a robust framework for evaluating botanical safety, including complex neuronal models and key neurodevelopmental process assays. It aims to establish a comprehensive screening framework.
Collapse
Affiliation(s)
- Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079
| | - Barbara C. Sorkin
- Office of Dietary Supplements, Division of Program Coordination, Planning, and Strategic Initiatives, U.S. National Institutes of Health, Bethesda, MD
| | - Julie Krzykwa
- Health and Environmental Sciences Institute, Washington, DC, USA
| | | | - Michelle Embry
- Health and Environmental Sciences Institute, Washington, DC, USA
| | - Peter Spencer
- Department of Neurology, School of Medicine, Oregon Health & Science University
| | - G. Jean Harry
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Jason Cannon
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Fang Liu
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079
| | - Christopher A. McPherson
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Stefan Gafner
- American Botanical Council, 6200 Manor Road, Austin, Texas 78723, United States
| | - Remco H.S. Westerink
- Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
31
|
Chen X, Bahramimehr F, Shahhamzehei N, Fu H, Lin S, Wang H, Li C, Efferth T, Hong C. Anti-aging effects of medicinal plants and their rapid screening using the nematode Caenorhabditis elegans. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155665. [PMID: 38768535 DOI: 10.1016/j.phymed.2024.155665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/21/2024] [Accepted: 04/20/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Aging is the primary risk factor of most chronic diseases in humans, including cardiovascular diseases, osteoporosis and neurodegenerative diseases, which extensively damage the quality of life for elderly individuals. Aging is a multifaceted process with numerous factors affecting it. Efficient model organisms are essential for the research and development of anti-aging agents, particularly when investigating pharmacological mechanisms are needed. PURPOSE This review discusses the application of Caenorhabditis elegans for studying aging and its related signaling pathways, and presents an overview of studies exploring the mechanism and screening of anti-aging agents in C. elegans. Additionally, the review summarizes related clinical trials of anti-aging agents to inspire the development of new medications. METHOD Literature was searched, analyzed, and collected using PubMed, Web of Science, and Science Direct. The search terms used were "anti-aging", "medicinal plants", "synthetic compounds", "C. elegans", "signal pathway", etc. Several combinations of these keywords were used. Studies conducted in C. elegans or humans were included. Articles were excluded, if they were on studies conducted in silico or in vitro or could not offer effective data. RESULTS Four compounds mainly derived through synthesis (metformin, rapamycin, nicotinamide mononucleotide, alpha-ketoglutarate) and four active ingredients chiefly obtained from plants (resveratrol, quercetin, Astragalus polysaccharide, ginsenosides) are introduced emphatically. These compounds and active ingredients exhibit potential anti-aging effects in preclinical and clinical studies. The screening of these anti-aging agents and the investigation of their pharmacological mechanisms can benefit from the use of C. elegans. CONCLUSION Medicinal plants provide valuable resource for the treatment of diseases. A wide source of raw materials for the particular plant medicinal compounds having anti-aging effects meet diverse pharmaceutical requirements, such as immunomodulatory, anti-inflammation and alleviating oxidative stress. C. elegans possesses advantages in scientific research including short life cycle, small size, easy maintenance, genetic tractability and conserved biological processes related to aging. C. elegans can be used for the efficient and rapid evaluation of compounds with the potential to slow down aging.
Collapse
Affiliation(s)
- Xiaodan Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Faranak Bahramimehr
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Nasim Shahhamzehei
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Huangjie Fu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Siyi Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hanxiao Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Changyu Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| | - Chunlan Hong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
32
|
Yarmey VR, San-Miguel A. Biomarkers for aging in Caenorhabditis elegans high throughput screening. Biochem Soc Trans 2024; 52:1405-1418. [PMID: 38884801 DOI: 10.1042/bst20231303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Aging is characterized by a functional decline in organism fitness over time due to a complex combination of genetic and environmental factors [ 1-4]. With an increasing elderly population at risk of age-associated diseases, there is a pressing need for research dedicated to promoting health and longevity through anti-aging interventions. The roundworm Caenorhabditis elegans is an established model organism for aging studies due to its short life cycle, ease of culture, and conserved aging pathways. These benefits also make the worm well-suited for high-throughput screening (HTS) methods to study biomarkers of the molecular changes, cellular dysfunction, and physiological decline associated with aging. Within this review, we offer a summary of recent advances in HTS techniques to study biomarkers of aging in C. elegans.
Collapse
Affiliation(s)
- Victoria R Yarmey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27603, U.S.A
| | - Adriana San-Miguel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27603, U.S.A
| |
Collapse
|
33
|
Schiksnis EC, Nicastro IA, Pasquinelli AE. Full-length direct RNA sequencing reveals extensive remodeling of RNA expression, processing and modification in aging Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599640. [PMID: 38948813 PMCID: PMC11213008 DOI: 10.1101/2024.06.18.599640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Organismal aging is marked by decline in cellular function and anatomy, ultimately resulting in death. To inform our understanding of the mechanisms underlying this degeneration, we performed standard RNA sequencing and Nanopore direct RNA sequencing over an adult time course in Caenorhabditis elegans. Long reads allowed for identification of hundreds of novel isoforms and age-associated differential isoform accumulation, resulting from alternative splicing and terminal exon choice. Genome-wide analysis reveals a decline in RNA processing fidelity and a rise in inosine and pseudouridine editing events in transcripts from older animals. In this first map of pseudouridine modifications for C. elegans, we find that they largely reside in coding sequences and that the number of genes with this modification increases with age. Collectively, this analysis discovers transcriptomic signatures associated with age and is a valuable resource to understand the many processes that dictate altered gene expression patterns and post-transcriptional regulation in aging.
Collapse
Affiliation(s)
- Erin C. Schiksnis
- Molecular Biology Department, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | - Ian A. Nicastro
- Molecular Biology Department, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | - Amy E. Pasquinelli
- Molecular Biology Department, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0349, USA
| |
Collapse
|
34
|
Jiang L, Wang X, Zhang D, Yee Yuen KW, Tse YC. RSU-1 regulates the integrity of dense bodies in muscle cells of aging Caenorhabditis elegans. iScience 2024; 27:109854. [PMID: 38784006 PMCID: PMC11112334 DOI: 10.1016/j.isci.2024.109854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/19/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Muscle contraction is vital for animal survival, and the sarcomere is the fundamental unit for this process. However, the functions of many conserved sarcomere proteins remain unknown, as their mutants do not exhibit obvious defects. To address this, Caenorhabditis elegans was utilized as a model organism to investigate RSU-1 function in the body wall muscle. RSU-1 is found to colocalize with UNC-97 at the dense body and M-line, and it is particularly crucial for regulating locomotion in aging worms, rather than in young worms. This suggests that RSU-1 has a specific function in maintaining muscle function during aging. Furthermore, the interaction between RSU-1 and UNC-97/PINCH is essential for RSU-1 to modulate locomotion, preserve filament structure, and sustain the M-line and dense body throughout aging. Overall, these findings highlight the significant contribution of RSU-1, through its interaction with UNC-97, in maintaining proper muscle cell function in aging worms.
Collapse
Affiliation(s)
- Ling Jiang
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinyan Wang
- Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dandan Zhang
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
- School of Biological Sciences, University of Southampton, Life Sciences Building (Building 85), Highfield Campus, Southampton SO17 1BJ, UK
| | - Yu Chung Tse
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
35
|
Yin X, Meng Y, Sun C, Zhao Y, Wang W, Zhao P, Wang M, Ren J, Yao J, Zhang L, Xia X. Investigation of anti-aging and anti-infection properties of Jingfang Granules using the Caenorhabditis elegans model. Biogerontology 2024; 25:433-445. [PMID: 37572203 DOI: 10.1007/s10522-023-10058-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
Jingfang Granule (JFG), a traditional Chinese medicine, is frequently employed in clinical settings for the treatment of infectious diseases. Nevertheless, the anti-aging and anti-infection effects of JFG remain uncertain. In the present study, these effects were evaluated using the Caenorhabditis elegans (C. elegans) N2 as a model organism. The results demonstrated that JFG significantly increased the median lifespan of C. elegans by 31.2% at a dosage of 10 mg/mL, without any discernible adverse effects, such as alterations in the pharyngeal pumping rate or nematode motility. Moreover, JFG notably increased oviposition by 11.3%. Subsequent investigations revealed that JFG enhanced oxidative stress resistance in C. elegans by reducing reactive oxygen species levels and significantly improved survival rates in nematodes infected with Pseudomonas aeruginosa ATCC 9027. These findings suggest that JFG delays reproductive senescence in C. elegans and protects them from oxidative stress, thereby extending their lifespan. Additionally, JFG improves the survival of P. aeruginosa-infected nematodes. Consequently, JFG has potential as a candidate for the development of anti-aging and anti-infection functional medicines.
Collapse
Affiliation(s)
- Xin Yin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Yiwei Meng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Chenghong Sun
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. LTD, Linyi, 276005, China
| | - Yanqiu Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Weitao Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Peipei Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Mengmeng Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Jingli Ren
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Jingchun Yao
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. LTD, Linyi, 276005, China.
| | - Lixin Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuekui Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China.
| |
Collapse
|
36
|
Berk Ş, Özdemir S, Pektaş AN. Visualization of scientific production in Caenorhabditis elegans: a bibliometric analysis (1980-2023). Genomics Inform 2024; 22:3. [PMID: 38907345 PMCID: PMC11184956 DOI: 10.1186/s44342-024-00002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/08/2024] [Indexed: 06/23/2024] Open
Abstract
Caenorhabditis elegans (C. elegans) is a nematode and model organism whose entire genome has been mapped, which allows for easy observation of the organism's development due to its transparent structure, and which is appealing due to its ease of crossover, ease of culture, and low cost. Despite being separated by nearly a billion years of evolution, C. elegans homologs have been identified for the vast majority of human genes and are associated with C. elegans for many biological processes such as apoptosis, cell signaling, cell cycle, cell polarity, metabolism, and aging. A detailed bibliometric study is performed here to examine publication trends in this field. Data were taken from the Web of Science database and analyzed using the bibliometric application Biblioshiny (RStudio). In terms of publication, the results indicated a gradual increase each year between 1980 and 2023. A total of 20,322 records were issued in 96 countries, the majority of which were in the USA, China, and Japan. The most prolific writers, the journals most engaged in the area, the nations, institutions, and keywords used by authors were all determined using the Web of Science database and bibliometric rules. The number of papers in the C. elegans research field is increasing exponentially, and Genetics is the journal with the highest number of articles. This study presents how research patterns have evolved throughout time. As a result, worldwide cooperation and a potential field can be developed.
Collapse
Affiliation(s)
- Şeyda Berk
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, 58140, Turkey.
- Advanced Technology Research and Application Center (CUTAM), Sivas Cumhuriyet University, Sivas, 58140, Turkey.
| | - Serkan Özdemir
- Department of Forestry, Isparta University of Applied Sciences, Isparta, 32260, Turkey
| | - Ayşe Nur Pektaş
- Advanced Technology Research and Application Center (CUTAM), Sivas Cumhuriyet University, Sivas, 58140, Turkey
| |
Collapse
|
37
|
Koopman M, Güngördü L, Janssen L, Seinstra RI, Richmond JE, Okerlund N, Wardenaar R, Islam P, Hogewerf W, Brown AEX, Jorgensen EM, Nollen EAA. Rebalancing the motor circuit restores movement in a Caenorhabditis elegans model for TDP-43 toxicity. Cell Rep 2024; 43:114204. [PMID: 38748878 DOI: 10.1016/j.celrep.2024.114204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 02/29/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Amyotrophic lateral sclerosis can be caused by abnormal accumulation of TAR DNA-binding protein 43 (TDP-43) in the cytoplasm of neurons. Here, we use a C. elegans model for TDP-43-induced toxicity to identify the biological mechanisms that lead to disease-related phenotypes. By applying deep behavioral phenotyping and subsequent dissection of the neuromuscular circuit, we show that TDP-43 worms have profound defects in GABA neurons. Moreover, acetylcholine neurons appear functionally silenced. Enhancing functional output of repressed acetylcholine neurons at the level of, among others, G-protein-coupled receptors restores neurotransmission, but inefficiently rescues locomotion. Rebalancing the excitatory-to-inhibitory ratio in the neuromuscular system by simultaneous stimulation of the affected GABA- and acetylcholine neurons, however, not only synergizes the effects of boosting individual neurotransmitter systems, but instantaneously improves movement. Our results suggest that interventions accounting for the altered connectome may be more efficient in restoring motor function than those solely focusing on diseased neuron populations.
Collapse
Affiliation(s)
- Mandy Koopman
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Lale Güngördü
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Leen Janssen
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Renée I Seinstra
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Janet E Richmond
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Nathan Okerlund
- Howard Hughes Medical Institute and School of Biological Science, The University of Utah, Salt Lake City, UT, USA
| | - René Wardenaar
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Priota Islam
- MRC London Institute of Medical Sciences, London, UK; Institute of Clinical Sciences, Imperial College London, London, UK
| | - Wytse Hogewerf
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Andre E X Brown
- MRC London Institute of Medical Sciences, London, UK; Institute of Clinical Sciences, Imperial College London, London, UK
| | - Erik M Jorgensen
- Howard Hughes Medical Institute and School of Biological Science, The University of Utah, Salt Lake City, UT, USA
| | - Ellen A A Nollen
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
38
|
Gao F, Zhang Z, Xue N, Ma Y, Jiao J, Wang C, Zhang K, Lin Y, Li S, Guo Z, An J, Wang P, Xu B, Lei H. Identification of a novel oligopeptide from defatted walnut meal hydrolysate as a potential neuroprotective agent. Food Funct 2024; 15:5566-5578. [PMID: 38712886 DOI: 10.1039/d3fo05501a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Free radical damage and oxidative stress are thought to play a crucial role in the development of neurodegenerative diseases. Walnut peptides, especially walnut oligopeptides, have been shown to protect nerve cells from oxidative stress and inflammatory damage, as well as improve memory function. In this study, walnut peptides were obtained from walnut meal through enzymatic hydrolysis, ultrafiltration, and gel filtration chromatography. A novel oligopeptide called AQ was successfully isolated and its chemical structure was identified as AASCDQ using ESI-MS/MS. AQ demonstrated remarkable scavenging activity against O2- free radicals (81.00%), DPPH free radicals (79.40%), and ABTS free radicals (67.09%) at a concentration of 1 mg mL-1. Furthermore, AQ exhibited strong neuroprotective effects against hydrogen peroxide-induced damage in SH-SY5Y cells, reducing cell injury and apoptosis. AQ also effectively inhibited the secretion of pro-inflammatory factors NO (IC50 = 46.03 ± 0.32 μM) and suppressed the expression of IL-6 and TNF-α in RAW264.7 cells stimulated by LPS. In vivo experiments demonstrated that AQ promoted angiogenesis in the quail chick chorioallantoic membrane assay and reduced ROS accumulation in Caenorhabditis elegans, thereby extending its lifespan. The anti-inflammatory mechanism of AQ was further confirmed by western blotting. In summary, the novel oligopeptide AQ possesses potential neuroprotective effects, including antioxidant, anti-inflammatory, angiogenic, and anti-aging properties, making it a promising candidate for the development of functional foods and pharmaceutical products.
Collapse
Affiliation(s)
- Feng Gao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Zixuan Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Nannan Xue
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Yunnan Ma
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Jingyi Jiao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Cheng Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Keyi Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Yixuan Lin
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Shanlan Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Zhuoqian Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Jin An
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Penglong Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Bing Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| |
Collapse
|
39
|
Pangua C, Espuelas S, Martínez-Ohárriz MC, Vizmanos JL, Irache JM. Mucus-penetrating and permeation enhancer albumin-based nanoparticles for oral delivery of macromolecules: Application to bevacizumab. Drug Deliv Transl Res 2024; 14:1189-1205. [PMID: 37880504 PMCID: PMC10984897 DOI: 10.1007/s13346-023-01454-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
The oral administration of therapeutic proteins copes with important challenges (mainly degradation and poor absorption) making their potential therapeutic application extremely difficult. The aim of this study was to design and evaluate the potential of the combination between mucus-permeating nanoparticles and permeation enhancers as a carrier for the oral delivery of the monoclonal antibody bevacizumab, used as a model of therapeutic protein. For this purpose, bevacizumab was encapsulated in PEG-coated albumin nanoparticles as a hydrophobic ion-pairing complex with either sodium deoxycholate (DS) or sodium docusate (DOCU). In both cases, complex formation efficiencies close to 90% were found. The incorporation of either DS or DOCU in PEG-coated nanoparticles significantly increased their mean size, particularly when DOCU was used. Moreover, the diffusion in mucus of DOCU-loaded nanoparticles was significantly reduced, compared with DS ones. In a C. elegans model, DS or DOCU (free or nanoencapsulated) disrupted the intestinal epithelial integrity, but the overall survival of the worms was not affected. In rats, the relative oral bioavailability of bevacizumab incorporated in PEG-coated nanoparticles as a complex with DS (B-DS-NP-P) was 3.7%, a 1000-fold increase compared to free bevacizumab encapsulated in nanoparticles (B-NP-P). This important effect of DS may be explained not only by its capability to transiently disrupt tight junctions but also to their ability to increase the fluidity of membranes and to inhibit cytosolic and brush border enzymes. In summary, the current strategy may be useful to allow the therapeutic use of orally administered proteins, including monoclonal antibodies.
Collapse
Affiliation(s)
- Cristina Pangua
- NANO-VAC Research Group, Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
| | - Socorro Espuelas
- NANO-VAC Research Group, Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
| | | | - José Luis Vizmanos
- Department of Biochemistry & Genetics, School of Sciences, University of Navarra, 31008, Pamplona, Spain
| | - Juan M Irache
- NANO-VAC Research Group, Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain.
- Institute for Health Research (IdiSNA), 31008, Pamplona, Spain.
| |
Collapse
|
40
|
de Oliveira GV, Soares MV, Cordeiro LM, da Silva AF, Venturini L, Ilha L, Baptista FBO, da Silveira TL, Soares FAA, Iglesias BA. Toxicological assessment of photoactivated tetra-cationic porphyrin molecules under white light exposure in a Caenorhabditis elegans model. Toxicology 2024; 504:153793. [PMID: 38574843 DOI: 10.1016/j.tox.2024.153793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Photodynamic therapy (PDT) utilizes the potential of photosensitizing substances to absorb light energy and produce reactive oxygen species. Tetra-cationic porphyrins, which have organic or coordination compounds attached to their periphery, are heterocyclic derivatives with well-described antimicrobial and antitumoral properties. This is due to their ability to produce reactive oxygen species and their photobiological properties in solution. Consequently, these molecules are promising candidates as new and more effective photosensitizers with biomedical, environmental, and other biomedical applications. Prior to human exposure, it is essential to establish the toxicological profile of these molecules using in vivo models. In this study, we used Caenorhabditis elegans, a small free-living nematode, as a model for assessing toxic effects and predicting toxicity in preclinical research. We evaluated the toxic effects of porphyrins (neutral and tetra-cationic) on nematodes under dark/light conditions. Our findings demonstrate that tetra-methylated porphyrins (3TMeP and 4TMeP) at a concentration of 3.3 µg/mL (1.36 and 0.93 µM) exhibit high toxicity (as evidenced by reduced survival, development, and locomotion) under dark conditions. Moreover, photoactivated tetra-methylated porphyrins induce higher ROS levels compared to neutral (3TPyP and 4TPyP), tetra-palladated (3PdTPyP and 4PdTPyP), and tetra-platinated (3PtTPyP and 4PtTPyP) porphyrins, which may be responsible for the observed toxic effects.
Collapse
Affiliation(s)
- Gabriela Vitória de Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Marcell Valandro Soares
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Larissa Marafiga Cordeiro
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Aline Franzen da Silva
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Luiza Venturini
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Larissa Ilha
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Fabiane Bicca Obetine Baptista
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Tássia Limana da Silveira
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Félix Alexandre Antunes Soares
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
| | - Bernardo Almeida Iglesias
- Laboratory of Bioinorganic and Porphyrinic Materials, Department of Chemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
41
|
Collins EMS, Hessel EVS, Hughes S. How neurobehavior and brain development in alternative whole-organism models can contribute to prediction of developmental neurotoxicity. Neurotoxicology 2024; 102:48-57. [PMID: 38552718 PMCID: PMC11139590 DOI: 10.1016/j.neuro.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
Developmental neurotoxicity (DNT) is not routinely evaluated in chemical risk assessment because current test paradigms for DNT require the use of mammalian models which are ethically controversial, expensive, and resource demanding. Consequently, efforts have focused on revolutionizing DNT testing through affordable novel alternative methods for risk assessment. The goal is to develop a DNT in vitro test battery amenable to high-throughput screening (HTS). Currently, the DNT in vitro test battery consists primarily of human cell-based assays because of their immediate relevance to human health. However, such cell-based assays alone are unable to capture the complexity of a developing nervous system. Whole organismal systems that qualify as 3 R (Replace, Reduce and Refine) models are urgently needed to complement cell-based DNT testing. These models can provide the necessary organismal context and be used to explore the impact of chemicals on brain function by linking molecular and/or cellular changes to behavioural readouts. The nematode Caenorhabditis elegans, the planarian Dugesia japonica, and embryos of the zebrafish Danio rerio are all suited to low-cost HTS and each has unique strengths for DNT testing. Here, we review the strengths and the complementarity of these organisms in a novel, integrative context and highlight how they can augment current cell-based assays for more comprehensive and robust DNT screening of chemicals. Considering the limitations of all in vitro test systems, we discuss how a smart combinatory use of these systems will contribute to a better human relevant risk assessment of chemicals that considers the complexity of the developing brain.
Collapse
Affiliation(s)
- Eva-Maria S Collins
- Swarthmore College, Biology, 500 College Avenue, Swarthmore, PA 19081, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Ellen V S Hessel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, Bilthoven, 3721 MA, the Netherlands
| | - Samantha Hughes
- Department of Environmental Health and Toxicology, A-LIFE, Vrije Universiteit Amsterdam, de Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands.
| |
Collapse
|
42
|
Caldero-Escudero E, Romero-Sanz S, De la Fuente S. Using C. elegans as a model for neurodegenerative diseases: Methodology and evaluation. Methods Cell Biol 2024; 188:1-34. [PMID: 38880519 DOI: 10.1016/bs.mcb.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Caenorhabditis elegans is a nematode that has been used as an animal model for almost 50years. It has primitive and simple tissues and organs, making it an ideal model for studying neurological pathways involved in neurodegenerative diseases like Alzheimer's disease (AD) and Parkinson's disease (PD). C. elegans has conserved neurological pathways and is able to mimic human diseases, providing valuable insights into the human disease phenotype. This methodological review presents current approaches to generate neurodegenerative-like models of AD and PD in C. elegans, and evaluates the experiments commonly used to validate the diseases. These experimental approaches include assessing survival, fertility, mobility, electropharyngeogram assays, confocal mitochondrial imaging, RNA extraction for qRT-PCR or RT-PCR, and rate of defecation. This review also summarizes the current knowledge acquired on AD and PD using the aforementioned experimental approaches. Additionally, gaps in knowledge and future directions for research are also discussed in the review.
Collapse
|
43
|
Salcedo-Tacuma D, Asad N, Howells G, Anderson R, Smith DM. Proteasome hyperactivation rewires the proteome enhancing stress resistance, proteostasis, lipid metabolism and ERAD in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588128. [PMID: 38617285 PMCID: PMC11014606 DOI: 10.1101/2024.04.04.588128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Proteasome dysfunction is implicated in the pathogenesis of neurodegenerative diseases and age-related proteinopathies. Using a C. elegans model, we demonstrate that 20S proteasome hyperactivation, facilitated by 20S gate-opening, accelerates the targeting of intrinsically disordered proteins. This leads to increased protein synthesis, extensive rewiring of the proteome and transcriptome, enhanced oxidative stress defense, accelerated lipid metabolism, and peroxisome proliferation. It also promotes ER-associated degradation (ERAD) of aggregation-prone proteins, such as alpha-1 antitrypsin (ATZ) and various lipoproteins. Notably, our results reveal that 20S proteasome hyperactivation suggests a novel role in ERAD with broad implications for proteostasis-related disorders, simultaneously affecting lipid homeostasis and peroxisome proliferation. Furthermore, the enhanced cellular capacity to mitigate proteostasis challenges, alongside unanticipated acceleration of lipid metabolism is expected to contribute to the longevity phenotype of this mutant. Remarkably, the mechanism of longevity induced by 20S gate opening appears unique, independent of known longevity and stress-resistance pathways. These results support the therapeutic potential of 20S proteasome activation in mitigating proteostasis-related disorders broadly and provide new insights into the complex interplay between proteasome activity, cellular health, and aging.
Collapse
Affiliation(s)
- David Salcedo-Tacuma
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr., Morgantown, WV USA
| | - Nadeeem. Asad
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr., Morgantown, WV USA
| | - Giovanni Howells
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr., Morgantown, WV USA
| | - Raymond Anderson
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr., Morgantown, WV USA
| | - David M. Smith
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr., Morgantown, WV USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
44
|
Banse SA, Sedore CA, Johnson E, Coleman-Hulbert AL, Onken B, Hall D, Jackson EG, Huynh P, Foulger AC, Guo S, Garrett T, Xue J, Inman D, Morshead ML, Plummer WT, Chen E, Bhaumik D, Chen MK, Harinath G, Chamoli M, Quinn RP, Falkowski R, Edgar D, Schmidt MO, Lucanic M, Guo M, Driscoll M, Lithgow GJ, Phillips PC. Antioxidants green tea extract and nordihydroguaiaretic acid confer species and strain-specific lifespan and health effects in Caenorhabditis nematodes. GeroScience 2024; 46:2239-2251. [PMID: 37923874 PMCID: PMC10828308 DOI: 10.1007/s11357-023-00978-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/08/2023] [Indexed: 11/06/2023] Open
Abstract
The Caenorhabditis Intervention Testing Program (CITP) is an NIH-funded research consortium of investigators who conduct analyses at three independent sites to identify chemical interventions that reproducibly promote health and lifespan in a robust manner. The founding principle of the CITP is that compounds with positive effects across a genetically diverse panel of Caenorhabditis species and strains are likely engaging conserved biochemical pathways to exert their effects. As such, interventions that are broadly efficacious might be considered prominent compounds for translation for pre-clinical research and human clinical applications. Here, we report results generated using a recently streamlined pipeline approach for the evaluation of the effects of chemical compounds on lifespan and health. We studied five compounds previously shown to extend C. elegans lifespan or thought to promote mammalian health: 17α-estradiol, acarbose, green tea extract, nordihydroguaiaretic acid, and rapamycin. We found that green tea extract and nordihydroguaiaretic acid extend Caenorhabditis lifespan in a species-specific manner. Additionally, these two antioxidants conferred assay-specific effects in some studies-for example, decreasing survival for certain genetic backgrounds in manual survival assays in contrast with extended lifespan as assayed using automated C. elegans Lifespan Machines. We also observed that GTE and NDGA impact on older adult mobility capacity is dependent on genetic background, and that GTE reduces oxidative stress resistance in some Caenorhabditis strains. Overall, our analysis of the five compounds supports the general idea that genetic background and assay type can influence lifespan and health effects of compounds, and underscores that lifespan and health can be uncoupled by chemical interventions.
Collapse
Affiliation(s)
- Stephen A Banse
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - Christine A Sedore
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - Erik Johnson
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | | | - Brian Onken
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers University, Piscataway, NJ, 08854, USA
| | - David Hall
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - E Grace Jackson
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - Phu Huynh
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers University, Piscataway, NJ, 08854, USA
| | - Anna C Foulger
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Suzhen Guo
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers University, Piscataway, NJ, 08854, USA
| | - Theo Garrett
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Jian Xue
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers University, Piscataway, NJ, 08854, USA
| | - Delaney Inman
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | | | - W Todd Plummer
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Esteban Chen
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers University, Piscataway, NJ, 08854, USA
| | - Dipa Bhaumik
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Michelle K Chen
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - Girish Harinath
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers University, Piscataway, NJ, 08854, USA
| | - Manish Chamoli
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Rose P Quinn
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - Ron Falkowski
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers University, Piscataway, NJ, 08854, USA
| | - Daniel Edgar
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Madeline O Schmidt
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - Mark Lucanic
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Max Guo
- Division of Aging Biology, National Institute On Aging, Bethesda, MD, 20892-9205, USA
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers University, Piscataway, NJ, 08854, USA.
| | - Gordon J Lithgow
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA.
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
45
|
Anwar A, De Ayreflor Reyes SR, John AA, Breiling E, O’Connor AM, Reis S, Shim JH, Shah AA, Srinivasan J, Farny NG. Nucleic Acid Aptamers Protect Against Lead (Pb(II)) Toxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587288. [PMID: 38585880 PMCID: PMC10996642 DOI: 10.1101/2024.03.28.587288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Lead (Pb(II)) is a pervasive heavy metal toxin with many well-established negative effects on human health. Lead toxicity arises from cumulative, repeated environmental exposures. Thus, prophylactic strategies to protect against the bioaccumulation of lead could reduce lead-associated human pathologies. Here we show that DNA and RNA aptamers protect C. elegans from toxic phenotypes caused by lead. Reproductive toxicity, as measured by brood size assays, is prevented by co-feeding of animals with DNA or RNA aptamers. Similarly, lead-induced behavioral anomalies are also normalized by aptamer feeding. Further, cultured human HEK293 and primary murine osteoblasts are protected from lead toxicity by transfection with DNA aptamers. The osteogenic development, which is decreased by lead exposure, is maintained by prior transfection of lead-binding DNA aptamers. Aptamers may be an effective strategy for the protection of human health in the face of increasing environmental toxicants.
Collapse
Affiliation(s)
- Afreen Anwar
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri (J&K), India
| | | | - Aijaz Ahmad John
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Erik Breiling
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Abigail M. O’Connor
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Stephanie Reis
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Jae-Hyuck Shim
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ali Asghar Shah
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri (J&K), India
| | - Jagan Srinivasan
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
- Program in Neuroscience, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Natalie G. Farny
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
- Program in Neuroscience, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| |
Collapse
|
46
|
Ray AK, Priya A, Malik MZ, Thanaraj TA, Singh AK, Mago P, Ghosh C, Shalimar, Tandon R, Chaturvedi R. A bioinformatics approach to elucidate conserved genes and pathways in C. elegans as an animal model for cardiovascular research. Sci Rep 2024; 14:7471. [PMID: 38553458 PMCID: PMC10980734 DOI: 10.1038/s41598-024-56562-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/07/2024] [Indexed: 04/02/2024] Open
Abstract
Cardiovascular disease (CVD) is a collective term for disorders of the heart and blood vessels. The molecular events and biochemical pathways associated with CVD are difficult to study in clinical settings on patients and in vitro conditions. Animal models play a pivotal and indispensable role in CVD research. Caenorhabditis elegans, a nematode species, has emerged as a prominent experimental organism widely utilized in various biomedical research fields. However, the specific number of CVD-related genes and pathways within the C. elegans genome remains undisclosed to date, limiting its in-depth utilization for investigations. In the present study, we conducted a comprehensive analysis of genes and pathways related to CVD within the genomes of humans and C. elegans through a systematic bioinformatic approach. A total of 1113 genes in C. elegans orthologous to the most significant CVD-related genes in humans were identified, and the GO terms and pathways were compared to study the pathways that are conserved between the two species. In order to infer the functions of CVD-related orthologous genes in C. elegans, a PPI network was constructed. Orthologous gene PPI network analysis results reveal the hubs and important KRs: pmk-1, daf-21, gpb-1, crh-1, enpl-1, eef-1G, acdh-8, hif-1, pmk-2, and aha-1 in C. elegans. Modules were identified for determining the role of the orthologous genes at various levels in the created network. We also identified 9 commonly enriched pathways between humans and C. elegans linked with CVDs that include autophagy (animal), the ErbB signaling pathway, the FoxO signaling pathway, the MAPK signaling pathway, ABC transporters, the biosynthesis of unsaturated fatty acids, fatty acid metabolism, glutathione metabolism, and metabolic pathways. This study provides the first systematic genomic approach to explore the CVD-associated genes and pathways that are present in C. elegans, supporting the use of C. elegans as a prominent animal model organism for cardiovascular diseases.
Collapse
Affiliation(s)
- Ashwini Kumar Ray
- Department of Environmental Studies, University of Delhi, New Delhi, India.
| | - Anjali Priya
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Md Zubbair Malik
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait.
| | | | - Alok Kumar Singh
- Department of Zoology, Ramjas College, University of Delhi, New Delhi, India
| | - Payal Mago
- Shaheed Rajguru College of Applied Science for Women, University of Delhi, New Delhi, India
- Campus of Open Learning, University of Delhi, New Delhi, India
| | - Chirashree Ghosh
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Science, New Delhi, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
47
|
Zhang G, Zheng C, Ding YH, Mello C. Casein kinase II promotes piRNA production through direct phosphorylation of USTC component TOFU-4. Nat Commun 2024; 15:2727. [PMID: 38548791 PMCID: PMC10978872 DOI: 10.1038/s41467-024-46882-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/10/2024] [Indexed: 04/01/2024] Open
Abstract
Piwi-interacting RNAs (piRNAs) are genomically encoded small RNAs that engage Piwi Argonaute proteins to direct mRNA surveillance and transposon silencing. Despite advances in understanding piRNA pathways and functions, how the production of piRNA is regulated remains elusive. Here, using a genetic screen, we identify casein kinase II (CK2) as a factor required for piRNA pathway function. We show that CK2 is required for the localization of PRG-1 and for the proper localization of several factors that comprise the 'upstream sequence transcription complex' (USTC), which is required for piRNA transcription. Loss of CK2 impairs piRNA levels suggesting that CK2 promotes USTC function. We identify the USTC component twenty-one-U fouled-up 4 (TOFU-4) as a direct substrate for CK2. Our findings suggest that phosphorylation of TOFU-4 by CK2 promotes the assembly of USTC and piRNA transcription. Notably, during the aging process, CK2 activity declines, resulting in the disassembly of USTC, decreased piRNA production, and defects in piRNA-mediated gene silencing, including transposons silencing. These findings highlight the significance of posttranslational modification in regulating piRNA biogenesis and its implications for the aging process. Overall, our study provides compelling evidence for the involvement of a posttranslational modification mechanism in the regulation of piRNA biogenesis.
Collapse
Affiliation(s)
- Gangming Zhang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Chunwei Zheng
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Yue-He Ding
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Craig Mello
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Howard Hughes Medical Institute, Worcester, MA, 01605, USA.
| |
Collapse
|
48
|
Hînganu MV, Cucu RP, Hînganu D. Personalized Research on the Aging Face-A Narrative History. J Pers Med 2024; 14:343. [PMID: 38672970 PMCID: PMC11050910 DOI: 10.3390/jpm14040343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Throughout history, people have struggled to find out the secret of youth. The aim of the manuscript is to review the main achievements regarding the exploration of the aging face phenomenon. It should be very important to know the evolution in this field due to the increase in life expectancy among the population. Our purpose is for the current study to serve as a starting point towards exploring novel research avenues in molecular biology and the confocal immunofluorescence of cervicofacial soft tissues, employing cutting-edge techniques. All changes in the shape of the facial skeleton, soft tissue, retaining ligaments, fat compartments, and the skin envelope contribute to facial aging to varying degrees.
Collapse
Affiliation(s)
- Marius Valeriu Hînganu
- Department of Morpho-Functionall Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.V.H.); (D.H.)
| | - Ramona Paula Cucu
- Department of Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Delia Hînganu
- Department of Morpho-Functionall Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.V.H.); (D.H.)
| |
Collapse
|
49
|
Jung J, Loschko T, Reich S, Rassoul-Agha M, Werner MS. Newly identified nematodes from the Great Salt Lake are associated with microbialites and specially adapted to hypersaline conditions. Proc Biol Sci 2024; 291:20232653. [PMID: 38471558 PMCID: PMC10932707 DOI: 10.1098/rspb.2023.2653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Extreme environments enable the study of simplified food-webs and serve as models for evolutionary bottlenecks and early Earth ecology. We investigated the biodiversity of invertebrate meiofauna in the benthic zone of the Great Salt Lake (GSL), Utah, USA, one of the most hypersaline lake systems in the world. The hypersaline bays within the GSL are currently thought to support only two multicellular animals: brine fly larvae and brine shrimp. Here, we report the presence, habitat, and microbial interactions of novel free-living nematodes. Nematode diversity drops dramatically along a salinity gradient from a freshwater river into the south arm of the lake. In Gilbert Bay, nematodes primarily inhabit reef-like organosedimentary structures built by bacteria called microbialites. These structures likely provide a protective barrier to UV and aridity, and bacterial associations within them may support life in hypersaline environments. Notably, sampling from Owens Lake, another terminal lake in the Great Basin that lacks microbialites, did not recover nematodes from similar salinities. Phylogenetic divergence suggests that GSL nematodes represent previously undescribed members of the family Monhysteridae-one of the dominant fauna of the abyssal zone and deep-sea hydrothermal vents. These findings update our understanding of halophile ecosystems and the habitable limit of animals.
Collapse
Affiliation(s)
- Julie Jung
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Tobias Loschko
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
- Max Planck Institute for Biology, Tübingen, Germany
| | - Shelley Reich
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Maxim Rassoul-Agha
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Michael S. Werner
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
50
|
Miller BC, Mathai M, Yadav H, Jain S. Geroprotective potential of microbiome modulators in the Caenorhabditis elegans model. GeroScience 2024; 46:129-151. [PMID: 37561384 PMCID: PMC10828408 DOI: 10.1007/s11357-023-00901-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023] Open
Abstract
Aging is associated with cellular and physiological changes, which significantly reduce the quality of life and increase the risk for disease. Geroprotectors improve lifespan and slow the progression of detrimental aging-related changes such as immune system senescence, mitochondrial dysfunction, and dysregulated nutrient sensing and metabolism. Emerging evidence suggests that gut microbiota dysbiosis is a hallmark of aging-related diseases and microbiome modulators, such as probiotics (live bacteria) or postbiotics (non-viable bacteria/bacterial byproducts) may be promising geroprotectors. However, because they are strain-specific, the geroprotective effects of probiotics and postbiotics remain poorly understood and understudied. Drosophila melanogaster, Caenorhabditis elegans, and rodents are well-validated preclinical models for studying lifespan and the role of probiotics and/or postbiotics, but each have their limitations, including cost and their translation to human aging biology. C. elegans is an excellent model for large-scale screening to determine the geroprotective potential of drugs or probiotics/postbiotics due to its short lifecycle, easy maintenance, low cost, and homology to humans. The purpose of this article is to review the geroprotective effects of microbiome modulators and their future scope, using C. elegans as a model. The proposed geroprotective mechanisms of these probiotics and postbiotics include delaying immune system senescence, preventing or reducing mitochondrial dysfunction, and regulating food intake (dietary restriction) and metabolism. More studies are warranted to understand the geroprotective potential of probiotics and postbiotics, as well as other microbiome modulators, like prebiotics and fermented foods, and use them to develop effective therapeutics to extend lifespan and reduce the risk of debilitating aging-related diseases.
Collapse
Affiliation(s)
- Brandi C Miller
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, 12901 Bruce B Downs Blvd, MDC 78, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Megha Mathai
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, 12901 Bruce B Downs Blvd, MDC 78, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Hariom Yadav
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, 12901 Bruce B Downs Blvd, MDC 78, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Shalini Jain
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, 12901 Bruce B Downs Blvd, MDC 78, Tampa, FL, 33612, USA.
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA.
| |
Collapse
|