1
|
Chen T, Liu YL, Li F, Qiu HN, Haghbin N, Li YS, Lin CY, Wu F, Xia LF, Li JB, Lin JN. Association of waist-to-hip ratio adjusted for body mass index with cognitive impairment in middle-aged and elderly patients with type 2 diabetes mellitus: a cross-sectional study. BMC Public Health 2024; 24:2424. [PMID: 39243030 PMCID: PMC11378611 DOI: 10.1186/s12889-024-19985-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Numerous reports indicate that both obesity and type 2 diabetes mellitus (T2DM) are factors associated with cognitive impairment (CI). The objective was to assess the relationship between abdominal obesity as measured by waist-to-hip ratio adjusted for body mass index (WHRadjBMI) and CI in middle-aged and elderly patients with T2DM. METHODS A cross-sectional study was conducted, in which a total of 1154 patients with T2DM aged ≥ 40 years were included. WHRadjBMI was calculated based on anthropometric measurements and CI was assessed utilizing the Montreal Cognitive Assessment (MoCA). Participants were divided into CI group (n = 509) and normal cognition group (n = 645). Correlation analysis and binary logistic regression were used to explore the relationship between obesity-related indicators including WHRadjBMI, BMI as well as waist circumference (WC) and CI. Meanwhile, the predictive power of these indicators for CI was estimated by receiver operating characteristic (ROC) curves. RESULTS WHRadjBMI was positively correlated with MoCA scores, independent of sex. The Area Under the Curve (AUC) for WHRadjBMI, BMI and WC were 0.639, 0.521 and 0.533 respectively, and WHRadjBMI had the highest predictive power for CI. Whether or not covariates were adjusted, one-SD increase in WHRadjBMI was significantly related to an increased risk of CI with an adjusted OR of 1.451 (95% CI: 1.261-1.671). After multivariate adjustment, the risk of CI increased with rising WHRadjBMI quartiles (Q4 vs. Q1 OR: 2.980, 95%CI: 2.032-4.371, P for trend < 0.001). CONCLUSIONS Our study illustrated that higher WHRadjBMI is likely to be associated with an increased risk of CI among patients with T2DM. These findings support the detrimental effects of excess visceral fat accumulation on cognitive function in middle-aged and elderly T2DM patients.
Collapse
Affiliation(s)
- Tong Chen
- School of Medicine, Nankai University, Tianjin, China
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China
| | - Yan-Lan Liu
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China
| | - Fang Li
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China
| | - Hui-Na Qiu
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China
| | - Nahal Haghbin
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao-Shuang Li
- Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
| | - Chen-Ying Lin
- Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
| | - Fan Wu
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China
| | - Long-Fei Xia
- Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
| | - Jing-Bo Li
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China.
| | - Jing-Na Lin
- School of Medicine, Nankai University, Tianjin, China.
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China.
| |
Collapse
|
2
|
Rajendran V, Uppoor A, Nayak SU, Rao SB, Dasson Bajaj P. Unraveling the cognitive implications among individuals with co-occurring chronic periodontitis and type 2 diabetes mellitus: A cross-sectional study. J Oral Biosci 2024; 66:605-611. [PMID: 38815752 DOI: 10.1016/j.job.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVES Chronic periodontitis and type 2 diabetes mellitus (T2DM) are associated with cognitive decline when examined individually. To gain deeper insight into the combined effects of these conditions on cognitive decline, the present study aimed to examine the cognitive status of individuals with co-occurring T2DM and chronic periodontitis. METHODS We recruited 220 participants categorized into four groups: Group I, healthy subjects; Group II, individuals with chronic periodontitis; Group III, individuals with T2DM; and Group IV, individuals with both T2DM and chronic periodontitis. Medical histories were recorded for all participants, followed by periodontal examination and evaluation of cognitive status using the Montreal Cognitive Assessment (MoCA) scale. Finger dexterity was assessed using the nine-hole peg test. RESULTS A statistically significant increase in the proportion of mild cognitive impairment (MCI) was observed between groups I and IV (p < 0.001). Logistic regression analysis revealed that, among the parameters assessed in this study, the adjusted odds ratio (OR) was significant for age, finger dexterity scores, and co-occurrence of T2DM and periodontitis. CONCLUSIONS The findings of this study suggest that the co-occurrence of chronic periodontitis and T2DM can have a detrimental effect on the cognitive abilities of an individual. Subsequent research should include longitudinal monitoring of the cognitive status in patients with concurrent conditions during treatment to gain deeper prognostic insights into the relationship between these co-occurring conditions and cognitive decline.
Collapse
Affiliation(s)
- Valliammai Rajendran
- Department of Periodontology, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Karnataka, Manipal, 576104, India.
| | - Ashita Uppoor
- Department of Periodontology, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Karnataka, Manipal, 576104, India.
| | - Sangeeta Umesh Nayak
- Department of Periodontology, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Karnataka, Manipal, 576104, India.
| | - Satish B Rao
- Department of Medicine, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Karnataka, Manipal, 576104, India.
| | - Parul Dasson Bajaj
- Department of Public Health Dentistry, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Karnataka, Manipal, 576104, India.
| |
Collapse
|
3
|
Preeti K, Sood A, Fernandes V, Khan I, Khatri DK, Singh SB. Experimental Type 2 diabetes and lipotoxicity-associated neuroinflammation involve mitochondrial DNA-mediated cGAS/STING axis: implication of Type-1 interferon response in cognitive impairment. Mol Neurobiol 2024; 61:6217-6244. [PMID: 38285288 DOI: 10.1007/s12035-024-03933-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/05/2024] [Indexed: 01/30/2024]
Abstract
Type-1 IFN (interferon)-associated innate immune response is increasingly getting attention in neurodegenerative and metabolic diseases like type 2 diabetes (T2DM). However, its significance in T2DM/lipotoxicity-induced neuroglia changes and cognitive impairment is missing. The present study aims to evaluate the involvement of cGAS (cyclic GMP-AMP synthase)-STING (stimulator of interferon gene), IRF3 (interferon regulatory factor-3), TBK (TANK binding kinase)-mediated Type-1 IFN response in the diabetic brain, and lipotoxicity (palmitate-bovine serum albumin conjugate/PA-BSA)-induced changes in cells (neuro2a and BV2). T2DM was induced in C57/BL6 mice by feeding on a high-fat diet (HFD, 60% Kcal) for 16 weeks and injecting a single dose of streptozotocin (100 mg/kg, i.p) in the 12th week. Plasma biochemical parameter analysis, neurobehavioral assessment, protein expression, and quantitative polymerase chain reaction study were carried out to decipher the hypothesis. T2DM-associated metabolic and lipotoxic stress led to mitochondrial impairment causing leakage of mtDNA to the cytoplasm further commencing cGAS activation and its downstream signaling. The diseased hippocampus and cortex showed decreased expression of synaptophysin (p < 0.01) and PSD-95 (p < 0.01, p < 0.05) with increased expression of cGAS (p < 0.001), p-STING (p < 0.001), p-STAT1 (signal transducer and activator of transcription) (p < 0.01), and IFN-β (p < 0.001) compared to normal control. The IFN-β/p-STAT1-mediated microglia activation was executed employing a conditioned media approach. C-176, a selective STING inhibitor, alleviated cGAS/p-STING/IFN-β expression and proinflammatory microglia/M1-associated markers (CD16 expression, CXCL10, TNF-α, IL-1β mRNA fold change) in the diabetic brain. The present study suggests Type-1IFN response may result in neuroglia dyshomeostasis affecting normal brain function. Alleviating STING signaling has the potential to protect T2DM-associated central ailment.
Collapse
Affiliation(s)
- Kumari Preeti
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Anika Sood
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Valencia Fernandes
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Islauddin Khan
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Dharmendra Kumar Khatri
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
- Department of Pharmacology, Shobhaben Pratapbai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Mumbai, 400056, India.
| | - Shashi Bala Singh
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
4
|
Luque-Uría Á, Calvo MV, Visioli F, Fontecha J. Milk fat globule membrane and its polar lipids: reviewing preclinical and clinical trials on cognition. Food Funct 2024; 15:6783-6797. [PMID: 38828877 DOI: 10.1039/d4fo00659c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
In most parts of the world, life expectancy is increasing thanks to improved healthcare, public health policies, nutrition, and treatment. This increase in lifespan is often not accompanied by an increase in health span, which severely affects people as they age. One notable consequence of this is the increasing prevalence of neurodegenerative diseases such as mild cognitive impairment, dementia, and Alzheimer's disease. Therefore, dietary and pharmaceutical measures must be taken to reduce the burden of such pathologies. Among the different types of nutrients found in the diet, lipids and especially polar lipids are very important for cognition due to their abundance in the brain. Amid the most studied sources of polar lipids, milk fat globule membrane (MFGM) stands out as it is abundant in industrial by-products such as buttermilk. In this narrative review, we discuss the latest, i.e. less than five years old, scientific evidence on the use of MFGM and its polar lipids in cognitive neurodevelopment in early life and their potential effect in preventing neurodegeneration in old age. We conclude that MFGM is an interesting, abundant and exploitable source of relatively inexpensive bioactive molecules that could be properly formulated and utilized in the areas of neurodevelopment and cognitive decline. Sufficiently large randomized controlled trials are required before health-related statements can be made. However, research in this area is progressing rapidly and the evidence gathered points to biological, health-promoting effects.
Collapse
Affiliation(s)
- Álvaro Luque-Uría
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), Madrid 28049, Spain.
| | - María V Calvo
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), Madrid 28049, Spain.
| | - Francesco Visioli
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy.
- IMDEA-Food, Madrid 28049, Spain
| | - Javier Fontecha
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), Madrid 28049, Spain.
| |
Collapse
|
5
|
Reddy SK, Devi V, Seetharaman ATM, Shailaja S, Bhat KMR, Gangaraju R, Upadhya D. Cell and molecular targeted therapies for diabetic retinopathy. Front Endocrinol (Lausanne) 2024; 15:1416668. [PMID: 38948520 PMCID: PMC11211264 DOI: 10.3389/fendo.2024.1416668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Diabetic retinopathy (DR) stands as a prevalent complication in the eye resulting from diabetes mellitus, predominantly associated with high blood sugar levels and hypertension as individuals age. DR is a severe microvascular complication of both type I and type II diabetes mellitus and the leading cause of vision impairment. The critical approach to combatting and halting the advancement of DR lies in effectively managing blood glucose and blood pressure levels in diabetic patients; however, this is seldom achieved. Both human and animal studies have revealed the intricate nature of this condition involving various cell types and molecules. Aside from photocoagulation, the sole therapy targeting VEGF molecules in the retina to prevent abnormal blood vessel growth is intravitreal anti-VEGF therapy. However, a substantial portion of cases, approximately 30-40%, do not respond to this treatment. This review explores distinctive pathophysiological phenomena of DR and identifiable cell types and molecules that could be targeted to mitigate the chronic changes occurring in the retina due to diabetes mellitus. Addressing the significant research gap in this domain is imperative to broaden the treatment options available for managing DR effectively.
Collapse
Affiliation(s)
- Shivakumar K. Reddy
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Vasudha Devi
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Amritha T. M. Seetharaman
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - S. Shailaja
- Department of Ophthalmology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Kumar M. R. Bhat
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Anatomy & Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
6
|
Bertran L, Capellades J, Abelló S, Aguilar C, Auguet T, Richart C. Untargeted lipidomics analysis in women with morbid obesity and type 2 diabetes mellitus: A comprehensive study. PLoS One 2024; 19:e0303569. [PMID: 38743756 PMCID: PMC11093320 DOI: 10.1371/journal.pone.0303569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
There is a phenotype of obese individuals termed metabolically healthy obese that present a reduced cardiometabolic risk. This phenotype offers a valuable model for investigating the mechanisms connecting obesity and metabolic alterations such as Type 2 Diabetes Mellitus (T2DM). Previously, in an untargeted metabolomics analysis in a cohort of morbidly obese women, we observed a different lipid metabolite pattern between metabolically healthy morbid obese individuals and those with associated T2DM. To validate these findings, we have performed a complementary study of lipidomics. In this study, we assessed a liquid chromatography coupled to a mass spectrometer untargeted lipidomic analysis on serum samples from 209 women, 73 normal-weight women (control group) and 136 morbid obese women. From those, 65 metabolically healthy morbid obese and 71 with associated T2DM. In this work, we find elevated levels of ceramides, sphingomyelins, diacyl and triacylglycerols, fatty acids, and phosphoethanolamines in morbid obese vs normal weight. Conversely, decreased levels of acylcarnitines, bile acids, lyso-phosphatidylcholines, phosphatidylcholines (PC), phosphatidylinositols, and phosphoethanolamine PE (O-38:4) were noted. Furthermore, comparing morbid obese women with T2DM vs metabolically healthy MO, a distinct lipid profile emerged, featuring increased levels of metabolites: deoxycholic acid, diacylglycerol DG (36:2), triacylglycerols, phosphatidylcholines, phosphoethanolamines, phosphatidylinositols, and lyso-phosphatidylinositol LPI (16:0). To conclude, analysing both comparatives, we observed decreased levels of deoxycholic acid, PC (34:3), and PE (O-38:4) in morbid obese women vs normal-weight. Conversely, we found elevated levels of these lipids in morbid obese women with T2DM vs metabolically healthy MO. These profiles of metabolites could be explored for the research as potential markers of metabolic risk of T2DM in morbid obese women.
Collapse
Affiliation(s)
- Laia Bertran
- Department of Medicine and Surgery, Study Group on Metabolic Diseases Associated with Insulin-Resistance (GEMMAIR), Rovira i Virgili University, Hospital Universitari de Tarragona Joan XXIII, IISPV, Tarragona, Spain
| | - Jordi Capellades
- Department of Electronic, Electric and Automatic Engineering, Higher Technical School of Engineering, Rovira i Virgili University, IISPV, Tarragona, Spain
| | - Sonia Abelló
- Scientific and Technical Service, Rovira i Virgili University, Tarragona, Spain
| | - Carmen Aguilar
- Department of Medicine and Surgery, Study Group on Metabolic Diseases Associated with Insulin-Resistance (GEMMAIR), Rovira i Virgili University, Hospital Universitari de Tarragona Joan XXIII, IISPV, Tarragona, Spain
| | - Teresa Auguet
- Department of Medicine and Surgery, Study Group on Metabolic Diseases Associated with Insulin-Resistance (GEMMAIR), Rovira i Virgili University, Hospital Universitari de Tarragona Joan XXIII, IISPV, Tarragona, Spain
| | - Cristóbal Richart
- Department of Medicine and Surgery, Study Group on Metabolic Diseases Associated with Insulin-Resistance (GEMMAIR), Rovira i Virgili University, Hospital Universitari de Tarragona Joan XXIII, IISPV, Tarragona, Spain
| |
Collapse
|
7
|
Ding Q, Yu C, Xu X, Hou Y, Miao Y, Yang S, Chen S, Ma X, Zhang Z, Bi Y. Development and Validation of a Risk Score for Mild Cognitive Impairment in Individuals with Type 2 Diabetes in China: A Practical Cognitive Prescreening Tool. Diabetes Metab Syndr Obes 2024; 17:1171-1182. [PMID: 38469108 PMCID: PMC10926865 DOI: 10.2147/dmso.s448321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
Aim Numerous evidence suggests that diabetes increases the risk of cognitive impairment. This study aimed to develop and validate a multivariable risk score model to identify mild cognitive impairment (MCI) in patients with type 2 diabetes mellitus (T2DM). Methods This cross-sectional study included 1256 inpatients (age: 57.5 ± 11.2 years) with T2DM in a tertiary care hospital in China. MCI was diagnosed according to the criteria recommended by the National Institute on Aging-Alzheimer's Association Workgroup, and a MoCA score of 19-25 indicated MCI. Participants were randomly allocated into the derivation and validation sets at 7:3 ratio. Logistic regression models were used to identify predictors for MCI in the derivation set. A scoring system based on the predictors' beta coefficient was developed. Predictive ability of the risk score was tested by discrimination and calibration methods. Results Totally 880 (285 with MCI, 32.4%) and 376 (167 with MCI, 33.8%) patients were allocated in the derivation and validation set, respectively. Age, education, HbA1c, self-reported history of severe hypoglycemia, and microvascular disease were identified as predictors for MCI and constituted the risk score. The AUCs (95% CI) of the risk score were 0.751 (0.717, 0.784) in derivation set and 0.776 (0.727, 0.824) in validation set. The risk score showed good apparent calibration of observed and predicted MCI probabilities and was capable of stratifying individuals into 3 risk categories by two cut-off points (low risk: ≤ 3, medium risk: 4-13, and high risk ≥ 14). Conclusion The risk score based on age, education, HbA1c, self-reported history of severe hypoglycemia, and microvascular disease can effectively assess MCI risk in adults with T2DM at different age. It can serve as a practical prescreening tool for early detection of MCI in daily diabetes care.
Collapse
Affiliation(s)
- Qun Ding
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, People’s Republic of China
- Department of Endocrinology, the Second People’s Hospital of Lianyungang, Lianyungang, People’s Republic of China
| | - Congcong Yu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, People’s Republic of China
| | - Xiang Xu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, People’s Republic of China
| | - Yinjiao Hou
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, People’s Republic of China
| | - Yingwen Miao
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, People’s Republic of China
| | - Sijue Yang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, People’s Republic of China
| | - Shihua Chen
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, People’s Republic of China
| | - Xuelin Ma
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, People’s Republic of China
| | - Zhou Zhang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, People’s Republic of China
| | - Yan Bi
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, People’s Republic of China
| |
Collapse
|
8
|
Wu Y, Tan M, Gao Y, Geng N, Zhong W, Sun H, Li Z, Wu C, Li X, Zhang J. Complement Proteins in Serum Astrocyte-Derived Exosomes Are Associated with Poststroke Cognitive Impairment in Type 2 Diabetes Mellitus Patients. J Alzheimers Dis 2024; 99:291-305. [PMID: 38669534 DOI: 10.3233/jad-231235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Background The complement system plays crucial roles in cognitive impairment and acute ischemic stroke (AIS). High levels of complement proteins in plasma astrocyte-derived exosomes (ADEs) were proven to be associated with Alzheimer's disease. We aimed to investigate the relationship of complement proteins in serum ADEs with poststroke cognitive impairment in type 2 diabetes mellitus (T2DM) patients. Methods This study analyzed 197 T2DM patients who suffered AIS. The Beijing version of the Montreal Cognitive Assessment (MoCA) was used to assess cognitive function. Complement proteins in serum ADEs were quantified using ELISA kits. Results Mediation analyses showed that C5b-9 and C3b in serum ADEs partially mediate the impact of obstructive sleep apnea (OSA), depression, small vessel disease (SVD), and infarct volume on cognitive function at the acute phase of AIS in T2DM patients. After adjusting for age, sex, time, and interaction between time and complement proteins in serum ADEs, the mixed linear regression showed that C3b and complement protein Factor B in serum ADEs were associated with MoCA scores at three-, six-, and twelve-months after AIS in T2DM patients. Conclusions Our study suggested that the impact of OSA, depression, SVD, and infarct volume on cognitive impairment in the acute stage of AIS may partially mediate through the complement proteins in serum ADEs. Additionally, the complement proteins in serum ADEs at the acute phase of AIS associated with MoCA scores at three-, six-, twelve months after AIS in T2DM patients.REGISTRATION: URL: http://www.chictr.org.cn/,ChiCTR1900021544.
Collapse
Affiliation(s)
- Yaxuan Wu
- Weifang Medical University, Weifang, Shandong, China
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Ming Tan
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Yanling Gao
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Na Geng
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Weibin Zhong
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Hairong Sun
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Zhenguang Li
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Chenxi Wu
- Department of Central Sterile Supply Department, Xichang People's Hospital, Xichang, Liangshan Yi Autonomous Prefecture, Sichuan, China
| | - Xuemei Li
- Department of Neurology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Jinbiao Zhang
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| |
Collapse
|
9
|
Asakawa T, Yang Y, Xiao Z, Shi Y, Qin W, Hong Z, Ding D. Stumbling Blocks in the Investigation of the Relationship Between Age-Related Hearing Loss and Cognitive Impairment. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2024; 19:137-150. [PMID: 37410696 DOI: 10.1177/17456916231178554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
The relationship between age-related hearing loss (ARHL) and cognitive impairment (CI) remains intricate. However, there is no robust evidence from experimental or clinical studies to elucidate their relationship. The key unaddressed questions are (a) whether there is a causal effect of ARHL on CI and (b) whether efficacious treatment of ARHL (such as hearing-aid use) ameliorates CI and dementia-related behavioral symptoms. Because of several methodological and systematic flaws/challenges, rigorous verification has not been conducted. Addressing these stumbling blocks is essential to unraveling the relationship between ARHL and CI, which motivated us to undertake this review. Here, we discuss the methodological problems from the perspectives of potential confounding bias, assessments of CI and ARHL, hearing-aid use, functional-imaging studies, and animal models based on the latest information and our experiences. We also identify potential solutions for each problem from the viewpoints of clinical epidemiology. We believe that "objectivity," specifically the use of more objective behavioral assessments and new computerized technologies, may be the key to improving experimental designs for studying the relationship between ARHL and CI.
Collapse
Affiliation(s)
- Tetsuya Asakawa
- Institute of Neurology, The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Diseases, Shenzhen, China
| | - Yunfeng Yang
- Department of Neurosurgery, The Eighth Affiliated Hospital, Sun Yat-sen University
| | - Zhenxu Xiao
- Institute of Neurology, Huashan Hospital, Fudan University
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University
- National Clinical Center for Neurological Disorders, Huashan Hospital, Fudan University
| | - Yirong Shi
- Department of Nursing, The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Diseases,Shenzhen, China
| | - Wei Qin
- Department of Rehabilitation, Enshi Central Hospital, Enshi, China
| | - Zhen Hong
- Institute of Neurology, Huashan Hospital, Fudan University
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University
- National Clinical Center for Neurological Disorders, Huashan Hospital, Fudan University
| | - Ding Ding
- Institute of Neurology, Huashan Hospital, Fudan University
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University
- National Clinical Center for Neurological Disorders, Huashan Hospital, Fudan University
| |
Collapse
|
10
|
Li Q, Zhao Y, Guo H, Li Q, Yan C, Li Y, He S, Wang N, Wang Q. Impaired lipophagy induced-microglial lipid droplets accumulation contributes to the buildup of TREM1 in diabetes-associated cognitive impairment. Autophagy 2023; 19:2639-2656. [PMID: 37204119 PMCID: PMC10472854 DOI: 10.1080/15548627.2023.2213984] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023] Open
Abstract
Neuroinflammation caused by microglial activation and consequent neurological impairment are prominent features of diabetes-associated cognitive impairment (DACI). Microglial lipophagy, a significant fraction of autophagy contributing to lipid homeostasis and inflammation, had mostly been ignored in DACI. Microglial lipid droplets (LDs) accumulation is a characteristic of aging, however, little is known about the pathological role of microglial lipophagy and LDs in DACI. Therefore, we hypothesized that microglial lipophagy could be an Achilles's heel exploitable to develop effective strategies for DACI therapy. Here, starting with characterization of microglial accumulation of LDs in leptin receptor-deficient (db/db) mice and in high-fat diet and STZ (HFD/STZ) induced T2DM mice, as well as in high-glucose (HG)-treated mice BV2, human HMC3 and primary mice microglia, we revealed that HG-dampened lipophagy was responsible for LDs accumulation in microglia. Mechanistically, accumulated LDs colocalized with the microglial specific inflammatory amplifier TREM1 (triggering receptor expressed on myeloid cells 1), resulting in the buildup of microglial TREM1, which in turn aggravates HG-induced lipophagy damage and subsequently promoted HG-induced neuroinflammatory cascades via NLRP3 (NLR family pyrin domain containing 3) inflammasome. Moreover, pharmacological blockade of TREM1 with LP17 in db/db mice and HFD/STZ mice inhibited accumulation of LDs and TREM1, reduced hippocampal neuronal inflammatory damage, and consequently improved cognitive functions. Taken together, these findings uncover a previously unappreciated mechanism of impaired lipophagy-induced TREM1 accumulation in microglia and neuroinflammation in DACI, suggesting its translational potential as an attractive therapeutic target for delaying diabetes-associated cognitive decline.Abbreviations: ACTB: beta actin; AIF1/IBA1: allograft inflammatory factor 1; ALB: albumin; ARG1: arginase 1; ATG3: autophagy related 3; Baf: bafilomycin A1; BECN1: beclin 1, autophagy related; BW: body weight; CNS: central nervous system; Co-IP: co-immunoprecipitation; DACI: diabetes-associated cognitive impairment; DAPI: 4',6-diamidino-2-phenylindole; DGs: dentate gyrus; DLG4/PSD95: discs large MAGUK scaffold protein 4; DMEM: Dulbecco's modified Eagle's medium; DSST: digit symbol substitution test; EDTA: ethylenedinitrilotetraacetic acid; ELISA: enzyme linked immunosorbent assay; GFAP: glial fibrillary acidic protein; HFD: high-fat diet; HG: high glucose; IFNG/IFN-γ: interferon gamma; IL1B/IL-1β: interleukin 1 beta; IL4: interleukin 4; IL6: interleukin 6; IL10: interleukin 10; LDs: lipid droplets; LPS: lipopolysaccharide; MAP2: microtubule associated protein 2; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MWM: morris water maze; NFKB/NF-κB: nuclear factor of kappa light polypeptide gene enhancer in B cells; NLRP3: NLR family pyrin domain containing 3; NOS2/iNOS: nitric oxide synthase 2, inducible; NOR: novel object recognition; OA: oleic acid; PA: palmitic acid; PBS: phosphate-buffered saline; PFA: paraformaldehyde; PLIN2: perilipin 2; PLIN3: perilipin 3; PS: penicillin-streptomycin solution; RAPA: rapamycin; RBFOX3/NeuN: RNA binding protein, fox-1 homolog (C. elegans) 3; RELA/p65: RELA proto-oncogene, NF-kB subunit; ROS: reactive oxygen species; RT: room temperature; RT-qPCR: Reverse transcription quantitative real-time polymerase chain reaction; STZ: streptozotocin; SQSTM1/p62: sequestosome 1; SYK: spleen asociated tyrosine kinase; SYP: synaptophysin; T2DM: type 2 diabetes mellitus; TNF/TNF-α: tumor necrosis factor; TREM1: triggering receptor expressed on myeloid cells 1; TUNEL: terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling.
Collapse
Affiliation(s)
- Qing Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yujing Zhao
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Hongyan Guo
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qiao Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Chaoying Yan
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yansong Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shuxuan He
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Nan Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
11
|
Tan X, Zhang R, Lan M, Wen C, Wang H, Guo J, Zhao X, Xu H, Deng P, Pi H, Yu Z, Yue R, Hu H. Integration of transcriptomics, metabolomics, and lipidomics reveals the mechanisms of doxorubicin-induced inflammatory responses and myocardial dysfunction in mice. Biomed Pharmacother 2023; 162:114733. [PMID: 37087977 DOI: 10.1016/j.biopha.2023.114733] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023] Open
Abstract
Doxorubicin (DOX) is an anthracycline antineoplastic agent that has limited clinical utility due to its dose-dependent cardiotoxicity. Although the exact mechanism remains unknown, inflammatory responses have been implicated in DOX-induced cardiotoxicity (DIC). In this study, we analyzed the transcriptomic, metabolomic as well as lipidomic changes in the DOX-treated mice to explore the underlying mechanisms of DIC. We found that continuous intraperitoneal DOX injections (3 mg/kg/d) for a period of five days significantly induced cardiac dysfunction and cardiac injury in male C57BL/6 J mice (8 weeks old). This corresponded to a significant increase in the myocardial levels of IL-4, IL-6, IL-10, IL-17 and IL-12p70. Furthermore, inflammation-related genes such as Ptgs2, Il1b, Cxcl5, Cxcl1, Cxcl2, Mmp3, Ccl2, Ccl12, Nfkbia, Fos, Mapk11 and Tnf were differentially expressed in the DOX-treated group, and enriched in the IL-17 and TNF signaling pathways. Besides, amino acids, peptides, imidazoles, toluenes, hybrid peptides, fatty acids and lipids such as Hex1Cer, Cer, SM, PG and ACCa were significantly associated with the expression pattern of inflammation-related genes. In conclusion, the integration of transcriptomic, metabolomic and lipidomic data identified potential new targets and biomarkers of DIC.
Collapse
Affiliation(s)
- Xin Tan
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Rongyi Zhang
- Department of Cardiology, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong China; Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Meide Lan
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Cong Wen
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Hao Wang
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Junsong Guo
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Xuemei Zhao
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Hui Xu
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, China
| | - Huifeng Pi
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, China
| | - Zhengping Yu
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, China
| | - Rongchuan Yue
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China.
| | - Houxiang Hu
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510632, China.
| |
Collapse
|
12
|
Xu L, Xiong Q, Du Y, Huang LW, Yu M. Nonlinear relationship between glycated hemoglobin and cognitive impairment after acute mild ischemic stroke. BMC Neurol 2023; 23:116. [PMID: 36949414 PMCID: PMC10031995 DOI: 10.1186/s12883-023-03158-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 03/11/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Stroke is the second most common cause of morbidity and mortality. Even mild stroke survivors have an increased risk of cognitive impairment. Studies have been conducted on the relationship between glycated hemoglobin (HbA1c) and cognitive decline, but the findings have been inconsistent. Therefore, this study examined the link between HbA1c levels and cognitive impairment following acute mild ischemic stroke. METHODS Data from 311 patients with acute mild ischemic stroke admitted to Suining Central Hospital, Sichuan Province, China, from January 1, 2015, to December 31, 2018, were evaluated. Fasting venous blood was taken to assess HbA1c levels on the day after admission. Cognitive function was assessed using the Chinese version of the Montreal Cognitive Assessment Scale (MoCA) 3-6 months after stroke onset. We used a generalized additive model and smooth curve fitting (penalty spline method) to assess the nonlinear relationship between HbA1c and poststroke cognitive impairment (PSCI). RESULTS This study included 311 patients aged 23 to 96 years old (mean age: 67.37 ± 11.92 years), of whom 198 (63.67%) were men. Among the 311 stroke patients, 120 (38.59%) had PSCI. After adjusting for potential confounders, there was a nonlinear relationship between HbA1c and PSCI, with an inflection point of 8.2. To the left of the inflection point, the effect size, 95% confidence interval, and P value were 0.87, 0.58 to 1.31, and 0.5095, respectively; however, to the right of the inflection point, these numbers were 1.96, 1.08 to 3.58, and 0.0280. CONCLUSION We found a nonlinear relationship between HbA1c and PSCI. When HbA1c was greater than 8.2%, HbA1c was positively correlated with PSCI.
Collapse
Affiliation(s)
- Lei Xu
- Department of Neurology, Suining Central Hospital, Suining, 629000, China
| | - Qin Xiong
- Department of Internal Medicine, the Third People's Hospital of Suining, Suining, 629000, China
| | - Yang Du
- Department of Neurology, Suining Central Hospital, Suining, 629000, China
| | - Lu-Wen Huang
- Department of Neurology, Suining Central Hospital, Suining, 629000, China
| | - Ming Yu
- Department of Neurology, Suining Central Hospital, Suining, 629000, China.
| |
Collapse
|
13
|
Kinattingal N, Mehdi S, Undela K, Wani SUD, Almuqbil M, Alshehri S, Shakeel F, Imam MT, Manjula SN. Prevalence of Cognitive Decline in Type 2 Diabetes Mellitus Patients: A Real-World Cross-Sectional Study in Mysuru, India. J Pers Med 2023; 13:jpm13030524. [PMID: 36983706 PMCID: PMC10052732 DOI: 10.3390/jpm13030524] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The goal of this research is to study the prevalence of cognitive impairment in diabetes mellitus (DM) patients and establish the necessity of detecting and treating it early in these patients. A cross-sectional study was conducted at a tertiary care hospital in Mysuru for 4 months examined diabetic patients (test) and nondiabetic subjects (control) for cognitive decline using the Montreal Cognitive Assessment (MoCA) tool. Cognitive functions such as visuospatial/executive function, naming, attention, language, abstraction, delayed recall, and orientation were assessed in both groups. The diabetic group showed a significantly lower total MoCA score than the non-diabetic group (18.99 ± 0.48 and 26.21 ± 0.46, respectively; p < 0.001). Assessment of scores in diabetic patients demonstrated the significant influence of age demographics on cognitive impairment (p-value < 0.001). Furthermore, a higher proportion of diabetic patients displayed cognitive impairment despite a higher score in a single subdomain, making it evident that diabetes is diverse and multifactorial in origin, where oxidative stress and inflammatory responses play a predominant role. This study suggested that the local T2DM population residing in Mysuru (India) has a high prevalence of cognitive impairment, evident from poor performance in almost all cognitive domains assessed by MoCA. Future studies could examine the generalizability of cognitive function findings in diabetic patients across diverse geographic regions and ethnic groups, as well as investigate interventions such as lifestyle modifications and medication to prevent or delay cognitive decline in those with diabetes.
Collapse
Affiliation(s)
- Nabeel Kinattingal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Seema Mehdi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Krishna Undela
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, India
| | - Shahid Ud Din Wani
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Mansour Almuqbil
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad T. Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Santhepete N. Manjula
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India
- Correspondence:
| |
Collapse
|
14
|
Reddy SK, Ballal AR, Shailaja S, Seetharam RN, Raghu CH, Sankhe R, Pai K, Tender T, Mathew M, Aroor A, Shetty AK, Adiga S, Devi V, Muttigi MS, Upadhya D. Small extracellular vesicle-loaded bevacizumab reduces the frequency of intravitreal injection required for diabetic retinopathy. Theranostics 2023; 13:2241-2255. [PMID: 37153730 PMCID: PMC10157735 DOI: 10.7150/thno.78426] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 03/01/2023] [Indexed: 05/10/2023] Open
Abstract
Diabetic retinopathy (DR) is associated with retinal neovascularization, hard exudates, inflammation, oxidative stress and cell death, leading to vision loss. Anti-vascular endothelial growth factor (Anti-VEGF) therapy through repeated intravitreal injections is an established treatment for reducing VEGF levels in the retina for inhibiting neovascularization and leakage of hard exudates to prevent vision loss. Although anti-VEGF therapy has several clinical benefits, its monthly injection potentially causes devastating ocular complications, including trauma, intraocular hemorrhage, retinal detachment, endophthalmitis, etc. Methods: As mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (MSC-EVs) demonstrated safety in clinical studies, we have tested the efficacy of MSC-derived small EVs (MSC-sEVs) loaded anti-VEGF drug bevacizumab in a rat model of DR. Results: The study identified a clinically significant finding that sEV loaded with bevacizumab reduces the frequency of intravitreal injection required for treating diabetic retinopathy. The sustained effect is observed from the reduced levels of VEGF, exudates and leukostasis for more than two months following intravitreal injection of sEV loaded with bevacizumab, while bevacizumab alone could maintain reduced levels for about one month. Furthermore, retinal cell death was consistently lower in this period than only bevacizumab. Conclusion: This study provided significant evidence for the prolonged benefits of sEVs as a drug delivery system. Also, EV-mediated drug delivery systems could be considered for clinical application of retinal diseases as they maintain vitreous clarity in the light path due to their composition being similar to cells.
Collapse
Affiliation(s)
- Shivakumar K Reddy
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Abhijna R Ballal
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, India
| | - S Shailaja
- Department of Ophthalmology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Raviraja N Seetharam
- Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Chandrashekar H Raghu
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Runali Sankhe
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kanthilatha Pai
- Department of Pathology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Tenzin Tender
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Mary Mathew
- Department of Pathology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Annayya Aroor
- Divison of Endocrinology, Diabetes and Metabolism, Department of Medicine, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX, United States
| | - Shalini Adiga
- Department of Pharmacology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vasudha Devi
- Department of Pharmacology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Manjunatha S Muttigi
- Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, India
- ✉ Corresponding author: Dr. Dinesh Upadhya, Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India. ; Phone: +91 820 2923611; Total word count: 9923
| |
Collapse
|
15
|
Gao H, Zhou Y, Jin PS, Wu DG, Wang YN, Zhao X, Zhao B. Molecular alteration of the proteasome contributes to AD-like pathology in the brain of HFD-STZ diabetic rats. Metab Brain Dis 2022; 38:1013-1024. [PMID: 36580191 DOI: 10.1007/s11011-022-01151-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
Diabetes-related cognitive impairment has been shown in diverse epidemiological investigations and lab-based studies, although the underlying pathological mechanisms remain unclear. Unbalanced protein homeostasis may contribute to cognitive decline by inducing abnormal protein aggregation in the diabetic brain. This study aimed to determine possible changes in the proteasome, which is an important pathway involved in abnormal protein degradation. To this end, we examined potential alterations of proteasomal subunits and hydrolytic activity in the brain of diabetic rats fed with high-fat diet combined with small doses of streptozotocin (STZ). Furthermore, lactacystin were used to inhibit proteasomal activity in vivo and typical Alzheimer's disease (AD)-like pathologies were detected, including amyloid-beta, tau phosphorylation, and oxidative protein changes. Our results showed that proteasomal activity increased in the brains of diabetic rats compared to age-matched control rats. After proteasome inhibition, the levels of tau phosphorylation and protein oxidative modification significantly increased; however, no changes were detected in the pathway involved in amyloid production. These results indicated that changes in protein homeostasis balance in diabetes play a role in some typical AD-like changes, especially in oxidative protein degradation, providing evidence that prevention of diabetes-induced protein imbalance may be a potential therapeutic target.
Collapse
Affiliation(s)
- Han Gao
- School of Basic Medicine Sciences, Dali University, 6Th Xue-Ren Road, Dali, 671000, Yunnan Province, People's Republic of China
| | - Ye Zhou
- School of Basic Medicine Sciences, Dali University, 6Th Xue-Ren Road, Dali, 671000, Yunnan Province, People's Republic of China
| | - Peng-Shuai Jin
- School of Basic Medicine Sciences, Dali University, 6Th Xue-Ren Road, Dali, 671000, Yunnan Province, People's Republic of China
- Zhalantun Vocational College, 20Th Zhongyang Road, Hulunbuir, NeiMonggol Autonomous Region, People's Republic of China
| | - Dong-Gui Wu
- School of Basic Medicine Sciences, Dali University, 6Th Xue-Ren Road, Dali, 671000, Yunnan Province, People's Republic of China
- Zhuhai City People's Hospital, Zhuhai, Guangdong Province, People's Republic of China
| | - Yu-Na Wang
- School of Basic Medicine Sciences, Dali University, 6Th Xue-Ren Road, Dali, 671000, Yunnan Province, People's Republic of China
| | - Xi Zhao
- School of Basic Medicine Sciences, Dali University, 6Th Xue-Ren Road, Dali, 671000, Yunnan Province, People's Republic of China
| | - Bei Zhao
- School of Basic Medicine Sciences, Dali University, 6Th Xue-Ren Road, Dali, 671000, Yunnan Province, People's Republic of China.
- Li Yunqing Expert Workstation of Yunnan Province (No.202005AF150014), Dali University, 6Th Xue-Ren Road, Dali, Yunnan Province, People's Republic of China.
| |
Collapse
|