1
|
Harrison BR, Partida-Aguilar M, Marye A, Djukovic D, Kauffman M, Dunbar MD, Mariner BL, McCoy BM, Algavi YM, Muller E, Baum S, Bamberger T, Raftery D, Creevy KE, Avery A, Borenstein E, Snyder-Mackler N, Promislow DE. Protein catabolites as blood-based biomarkers of aging physiology: Findings from the Dog Aging Project. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618956. [PMID: 39484426 PMCID: PMC11526923 DOI: 10.1101/2024.10.17.618956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Our understanding of age-related physiology and metabolism has grown through the study of systems biology, including transcriptomics, single-cell analysis, proteomics and metabolomics. Studies in lab organisms in controlled environments, while powerful and complex, fall short of capturing the breadth of genetic and environmental variation in nature. Thus, there is now a major effort in geroscience to identify aging biomarkers and to develop aging interventions that might be applied across the diversity of humans and other free-living species. To meet this challenge, the Dog Aging Project (DAP) is designed to identify cross-sectional and longitudinal patterns of aging in complex systems, and how these are shaped by the diversity of genetic and environmental variation among companion dogs. Here we surveyed the plasma metabolome from the first year of sampling of the Precision Cohort of the DAP. By incorporating extensive metadata and whole genome sequencing information, we were able to overcome the limitations inherent in breed-based estimates of genetic and physiological effects, and to probe the physiological and dietary basis of the age-related metabolome. We identified a significant effect of age on approximately 40% of measured metabolites. Among other insights, we discovered a potentially novel biomarker of age in the post-translationally modified amino acids (ptmAAs). The ptmAAs, which can only be generated by protein hydrolysis, covaried both with age and with other biomarkers of amino acid metabolism, and in a way that was robust to diet. Clinical measures of kidney function mediated about half of the higher ptmAA levels in older dogs. This work identifies ptmAAs as robust indicators of age in dogs, and points to kidney function as a physiological mediator of age-associated variation in the plasma metabolome.
Collapse
|
2
|
Mochel JP, Ward JL, Blondel T, Kundu D, Merodio MM, Zemirline C, Guillot E, Giebelhaus RT, de la Mata P, Iennarella-Servantez CA, Blong A, Nam SL, Harynuk JJ, Suchodolski J, Tvarijonaviciute A, Cerón JJ, Bourgois-Mochel A, Zannad F, Sattar N, Allenspach K. Preclinical modeling of metabolic syndrome to study the pleiotropic effects of novel antidiabetic therapy independent of obesity. Sci Rep 2024; 14:20665. [PMID: 39237601 PMCID: PMC11377553 DOI: 10.1038/s41598-024-71202-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
Cardiovascular-kidney-metabolic health reflects the interactions between metabolic risk factors, chronic kidney disease, and the cardiovascular system. A growing body of literature suggests that metabolic syndrome (MetS) in individuals of normal weight is associated with a high prevalence of cardiovascular diseases and an increased mortality. The aim of this study was to establish a non-invasive preclinical model of MetS in support of future research focusing on the effects of novel antidiabetic therapies beyond glucose reduction, independent of obesity. Eighteen healthy adult Beagle dogs were fed an isocaloric Western diet (WD) for ten weeks. Biospecimens were collected at baseline (BAS1) and after ten weeks of WD feeding (BAS2) for measurement of blood pressure (BP), serum chemistry, lipoprotein profiling, blood glucose, glucagon, insulin secretion, NT-proBNP, angiotensins, oxidative stress biomarkers, serum, urine, and fecal metabolomics. Differences between BAS1 and BAS2 were analyzed using non-parametric Wilcoxon signed-rank testing. The isocaloric WD model induced significant variations in several markers of MetS, including elevated BP, increased glucose concentrations, and reduced HDL-cholesterol. It also caused an increase in circulating NT-proBNP levels, a decrease in serum bicarbonate, and significant changes in general metabolism, lipids, and biogenic amines. Short-term, isocaloric feeding with a WD in dogs replicated key biological features of MetS while also causing low-grade metabolic acidosis and elevating natriuretic peptides. These findings support the use of the WD canine model for studying the metabolic effects of new antidiabetic therapies independent of obesity.
Collapse
Affiliation(s)
- Jonathan P Mochel
- Precision One Health Initiative, Department of Pathology, University of Georgia College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA, 30602, USA.
- SMART Pharmacology, Iowa State University, Ames, IA, 50011-1250, USA.
| | - Jessica L Ward
- Veterinary Clinical Sciences, Iowa State University, Ames, IA, 50011-1250, USA
| | | | - Debosmita Kundu
- SMART Pharmacology, Iowa State University, Ames, IA, 50011-1250, USA
| | - Maria M Merodio
- Veterinary Clinical Sciences, Iowa State University, Ames, IA, 50011-1250, USA
| | | | | | - Ryland T Giebelhaus
- The Metabolomics Innovation Centre, Department of Chemistry, University of Alberta, T6G 2G2, Edmonton, Canada
| | - Paulina de la Mata
- The Metabolomics Innovation Centre, Department of Chemistry, University of Alberta, T6G 2G2, Edmonton, Canada
| | | | - April Blong
- Veterinary Clinical Sciences, Iowa State University, Ames, IA, 50011-1250, USA
| | - Seo Lin Nam
- The Metabolomics Innovation Centre, Department of Chemistry, University of Alberta, T6G 2G2, Edmonton, Canada
| | - James J Harynuk
- The Metabolomics Innovation Centre, Department of Chemistry, University of Alberta, T6G 2G2, Edmonton, Canada
| | - Jan Suchodolski
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, 77845, USA
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, Espinardo, 30100, Murcia, Spain
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, Espinardo, 30100, Murcia, Spain
| | - Agnes Bourgois-Mochel
- Precision One Health Initiative, Department of Pathology, University of Georgia College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
- SMART Pharmacology, Iowa State University, Ames, IA, 50011-1250, USA
| | - Faiez Zannad
- Université de Lorraine, Centre d'Investigations Cliniques Plurithématique 1433 and Inserm U1116, CHRU Nancy, FCRIN INI-CRCT, 54000, Nancy, France
| | - Naveed Sattar
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Karin Allenspach
- Precision One Health Initiative, Department of Pathology, University of Georgia College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
- SMART Pharmacology, Iowa State University, Ames, IA, 50011-1250, USA
| |
Collapse
|
3
|
Peloquin M, Tovar A, Graves JL, Stefanovski D, Tucker K, Marietti E, Greenwood K, Halioua-Haubold CL, Juarez-Salinas D. Saturated fatty acid concentrations are predictive of insulin sensitivity and beta cell compensation in dogs. Sci Rep 2024; 14:12639. [PMID: 38825593 PMCID: PMC11144705 DOI: 10.1038/s41598-024-63373-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024] Open
Abstract
Chronic feeding of a high fat diet (HFD) in preclinical species induces broad metabolic dysfunction characterized by body weight gain, hyperinsulinemia, dyslipidemia and impaired insulin sensitivity. The plasma lipidome is not well characterized in dogs with HFD-induced metabolic dysfunction. We therefore aimed to describe the alterations that occur in the plasma lipid composition of dogs that are fed a HFD and examine the association of these changes with the clinical signs of metabolic dysfunction. Dogs were fed a normal diet (ND) or HFD for 12 weeks. Insulin sensitivity (SI) and beta cell compensation (AIRG) were assessed through an intravenous glucose tolerance test (IVGTT) and serum biochemistry was analyzed before the introduction of HFD and again after 12 weeks of continued ND or HFD feeding. Plasma lipidomics were conducted prior to the introduction of HFD and again at week 8 in both ND and HFD-fed dogs. 12 weeks of HFD feeding resulted in impaired insulin sensitivity and increased beta cell compensation measured by SI (ND mean: 11.5 [mU/l]-1 min-1, HFD mean: 4.7 [mU/l]-1 min-1) and AIRG (ND mean: 167.0 [mU/l]min, HFD mean: 260.2 [mU/l]min), respectively, compared to dogs fed ND over the same duration. Chronic HFD feeding increased concentrations of plasma lipid species and deleterious fatty acids compared to dogs fed a ND. Saturated fatty acid (SFA) concentrations were significantly associated with fasting insulin (R2 = 0.29), SI (R2 = 0.49) and AIRG (R2 = 0.37) in all dogs after 12 weeks, irrespective of diet. Our results demonstrate that chronic HFD feeding leads to significant changes in plasma lipid composition and fatty acid concentrations associated with metabolic dysfunction. High SFA concentrations may be predictive of deteriorated insulin sensitivity in dogs.
Collapse
Affiliation(s)
| | | | | | - Darko Stefanovski
- Department of Clinical Studies - NBC, University of Pennsylvania School of Veterinary Medicine, Kennett Square, PA, USA
| | | | | | | | | | | |
Collapse
|
4
|
Wang Z, Yang Q. The causal relationship between human blood metabolites and the risk of visceral obesity: a mendelian randomization analysis. Lipids Health Dis 2024; 23:39. [PMID: 38326855 PMCID: PMC10851536 DOI: 10.1186/s12944-024-02035-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND We aimed to explore the causal relationship between blood metabolites and the risk of visceral obesity, as measured by visceral adipose tissue (VAT). METHODS Summary statistics for 486 blood metabolites and total, as well as sex-stratified, MRI-derived VAT measurements, adjusted for body mass index (BMI) and height, were collected from previous genome-wide association studies (GWAS). A two-sample Mendelian Randomization (MR) design was used. Comprehensive evaluation was further conducted, including sensitivity analysis, linkage disequilibrium score (LDSC) regression, Steiger test, and metabolic pathway analysis. RESULTS After multiple testing correction, arachidonate (20:4n6) has been implicated in VAT accumulation (β = 0.35, 95%CI:0.18-0.52, P < 0.001; FDR = 0.025). Additionally, several blood metabolites were identified as potentially having causal relationship (FDR < 0.10). Among them, lysine (β = 0.67, 95%CI: 0.28-1.06, P < 0.001; FDR = 0.074), proline (β = 0.30, 95%CI:0.13-0.48, P < 0.001; FDR = 0.082), valerate (β = 0.50, 95%CI:0.23-0.78, P < 0.001, FDR = 0.091) are associated with an increased risk of VAT accumulation. On the other hand, glycine (β=-0.21, 95%CI: -0.33-0.09), P < 0.001, FDR = 0.076) have a protective effect against VAT accumulation. Most blood metabolites showed consistent trends between different sexes. Multivariable MR analysis demonstrated the effect of genetically predicted arachidonate (20:4n6) and proline on VAT remained after accounting for BMI and glycated hemoglobin (HbA1c). There is no evidence of heterogeneity, pleiotropy, and reverse causality. CONCLUSION Our MR findings suggest that these metabolites may serve as biomarkers, as well as for future mechanistic exploration and drug target selection of visceral obesity.
Collapse
Affiliation(s)
- Zhaoxiang Wang
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, 215300, China
| | - Qichao Yang
- Department of Endocrinology, Affiliated Wujin Hospital of Jiangsu University, Changzhou, Jiangsu, 213017, China.
- Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, 213017, China.
| |
Collapse
|
5
|
Kargbo RB. Microbiome: The Next Frontier in Psychedelic Renaissance. J Xenobiot 2023; 13:386-401. [PMID: 37606422 PMCID: PMC10443327 DOI: 10.3390/jox13030025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 08/23/2023] Open
Abstract
The psychedelic renaissance has reignited interest in the therapeutic potential of psychedelics for mental health and well-being. An emerging area of interest is the potential modulation of psychedelic effects by the gut microbiome-the ecosystem of microorganisms in our digestive tract. This review explores the intersection of the gut microbiome and psychedelic therapy, underlining potential implications for personalized medicine and mental health. We delve into the current understanding of the gut-brain axis, its influence on mood, cognition, and behavior, and how the microbiome may affect the metabolism and bioavailability of psychedelic substances. We also discuss the role of microbiome variations in shaping individual responses to psychedelics, along with potential risks and benefits. Moreover, we consider the prospect of microbiome-targeted interventions as a fresh approach to boost or modulate psychedelic therapy's effectiveness. By integrating insights from the fields of psychopharmacology, microbiology, and neuroscience, our objective is to advance knowledge about the intricate relationship between the microbiome and psychedelic substances, thereby paving the way for novel strategies to optimize mental health outcomes amid the ongoing psychedelic renaissance.
Collapse
Affiliation(s)
- Robert B Kargbo
- Usona Institute, 2800 Woods Hollow Rd., Madison, WI 53711-5300, USA
| |
Collapse
|
6
|
Yuan H, Zhu B, Li C, Zhao Z. Ceramide in cerebrovascular diseases. Front Cell Neurosci 2023; 17:1191609. [PMID: 37333888 PMCID: PMC10272456 DOI: 10.3389/fncel.2023.1191609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Ceramide, a bioactive sphingolipid, serves as an important second messenger in cell signal transduction. Under stressful conditions, it can be generated from de novo synthesis, sphingomyelin hydrolysis, and/or the salvage pathway. The brain is rich in lipids, and abnormal lipid levels are associated with a variety of brain disorders. Cerebrovascular diseases, which are mainly caused by abnormal cerebral blood flow and secondary neurological injury, are the leading causes of death and disability worldwide. There is a growing body of evidence for a close connection between elevated ceramide levels and cerebrovascular diseases, especially stroke and cerebral small vessel disease (CSVD). The increased ceramide has broad effects on different types of brain cells, including endothelial cells, microglia, and neurons. Therefore, strategies that reduce ceramide synthesis, such as modifying sphingomyelinase activity or the rate-limiting enzyme of the de novo synthesis pathway, serine palmitoyltransferase, may represent novel and promising therapeutic approaches to prevent or treat cerebrovascular injury-related diseases.
Collapse
|
7
|
Wu T, Chen Y, Yang M, Wang S, Wang X, Hu M, Cheng X, Wan J, Hu Y, Ding Y, Zhang X, Ding M, He Z, Li H, Zhang XJ. Comparative plasma and urine metabolomics analysis of juvenile and adult canines. Front Vet Sci 2023; 9:1037327. [PMID: 36699333 PMCID: PMC9868312 DOI: 10.3389/fvets.2022.1037327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/15/2022] [Indexed: 01/10/2023] Open
Abstract
Background and aims The metabolomic profile of a biofluid can be affected by age, and thus provides detailed information about the metabolic alterations in biological processes and reflects the in trinsic rule regulating the growth and developmental processes. Methods To systemically investigate the characteristics of multiple metabolic profiles associated with canine growth, we analyzed the metabolomics in the plasma and urine samples from 15 young and 15 adult beagle dogs via UHPLC-Q-TOFMS-based metabolomics. Blood routine and serum biochemical analyses were also performed on fasting blood samples. Results The metabolomics results showed remarkable differences in metabolite fingerprints both in plasma and urine between the young and adult groups. The most obvious age-related metabolite alterations include decreased serumlevels of oxoglutaric acid and essential amino acids and derivatives but increased levels of urine levels of O-acetylserine. These changes primarily involved in amino acid metabolism and bile secretion pathways. We also found that the levels of glutamine were consistently higher in both serum and urine of adults, while N-acetylhistamine and uracil concentrations were much lower in the adult group compared to younger ones. Conclusion Our study provides a whole metabolic profile of serum and urine characteristics of young and adult canines, identifying several metabolites that were significantly associated with age change, which provides theoretical support for the nutrition-related research and age-related homeostasis maintenance in dogs.
Collapse
Affiliation(s)
- Taibo Wu
- School of Basic Medical Science, Wuhan University, Wuhan, China,Institute of Model Animal, Wuhan University, Wuhan, China
| | - Yun Chen
- Institute of Model Animal, Wuhan University, Wuhan, China,Clinical Trial Centers, Huanggang Central Hospital, Huanggang, China
| | - Mingzi Yang
- School of Basic Medical Science, Wuhan University, Wuhan, China,Institute of Model Animal, Wuhan University, Wuhan, China
| | - Shuang Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaoming Wang
- School of Basic Medical Science, Wuhan University, Wuhan, China,Institute of Model Animal, Wuhan University, Wuhan, China
| | - Manli Hu
- School of Basic Medical Science, Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, Gannan Medical University, Ganzhou, China,Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Xu Cheng
- School of Basic Medical Science, Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, Gannan Medical University, Ganzhou, China,Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Juan Wan
- School of Basic Medical Science, Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, Gannan Medical University, Ganzhou, China,Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Yufeng Hu
- School of Basic Medical Science, Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, Gannan Medical University, Ganzhou, China,Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Yi Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xin Zhang
- School of Basic Medical Science, Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, Gannan Medical University, Ganzhou, China,Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Mingxing Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhengming He
- Institute of Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Hongliang Li
- School of Basic Medical Science, Wuhan University, Wuhan, China,Institute of Model Animal, Wuhan University, Wuhan, China,Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China,*Correspondence: Hongliang Li ✉
| | - Xiao-Jing Zhang
- School of Basic Medical Science, Wuhan University, Wuhan, China,Institute of Model Animal, Wuhan University, Wuhan, China,Xiao-Jing Zhang ✉
| |
Collapse
|
8
|
Xue J, Lu Y, Zou T, Shi W, Wang S, Cheng X, Wan J, Chen Y, Wang M, Wang Q, Yang X, Ding M, Qi Z, Ding Y, Hu M, Zhang X, Li H, Hu Y. A protein- and fiber-rich diet with astaxanthin alleviates high-fat diet-induced obesity in beagles. Front Nutr 2022; 9:1019615. [DOI: 10.3389/fnut.2022.1019615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background and aimsOverweight or obesity is one of the most prevalent health burdens in companion pets and predisposes subjects to multiple comorbidities and reduced longevity. Dietary management and sufficient exercise are effective options for weight loss but challenged by modern lifestyle and calorie control-triggered malnutrition. Therefore, this study aimed to develop a formulated obesity control diet characterized by protein- and fiber-rich diet and supplemented with astaxanthin. We systemically evaluated global influences of the designed weight-loss diet on metabolic homeostasis in an obese beagle model.Materials and methodsBeagles were induced for obesity by a 24-week HFD treatment and then included into weight-loss programs. Briefly, obese beagles were randomly assigned to two groups that were fed with a formulated weight-loss diet or control diet, respectively. Body weight and body condition scoring (BCS) were analyzed biweekly. Computed tomography (CT), nuclear magnetic resonance imaging (MRI) measurements, and blood and adipose tissue biopsies were collected at 0 and 8 weeks. Plasma lipids and adipocyte size were also measured after 8 weeks of weight-loss diet feeding. The global influence of the formulated diet on the whole spectrum of gene panels were examined by adipose RNA assays.ResultsTwenty-four weeks of continuous HFD feeding significantly induced obesity in beagles, as evidenced by increased body weight, BCS, abdominal fat mass, and serum lipid levels. The obese and metabolic condition of the modeled canine were effectively improved by an 8-week weight-loss diet administration. Importantly, we did not observe any side effects during the weight loss duration. Transcriptional analysis of adipose tissues further supported that a weight-loss diet significantly increased energy metabolism-related pathways and decreased lipid synthesis-related pathways.ConclusionThe prescribed weight-loss diet exhibited profound benefits in canine weight management with well safety and palatability. These findings support effective strategies of nutritional management and supplementation approaches for weight control in companion animals.
Collapse
|