1
|
Tasma Z, Garelja ML, Jamaluddin A, Alexander TI, Rees TA. Where are we now? Biased signalling of Class B G protein-coupled receptor-targeted therapeutics. Pharmacol Ther 2025; 270:108846. [PMID: 40216261 DOI: 10.1016/j.pharmthera.2025.108846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/07/2025] [Accepted: 03/24/2025] [Indexed: 04/19/2025]
Abstract
Class B G protein-coupled receptors (GPCRs) are a subfamily of 15 peptide hormone receptors with diverse roles in physiological functions and disease pathogenesis. Over the past decade, several novel therapeutics targeting these receptors have been approved for conditions like migraine, diabetes, and obesity, many of which are ground-breaking and first-in-class. Most of these therapeutics are agonist analogues with modified endogenous peptide sequences to enhance receptor activation or stability. Several small molecule and monoclonal antibody antagonists have also been approved or are in late-stage development. Differences in the sequence and structure of these therapeutic ligands lead to distinct signalling profiles, including biased behaviour or inhibition of specific pathways. Understanding this biased pharmacology offers unique development opportunities for improving therapeutic efficacy and reducing adverse effects. This review summarises current knowledge on the ligand bias of approved class B GPCR drugs, highlights strategies to refine and exploit their pharmacological profiles, and discusses key considerations related to receptor structure, localisation, and regulation for developing new therapies.
Collapse
Affiliation(s)
- Zoe Tasma
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Michael L Garelja
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Aqfan Jamaluddin
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Tyla I Alexander
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Tayla A Rees
- Headache Group, Wolfson Sensory Pain and Regeneration Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
2
|
Jiang L, Zhou L, Liu J, Wang G. Baseline glucagon impacts glucose-lowering effects of acarbose but not metformin: A sub-analysis of MARCH study. Diabetes Res Clin Pract 2025; 224:112207. [PMID: 40319921 DOI: 10.1016/j.diabres.2025.112207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/17/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND The impact of glucagon on glucose-lowering therapies remains unclear. This study evaluated the effect of baseline glucagon levels on acarbose and metformin efficacy in newly diagnosed type 2 diabetes. METHODS A sub-analysis of the MARCH trial was conducted, involving 493 patients randomly assigned to receive either acarbose (300 mg/day) or metformin (1500 mg/day) for 48 weeks. Participants were grouped into low, medium, and high glucagon based on baseline tertiles. The primary outcome was changes in glycated hemoglobin A1c (HbA1c) at 24 and 48 weeks. RESULTS Significant reductions in HbA1c were observed in both acarbose and metformin groups at 24 and 48 weeks. In the acarbose group, higher baseline glucagon levels correlated with greater HbA1c reductions at 24 weeks (-1.32 % for high and -1.27 % for medium vs. -0.87 % for low; both P < 0.05) and at 48 weeks (-1.23 % for high and -1.30 % for medium vs. -0.79 % for low; both P < 0.05), while metformin showed consistent glucose-lowering effects across all glucagon subgroups. CONCLUSION Higher baseline glucagon significantly enhanced the glucose-lowering efficacy of acarbose but not metformin, suggesting glucagon could guide personalized diabetes treatment.
Collapse
Affiliation(s)
- Lanxuan Jiang
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China
| | - Liyuan Zhou
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jia Liu
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Guang Wang
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
3
|
Gautam SK, Paul RK, Jain S, Kumar V, Raza K. GC-MS profiling and computational analysis of Balanites aegyptiaca phytoconstituents for antidiabetic activity: insights from network pharmacology and molecular docking. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04187-8. [PMID: 40328910 DOI: 10.1007/s00210-025-04187-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/14/2025] [Indexed: 05/08/2025]
Abstract
This study investigates the antidiabetic potential of the extracts and subsequent phytochemicals of Balanites aegyptiaca (BA). The approaches used were GC-MS for phytochemical characterization, network pharmacology for target identification, in vitro studies, and computational techniques for the antidiabetic activity. Network pharmacology revealed genes-associated disease targets, i.e., IL-6, PPARα, GCG, and GCK, and their signaling pathways that were modulated by the identified phytocompounds. In vitro assays demonstrated substantial antioxidant activity of n-hexane and ethyl acetate extracts and were found to be comparable to ascorbic acid. The anti-inflammatory potential using the egg albumin method was found to be best for n-hexane extract in comparison to aspirin. The in vitro antidiabetic activity using α-amylase inhibition method was most pronounced in the methanol extract and was found to be comparable to acarbose. Molecular docking and molecular dynamics simulations (100 ns) identified stable interactions between BA-derived compounds and target proteins. In silico pharmacokinetic investigations revealed that the heptadecanoic acid and ragaglitazar exhibited the LD50 of 900 and 1600 mg/kg, vouching for the substantial safety. Molecular dynamics simulations confirmed the greater stability of protein-ligand complexes and also inferred about the possible ligand-protein interactions. The BA phytocompounds inherit huge potential in the management of diabetes, with promising antioxidant, anti-inflammatory, and antidiabetic effects.
Collapse
Affiliation(s)
- Surendra Kumar Gautam
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Rakesh Kumar Paul
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Smita Jain
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India.
| | - Vipin Kumar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
4
|
Dobriceanu RC, Meca AD, Boboc IKS, Mititelu-Tartau L, Naidin MS, Turcu-Stiolica A, Bogdan M. Pentraxin-3 as a Biomarker in Diabetes Mellitus: Insights into Inflammation, Vascular Complications, and Modulation by Antidiabetic Medications. Biomedicines 2025; 13:891. [PMID: 40299501 PMCID: PMC12024795 DOI: 10.3390/biomedicines13040891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
Diabetes mellitus (DM) is a multifactorial metabolic disorder associated with systemic inflammation and vascular complications. Pentraxin-3 (PTX3) has emerged as a key biomarker of inflammation and endothelial dysfunction in DM. We aimed to examine the role of PTX3 in DM and assesses the impact of pharmacological interventions on its expression. The review included studies analyzing PTX3 modulation by antidiabetic therapies, such as sodium-glucose cotransporter-2 inhibitors (SGLT-2i), glucagon-like peptide-1 agonists (GLP-1a), and dipeptidyl peptidase-4 inhibitors (DPP-4i), as well as the effects of lifestyle interventions. Clinical and experimental studies demonstrated a strong correlation between PTX3 levels and DM progression. Elevated PTX3 levels were associated with diabetic complications, including nephropathy, retinopathy, and cardiovascular diseases. Antidiabetic drugs showed differential effects on PTX3 expression, with GLP-1a and DPP-4i significantly reducing PTX3 levels, while SGLT-2i displayed a paradoxical increase. Lifestyle interventions, including dietary modifications and weight loss, yielded inconsistent effects, suggesting genetic and metabolic factors influence PTX3 regulation. While pharmacological therapies, particularly GLP-1a and DPP-4i, demonstrate anti-inflammatory effects, further research is needed to standardize PTX3 measurement and explore its potential as a therapeutic target. Personalized treatment strategies incorporating genetic profiling may optimize inflammation control and disease management in DM patients.
Collapse
Affiliation(s)
| | - Andreea Daniela Meca
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.D.M.); (M.B.)
| | - Ianis Kevyn Stefan Boboc
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.D.M.); (M.B.)
| | - Liliana Mititelu-Tartau
- Department of Pharmacology, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mihaela Simona Naidin
- Department of Pharmaceutical Marketing and Management, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (M.S.N.); (A.T.-S.)
| | - Adina Turcu-Stiolica
- Department of Pharmaceutical Marketing and Management, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (M.S.N.); (A.T.-S.)
| | - Maria Bogdan
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.D.M.); (M.B.)
| |
Collapse
|
5
|
Lorente JS, Sokolov AV, Ferguson G, Schiöth HB, Hauser AS, Gloriam DE. GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 2025:10.1038/s41573-025-01139-y. [PMID: 40033110 DOI: 10.1038/s41573-025-01139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 03/05/2025]
Abstract
G protein-coupled receptors (GPCRs) form one of the largest drug target families, reflecting their involvement in numerous pathophysiological processes. In this Review, we analyse drug discovery trends for the GPCR superfamily, covering compounds, targets and indications that have reached regulatory approval or that are being investigated in clinical trials. We find that there are 516 approved drugs targeting GPCRs, making up 36% of all approved drugs. These drugs act on 121 GPCR targets, one-third of all non-sensory GPCRs. Furthermore, 337 agents targeting 133 GPCRs, including 30 novel targets, are being investigated in clinical trials. Notably, 165 of these agents are approved drugs being tested for additional indications and novel agents are increasingly allosteric modulators and biologics. Remarkably, diabetes and obesity drugs targeting GPCRs had sales of nearly US $30 billion in 2023 and the numbers of clinical trials for GPCR modulators in the metabolic diseases, oncology and immunology areas are increasing strongly. Finally, we highlight the potential of untapped target-disease associations and pathway-biased signalling. Overall, this Review provides an up-to-date reference for the drugged and potentially druggable GPCRome to inform future GPCR drug discovery and development.
Collapse
Affiliation(s)
- Javier Sánchez Lorente
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aleksandr V Sokolov
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
| | - Gavin Ferguson
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- ALPX S.A.S., Grenoble, France
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Hu C, Chen Y, Yin X, Xu R, Yin C, Wang C, Zhao Y. Pancreatic endocrine and exocrine signaling and crosstalk in physiological and pathological status. Signal Transduct Target Ther 2025; 10:39. [PMID: 39948335 PMCID: PMC11825823 DOI: 10.1038/s41392-024-02098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/20/2024] [Accepted: 12/03/2024] [Indexed: 02/16/2025] Open
Abstract
The pancreas, an organ with dual functions, regulates blood glucose levels through the endocrine system by secreting hormones such as insulin and glucagon. It also aids digestion through the exocrine system by secreting digestive enzymes. Complex interactions and signaling mechanisms between the endocrine and exocrine functions of the pancreas play a crucial role in maintaining metabolic homeostasis and overall health. Compelling evidence indicates direct and indirect crosstalk between the endocrine and exocrine parts, influencing the development of diseases affecting both. From a developmental perspective, the exocrine and endocrine parts share the same origin-the "tip-trunk" domain. In certain circumstances, pancreatic exocrine cells may transdifferentiate into endocrine-like cells, such as insulin-secreting cells. Additionally, several pancreatic diseases, including pancreatic cancer, pancreatitis, and diabetes, exhibit potential relevance to both endocrine and exocrine functions. Endocrine cells may communicate with exocrine cells directly through cytokines or indirectly by regulating the immune microenvironment. This crosstalk affects the onset and progression of these diseases. This review summarizes the history and milestones of findings related to the exocrine and endocrine pancreas, their embryonic development, phenotypic transformations, signaling roles in health and disease, the endocrine-exocrine crosstalk from the perspective of diseases, and potential therapeutic targets. Elucidating the regulatory mechanisms of pancreatic endocrine and exocrine signaling and provide novel insights for the understanding and treatment of diseases.
Collapse
Grants
- National High Level Hospital Clinical Research Funding (2022, 2022-PUMCH-D-001, to YZ), CAMS Innovation Fund for Medical Sciences (2021, 2021-I2M-1-002, to YZ), National Nature Science Foundation of China (2021, 82102810, to CW, the Fundamental Research Funds for the Central Universities(3332023123)
- cNational High Level Hospital Clinical Research Funding (2022, 2022-PUMCH-D-001, to YZ), CAMS Innovation Fund for Medical Sciences (2021, 2021-I2M-1-002, to YZ), National Nature Science Foundation of China (2021, 82102810, to CW, the Fundamental Research Funds for the Central Universities(3332023123)
Collapse
Affiliation(s)
- Chenglin Hu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Chenxue Yin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Chengcheng Wang
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China.
- National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, PR China.
- Institute of Clinical Medicine, Peking Union Medical College Hospital, Beijing, PR China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China.
- National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, PR China.
| |
Collapse
|
7
|
Mohammed SM, Bone RN, Aquino JDC, Mirmira RG, Evans-Molina C, Ismail HM. Changes in immunofluorescence staining during islet regeneration in a cystic fibrosis-related diabetes (CFRD) ferret model. Islets 2024; 16:2436696. [PMID: 39641365 PMCID: PMC11633224 DOI: 10.1080/19382014.2024.2436696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/05/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Knockout (KO) ferrets with the cystic fibrosis transmembrane conductance regulator (CFTR) exhibit distinct phases of dysglycemia and pancreatic remodeling prior to cystic fibrosis-related diabetes (CFRD) development. Following normoglycemia during the first month of life (Phase l), hyperglycemia occurs during the subsequent 2 months (Phase Il) with decreased islet mass, followed by a period of near normoglycemia (Phase Ill) in which the islets regenerate. We aimed to characterize islet hormone expression patterns across these Phases. METHODS Immunofluorescence staining per islet area was performed to characterize islet hormone expression patterns in age matched CFTR KO and wild type (WT) ferrets, focusing on the first three phases. RESULTS In Phase I, insulin staining intensity was higher in CF (p < 0.01) than WT but decreased in Phase III (p < 0.0001). Glucagon was lower in CF during Phases I and increased in Phase III, while proinsulin decreased (p < 0.0001) Phases II and III. CF sections showed lower proinsulin-to-insulin ratio in Phase I (p < 0.01) and in Phase III (p < 0.05) compared to WT. Conversely, glucagon-to-insulin ratio was lower in CF in Phase I (p < 0.0001) but increased in Phase III (p < 0.0001). Mender's coefficient overlap showed higher overlap of insulin over proinsulin in CF sections in Phase II (p < 0.001) and Phase III (p < 0.0001) compared to WT. Mender's coefficient rate was higher in CF sections during Phase II (p < 0.001). CONCLUSION CF ferret islets revealed significant immunofluorescent staining changes compared to WT during various phases of disease, providing insights into CRFD pathophysiology.
Collapse
Affiliation(s)
- Sawash M. Mohammed
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Robert N. Bone
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jacqueline Del Carmen Aquino
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Raghavendra G. Mirmira
- Kovler Diabetes Center and the Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Heba M. Ismail
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
8
|
Chaves ADS, Magalhães NS, Insuela DBR, Silva PMRE, Martins MA, Carvalho VF. Captopril inhibits the overproduction of proopiomelanocortin and adrenocorticotropic hormone in the pituitary gland of male diabetic mice in close relationship with an increase in glucocorticoid receptor expression. Eur J Pharmacol 2024; 984:177057. [PMID: 39396750 DOI: 10.1016/j.ejphar.2024.177057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Prior investigation shows that diabetic patients present hypothalamus-pituitary-adrenal (HPA) axis hyperactivity related to impaired negative feedback. This study investigates the effect of Captopril on the overproduction of adrenocorticotropic hormone (ACTH) and its precursor proopiomelanocortin (POMC) in the pituitary gland of male diabetic mice. Diabetes was induced by intravenous injection of alloxan into fasted Swiss-webster mice, and the animals were treated with Captopril for 14 consecutive days, starting 7 days post-diabetes induction. Plasma corticosterone levels were evaluated by ELISA, while pituitary gland expressions of angiotensin-II type 1 receptor (AT1), angiotensin-II type 2 receptor (AT2), ACTH, Bax, Bcl-2, KI-67, POMC, and glucocorticoid receptor (GR) were evaluated using immunohistochemistry or Western blot. Diabetic mice showed pituitary gland overexpression of AT1, without altering AT2 levels, which were sensitive to Captopril treatment. Furthermore, diabetic mice presented hypercortisolism, along with an increase in the number of corticotroph cells, POMC and ACTH expression, and number of proliferative cells, and a decrease of GR expression in the pituitary gland. In addition, treatment with Captopril reduced systemic corticosterone levels, corticotroph and proliferative cell numbers, and Bcl-2, POMC, and ACTH expression in the pituitary gland of diabetic mice, besides increasing the expression of Bax and GR. In conclusion, these findings show that Captopril is a promising therapy for treating complications associated with HPA axis hyperactivity in diabetic patients, in a mechanism probably related to the downregulation of POMC production in the pituitary gland and subsequent reduction of systemic corticosterone levels.
Collapse
Affiliation(s)
- Amanda da Silva Chaves
- Laboratório de Inflamação, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, nº 4036, Manguinhos, CEP 21040-361, Rio de Janeiro, Brazil
| | - Nathalia Santos Magalhães
- Laboratório de Inflamação, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, nº 4036, Manguinhos, CEP 21040-361, Rio de Janeiro, Brazil
| | - Daniella Bianchi Reis Insuela
- Laboratório de Inflamação, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, nº 4036, Manguinhos, CEP 21040-361, Rio de Janeiro, Brazil
| | - Patrícia Machado Rodrigues E Silva
- Laboratório de Inflamação, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, nº 4036, Manguinhos, CEP 21040-361, Rio de Janeiro, Brazil
| | - Marco Aurélio Martins
- Laboratório de Inflamação, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, nº 4036, Manguinhos, CEP 21040-361, Rio de Janeiro, Brazil
| | - Vinicius Frias Carvalho
- Laboratório de Inflamação, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, nº 4036, Manguinhos, CEP 21040-361, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação (INCT-NIM), Brazil.
| |
Collapse
|
9
|
Coate KC, Dai C, Singh A, Stanley J, Covington BA, Bradley A, Oladipupo F, Gong Y, Wisniewski S, Sellick K, Spears E, Poffenberger G, Schornack AMR, Bustabad A, Rodgers T, Dey N, Shultz LD, Greiner DL, Yan H, Powers AC, Chen W, Dean ED. Interruption of glucagon signaling augments islet non-alpha cell proliferation in SLC7A2- and mTOR-dependent manners. Mol Metab 2024; 90:102050. [PMID: 39433176 PMCID: PMC11570739 DOI: 10.1016/j.molmet.2024.102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024] Open
Abstract
OBJECTIVE Dysregulated glucagon secretion and inadequate functional beta cell mass are hallmark features of diabetes. While glucagon receptor (GCGR) antagonism ameliorates hyperglycemia and elicits beta cell regeneration in pre-clinical models of diabetes, it also promotes alpha and delta cell hyperplasia. We sought to investigate the mechanism by which loss of glucagon action impacts pancreatic islet non-alpha cells, and the relevance of these observations in a human islet context. METHODS We used zebrafish, rodents, and transplanted human islets comprising six different models of interrupted glucagon signaling to examine their impact on delta and beta cell proliferation and mass. We also used models with global deficiency of the cationic amino acid transporter, SLC7A2, and mTORC1 inhibition via rapamycin, to determine whether amino acid-dependent nutrient sensing was required for islet non-alpha cell growth. RESULTS Inhibition of glucagon signaling stimulated delta cell proliferation in mouse and transplanted human islets, and in mouse islets. This was rapamycin-sensitive and required SLC7A2. Likewise, gcgr deficiency augmented beta cell proliferation via SLC7A2- and mTORC1-dependent mechanisms in zebrafish and promoted cell cycle engagement in rodent beta cells but was insufficient to drive a significant increase in beta cell mass in mice. CONCLUSIONS Our findings demonstrate that interruption of glucagon signaling augments islet non-alpha cell proliferation in zebrafish, rodents, and transplanted human islets in a manner requiring SLC7A2 and mTORC1 activation. An increase in delta cell mass may be leveraged for future beta cell regeneration therapies relying upon delta cell reprogramming.
Collapse
Affiliation(s)
- Katie C Coate
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Chunhua Dai
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ajay Singh
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jade Stanley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Brittney A Covington
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Amber Bradley
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Favour Oladipupo
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yulong Gong
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Scott Wisniewski
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katelyn Sellick
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Erick Spears
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Greg Poffenberger
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anna Marie R Schornack
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Alexandria Bustabad
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tyler Rodgers
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nandita Dey
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Dale L Greiner
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hai Yan
- REMD Biotherapeutics Inc., Camarillo, CA, USA
| | - Alvin C Powers
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA.
| | - Wenbiao Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| | - E Danielle Dean
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
10
|
Nielipińska D, Rubiak D, Pietrzyk-Brzezińska AJ, Małolepsza J, Błażewska KM, Gendaszewska-Darmach E. Stapled peptides as potential therapeutics for diabetes and other metabolic diseases. Biomed Pharmacother 2024; 180:117496. [PMID: 39362065 DOI: 10.1016/j.biopha.2024.117496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
The field of peptide drug research has experienced notable progress, with stapled peptides featuring stabilized α-helical conformation, emerging as a promising field. These peptides offer enhanced stability, cellular permeability, and binding affinity and exhibit potential in the treatment of diabetes and metabolic disorders. Stapled peptides, through the disruption of protein-protein interactions, present varied functionalities encompassing agonism, antagonism, and dual-agonism. This comprehensive review offers insight into the technology of peptide stapling and targeting of crucial molecular pathways associated with glucose metabolism, insulin secretion, and food intake. Additionally, we address the challenges in developing stapled peptides, including concerns pertaining to structural stability, peptide helicity, isomer mixture, and potential side effects.
Collapse
Affiliation(s)
- Dominika Nielipińska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland.
| | - Dominika Rubiak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland
| | - Agnieszka J Pietrzyk-Brzezińska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland
| | - Joanna Małolepsza
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland.
| | - Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland.
| |
Collapse
|
11
|
Huang P, Zhu Y, Qin J. Research advances in understanding crosstalk between organs and pancreatic β-cell dysfunction. Diabetes Obes Metab 2024; 26:4147-4164. [PMID: 39044309 DOI: 10.1111/dom.15787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024]
Abstract
Obesity has increased dramatically worldwide. Being overweight or obese can lead to various conditions, including dyslipidaemia, hypertension, glucose intolerance and metabolic syndrome (MetS), which may further lead to type 2 diabetes mellitus (T2DM). Previous studies have identified a link between β-cell dysfunction and the severity of MetS, with multiple organs and tissues affected. Identifying the associations between pancreatic β-cell dysfunction and organs is critical. Research has focused on the interaction between the liver, gut and pancreatic β-cells. However, the mechanisms and related core targets are still not perfectly elucidated. The aims of this review were to summarize the mechanisms of β-cell dysfunction and to explore the potential pathogenic pathways and targets that connect the liver, gut, adipose tissue, muscle, and brain to pancreatic β-cell dysfunction.
Collapse
Affiliation(s)
- Peng Huang
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yunling Zhu
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jian Qin
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
12
|
Aksu H, Demirbilek A, Uba AI. Insights into the structure and activation mechanism of some class B1 GPCR family members. Mol Biol Rep 2024; 51:966. [PMID: 39240462 DOI: 10.1007/s11033-024-09876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
In humans, 15 genes encode the class B1 family of GPCRs, which are polypeptide hormone receptors characterized by having a large N-terminal extracellular domain (ECD) and receive signals from outside the cell to activate cellular response. For example, the insulinotropic polypeptide (GIP) stimulates the glucose-dependent insulinotropic polypeptide receptor (GIPR), while the glucagon receptor (GCGR) responds to glucagon by increasing blood glucose levels and promoting the breakdown of liver glycogen to induce the production of insulin. The glucagon-like peptides 1 and 2 (GLP-1 and GLP-2) elicit a response from glucagon-like peptide receptor types 1 and 2 (GLP1R and GLP2R), respectively. Since these receptors are implicated in the pathogenesis of diabetes, studying their activation is crucial for the development of effective therapies for the condition. With more structural information being revealed by experimental methods such as X-ray crystallography, cryo-EM, and NMR, the activation mechanism of class B1 GPCRs becomes unraveled. The available crystal and cryo-EM structures reveal that class B1 GPCRs follow a two-step model for peptide binding and receptor activation. The regions close to the C-termini of hormones interact with the N-terminal ECD of the receptor while the regions close to the N-terminus of the peptide interact with the TM domain and transmit signals. This review highlights the structural details of class B1 GPCRs and their conformational changes following activation. The roles of MD simulation in characterizing those conformational changes are briefly discussed, providing insights into the potential structural exploration for future ligand designs.
Collapse
MESH Headings
- Humans
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Crystallography, X-Ray/methods
- Protein Conformation
- Animals
- Glucagon-Like Peptide-1 Receptor/metabolism
- Glucagon-Like Peptide-1 Receptor/genetics
- Receptors, Gastrointestinal Hormone/metabolism
- Receptors, Gastrointestinal Hormone/chemistry
- Receptors, Gastrointestinal Hormone/genetics
- Glucagon-Like Peptide 1/metabolism
- Models, Molecular
- Protein Binding
- Signal Transduction
- Receptors, Glucagon/metabolism
- Receptors, Glucagon/genetics
- Receptors, Glucagon/chemistry
Collapse
Affiliation(s)
- Hayrunisa Aksu
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, 34537, Turkey
| | - Ayşenur Demirbilek
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, 34537, Turkey
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, 34537, Turkey.
| |
Collapse
|
13
|
Cidade-Rodrigues C, Santos AP, Calheiros R, Santos S, Matos C, Moreira AP, Inácio I, Souteiro P, Oliveira J, Jácome M, Pereira SS, Henrique R, Torres I, Monteiro MP. Non-functional alpha-cell hyperplasia with glucagon-producing NET: a case report. Front Endocrinol (Lausanne) 2024; 15:1405835. [PMID: 39309109 PMCID: PMC11412808 DOI: 10.3389/fendo.2024.1405835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 08/08/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Alpha-cell hyperplasia (ACH) is a rare pancreatic endocrine condition. Three types of ACH have been described: functional or nonglucagonoma hyperglucagonemic glucagonoma syndrome, reactive or secondary to defective glucagon signaling, and non-functional. Few cases of ACH with concomitant pancreatic neuroendocrine tumors (pNETs) have been reported and its etiology remains poorly understood. A case report of non-functional ACH with glucagon-producing NET is herein presented. Case report A 72-year-old male was referred to our institution for a 2 cm single pNET incidentally found during imaging for acute cholecystitis. The patient's past medical history included type 2 diabetes (T2D) diagnosed 12 years earlier, for which he was prescribed metformin, dapagliflozin, and semaglutide. The pNET was clinically and biochemically non-functioning, apart from mildly elevated glucagon 217 pg/ml (<209), and 68Ga-SSTR PET/CT positive uptake was only found at the pancreatic tail (SUVmax 11.45). The patient underwent a caudal pancreatectomy and the post-operative 68Ga-SSTR PET/CT was negative. A multifocal well-differentiated NET G1, pT1N0M0R0 (mf) strongly staining for glucagon on a background neuroendocrine alpha-cell hyperplasia with some degree of acinar fibrosis was identified on pathology analysis. Discussion and conclusion This case reports the incidental finding of a clinically non-functioning pNET in a patient with T2D and elevated glucagon levels, unexpectedly diagnosed as glucagon-producing NET and ACH. A high level of suspicion was required to conduct the glucagon immunostaining, which is not part of the pathology routine for a clinically non-functioning pNET, and was key for the diagnosis that otherwise would have been missed. This case highlights the need to consider the diagnosis of glucagon-producing pNET on an ACH background even in the absence of glucagonoma syndrome.
Collapse
Affiliation(s)
| | - Ana Paula Santos
- Department of Endocrinology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
- Research Center of IPO Porto (CI-IPOP), RISE@CI-IPO (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Centre (P.CCC), Porto, Portugal
| | - Raquel Calheiros
- Department of Endocrinology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Sara Santos
- Department of Endocrinology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Catarina Matos
- Hospital de Braga, Unidade Local de Saúde de Braga, Braga, Portugal
| | - Ana Paula Moreira
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Isabel Inácio
- Department of Endocrinology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Pedro Souteiro
- Department of Endocrinology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Joana Oliveira
- Department of Endocrinology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Manuel Jácome
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Sofia S. Pereira
- Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- Laboratory of Integrative and Translocation Research in Population Health (ITR), Porto, Portugal
| | - Rui Henrique
- Research Center of IPO Porto (CI-IPOP), RISE@CI-IPO (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Centre (P.CCC), Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Isabel Torres
- Department of Endocrinology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Mariana P. Monteiro
- Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- Laboratory of Integrative and Translocation Research in Population Health (ITR), Porto, Portugal
| |
Collapse
|
14
|
Coate KC, Dai C, Singh A, Stanley J, Covington BA, Bradley A, Oladipupo F, Gong Y, Wisniewski S, Spears E, Poffenberger G, Bustabad A, Rodgers T, Dey N, Shultz LD, Greiner DL, Yan H, Powers AC, Chen W, Dean ED. Interruption of glucagon signaling augments islet non-alpha cell proliferation in SLC7A2- and mTOR-dependent manners. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606926. [PMID: 39149351 PMCID: PMC11326219 DOI: 10.1101/2024.08.06.606926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Objective Dysregulated glucagon secretion and inadequate functional beta cell mass are hallmark features of diabetes. While glucagon receptor (GCGR) antagonism ameliorates hyperglycemia and elicits beta cell regeneration in pre-clinical models of diabetes, it also promotes alpha and delta cell hyperplasia. We sought to investigate the mechanism by which loss of glucagon action impacts pancreatic islet non-alpha cells, and the relevance of these observations in a human islet context. Methods We used zebrafish, rodents, and transplanted human islets comprising six different models of interrupted glucagon signaling to examine their impact on delta and beta cell proliferation and mass. We also used models with global deficiency of the cationic amino acid transporter, SLC7A2, and mTORC1 inhibition via rapamycin, to determine whether amino acid-dependent nutrient sensing was required for islet non-alpha cell growth. Results Inhibition of glucagon signaling stimulated delta cell proliferation in mouse and transplanted human islets, and in mouse islets. This was rapamycin-sensitive and required SLC7A2. Likewise, gcgr deficiency augmented beta cell proliferation via SLC7A2- and mTORC1-dependent mechanisms in zebrafish and promoted cell cycle engagement in rodent beta cells but was insufficient to drive a significant increase in beta cell mass in mice. Conclusion Our findings demonstrate that interruption of glucagon signaling augments islet non-alpha cell proliferation in zebrafish, rodents, and transplanted human islets in a manner requiring SLC7A2 and mTORC1 activation. An increase in delta cell mass may be leveraged for future beta cell regeneration therapies relying upon delta cell reprogramming.
Collapse
Affiliation(s)
- Katie C. Coate
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN
| | - Chunhua Dai
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Ajay Singh
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Jade Stanley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Brittney A. Covington
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Amber Bradley
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Favour Oladipupo
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Yulong Gong
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Scott Wisniewski
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Erick Spears
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Greg Poffenberger
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Alexandria Bustabad
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Tyler Rodgers
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Nandita Dey
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | | | - Dale L. Greiner
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA
| | - Hai Yan
- REMD Biotherapeutics Inc., Camarillo, CA
| | - Alvin C. Powers
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN
| | - Wenbiao Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - E. Danielle Dean
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| |
Collapse
|
15
|
Dalle S, Abderrahmani A. Receptors and Signaling Pathways Controlling Beta-Cell Function and Survival as Targets for Anti-Diabetic Therapeutic Strategies. Cells 2024; 13:1244. [PMID: 39120275 PMCID: PMC11311556 DOI: 10.3390/cells13151244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/10/2024] Open
Abstract
Preserving the function and survival of pancreatic beta-cells, in order to achieve long-term glycemic control and prevent complications, is an essential feature for an innovative drug to have clinical value in the treatment of diabetes. Innovative research is developing therapeutic strategies to prevent pathogenic mechanisms and protect beta-cells from the deleterious effects of inflammation and/or chronic hyperglycemia over time. A better understanding of receptors and signaling pathways, and of how they interact with each other in beta-cells, remains crucial and is a prerequisite for any strategy to develop therapeutic tools aimed at modulating beta-cell function and/or mass. Here, we present a comprehensive review of our knowledge on membrane and intracellular receptors and signaling pathways as targets of interest to protect beta-cells from dysfunction and apoptotic death, which opens or could open the way to the development of innovative therapies for diabetes.
Collapse
Affiliation(s)
- Stéphane Dalle
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), 34094 Montpellier, France
| | - Amar Abderrahmani
- Université Lille, Centre National de la Recherche Scientifique (CNRS), Centrale Lille, Université Polytechnique Hauts-de-France, UMR 8520, IEMN, F59000 Lille, France
| |
Collapse
|
16
|
Gao Y, Wu Y, Tie F, Wang H. Stilbenoids from fenugreek seeds alleviate insulin resistance by regulating the PI3K/AKT/mTOR signaling pathway in a type 2 diabetes zebrafish model. Heliyon 2024; 10:e32007. [PMID: 39040253 PMCID: PMC11260975 DOI: 10.1016/j.heliyon.2024.e32007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 07/24/2024] Open
Abstract
Insulin resistance (IR) is the main cause of type 2 diabetes mellitus (T2DM). The specific targets and underlying mechanisms responsible for the ameliorative effects of the stilbenoid compounds found in fenugreek seeds for ameliorating IR require further study. Here, we were predicted by using the network pharmacology prediction, molecular docking and molecular dynamics simulation approach the targets in common and the potential mechanismsof three stilbenoid compounds (rhaponticin, desoxyrhaponticin, and rhapontigenin) in relation to T2DM and IR. The results showed that the compounds may improve IR through the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway. Molecular docking studies revealed that they exhibit high binding affinity with the structural domains of peroxisome proliferator-activated receptor gamma (PPARG), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), PI3K, and AKT. These results suggest that PPARG and GAPDH may be the potential targets for these three compounds in the treatment of T2DM.Subsequently, experiments using the zebrafish T2DM model showed that the stilbenoid compounds had varying degrees of efficacy in improving IR through the PI3K/AKT/mTOR signaling pathway, and rhaponticin had the most promising effects. The findings implicate a potential mechanism of action for the three stilbenoid compounds in enhancing insulin resistance (IR) through modulation of the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Yidan Gao
- Key Laboratory of Tibetan Medicine Research, Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, 810008, PR China
| | - Yun Wu
- Key Laboratory of Tibetan Medicine Research, Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, 810008, PR China
| | - Fangfang Tie
- Key Laboratory of Tibetan Medicine Research, Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, 810008, PR China
| | - Honglun Wang
- Key Laboratory of Tibetan Medicine Research, Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, 810008, PR China
| |
Collapse
|
17
|
Yin X, Ni G, Zhang X, Fu S, Li H, Gao Z. Tyrosine nitration of glucagon impairs its function: Extending the role of heme in T2D pathogenesis. J Inorg Biochem 2024; 255:112519. [PMID: 38507994 DOI: 10.1016/j.jinorgbio.2024.112519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
New studies raise the possibility that the higher glucagon (GCG) level present in type 2 diabetes (T2D) is a compensatory mechanism to enhance β-cell function, rather than induce dysregulated glucose homeostasis, due to an important role for GCG that acts directly within the pancreas on insulin secretion by intra-islet GCG signaling. However, in states of poorly controlled T2D, pancreatic α cell mass increases (overproduced GCG) in response to insufficient insulin secretion, indicating decreased local GCG activity. The reason for this decrease is not clear. Recent evidence has uncovered a new role of heme in cellular signal transduction, and its mechanism involves reversible binding of heme to proteins. Considering that protein tyrosine nitration in diabetic islets increases and glucose-stimulated insulin secretion (GSIS) decreases, we speculated that heme modulates GSIS by transient interaction with GCG and catalyzing its tyrosine nitration, and the tyrosine nitration may impair GCG activity, leading to loss of intra-islet GCG signaling and markedly impaired insulin secretion. Data presented here elucidate a novel role for heme in disrupting local GCG signaling in diabetes. Heme bound to GCG and induced GCG tyrosine nitration. Two tyrosine residues in GCG were both sensitive to the nitrating species. Further, GCG was also demonstrated to be a preferred target peptide for tyrosine nitration by co-incubation with BSA. Tyrosine nitration impaired GCG stimulated cAMP-dependent signaling in islet β cells and decreased insulin release. Our results provided a new role of heme for impaired GSIS in the pathological process of diabetes.
Collapse
Affiliation(s)
- Xiaoying Yin
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Guoqi Ni
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Xuan Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Shitao Fu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Hailing Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China.
| | - Zhonghong Gao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China.
| |
Collapse
|
18
|
Kistkins S, Moser O, Ankudovičs V, Blizņuks D, Mihailovs T, Lobanovs S, Sourij H, Pfeiffer AFH, Pīrāgs V. From classical dualistic antagonism to hormone synergy: potential of overlapping action of glucagon, insulin and GLP-1 for the treatment of diabesity. Endocr Connect 2024; 13:e230529. [PMID: 38579770 PMCID: PMC11046332 DOI: 10.1530/ec-23-0529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
The increasing prevalence of 'diabesity', a combination of type 2 diabetes and obesity, poses a significant global health challenge. Unhealthy lifestyle factors, including poor diet, sedentary behaviour, and high stress levels, combined with genetic and epigenetic factors, contribute to the diabesity epidemic. Diabesity leads to various significant complications such as cardiovascular diseases, stroke, and certain cancers. Incretin-based therapies, such as GLP-1 receptor agonists and dual hormone therapies, have shown promising results in improving glycaemic control and inducing weight loss. However, these therapies also come with certain disadvantages, including potential withdrawal effects. This review aims to provide insights into the cross-interactions of insulin, glucagon, and GLP-1, revealing the complex hormonal dynamics during fasting and postprandial states, impacting glucose homeostasis, energy expenditure, and other metabolic functions. Understanding these hormonal interactions may offer novel hypotheses in the development of 'anti-diabesity' treatment strategies. The article also explores the question of the antagonism of insulin and glucagon, providing insights into the potential synergy and hormonal overlaps between these hormones.
Collapse
Affiliation(s)
| | - Othmar Moser
- Division of Exercise Physiology and Metabolism, Institute of Sport Science, University of Bayreuth, Bayreuth, Germany
| | | | - Dmitrijs Blizņuks
- Institute of Smart Computing Technologies, Riga Technical University, Riga, Latvia
| | - Timurs Mihailovs
- Institute of Smart Computing Technologies, Riga Technical University, Riga, Latvia
| | | | - Harald Sourij
- Trials Unit for Interdisciplinary Metabolic Medicine, Division of Endocrinology and Diabetolgoy, Medical University of Graz, Graz, Austria
| | - Andreas F H Pfeiffer
- Department of Endocrinology and Metabolic Medicine, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm, Berlin, Germany
| | - Valdis Pīrāgs
- Pauls Stradiņš Clinical University Hospital, Riga, Latvia
- Faculty of Medicine, University of Latvia, Riga, Latvia
| |
Collapse
|
19
|
Lyngdoh JA, Chutia H, Sundaram SP, Lakshmi V, Ruram A, Lynrah KG. Insulin:Glucagon Bipolar Axis in Obesity With a Glimpse Into Its Association With Insulin Resistance in Different Glucose Tolerance States. Cureus 2024; 16:e58942. [PMID: 38665134 PMCID: PMC11044079 DOI: 10.7759/cureus.58942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Dysregulation of insulin and glucagon secretion alters the normal insulin:glucagon ratio (IGR) in type 2 diabetes mellitus, obesity, and metabolic syndrome. This study explores the scope of construing the role of these two diametrically opposing hormones on the glucose level not just in obesity but in different glucose tolerance states by looking at the hormone levels and at the insulin glucagon bipolar axis itself. MATERIALS AND METHODS This is an analytical cross-sectional study of 60 healthy adults consisting of an equal number of adults who are lean and adults who are obese. It was conducted at North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences (NEIGRIHMS), located in Shillong City, Meghalaya, India. Fasting glucose, insulin, glucagon, and lipids were estimated. Postprandial estimation of glucose was done two hours after oral administration of 75 grams of glucose solution. RESULT The study demonstrated a state of hyperinsulinemia and hyperglucagonemia prevailing in obesity and all sub-categories of the group of persons who are obese. The study showed a higher fasting IGR in the group consisting of adults who were obese (with a mean of 4.11) when compared with the group of adults who are lean (with a mean of 2.24). Fasting IGR was seen to increase with increasing levels of insulin resistance and increasing impairment in glucose tolerance. IGR showed a positive correlation with the homeostatic model assessment for insulin resistance (HOMA-IR) in the impaired fasting glucose (IFG) category and strongly in the impaired glucose tolerance (IGT) category. CONCLUSION Hyperglucagonemia in the group of adult persons who are obese indicates a decreased sensitivity of alpha cells to insulin failing insulin to adequately suppress the secretion of glucagon. The study also demonstrated a positive correlation between IGR and HOMA-IR in obesity and all glucose tolerance states of the group of adults who are obese. It is telltale that the sturdier the insulin resistance, the higher the IGR.
Collapse
Affiliation(s)
- John A Lyngdoh
- Physiology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, IND
| | - Happy Chutia
- Biochemistry, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, IND
| | - Shanthosh Priyan Sundaram
- Community Medicine, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, IND
| | - Vijaya Lakshmi
- Physiology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, IND
| | - Alice Ruram
- Biochemistry, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, IND
| | - K G Lynrah
- General Medicine, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, IND
| |
Collapse
|
20
|
Kiconco R, Lumumba SA, Bagenda CN, Atwine R, Ndarubweine J, Rugera SP. Insulin therapy among diabetic patients in rural communities of Sub-Saharan Africa: a perspective review. Ther Adv Endocrinol Metab 2024; 15:20420188241232280. [PMID: 38379780 PMCID: PMC10878220 DOI: 10.1177/20420188241232280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024] Open
Abstract
In this perspective review, we describe a brief background on the status quo of diabetes mellitus-related therapies and glycemic control among patients in rural communities in sub-Saharan Africa. The article discusses insulin therapy as well as the difficulties in obtaining insulin and oral hypoglycemic medications for diabetic patients living in sub-Saharan Africa. We wrap up our discussion with suggestions on solutions and opportunities for future research to tackle this health challenge in these impoverished communities. We conducted a literature search from PubMed and Google Scholar up until August 2023. Key words were used to generate search terms used to retrieve the required information. All types of literature with pertinent information on the current topic were included in the study. Diabetes mellitus is on the rise in sub-Saharan Africa. Several studies have reported poor glycemic control, low screening rates for diabetes mellitus, cigarette smoking, high alcohol consumption, prescription of antidiabetic therapy, and associated costs as contributors to the uptake of antidiabetic treatment. Although there is paucity of data on the extent of insulin therapy uptake and its possible modifiable contributors among the diabetic patients in the region, the anticipated increase in the number of people with diabetes on the continent makes it critical for global leaders to address the research gaps in insulin therapy among rural communities of sub-Saharan Africa, thus reducing the burden of diabetes in these populations.
Collapse
Affiliation(s)
- Ritah Kiconco
- Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara City, Mbarara-Kabale Road, Mbarara 1410, Uganda
- Department of Biochemistry, Sororti University, Soroti, Uganda
| | - Sylvia Achieng Lumumba
- Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Medical Laboratory Science, Technical University of Mombasa, Mombasa, Kenya
| | - Charles Nkubi Bagenda
- Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Raymond Atwine
- Department of Pathology, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Joseph Ndarubweine
- Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Simon Peter Rugera
- Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara, Uganda
| |
Collapse
|
21
|
Asadi F, Gunawardana SC, Dolle RE, Piston DW. An orally available compound suppresses glucagon hypersecretion and normalizes hyperglycemia in type 1 diabetes. JCI Insight 2024; 9:e172626. [PMID: 38258903 PMCID: PMC10906223 DOI: 10.1172/jci.insight.172626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Suppression of glucagon hypersecretion can normalize hyperglycemia during type 1 diabetes (T1D). Activating erythropoietin-producing human hepatocellular receptor type-A4 (EphA4) on α cells reduced glucagon hypersecretion from dispersed α cells and T1D islets from both human donor and mouse models. We synthesized a high-affinity small molecule agonist for the EphA4 receptor, WCDD301, which showed robust plasma and liver microsome metabolic stability in both mouse and human preparations. In islets and dispersed islet cells from nondiabetic and T1D human donors, WCDD301 reduced glucagon secretion comparable to the natural EphA4 ligand, Ephrin-A5. In diabetic NOD and streptozotocin-treated mice, once-daily oral administration of WCDD301 formulated with a time-release excipient reduced plasma glucagon and normalized blood glucose for more than 3 months. These results suggest that targeting the α cell EphA4 receptor by sustained release of WCDD301 is a promising pharmacologic pathway for normalizing hyperglycemia in patients with T1D.
Collapse
Affiliation(s)
| | | | - Roland E. Dolle
- Center for Drug Discovery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
22
|
Dalle S, Abderrahmani A, Renard E. Pharmacological inhibitors of β-cell dysfunction and death as therapeutics for diabetes. Front Endocrinol (Lausanne) 2023; 14:1076343. [PMID: 37008937 PMCID: PMC10050720 DOI: 10.3389/fendo.2023.1076343] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/20/2023] [Indexed: 03/17/2023] Open
Abstract
More than 500 million adults suffer from diabetes worldwide, and this number is constantly increasing. Diabetes causes 5 million deaths per year and huge healthcare costs per year. β-cell death is the major cause of type 1 diabetes. β-cell secretory dysfunction plays a key role in the development of type 2 diabetes. A loss of β-cell mass due to apoptotic death has also been proposed as critical for the pathogenesis of type 2 diabetes. Death of β-cells is caused by multiple factors including pro-inflammatory cytokines, chronic hyperglycemia (glucotoxicity), certain fatty acids at high concentrations (lipotoxicity), reactive oxygen species, endoplasmic reticulum stress, and islet amyloid deposits. Unfortunately, none of the currently available antidiabetic drugs favor the maintenance of endogenous β-cell functional mass, indicating an unmet medical need. Here, we comprehensively review over the last ten years the investigation and identification of molecules of pharmacological interest for protecting β-cells against dysfunction and apoptotic death which could pave the way for the development of innovative therapies for diabetes.
Collapse
Affiliation(s)
- Stéphane Dalle
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier, France
| | - Amar Abderrahmani
- Université Lille, Centre National de la Recherche Scientifique (CNRS), Centrale Lille, Polytechnique Hauts-de-France, UMR 8520, IEMN, Lille, France
| | - Eric Renard
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier, France
- Laboratoire de Thérapie Cellulaire du Diabète, Centre Hospitalier Universitaire, Montpellier, France
- Département d’Endocrinologie, Diabètologie, Centre Hospitalier Universitaire, Montpellier, France
| |
Collapse
|