1
|
Efon-Ekangouo A, Nana-Djeunga HC, Nwane PB, Nzune-Toche N, Sondi-Dissake JC, Sempere G, Domche A, Njiokou F, Kamgno J, Moundipa-Fewou P, Geiger A. Spatial and temporal diversity of Simulium damnosum s.l. gut microbiota and association with Onchocerca volvulus infection in Cameroon. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024:105683. [PMID: 39442642 DOI: 10.1016/j.meegid.2024.105683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Arthropod microbiota plays an important role in host physiology, and there is growing interest in using vector symbionts to modify vector competence and control parasite transmission. This study aims to characterise the blackfly Simulium damnosum s.l. gut microbiota and to explore possible associations with various bio-ecological determinants of the Onchocerca volvulus establishment and the transmission in blackfly. Adult female blackflies were caught in three Cameroonian health districts belonging to different bioecological zones endemic for onchocerciasis. Flies were dissected and qPCR screened for Onchocerca volvulus infection. The diversity of the blackflies gut microbiota was assessed by high-throughput sequencing of the V3-V4 hypervariable region of the bacterial 16S ribosomal RNA. Subsequent metataxo-genomic, multivariate, and association analysis were used to investigate the variables that influence the microbiota diversity. Transmission index rates ranging from 20.7 to 6.0 % and 6.2-2.0 % for infection and infectivity rates, respectively, indicate ongoing transmission of onchocerciasis across all surveyed health districts. The identified bacterial taxa were clustered into four phyla, five classes, and 23 genera. The S. damnosum s.l. gut microbiota was dominated by Wolbachia and by Rosenbergiella in Wolbachia-free Simulium. Significant differences were observed in the diversity of S. damnosum s.l. microbiota concerning parity status (P = 0.007), health district of origin (P = 0.001), and the presence of the Onchocerca volvulus. Simulium from the Bafia health district also showed increased bacterial diversity between two consecutive years (P = 0.001). Four bacterial taxa, including Serratia, were associated with the absence of the O. volvulus infection. These results indicate that S. damnosum s.l. from different onchocerciasis foci in Cameroon, exhibit distinguishable gut microbial compositions which are dynamic over time. Some bacterial species are associated with the O. volvulus infection and could be further investigated as biological target/tool for vector modified-based onchocerciasis control.
Collapse
Affiliation(s)
- Arnauld Efon-Ekangouo
- Higher Institute for Scientific and Medical Research (ISM), Yaoundé, Cameroon; INTERTRYP, Univ Montpellier, Cirad, IRD, Montpellier, France; Department of Biochemistry, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | | | - Philippe B Nwane
- Higher Institute for Scientific and Medical Research (ISM), Yaoundé, Cameroon; Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Narcisse Nzune-Toche
- Higher Institute for Scientific and Medical Research (ISM), Yaoundé, Cameroon; Department of Biochemistry, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Jeanne C Sondi-Dissake
- Higher Institute for Scientific and Medical Research (ISM), Yaoundé, Cameroon; Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Guilhem Sempere
- INTERTRYP, Univ Montpellier, Cirad, IRD, Montpellier, France; Cirad, UMR INTERTRYP, F-34398 Montpellier, France; French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, Montpellier, France.
| | - André Domche
- Higher Institute for Scientific and Medical Research (ISM), Yaoundé, Cameroon; Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Flobert Njiokou
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Joseph Kamgno
- Higher Institute for Scientific and Medical Research (ISM), Yaoundé, Cameroon; Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon.
| | - Paul Moundipa-Fewou
- Department of Biochemistry, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Anne Geiger
- INTERTRYP, Univ Montpellier, Cirad, IRD, Montpellier, France.
| |
Collapse
|
2
|
Calle-Tobón A, Rojo-Ospina R, Zuluaga S, Giraldo-Muñoz JF, Cadavid JM. Evaluation of Wolbachia infection in Aedes aegypti suggests low prevalence and highly heterogeneous distribution in Medellín, Colombia. Acta Trop 2024; 260:107423. [PMID: 39366500 DOI: 10.1016/j.actatropica.2024.107423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/06/2024]
Abstract
Dengue virus, transmitted mainly by Aedes aegypti mosquitoes, is a significant public health challenge in tropical and subtropical countries, with an incidence that is growing at an alarming rate. The release of Wolbachia-carrying mosquitoes has been suggested as a strategy to reduce the incidence of multiple arboviruses. In Medellín, Colombia, large-scale releases of Wolbachia-infected Ae. aegypti mosquitoes were performed between 2017 and 2022 by the World Mosquito Program to facilitate population replacement. In this study, we evaluated the prevalence and distribution of Wolbachia-infected Ae. aegypti two years after completion of these releases. We conducted the sampling across 19 communes in Medellín, using 416 ovitraps to collect Ae. aegypti eggs from epidemiological weeks 26 to 41 in 2023. Upon hatching the collected eggs, we identified and pooled adult female Ae. aegypti for DNA extraction. Subsequently, we conducted PCR assays for the detection of Wolbachia infection in these mosquitoes. We used maximum likelihood estimation (MLE) and Bayesian methods to estimate the prevalence of Wolbachia infection, while using QGIS to analyze spatial distribution of infection in the region. A total of 774 female Ae. aegypti mosquitoes from 182 pools were evaluated. We detected Wolbachia in 33.5 % of pools, with an estimated individual minimum infection rate of 9.5 % and a maximum of 33.2 %. The prevalence varied significantly across communes, with the highest rates observed in the northeastern and southwestern areas. Spatial analysis revealed a highly heterogeneous island-like distribution of Wolbachia across Medellín with a few hotspots. The observed Wolbachia prevalence in this work was lower than previously reported. We suspect a decline in the prevalence of Wolbachia-infected Ae. aegypti mosquitoes in Medellín following the completion of their release.
Collapse
Affiliation(s)
- Arley Calle-Tobón
- Department of Tropical Medicine and Infectious Disease, Tulane University, School of Public Health and Tropical Medicine, New Orleans, LA, USA; Grupo Entomología Médica, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.
| | - Raúl Rojo-Ospina
- Programa de Manejo Integrado de Vectores, Secretaría de Salud, Alcaldía de Medellín, Medellín, Colombia
| | - Sara Zuluaga
- Programa de Manejo Integrado de Vectores, Secretaría de Salud, Alcaldía de Medellín, Medellín, Colombia
| | - Juan F Giraldo-Muñoz
- Grupo Entomología Médica, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia; Programa de Manejo Integrado de Vectores, Secretaría de Salud, Alcaldía de Medellín, Medellín, Colombia
| | - Jorge Mario Cadavid
- Grupo Entomología Médica, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia; Programa de Manejo Integrado de Vectores, Secretaría de Salud, Alcaldía de Medellín, Medellín, Colombia
| |
Collapse
|
3
|
Pandey GS, Manandhar P, Shrestha BK, Sadaula A, Hayashi N, Abdelbaset AE, Silwal P, Tsubota T, Kwak ML, Nonaka N, Nakao R. Detection and characterization of vector-borne parasites and Wolbachia endosymbionts in greater one-horned rhinoceros (Rhinoceros unicornis) in Nepal. Acta Trop 2024; 258:107344. [PMID: 39097253 DOI: 10.1016/j.actatropica.2024.107344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Vector-borne parasite infections affect both domestic and wild animals. They are often asymptomatic but can result in fatal outcomes under natural and human-induced stressors. Given the limited availability of molecular data on vector-borne parasites in Rhinoceros unicornis (greater one-horned rhinoceros), this study employed molecular tools to detect and characterize the vector-borne parasites in rescued rhinoceros in Chitwan National Park, Nepal. Whole blood samples were collected from thirty-six R. unicornis during rescue and treatment operations. Piroplasmida infections were first screened using nested polymerase chain reaction (PCR) targeting 18S ribosomal RNA gene. Wolbachia was detected by amplifying 16S rRNA gene, while filarial nematodes were detected through amplification of 28S rRNA, COI, myoHC and hsp70 genes. Our results confirmed the presence of Theileria bicornis with a prevalence of 75% (27/36) having two previously unreported haplotypes (H8 and H9). Wolbachia endosymbionts were detected in 25% (9/36) of tested samples and belonged to either supergroup C or F. Filarial nematodes of the genera Mansonella and Onchocerca were also detected. There were no significant association between T. bicornis infections and the age, sex, or location from which the animals were rescued. The high prevalence of Theileria with novel haplotypes along with filarial parasites has important ecological and conservational implications and highlights the need to implement parasite surveillance programs for wildlife in Nepal. Further studies monitoring vector-borne pathogens and interspecies transmission among wild animals, livestock and human are required.
Collapse
Affiliation(s)
- Gita Sadaula Pandey
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Japan; National Cattle Research Program, Nepal Agricultural Research Council, Rampur, Chitwan, Nepal
| | | | | | - Amir Sadaula
- National Trust for Nature Conservation - Biodiversity Conservation Center, Sauraha, Chitwan, Nepal
| | - Naoki Hayashi
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Japan; Division of Parasitology, Veterinary Research Unit, International Institute for Zoonosis Control, Hokkaido University, Japan
| | - Abdelbaset Eweda Abdelbaset
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Japan; Clinical Laboratory Diagnosis, Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut, 71515, Egypt
| | - Pradeepa Silwal
- National Trust for Nature Conservation - Biodiversity Conservation Center, Sauraha, Chitwan, Nepal
| | - Toshio Tsubota
- Laboratory of Wildlife Biology and Medicine, Faculty of Veterinary Medicine, Hokkaido University, Japan
| | - Mackenzie L Kwak
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Japan
| | - Nariaki Nonaka
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Japan; Division of Parasitology, Veterinary Research Unit, International Institute for Zoonosis Control, Hokkaido University, Japan
| | - Ryo Nakao
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Japan; Division of Parasitology, Veterinary Research Unit, International Institute for Zoonosis Control, Hokkaido University, Japan.
| |
Collapse
|
4
|
Kaur T, Brown AM. Discovery of a novel Wolbachia in Heterodera expands nematode host distribution. Front Microbiol 2024; 15:1446506. [PMID: 39386366 PMCID: PMC11461310 DOI: 10.3389/fmicb.2024.1446506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Bioinformatics sequence data mining can reveal hidden microbial symbionts that might normally be filtered and removed as contaminants. Data mining can be helpful to detect Wolbachia, a widespread bacterial endosymbiont in insects and filarial nematodes whose distribution in plant-parasitic nematodes (PPNs) remains underexplored. To date, Wolbachia has only been reported a few PPNs, yet nematode-infecting Wolbachia may have been widespread in the evolutionary history of the phylum based on evidence of horizontal gene transfers, suggesting there may be undiscovered Wolbachia infections in PPNs. The goal of this study was to more broadly sample PPN Wolbachia strains in tylenchid nematodes to enable further comparative genomic analyses that may reveal Wolbachia's role and identify targets for biocontrol. Published whole-genome shotgun assemblies and their raw sequence data from 33 Meloidogyne spp. assemblies, seven Globodera spp. assemblies, and seven Heterodera spp. assemblies were analyzed to look for Wolbachia. No Wolbachia was found in Meloidogyne spp. and Globodera spp., but among seven genome assemblies for Heterodera spp., an H. schachtii assembly from the Netherlands was found to have a large Wolbachia-like sequence that, when re-assembled from reads, formed a complete, circular genome. Detailed analyses comparing read coverage, GC content, pseudogenes, and phylogenomic patterns clearly demonstrated that the H. schachtii Wolbachia represented a novel strain (hereafter, denoted wHet). Phylogenomic tree construction with PhyloBayes showed wHet was most closely related to another PPN Wolbachia, wTex, while 16S rRNA gene analysis showed it clustered with other Heterodera Wolbachia assembled from sequence databases. Pseudogenes in wHet suggested relatedness to the PPN clade, as did the lack of significantly enriched GO terms compared to PPN Wolbachia strains. It remains unclear whether the lack of Wolbachia in other published H. schachtii isolates represents the true absence of the endosymbiont from some hosts.
Collapse
Affiliation(s)
| | - Amanda M.V. Brown
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
5
|
Depeux C, Branger A, Paulhac H, Pigeault R, Beltran-Bech S. Deleterious effects of Wolbachia on life history and physiological traits of common pill woodlice. J Invertebr Pathol 2024; 207:108187. [PMID: 39243881 DOI: 10.1016/j.jip.2024.108187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Most of eukaryotic organisms live in close interaction with micro-organisms called symbionts. Symbiotic interactions underpin the evolution of biological complexity, the health of organisms and, ultimately, the proper functioning of ecosystems. While some symbionts confer adaptive benefits on their host (mutualistic symbionts) and others clearly induce costs (parasitic symbionts), a number of micro-organisms are difficult to classify because they have been described as conferring both benefits and costs on their host. This is particularly true of the most widespread animal endosymbiont, Wolbachia pipientis. In this study, we investigated the influence of Wolbachia infection on a broad spectrum of ecological and physiological parameters of one of its native hosts, Armadillidium vulgare. The aim was to gain as complete a picture as possible of the influence of this endosymbiont on its host. Our results showed that the presence of Wolbachia resulted in a decrease in individual reproductive success and survival. Host immune cells density decreased and β-galactosidase activity (ageing biomarker) increased with the presence of Wolbachia, suggesting a negative impact of this endosymbiont on woodlice health. While previous studies have shown that Wolbachia can have a positive impact on the immunocompetence of A. vulgare, here we shed more light on the costs of infection. Our results illustrate the complex dynamics that exist between Wolbachia and its arthropod host and therefore offer valuable insights into the intricate interplay of symbiotic relationships in ecological systems.
Collapse
Affiliation(s)
- Charlotte Depeux
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions EBI, UMR CNRS 7267, 3, rue Jacques Fort, TSA 51106 86073 POITIERS Cedex 9, France
| | - Angèle Branger
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions EBI, UMR CNRS 7267, 3, rue Jacques Fort, TSA 51106 86073 POITIERS Cedex 9, France
| | - Hélène Paulhac
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions EBI, UMR CNRS 7267, 3, rue Jacques Fort, TSA 51106 86073 POITIERS Cedex 9, France
| | - Romain Pigeault
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions EBI, UMR CNRS 7267, 3, rue Jacques Fort, TSA 51106 86073 POITIERS Cedex 9, France
| | - Sophie Beltran-Bech
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions EBI, UMR CNRS 7267, 3, rue Jacques Fort, TSA 51106 86073 POITIERS Cedex 9, France.
| |
Collapse
|
6
|
Tischer M, Bleidorn C. Further evidence of low infection frequencies of Wolbachia in soil arthropod communities. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105641. [PMID: 39004260 DOI: 10.1016/j.meegid.2024.105641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/22/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Endosymbiotic Alphaproteobacteria of the genus Wolbachia are exclusively transferred maternally from mother to offspring, but horizontal transfer across species boundaries seems to be frequent as well. However, the (ecological) mechanisms of how these bacteria are transferred between distantly related arthropod hosts remain unclear. Based on the observation that species that are part of the same ecological community often also share similar Wolbachia strains, host ecology has been hypothesized as an important factor enabling transmission and a key factor in explaining the global distribution of Wolbachia lineages. In this study, we focus on the diversity and abundance of Wolbachia strains in soil arthropods, a so far rather neglected community. We screened 82 arthropod morphotypes collected in the beech forest (dominated by Fagus sp.) soil in the area of Göttingen in central Germany for the presence of Wolbachia. By performing a PCR screen with Wolbachia-MLST markers (coxA, dnaA, fbpA, ftsZ, gatB, and hcpA), we found a rather low infection frequency of 12,2%. Additionally, we performed metagenomic screening of pooled individuals from the same sampling site and could not find evidence that this low infection frequency is an artefact due to PCR-primer bias. Phylogenetic analyses of the recovered Wolbachia strains grouped them in three known supergroups (A, B, and E), with the first report of Wolbachia in Protura (Hexapoda). Moreover, Wolbachia sequences from the pseudoscorpion Neobisium carcinoides cluster outside the currently known supergroup diversity. Our screening supports results from previous studies that the prevalence of Wolbachia infections seems to be lower in soil habitats than in above-ground terrestrial habitats. The reasons for this pattern are not completely understood but might stem from the low opportunity of physical contact and the prevalence of supergroups that are less suited for horizontal transfer.
Collapse
Affiliation(s)
- Marta Tischer
- Department for Animal Evolution and Biodiversity, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany.
| | - Christoph Bleidorn
- Department for Animal Evolution and Biodiversity, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany.
| |
Collapse
|
7
|
Laifi-Necibi N, Amor N, Merella P, Mohammed OB, Medini L. DNA barcoding reveals cryptic species in the sea slater Ligia italica (Crustacea, Isopoda) from Tunisia. Mitochondrial DNA A DNA Mapp Seq Anal 2024:1-11. [PMID: 38899428 DOI: 10.1080/24701394.2024.2363350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/14/2024] [Indexed: 06/21/2024]
Abstract
Barcoding studies have provided significant insights into phylogenetic relationships among species belonging to the genus Ligia (Crustacea, Isopoda). Herein the diversity of the Italian sea slater Ligia italica from Tunisia is studied for the first time. Samples were collected from 18 localities in Tunisia, and the analysis included previously published sequences from Italy and Greece available in GenBank. Bayesian and Maximum Likelihood phylogenetic analyses were carried out using a fragment of the mitochondrial COI gene. Putative cryptic species were explored using the 'barcode gap' approach in the software ASAP. A genetic landscape shape analysis was carried out using the program Alleles in Space. The analyses revealed highly divergent and well-supported clades of L. italica dispersed across Tunisia (Clades A1 and A2), Greece (Clade B) and Italy (Clades C1 and C2). High genetic dissimilarity among clades suggested that L. italica constitute a cryptic species complex. Divergence among different L. italica lineages (Clades A, B and C) occurred around 7-4.5 Ma. The detected high genetic distances among clades did not result from atypical mitochondrial DNAs or intracellular infection by Wolbachia bacteria. The complex history of the Mediterranean Sea appears to have played a significant role in shaping the phylogeographic pattern of Ligia italica. Additional morphological and molecular studies are needed to confirm the existence of cryptic species in Ligia italica in Mediterranean.
Collapse
Affiliation(s)
- Nermine Laifi-Necibi
- Faculté des Sciences de Tunis, Laboratoire Diversité, Gestion et Conservation des Systèmes Biologiques, Université de Tunis El Manar, Tunis, Tunisia
| | - Nabil Amor
- Higher Institute of Applied Biological Sciences of Tunis, University Tunis EL Manar, Tunis, Tunisia
| | - Paolo Merella
- Parassitologia e Malattie Parassitarie, Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | | | - Lamia Medini
- Faculté des Sciences de Tunis, Laboratoire Diversité, Gestion et Conservation des Systèmes Biologiques, Université de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
8
|
Hague MTJ, Wheeler TB, Cooper BS. Comparative analysis of Wolbachia maternal transmission and localization in host ovaries. Commun Biol 2024; 7:727. [PMID: 38877196 PMCID: PMC11178894 DOI: 10.1038/s42003-024-06431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024] Open
Abstract
Many insects and other animals carry microbial endosymbionts that influence their reproduction and fitness. These relationships only persist if endosymbionts are reliably transmitted from one host generation to the next. Wolbachia are maternally transmitted endosymbionts found in most insect species, but transmission rates can vary across environments. Maternal transmission of wMel Wolbachia depends on temperature in natural Drosophila melanogaster hosts and in transinfected Aedes aegypti, where wMel is used to block pathogens that cause human disease. In D. melanogaster, wMel transmission declines in the cold as Wolbachia become less abundant in host ovaries and at the posterior pole plasm (the site of germline formation) in mature oocytes. Here, we assess how temperature affects maternal transmission and underlying patterns of Wolbachia localization across 10 Wolbachia strains diverged up to 50 million years-including strains closely related to wMel-and their natural Drosophila hosts. Many Wolbachia maintain high transmission rates across temperatures, despite highly variable (and sometimes low) levels of Wolbachia in the ovaries and at the developing germline in late-stage oocytes. Identifying strains like closely related wMel-like Wolbachia with stable transmission across variable environmental conditions may improve the efficacy of Wolbachia-based biocontrol efforts as they expand into globally diverse environments.
Collapse
Affiliation(s)
| | - Timothy B Wheeler
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Brandon S Cooper
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
9
|
Wijegunawardana NDAD, Gunawardene YINS, Abeyewickreme W, Chandrasena TGAN, Thayanukul P, Kittayapong P. Diversity of Wolbachia infections in Sri Lankan mosquitoes with a new record of Wolbachia Supergroup B infecting Aedes aegypti vector populations. Sci Rep 2024; 14:11966. [PMID: 38796552 PMCID: PMC11127934 DOI: 10.1038/s41598-024-62476-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
Wolbachia bacteria are common endosymbionts of insects and have recently been applied for controlling arboviral vectors, especially Aedes aegypti mosquito populations. However, several medically important mosquito species in Sri Lanka were present with limited information for the Wolbachia infection status. Therefore, the screening of Wolbachia in indigenous mosquitoes is required prior to a successful application of Wolbachia-based vector control strategy. In this study, screening of 78 mosquito species collected from various parts of the country revealed that 13 species were positive for Wolbachia infection, giving ~ 17% infection frequency of Wolbachia among the Sri Lankan mosquitoes. Twelve Wolbachia-positive mosquito species were selected for downstream Wolbachia strain genotyping using Multi Locus Sequencing Type (MLST), wsp gene, and 16S rRNA gene-based approaches. Results showed that these Wolbachia strains clustered together with the present Wolbachia phylogeny of world mosquito populations with some variations. Almost 90% of the mosquito populations were infected with supergroup B while the remaining were infected with supergroup A. A new record of Wolbachia supergroup B infection in Ae. aegypti, the main vectors of dengue, was highlighted. This finding was further confirmed by real-time qPCR, revealing Wolbachia density variations between Ae. aegypti and Ae. albopictus (p = 0.001), and between males and females (p < 0.05). The evidence of natural Wolbachia infections in Ae. aegypti populations in Sri Lanka is an extremely rare incident that has the potential to be used for arboviral vector control.
Collapse
Affiliation(s)
- N D A D Wijegunawardana
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Phayathai, Thailand
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale, Sri Lanka
| | | | - W Abeyewickreme
- Department of Parasitology, Faculty of Medicine, General Sir Johan Kotelawala Defence University, Dehiwala-Mount Lavinia, Sri Lanka
| | - T G A N Chandrasena
- Department of Parasitology, Faculty of Medicine, University of Kelaniya, Kelaniya, Sri Lanka
| | - P Thayanukul
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University, Salaya, Thailand.
- Department of Biology, Faculty of Science, Mahidol University, Phayathai, Thailand.
| | - P Kittayapong
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University, Salaya, Thailand
| |
Collapse
|
10
|
Burdine LW, Moczek AP, Rohner PT. Sexually transmitted mutualist nematodes shape host growth across dung beetle species. Ecol Evol 2024; 14:e11089. [PMID: 38469044 PMCID: PMC10925520 DOI: 10.1002/ece3.11089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/26/2024] [Accepted: 02/16/2024] [Indexed: 03/13/2024] Open
Abstract
Many symbionts are sexually transmitted and impact their host's development, ecology, and evolution. While the significance of symbionts that cause sexually transmitted diseases (STDs) is relatively well understood, the prevalence and potential significance of the sexual transmission of mutualists remain elusive. Here, we study the effects of sexually transmitted mutualist nematodes on their dung beetle hosts. Symbiotic Diplogastrellus monhysteroides nematodes are present on the genitalia of male and female Onthophagus beetles and are horizontally transmitted during mating and vertically passed on to offspring during oviposition. A previous study indicates that the presence of nematodes benefits larval development and life history in a single host species, Onthophagus taurus. However, Diplogastrellus nematodes can be found in association with a variety of beetle species. Here, we replicate these previous experiments, assess whether the beneficial effects extend to other host species, and test whether nematode-mediated effects differ between male and female host beetles. Rearing three relatively distantly related dung beetle species with and without nematodes, we find that the presence of nematodes benefits body size, but not development time or survival across all three species. Likewise, we found no difference in the benefit of nematodes to male compared to female beetles. These findings highlight the role of sexually transmitted mutualists in the evolution and ecology of dung beetles.
Collapse
Affiliation(s)
- Levi W. Burdine
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Armin P. Moczek
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Patrick T. Rohner
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
- Department of Ecology, Behavior, and EvolutionUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
11
|
Pramono AK, Hidayanti AK, Tagami Y, Ando H. Bacterial community and genome analysis of cytoplasmic incompatibility-inducing Wolbachia in American serpentine leafminer, Liriomyza trifolii. Front Microbiol 2024; 15:1304401. [PMID: 38380092 PMCID: PMC10877061 DOI: 10.3389/fmicb.2024.1304401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/12/2024] [Indexed: 02/22/2024] Open
Abstract
Liriomyza trifolii, an agricultural pest, is occasionally infected by Wolbachia. A Wolbachia strain present in Liriomyza trifolii is associated with cytoplasmic incompatibility (CI) effects, leading to the death of embryos resulting from incompatible crosses between antibiotic-treated or naturally Wolbachia-free strain females and Wolbachia-infected males. In this study, high-throughput sequencing of hypervariable rRNA genes was employed to characterize the bacterial community in Wolbachia-infected L. trifolii without antibiotic treatment. The analysis revealed that Wolbachia dominates the bacterial community in L. trifolii, with minor presence of Acinetobacter, Pseudomonas, and Limnobacter. To elucidate the genetic basis of the CI phenotype, metagenomic sequencing was also conducted to assemble the genome of the Wolbachia strain. The draft-genome of the Wolbachia strain wLtri was 1.35 Mbp with 34% GC content and contained 1,487 predicted genes. Notably, within the wLtri genome, there are three distinct types of cytoplasmic incompatibility factor (cif) genes: Type I, Type III, and Type V cifA;B. These genes are likely responsible for inducing the strong cytoplasmic incompatibility observed in L. trifolii.
Collapse
Affiliation(s)
- Ajeng K. Pramono
- Laboratory of Phage Biologics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Ardhiani K. Hidayanti
- School of Biological Environment, The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
- School of Life Sciences and Technology, Institut Teknologi Bandung (ITB), Bandung, Indonesia
| | - Yohsuke Tagami
- Laboratory of Applied Entomology, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Hiroki Ando
- Laboratory of Phage Biologics, Graduate School of Medicine, Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| |
Collapse
|
12
|
Duplouy A. Validating a Mitochondrial Sweep Accompanying the Rapid Spread of a Maternally Inherited Symbiont. Methods Mol Biol 2024; 2739:239-247. [PMID: 38006556 DOI: 10.1007/978-1-0716-3553-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Maternally inherited symbiotic bacteria that interfere with the reproduction of their hosts can contribute to selective sweeps of mitochondrial haplotypes through hitch-hiking or coordinate inheritance of cytoplasmic bacteria and host mitochondria. The sweep will be manifested by genetic variations of mitochondrial genomic DNA of symbiont-infected hosts relative to their uninfected counterparts. In particular, at the population level, infected specimens will show a reduced mitochondrial DNA polymorphism compared to that in the nuclear DNA. This may challenge the use of mitochondrial DNA sequences as neutral genetic markers, as the mitochondrial patterns will reflect the evolutionary history of parasitism, rather than the sole evolutionary history of the host. Here, I describe a detailed step-by-step procedure to infer the occurrence and timing of symbiont-induced mitochondrial sweeps in host species.
Collapse
Affiliation(s)
- Anne Duplouy
- Insect Symbiosis Ecology and Evolution, Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
- Research Centre for Ecological Changes, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
13
|
Kryukova NA, Kryukov VY, Polenogova OV, Chertkova ЕА, Tyurin MV, Rotskaya UN, Alikina T, Kabilov МR, Glupov VV. The endosymbiotic bacterium Wolbachia (Rickettsiales) alters larval metabolism of the parasitoid Habrobracon hebetor (Hymenoptera: Braconidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22053. [PMID: 37695720 DOI: 10.1002/arch.22053] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/29/2023] [Accepted: 09/03/2023] [Indexed: 09/13/2023]
Abstract
Infection of intestinal tissues with Wolbachia has been found in Habrobracon hebetor. There are not many studies on the relationship between Habrobracon and Wolbachia, and they focus predominantly on the sex index of an infected parasitoid, its fertility, and behavior. The actual role of Wolbachia in the biology of Habrobracon is not yet clear. The method of complete eradication of Wolbachia in the parasitoid was developed here, and effects of the endosymbiont on the host's digestive metabolism were compared between two lines of the parasitoid (Wolbachia-positive and Wolbachia-negative). In the gut of Wolbachia+ larvae, lipases' activity was higher almost twofold, and activities of acid proteases, esterases, and trehalase were 1.5-fold greater than those in the Wolbachia- line. Analyses of larval homogenates revealed that Wolbachia+ larvae accumulate significantly more lipids and have a lower amount of pyruvate as compared to Wolbachia- larvae. The presented results indicate significant effects of the intracellular symbiotic bacterium Wolbachia on the metabolism of H. hebetor larvae and on the activity of its digestive enzymes.
Collapse
Affiliation(s)
- Natalia A Kryukova
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | - Vadim Y Kryukov
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | - Olga V Polenogova
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | | | - Maksim V Tyurin
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | - Ulyana N Rotskaya
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | - Tatyana Alikina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Мarsel R Kabilov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Viktor V Glupov
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| |
Collapse
|
14
|
Strunov A, Kirchner S, Schindelar J, Kruckenhauser L, Haring E, Kapun M. Historic Museum Samples Provide Evidence for a Recent Replacement of Wolbachia Types in European Drosophila melanogaster. Mol Biol Evol 2023; 40:msad258. [PMID: 37995370 PMCID: PMC10701101 DOI: 10.1093/molbev/msad258] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/23/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023] Open
Abstract
Wolbachia is one of the most common bacterial endosymbionts, which is frequently found in numerous arthropods and nematode taxa. Wolbachia infections can have a strong influence on the evolutionary dynamics of their hosts since these bacteria are reproductive manipulators that affect the fitness and life history of their host species for their own benefit. Host-symbiont interactions with Wolbachia are perhaps best studied in the model organism Drosophila melanogaster, which is naturally infected with at least 5 different variants among which wMel and wMelCS are the most frequent ones. Comparisons of infection types between natural flies and long-term lab stocks have previously indicated that wMelCS represents the ancestral type, which was only very recently replaced by the nowadays dominant wMel in most natural populations. In this study, we took advantage of recently sequenced museum specimens of D. melanogaster that have been collected 90 to 200 yr ago in Northern Europe to test this hypothesis. Our comparison to contemporary Wolbachia samples provides compelling support for the replacement hypothesis. Our analyses show that sequencing data from historic museum specimens and their bycatch are an emerging and unprecedented resource to address fundamental questions about evolutionary dynamics in host-symbiont interactions. However, we also identified contamination with DNA from crickets that resulted in co-contamination with cricket-specific Wolbachia in several samples. These results underpin the need for rigorous quality assessments of museomic data sets to account for contamination as a source of error that may strongly influence biological interpretations if it remains undetected.
Collapse
Affiliation(s)
- Anton Strunov
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Sandra Kirchner
- Natural History Museum Vienna, Central Research Laboratories, Vienna, Austria
| | - Julia Schindelar
- Natural History Museum Vienna, Central Research Laboratories, Vienna, Austria
| | - Luise Kruckenhauser
- Natural History Museum Vienna, Central Research Laboratories, Vienna, Austria
- Department for Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Elisabeth Haring
- Natural History Museum Vienna, Central Research Laboratories, Vienna, Austria
- Department for Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Martin Kapun
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
- Natural History Museum Vienna, Central Research Laboratories, Vienna, Austria
| |
Collapse
|
15
|
Pascar J, Middleton H, Dorus S. Aedes aegypti microbiome composition covaries with the density of Wolbachia infection. MICROBIOME 2023; 11:255. [PMID: 37978413 PMCID: PMC10655336 DOI: 10.1186/s40168-023-01678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/27/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Wolbachia is a widespread bacterial endosymbiont that can inhibit vector competency when stably transinfected into the mosquito, Aedes aegypti, a primary vector of the dengue virus (DENV) and other arboviruses. Although a complete mechanistic understanding of pathogen blocking is lacking, it is likely to involve host immunity induction and resource competition between Wolbachia and DENV, both of which may be impacted by microbiome composition. The potential impact of Wolbachia transinfection on host fitness is also of importance given the widespread release of mosquitos infected with the Drosophila melanogaster strain of Wolbachia (wMel) in wild populations. Here, population-level genomic data from Ae. aegypti was surveyed to establish the relationship between the density of wMel infection and the composition of the host microbiome. RESULTS Analysis of genomic data from 172 Ae. aegypti females across six populations resulted in an expanded and quantitatively refined, species-level characterization of the bacterial, archaeal, and fungal microbiome. This included 844 species of bacteria across 23 phyla, of which 54 species were found to be ubiquitous microbiome members across these populations. The density of wMel infection was highly variable between individuals and negatively correlated with microbiome diversity. Network analyses revealed wMel as a hub comprised solely of negative interactions with other bacterial species. This contrasted with the large and highly interconnected network of other microbiome species that may represent members of the midgut microbiome community in this population. CONCLUSION Our bioinformatic survey provided a species-level characterization of Ae. aegypti microbiome composition and variation. wMel load varied substantially across populations and individuals and, importantly, wMel was a major hub of a negative interactions across the microbiome. These interactions may be an inherent consequence of heightened pathogen blocking in densely infected individuals or, alternatively, may result from antagonistic Wolbachia-incompatible bacteria that could impede the efficacy of wMel as a biological control agent in future applications. The relationship between wMel infection variation and the microbiome warrants further investigation in the context of developing wMel as a multivalent control agent against other arboviruses. Video Abstract.
Collapse
Affiliation(s)
- Jane Pascar
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Henry Middleton
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Steve Dorus
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA.
| |
Collapse
|
16
|
Medina P, Russell SL, Corbett-Detig R. Deep data mining reveals variable abundance and distribution of microbial reproductive manipulators within and among diverse host species. PLoS One 2023; 18:e0288261. [PMID: 37432953 DOI: 10.1371/journal.pone.0288261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
Bacterial symbionts that manipulate the reproduction of their hosts are important factors in invertebrate ecology and evolution, and are being leveraged for host biological control. Infection prevalence restricts which biological control strategies are possible and is thought to be strongly influenced by the density of symbiont infection within hosts, termed titer. Current methods to estimate infection prevalence and symbiont titers are low-throughput, biased towards sampling infected species, and rarely measure titer. Here we develop a data mining approach to estimate symbiont infection frequencies within host species and titers within host tissues. We applied this approach to screen ~32,000 publicly available sequence samples from the most common symbiont host taxa, discovering 2,083 arthropod and 119 nematode infected samples. From these data, we estimated that Wolbachia infects approximately 44% of all arthropod and 34% of all nematode species, while other reproductive manipulators only infect 1-8% of arthropod and nematode species. Although relative titers within hosts were highly variable within and between arthropod species, a combination of arthropod host species and Wolbachia strain explained approximately 36% of variation in Wolbachia titer across the dataset. To explore potential mechanisms for host control of symbiont titer, we leveraged population genomic data from the model system Drosophila melanogaster. In this host, we found a number of SNPs associated with titer in candidate genes potentially relevant to host interactions with Wolbachia. Our study demonstrates that data mining is a powerful tool to detect bacterial infections and quantify infection intensities, thus opening an array of previously inaccessible data for further analysis in host-symbiont evolution.
Collapse
Affiliation(s)
- Paloma Medina
- Genomics Institute, Department of Biomolecular Engineering UC Santa Cruz, Santa Cruz, CA, United States of America
| | - Shelbi L Russell
- Genomics Institute, Department of Biomolecular Engineering UC Santa Cruz, Santa Cruz, CA, United States of America
| | - Russell Corbett-Detig
- Genomics Institute, Department of Biomolecular Engineering UC Santa Cruz, Santa Cruz, CA, United States of America
| |
Collapse
|
17
|
Mioduchowska M, Konecka E, Gołdyn B, Pinceel T, Brendonck L, Lukić D, Kaczmarek Ł, Namiotko T, Zając K, Zając T, Jastrzębski JP, Bartoszek K. Playing Peekaboo with a Master Manipulator: Metagenetic Detection and Phylogenetic Analysis of Wolbachia Supergroups in Freshwater Invertebrates. Int J Mol Sci 2023; 24:ijms24119400. [PMID: 37298356 DOI: 10.3390/ijms24119400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The infamous "master manipulators"-intracellular bacteria of the genus Wolbachia-infect a broad range of phylogenetically diverse invertebrate hosts in terrestrial ecosystems. Wolbachia has an important impact on the ecology and evolution of their host with documented effects including induced parthenogenesis, male killing, feminization, and cytoplasmic incompatibility. Nonetheless, data on Wolbachia infections in non-terrestrial invertebrates are scarce. Sampling bias and methodological limitations are some of the reasons limiting the detection of these bacteria in aquatic organisms. In this study, we present a new metagenetic method for detecting the co-occurrence of different Wolbachia strains in freshwater invertebrates host species, i.e., freshwater Arthropoda (Crustacea), Mollusca (Bivalvia), and water bears (Tardigrada) by applying NGS primers designed by us and a Python script that allows the identification of Wolbachia target sequences from the microbiome communities. We also compare the results obtained using the commonly applied NGS primers and the Sanger sequencing approach. Finally, we describe three supergroups of Wolbachia: (i) a new supergroup V identified in Crustacea and Bivalvia hosts; (ii) supergroup A identified in Crustacea, Bivalvia, and Eutardigrada hosts, and (iii) supergroup E infection in the Crustacea host microbiome community.
Collapse
Affiliation(s)
- Monika Mioduchowska
- Department of Evolutionary Genetics and Biosystematics, Faculty of Biology, University of Gdansk, 80-308 Gdańsk, Poland
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Łódź, Poland
- Department of Marine Plankton Research, Institute of Oceanography, University of Gdansk, 81-378 Gdynia, Poland
| | - Edyta Konecka
- Department of Microbiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614 Poznań, Poland
| | - Bartłomiej Gołdyn
- Department of General Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614 Poznań, Poland
| | - Tom Pinceel
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, 3000 Leuven, Belgium
- Centre for Environmental Management, University of the Free State, Potchefstroom 2520, South Africa
- Community Ecology Laboratory, Department of Biology, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Luc Brendonck
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, 3000 Leuven, Belgium
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Dunja Lukić
- Department of Wetland Ecology, Estación Biológica de Doñana-CSIC, 41092 Sevilla, Spain
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614 Poznań, Poland
| | - Tadeusz Namiotko
- Department of Evolutionary Genetics and Biosystematics, Faculty of Biology, University of Gdansk, 80-308 Gdańsk, Poland
| | - Katarzyna Zając
- Institute of Nature Conservation, Polish Academy of Sciences, 31-120 Kraków, Poland
| | - Tadeusz Zając
- Institute of Nature Conservation, Polish Academy of Sciences, 31-120 Kraków, Poland
| | - Jan P Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
- Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Krzysztof Bartoszek
- Department of Computer and Information Science, Division of Statistics and Machine Learning, Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
18
|
Field EN, Smith RC. Seasonality influences key physiological components contributing to Culex pipiens vector competence. FRONTIERS IN INSECT SCIENCE 2023; 3:1144072. [PMID: 38469495 PMCID: PMC10926469 DOI: 10.3389/finsc.2023.1144072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/12/2023] [Indexed: 03/13/2024]
Abstract
Mosquitoes are the most important animal vector of disease on the planet, transmitting a variety of pathogens of both medical and veterinary importance. Mosquito-borne diseases display distinct seasonal patterns driven by both environmental and biological variables. However, an important, yet unexplored component of these patterns is the potential for seasonal influences on mosquito physiology that may ultimately influence vector competence. To address this question, we selected Culex pipiens, a primary vector of the West Nile virus (WNV) in the temperate United States, to examine the seasonal impacts on mosquito physiology by examining known immune and bacterial components implicated in mosquito arbovirus infection. Semi-field experiments were performed under spring, summer, and late-summer conditions, corresponding to historically low-, medium-, and high-intensity periods of WNV transmission, respectively. Through these experiments, we observed differences in the expression of immune genes and RNA interference (RNAi) pathway components, as well as changes in the distribution and abundance of Wolbachia in the mosquitoes across seasonal cohorts. Together, these findings support the conclusion that seasonal changes significantly influence mosquito physiology and components of the mosquito microbiome, suggesting that seasonality may impact mosquito susceptibility to pathogen infection, which could account for the temporal patterns in mosquito-borne disease transmission.
Collapse
Affiliation(s)
| | - Ryan C. Smith
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, United States
| |
Collapse
|
19
|
Degueldre F, Aron S. Long-term sperm storage in eusocial Hymenoptera. Biol Rev Camb Philos Soc 2023; 98:567-583. [PMID: 36397639 DOI: 10.1111/brv.12919] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022]
Abstract
In internally fertilizing species, sperm transfer is not always immediately followed by egg fertilization, and female sperm storage (FSS) may occur. FSS is a phenomenon in which females store sperm in a specialized organ for periods lasting from a few hours to several years, depending on the species. Eusocial hymenopterans (ants, social bees, and social wasps) hold the record for FSS duration. In these species, mating takes place during a single nuptial flight that occurs early in adult life for both sexes; they never mate again. Males die quickly after copulation but survive posthumously as sperm stored in their mates' spermathecae. Reproductive females, also known as queens, have a much longer life expectancy, up to 20 years in some species. Here, we review what is currently known about the molecular adaptations underlying the remarkable FSS capacities in eusocial hymenopterans. Because sperm quality is crucial to the reproductive success of both sexes, we also discuss the mechanisms involved in sperm storage and preservation in the male seminal vesicles prior to ejaculation. Finally, we propose future research directions that should broaden our understanding of this unique biological phenomenon.
Collapse
Affiliation(s)
- Félicien Degueldre
- Evolutionary Biology and Ecology, CP 160/12, Université Libre de Bruxelles, B-1050, Brussels, Belgium
| | - Serge Aron
- Evolutionary Biology and Ecology, CP 160/12, Université Libre de Bruxelles, B-1050, Brussels, Belgium
| |
Collapse
|
20
|
Remmal I, Bel Mokhtar N, Maurady A, Reda Britel M, El Fakhouri K, Asimakis E, Tsiamis G, Stathopoulou P. Characterization of the Bacterial Microbiome in Natural Populations of Barley Stem Gall Midge, Mayetiola hordei, in Morocco. Microorganisms 2023; 11:microorganisms11030797. [PMID: 36985370 PMCID: PMC10051481 DOI: 10.3390/microorganisms11030797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Mayetiola hordei (Kieffer), known as barley stem gall midge, is one of the most destructive barley pests in many areas around the world, inflicting significant qualitative and quantitative damage to crop production. In this study, we investigate the presence of reproductive symbionts, the effect of geographical origin on the bacterial microbiome's structure, and the diversity associated with natural populations of M. hordei located in four barley-producing areas in Morocco. Wolbachia infection was discovered in 9% of the natural populations using a precise 16S rDNA PCR assay. High-throughput sequencing of the V3-V4 region of the bacterial 16S rRNA gene indicated that the native environments of samples had a substantial environmental impact on the microbiota taxonomic assortment. Briefly, 5 phyla, 7 classes, and 42 genera were identified across all the samples. To our knowledge, this is the first report on the bacterial composition of M. hordei natural populations. The presence of Wolbachia infection may assist in the diagnosis of ideal natural populations, providing a new insight into the employment of Wolbachia in the control of barley midge populations, in the context of the sterile insect technique or other biological control methods.
Collapse
Affiliation(s)
- Imane Remmal
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, BP 1818 Tanger Principal, Tanger 90000, Morocco
- Faculty of Sciences and Technology of Tangier, Abdelmalek Essâadi University, Tétouan 93000, Morocco
| | - Naima Bel Mokhtar
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, BP 1818 Tanger Principal, Tanger 90000, Morocco
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 30100 Agrinio, Greece
| | - Amal Maurady
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, BP 1818 Tanger Principal, Tanger 90000, Morocco
- Faculty of Sciences and Technology of Tangier, Abdelmalek Essâadi University, Tétouan 93000, Morocco
| | - Mohammed Reda Britel
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, BP 1818 Tanger Principal, Tanger 90000, Morocco
| | - Karim El Fakhouri
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Elias Asimakis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 30100 Agrinio, Greece
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 30100 Agrinio, Greece
| | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 30100 Agrinio, Greece
| |
Collapse
|
21
|
Mancini E, Sabatelli S, Hu Y, Frasca S, Di Giulio A, Audisio P, Brown CD, Russell JA, Trizzino M. Uncovering Active Bacterial Symbionts in Three Species of Pollen-feeding Beetles (Nitidulidae: Meligethinae). MICROBIAL ECOLOGY 2023; 85:335-339. [PMID: 35059821 DOI: 10.1007/s00248-022-01964-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Microbial symbionts enable many phytophagous insects to specialize on plant-based diets through a range of metabolic services. Pollen comprises one-plant tissue consumed by such herbivores. While rich in lipids and proteins, its nutrient content is often imbalanced and difficult-to-access due to a digestibly recalcitrant cell wall. Pollen quality can be further degraded by harmful allelochemicals. To identify microbes that may aid in palynivory, we performed cDNA-based 16S rRNA metabarcoding on three related pollen beetles (Nitidulidae: Meligethinae) exhibiting different dietary breadths: Brassicogethes aeneus, B. matronalis, and Meligethes atratus. Nine bacterial symbionts (i.e., 97% OTUs) exhibited high metabolic activity during active feeding. Subsequent PCR surveys revealed varying prevalence of those from three Rickettsialles genera-Lariskella, Rickettsia, and Wolbachia-within beetle populations. Our findings lay the groundwork for future studies on the influence of phylogeny and diet on palynivorous insect microbiomes, and roles of symbionts in the use of challenging diets.
Collapse
Affiliation(s)
- Emiliano Mancini
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Viale dell'Università 32, 00185, Rome, Italy.
| | - Simone Sabatelli
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Viale dell'Università 32, 00185, Rome, Italy
| | - Yi Hu
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
- State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Sara Frasca
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Viale dell'Università 32, 00185, Rome, Italy
| | - Andrea Di Giulio
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146, Rome, Italy
| | - Paolo Audisio
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Viale dell'Università 32, 00185, Rome, Italy
| | - Christopher D Brown
- Department of Genetics, University of Pennsylvania, 538B 415, Curie Blvd, Philadelphia, PA, 19103, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
| | - Marco Trizzino
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 S 10TH street, Philadelphia, PA, 19107, USA
| |
Collapse
|
22
|
Ross PA, Hoffmann AA. Fitness costs of Wolbachia shift in locally-adapted Aedes aegypti mosquitoes. Environ Microbiol 2022; 24:5749-5759. [PMID: 36200325 PMCID: PMC10947380 DOI: 10.1111/1462-2920.16235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/04/2022] [Indexed: 01/12/2023]
Abstract
Aedes aegypti mosquito eggs can remain quiescent for many months before hatching, allowing populations to persist through unfavourable conditions. A. aegypti infected with the Wolbachia strain wMel have been released in tropical and subtropical regions for dengue control. wMel reduces the viability of quiescent eggs, but this physiological cost might be expected to evolve in natural mosquito populations that frequently experience stressful conditions. We found that the cost of wMel infection differed consistently between mosquitoes collected from different locations and became weaker across laboratory generations, suggesting environment-specific adaptation of mosquitoes to the wMel infection. Reciprocal crossing experiments show that differences in the cost of wMel to quiescent egg viability were mainly due to mosquito genetic background and not Wolbachia origin. wMel-infected mosquitoes hatching from long-term quiescent eggs showed partial loss of cytoplasmic incompatibility and female infertility, highlighting additional costs of long-term quiescence. Our study provides the first evidence for a shift in Wolbachia phenotypic effects following deliberate field release and establishment and it highlights interactions between Wolbachia infections and mosquito genetic backgrounds. The unexpected changes in fitness costs observed here suggest potential tradeoffs with undescribed fitness benefits of the wMel infection.
Collapse
Affiliation(s)
- Perran A. Ross
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
23
|
Twort VG, Blande D, Duplouy A. One's trash is someone else's treasure: sequence read archives from Lepidoptera genomes provide material for genome reconstruction of their endosymbionts. BMC Microbiol 2022; 22:209. [PMID: 36042402 PMCID: PMC9426245 DOI: 10.1186/s12866-022-02602-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Maternally inherited bacterial symbionts are extremely widespread in insects. They owe their success to their ability to promote their own transmission through various manipulations of their hosts' life-histories. Many symbionts however very often go undetected. Consequently, we have only a restricted idea of the true symbiont diversity in insects, which may hinder our understanding of even bigger questions in the field such as the evolution or establishment of symbiosis. RESULTS In this study, we screened publicly available Lepidoptera genomic material for two of the most common insect endosymbionts, namely Wolbachia and Spiroplasma, in 1904 entries, encompassing 106 distinct species. We compared the performance of two screening software, Kraken2 and MetaPhlAn2, to identify the bacterial infections and using a baiting approach we reconstruct endosymbiont genome assemblies. Of the 106 species screened, 20 (19%) and nine (8.5%) were found to be infected with either Wolbachia or Spiroplasma, respectively. Construction of partial symbiotic genomes and phylogenetic analyses suggested the Wolbachia strains from the supergroup B were the most prevalent type of symbionts, while Spiroplasma infections were scarce in the Lepidoptera species screened here. CONCLUSIONS Our results indicate that many of the host-symbiont associations remain largely unexplored, with the majority of associations we identify never being recorded before. This highlights the usefulness of public databases to explore the hidden diversity of symbiotic entities, allowing the development of hypotheses regarding host-symbiont associations. The ever-expanding genomic databases provide a diverse databank from which one can characterize and explore the true diversity of symbiotic entities.
Collapse
Affiliation(s)
- Victoria G Twort
- Finnish Natural History Museum, LUOMUS, The University of Helsinki, Helsinki, Finland.
| | - Daniel Blande
- Organismal and Evolutionary Biology, The University of Helsinki, Helsinki, Finland
| | - Anne Duplouy
- Organismal and Evolutionary Biology, The University of Helsinki, Helsinki, Finland
| |
Collapse
|
24
|
Tibbs-Cortes LE, Tibbs-Cortes BW, Schmitz-Esser S. Tardigrade Community Microbiomes in North American Orchards Include Putative Endosymbionts and Plant Pathogens. Front Microbiol 2022; 13:866930. [PMID: 35923389 PMCID: PMC9340075 DOI: 10.3389/fmicb.2022.866930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022] Open
Abstract
The microbiome of tardigrades, a phylum of microscopic animals best known for their ability to survive extreme conditions, is poorly studied worldwide and completely unknown in North America. An improved understanding of tardigrade-associated bacteria is particularly important because tardigrades have been shown to act as vectors of the plant pathogen Xanthomonas campestris in the laboratory. However, the potential role of tardigrades as reservoirs and vectors of phytopathogens has not been investigated further. This study analyzed the microbiota of tardigrades from six apple orchards in central Iowa, United States, and is the first analysis of the microbiota of North American tardigrades. It is also the first ever study of the tardigrade microbiome in an agricultural setting. We utilized 16S rRNA gene amplicon sequencing to characterize the tardigrade community microbiome across four contrasts: location, substrate type (moss or lichen), collection year, and tardigrades vs. their substrate. Alpha diversity of the tardigrade community microbiome differed significantly by location and year of collection but not by substrate type. Our work also corroborated earlier findings, demonstrating that tardigrades harbor a distinct microbiota from their environment. We also identified tardigrade-associated taxa that belong to genera known to contain phytopathogens (Pseudomonas, Ralstonia, and the Pantoea/Erwinia complex). Finally, we observed members of the genera Rickettsia and Wolbachia in the tardigrade microbiome; because these are obligate intracellular genera, we consider these taxa to be putative endosymbionts of tardigrades. These results suggest the presence of putative endosymbionts and phytopathogens in the microbiota of wild tardigrades in North America.
Collapse
Affiliation(s)
- Laura E. Tibbs-Cortes
- Department of Agronomy, Iowa State University, Ames, IA, United States
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA, United States
- *Correspondence: Laura E. Tibbs-Cortes,
| | - Bienvenido W. Tibbs-Cortes
- Department of Animal Science, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Stephan Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| |
Collapse
|
25
|
Darwell CT, Souto‐Vilarós D, Michalek J, Boutsi S, Isua B, Sisol M, Kuyaiva T, Weiblen G, Křivan V, Novotny V, Segar ST. Predicting distributions of
Wolbachia
strains through host ecological contact—Who's manipulating whom? Ecol Evol 2022; 12:e8826. [PMID: 35432921 PMCID: PMC9006231 DOI: 10.1002/ece3.8826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/23/2022] [Indexed: 12/05/2022] Open
Abstract
Reproductive isolation in response to divergent selection is often mediated via third‐party interactions. Under these conditions, speciation is inextricably linked to ecological context. We present a novel framework for understanding arthropod speciation as mediated by Wolbachia, a microbial endosymbiont capable of causing host cytoplasmic incompatibility (CI). We predict that sympatric host sister‐species harbor paraphyletic Wolbachia strains that provide CI, while well‐defined congeners in ecological contact and recently diverged noninteracting congeners are uninfected due to Wolbachia redundancy. We argue that Wolbachia provides an adaptive advantage when coupled with reduced hybrid fitness, facilitating assortative mating between co‐occurring divergent phenotypes—the contact contingency hypothesis. To test this, we applied a predictive algorithm to empirical pollinating fig wasp data, achieving up to 91.60% accuracy. We further postulate that observed temporal decay of Wolbachia incidence results from adaptive host purging—adaptive decay hypothesis—but implementation failed to predict systematic patterns. We then account for post‐zygotic offspring mortality during CI mating, modeling fitness clines across developmental resources—the fecundity trade‐off hypothesis. This model regularly favored CI despite fecundity losses. We demonstrate that a rules‐based algorithm accurately predicts Wolbachia infection status. This has implications among other systems where closely related sympatric species encounter adaptive disadvantage through hybridization.
Collapse
Affiliation(s)
- Clive T. Darwell
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency Khlong Luang Thailand
| | - Daniel Souto‐Vilarós
- Biology Centre Institute of Entomology Czech Academy of Sciences Ceske Budejovice Czech Republic
- Faculty of Science University of South Bohemia in Ceske Budejovice Ceske Budejovice Czech Republic
| | - Jan Michalek
- Biology Centre Institute of Entomology Czech Academy of Sciences Ceske Budejovice Czech Republic
| | - Sotiria Boutsi
- Agriculture & Environment Department Harper Adams University Newport UK
| | - Brus Isua
- The New Guinea Binatang Research Center Madang Papua New Guinea
| | - Mentap Sisol
- The New Guinea Binatang Research Center Madang Papua New Guinea
| | - Thomas Kuyaiva
- The New Guinea Binatang Research Center Madang Papua New Guinea
| | - George Weiblen
- Department of Plant & Microbial Biology Bell Museum University of Minnesota Saint Paul Minnesota USA
| | - Vlastimil Křivan
- Faculty of Science University of South Bohemia in Ceske Budejovice Ceske Budejovice Czech Republic
| | - Vojtech Novotny
- Biology Centre Institute of Entomology Czech Academy of Sciences Ceske Budejovice Czech Republic
- Faculty of Science University of South Bohemia in Ceske Budejovice Ceske Budejovice Czech Republic
| | - Simon T. Segar
- Biology Centre Institute of Entomology Czech Academy of Sciences Ceske Budejovice Czech Republic
- Faculty of Science University of South Bohemia in Ceske Budejovice Ceske Budejovice Czech Republic
- Agriculture & Environment Department Harper Adams University Newport UK
| |
Collapse
|
26
|
Nasehi SF, Fathipour Y, Asgari S, Mehrabadi M. Environmental Temperature, but Not Male Age, Affects Wolbachia and Prophage WO Thereby Modulating Cytoplasmic Incompatibility in the Parasitoid Wasp, Habrobracon Hebetor. MICROBIAL ECOLOGY 2022; 83:482-491. [PMID: 33969432 DOI: 10.1007/s00248-021-01768-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Wolbachia is an endosymbiotic bacterium found in many species of arthropods and manipulates its host reproduction. Cytoplasmic incompatibility (CI) is one of the most common manipulations that is induced when an uninfected female mates with a Wolbachia-infected male. The CI factors (cifA and cifB genes) are encoded by phage WO that naturally infects Wolbachia. Here, we questioned whether an environmental factor (temperature) or host factor (male age) affected the strength of the CI phenotype in the ectoparasitoid wasp, Habrobracon hebetor. We found that temperature, but not male age, results in reduced CI penetrance. Consistent with these results, we also found that the expression of the cif CI factors decreased in temperature-exposed males but was consistent across aging male wasps. Similar to studies of other insect systems, cifA showed a higher expression level than cifB, and male hosts showed increased cif expression relative to females. Our results suggest that prophage WO is present in the Wolbachia-infected wasps and expression of cif genes contributes to the induction of CI in this insect. It seems that male aging has no effect on the intensity of CI; however, temperature affects Wolbachia and prophage WO titers as well as expression levels of cif genes, which modulate the CI level.
Collapse
Affiliation(s)
- Seyede Fatemeh Nasehi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Yaghoub Fathipour
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Sassan Asgari
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Mohammad Mehrabadi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
27
|
Raupach MJ, Rulik B, Spelda J. Surprisingly high genetic divergence of the mitochondrial DNA barcode fragment (COI) within Central European woodlice species (Crustacea, Isopoda, Oniscidea). Zookeys 2022; 1082:103-125. [PMID: 35115867 PMCID: PMC8794987 DOI: 10.3897/zookeys.1082.69851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/20/2021] [Indexed: 11/12/2022] Open
Abstract
DNA barcoding has become the most popular approach for species identification in recent years. As part of the German Barcode of Life project, the first DNA barcode library for terrestrial and freshwater isopods from Germany is presented. The analyzed barcode library included 38 terrestrial (78% of the documented species of Germany) and five freshwater (63%) species. A total of 513 new barcodes was generated and 518 DNA barcodes were analyzed. This analysis revealed surprisingly high intraspecific genetic distances for numerous species, with a maximum of 29.4% for Platyarthrus hoffmannseggii Brandt, 1833. The number of BINs per species ranged from one (32 species, 68%) to a maximum of six for Trachelipus rathkii (Brandt, 1833). In spite of such high intraspecific variability, interspecific distances with values between 12.6% and 29.8% allowed a valid species assignment of all analyzed isopods. The observed high intraspecific distances presumably result from phylogeographic events, Wolbachia infections, atypical mitochondrial DNAs, heteroplasmy, or various combinations of these factors. Our study represents the first step in generating an extensive reference library of DNA barcodes for terrestrial and freshwater isopods for future molecular biodiversity assessment studies.
Collapse
|
28
|
The Diversity of Bacteria Associated with the Invasive Gall Wasp Dryocosmus kuriphilus, Its Galls and a Specialist Parasitoid on Chestnuts. INSECTS 2022; 13:insects13010086. [PMID: 35055929 PMCID: PMC8778799 DOI: 10.3390/insects13010086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary The insect Dryocosmus kuriphilus induces galls on chestnut trees. Torymus sinensis is a host-specific parasitoid of D. kuriphilus and phenologically synchronizes with D. kuriphilus. The aim of this research is to investigate the bacterial communities and predominant bacteria of D. kuriphilus, T. sinensis, D. kuriphilus galls and the galled twigs of Castanea mollissima. We provide the first evidence that D. kuriphilus shares most bacterial species with T. sinensis, D. kuriphilus galls and galled twigs. The predominant bacteria of D. kuriphilus are Serratia sp. and Pseudomonas sp. Many species of the Serratia and Pseudomonas genera are plant pathogenic bacteria, and we suggest that D. kuriphilus may be a potential vector of plant pathogens. Furthermore, a total of 111 bacteria are common to D. kuriphilus adults, T. sinensis, D. kuriphilus galls and galled twigs, and we suggest that the bacteria may transmit horizontally among D. kuriphilus, T. sinensis, D. kuriphilus galls and galled twigs on the basis of their ecological associations. Abstract Dryocosmus kuriphilus (Hymenoptera: Cynipidae) induces galls on chestnut trees, which results in massive yield losses worldwide. Torymus sinensis (Hymenoptera: Torymidae) is a host-specific parasitoid that phenologically synchronizes with D. kuriphilus. Bacteria play important roles in the life cycle of galling insects. The aim of this research is to investigate the bacterial communities and predominant bacteria of D. kuriphilus, T. sinensis, D. kuriphilus galls and the galled twigs of Castanea mollissima. We sequenced the V5–V7 region of the bacterial 16S ribosomal RNA in D. kuriphilus, T. sinensis, D. kuriphilus galls and galled twigs using high-throughput sequencing for the first time. We provide the first evidence that D. kuriphilus shares most bacterial species with T. sinensis, D. kuriphilus galls and galled twigs. The predominant bacteria of D. kuriphilus are Serratia sp. and Pseudomonas sp. Furthermore, the bacterial community structures of D. kuriphilus and T. sinensis clearly differ from those of the other groups. Many species of the Serratia and Pseudomonas genera are plant pathogenic bacteria, and we suggest that D. kuriphilus may be a potential vector of plant pathogens. Furthermore, a total of 111 bacteria are common to D. kuriphilus adults, T. sinensis, D. kuriphilus galls and galled twigs, and we suggest that the bacteria may transmit horizontally among D. kuriphilus, T. sinensis, D. kuriphilus galls and galled twigs on the basis of their ecological associations.
Collapse
|
29
|
Mostoufi SL, Singh ND. Diet-induced changes in titer support a discrete response of Wolbachia-associated plastic recombination in Drosophila melanogaster. G3 GENES|GENOMES|GENETICS 2022; 12:6428536. [PMID: 34791181 PMCID: PMC8728003 DOI: 10.1093/g3journal/jkab375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022]
Abstract
Plastic recombination in Drosophila melanogaster has been associated with a variety of extrinsic and intrinsic factors such as temperature, starvation, and parasite infection. The bacterial endosymbiont Wolbachia pipientis has also been associated with plastic recombination in D. melanogaster. Wolbachia infection is pervasive in arthropods and this infection induces a variety of phenotypes in its hosts, the strength of which can depend on bacterial titer. Here, we test the hypothesis that the magnitude of Wolbachia-associated plastic recombination in D. melanogaster depends on titer. To manipulate titer, we raised Wolbachia-infected and uninfected flies on diets that have previously been shown to increase or decrease Wolbachia titer relative to controls. We measured recombination in treated and control individuals using a standard backcrossing scheme with two X-linked visible markers. Our results recapitulate previous findings that Wolbachia infection is associated with increased recombination rate across the yellow-vermillion interval of the X chromosome. Our data show no significant effect of diet or diet by Wolbachia interactions on recombination, suggesting that diet-induced changes in Wolbachia titer have no effect on the magnitude of plastic recombination. These findings represent one of the first steps toward investigating Wolbachia-associated plastic recombination and demonstrate that the phenotype is a discrete response rather than a continuous one.
Collapse
Affiliation(s)
- Sabrina L Mostoufi
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA
| | - Nadia D Singh
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA
| |
Collapse
|
30
|
Rutins I, Schannauer S, Orellana S, Laukhuff H, Lang E, Becker T, McKinney E, Thomas K, Tilden V, Swartz M, Blair JE. Genetic Diversity and Wolbachia (Rickettsiales: Anaplasmataceae) Prevalence Within a Remnant Population of Regal Fritillary, Argynnis idalia (Lepidoptera: Nymphalidae), in South-Central Pennsylvania. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:24. [PMID: 35172009 PMCID: PMC8849233 DOI: 10.1093/jisesa/ieac006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Eastern populations of the North American regal fritillary, Argynnis idalia Drury (1773), have been largely extirpated over the past half century. Here we report on the last remaining population of eastern regal fritillaries, located within a military installation in south-central Pennsylvania. Samples were obtained from field specimens during two years of annual monitoring, and from females collected for captive rearing over a five year period. Nuclear microsatellite and mitochondrial sequence data do not suggest subdivision within this population, but excess nuclear homozygosity indicates negative impacts on genetic diversity likely due to small population size and potential inbreeding effects. Molecular assays did not detect Wolbachia endosymbionts in field specimens of regal fritillary, but sympatric Argynnis sister species showed high prevalence of Wolbachia infected individuals. Our results inform ongoing conservation and reintroduction projects, designed to protect the last remaining regal fritillary population from extirpation in the eastern United States.
Collapse
Affiliation(s)
- Ilga Rutins
- Department of Biology, Franklin & Marshall College, Lancaster, PA 17603, USA
| | - Sarah Schannauer
- Department of Biology, Franklin & Marshall College, Lancaster, PA 17603, USA
| | - Sharil Orellana
- Department of Biology, Franklin & Marshall College, Lancaster, PA 17603, USA
| | - Harrison Laukhuff
- Department of Biology, Franklin & Marshall College, Lancaster, PA 17603, USA
| | - Eric Lang
- Department of Biology, Franklin & Marshall College, Lancaster, PA 17603, USA
| | - Timothy Becker
- ZooAmerica North American Wildlife Park, Hershey, PA 17033, USA
| | - Erika McKinney
- The Pennsylvania Department of Military and Veterans Affairs, Fort Indiantown Gap National Guard Training Center, Annville, PA 17003, USA
| | - Kayli Thomas
- The Pennsylvania Department of Military and Veterans Affairs, Fort Indiantown Gap National Guard Training Center, Annville, PA 17003, USA
| | - Virginia Tilden
- The Pennsylvania Department of Military and Veterans Affairs, Fort Indiantown Gap National Guard Training Center, Annville, PA 17003, USA
| | - Mark Swartz
- The Pennsylvania Department of Military and Veterans Affairs, Fort Indiantown Gap National Guard Training Center, Annville, PA 17003, USA
| | - Jaime E Blair
- Department of Biology, Franklin & Marshall College, Lancaster, PA 17603, USA
| |
Collapse
|
31
|
Efon Ekangouo A, Nana Djeunga HC, Sempere G, Kamgno J, Njiokou F, Moundipa Fewou P, Geiger A. Bacteriome Diversity of Blackflies' Gut and Association with Onchocerca volvulus, the Causative Agent of Onchocerciasis in Mbam Valley (Center Region, Cameroon). Pathogens 2021; 11:pathogens11010044. [PMID: 35055992 PMCID: PMC8779297 DOI: 10.3390/pathogens11010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
Vector control using larvicides is the main alternative strategy to address limits of preventive chemotherapy using ivermectin for the control of onchocerciasis. However, it remains substantially limited by implementation difficulties, ecological concerns and the resistance of vector populations. Therefore, efficient and environmentally safe alternative control strategies are still needed. This study explores the composition of the blackfly bacteriome and its variability in the presence of Onchocerca volvulus infection, in order to determine their potential as a novel vector control-based approach to fight onchocerciasis. An entomological survey of a collection of samples was performed in the Bafia health district, a historical endemic focus for onchocerciasis in Cameroon. A total of 1270 blackflies were dissected and the infection rate was 10.1%, indicative of ongoing transmission of onchocerciasis in the surveyed communities. Sequencing process of blackflies’ gut DNA for bacteria screening revealed 14 phyla and 123 genera, highlighting the diversity of gut blackflies bacterial communities. Eight bacteria formed the core of blackfly bacteriome and Wolbachia was the predominant genus with 73.4% of relative abundance of blackflies’ gut bacterial communities. Acidomonas and Roseanomas genera were significantly abundant among infected blackflies (p = 0.01), whereas other genera such as Brevibacterium and Fructobacillus were associated with the absence of infection (p = 0.0009). Differences in gut bacterial distribution of blackflies according to their infection status by the parasite suggest a causal relationship between the bacteriome composition and the onset of blackflies’ infection by O. volvulus or vice versa. Blackfly native bacteria are then potentially involved in infection by O. volvulus, either by facilitating or preventing the parasite infestation of the vector. These bacteria represent an interesting potential as a biological tool/target for a novel approach of vector control to fight onchocerciasis.
Collapse
Affiliation(s)
- Arnauld Efon Ekangouo
- Centre for Research on Filariasis and other Tropical Diseases (CRFilMT), Yaoundé P.O. Box 5797, Cameroon; (A.E.E.); (J.K.); (A.G.)
- UMR InterTryp, IRD (Institut de Recherche Pour le Développement), University of Montpellier, F-34394 Montpellier, France;
- Department of Biochemistry, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon;
| | - Hugues C. Nana Djeunga
- Centre for Research on Filariasis and other Tropical Diseases (CRFilMT), Yaoundé P.O. Box 5797, Cameroon; (A.E.E.); (J.K.); (A.G.)
- Correspondence: ; Tel.: +237-699-076-499
| | - Guilhem Sempere
- UMR InterTryp, IRD (Institut de Recherche Pour le Développement), University of Montpellier, F-34394 Montpellier, France;
- South Green Bioinformatics Platform, Biodiversity, F-34934 Montpellier, France
- UMR InterTryp, CIRAD (Centre de Coopération Internationale en Recherche Agronomique Pour le Développement), Campus International de Baillarguet, F-34398 Montpellier, France
| | - Joseph Kamgno
- Centre for Research on Filariasis and other Tropical Diseases (CRFilMT), Yaoundé P.O. Box 5797, Cameroon; (A.E.E.); (J.K.); (A.G.)
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Flobert Njiokou
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon;
| | - Paul Moundipa Fewou
- Department of Biochemistry, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon;
| | - Anne Geiger
- Centre for Research on Filariasis and other Tropical Diseases (CRFilMT), Yaoundé P.O. Box 5797, Cameroon; (A.E.E.); (J.K.); (A.G.)
- UMR InterTryp, IRD (Institut de Recherche Pour le Développement), University of Montpellier, F-34394 Montpellier, France;
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon;
| |
Collapse
|
32
|
Brunetti M, Magoga G, Gionechetti F, De Biase A, Montagna M. Does diet breadth affect the complexity of the phytophagous insect microbiota? The case study of Chrysomelidae. Environ Microbiol 2021; 24:3565-3579. [PMID: 34850518 PMCID: PMC9543054 DOI: 10.1111/1462-2920.15847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/24/2021] [Accepted: 11/10/2021] [Indexed: 01/04/2023]
Abstract
Chrysomelidae is a family of phytophagous insects with a highly variable degree of trophic specialization. The aim of this study is to test whether species feeding on different plants (generalists) harbour more complex microbiotas than those feeding on a few or a single plant species (specialists). The microbiota of representative leaf beetle species was characterized with a metabarcoding approach targeting V1–V2 and V4 regions of the bacterial 16S rRNA. Almost all the analysed species harbour at least one reproductive manipulator bacteria (e.g., Wolbachia, Rickettsia). Two putative primary symbionts, previously isolated only from a single species (Bromius obscurus), have been detected in two species of the same subfamily, suggesting a widespread symbiosis in Eumolpinae. Surprisingly, the well‐known aphid symbiont Buchnera is well represented in the microbiota of Orsodacne humeralis. Moreover, in this study, using Hill numbers to dissect the components of the microbiota diversity (abundant and rare bacteria), it has been demonstrated that generalist insect species harbour a more diversified microbiota than specialists. The higher microbiota diversity associated with a wider host‐plant spectrum could be seen as an adaptive trait, conferring new metabolic potential useful to expand the diet breath, or as a result of environmental stochastic acquisition conveyed by diet.
Collapse
Affiliation(s)
- Matteo Brunetti
- Department of Agricultural and Environmental Sciences, University of Milan, Via Celoria 2, Milan, 20133, Italy
| | - Giulia Magoga
- Department of Agricultural and Environmental Sciences, University of Milan, Via Celoria 2, Milan, 20133, Italy
| | | | - Alessio De Biase
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Viale dell'Università 32, Rome, 00185, Italy
| | - Matteo Montagna
- Department of Agricultural and Environmental Sciences, University of Milan, Via Celoria 2, Milan, 20133, Italy.,BAT Center - Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli "Federico II", Portici, Italy
| |
Collapse
|
33
|
Ortiz-Baez AS, Shi M, Hoffmann AA, Holmes EC. RNA virome diversity and Wolbachia infection in individual Drosophila simulans flies. J Gen Virol 2021; 102. [PMID: 34704919 PMCID: PMC8604192 DOI: 10.1099/jgv.0.001639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The endosymbiont bacteria of the genus Wolbachia are associated with multiple mutualistic effects on insect biology, including nutritional and antiviral properties. Members of the genus Wolbachia naturally occur in fly species of the genus Drosophila, providing an operational model host for studying how virome composition may be affected by its presence. Drosophila simulans populations can carry a variety of strains of members of the genus Wolbachia, with the wAu strain associated with strong antiviral protection under experimental conditions. We used D. simulans sampled from the Perth Hills, Western Australia, to investigate the potential virus protective effect of the wAu strain of Wolbachia on individual wild-caught flies. Our data revealed no appreciable variation in virus composition and abundance between individuals infected or uninfected with Wolbachia associated with the presence or absence of wAu. However, it remains unclear whether wAu might affect viral infection and host survival by increasing tolerance rather than inducing complete resistance. These data also provide new insights into the natural virome diversity of D. simulans. Despite the small number of individuals sampled, we identified a repertoire of RNA viruses, including nora virus, galbut virus, thika virus and La Jolla virus, that have been identified in other species of the genus Drosophila. Chaq virus-like sequences associated with galbut virus were also detected. In addition, we identified five novel viruses from the families Reoviridae, Tombusviridae, Mitoviridae and Bunyaviridae. Overall, this study highlights the complex interaction between Wolbachia and RNA virus infections and provides a baseline description of the natural virome of D. simulans.
Collapse
Affiliation(s)
- Ayda Susana Ortiz-Baez
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Mang Shi
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
34
|
Deng J, Assandri G, Chauhan P, Futahashi R, Galimberti A, Hansson B, Lancaster LT, Takahashi Y, Svensson EI, Duplouy A. Wolbachia-driven selective sweep in a range expanding insect species. BMC Ecol Evol 2021; 21:181. [PMID: 34563127 PMCID: PMC8466699 DOI: 10.1186/s12862-021-01906-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
Background Evolutionary processes can cause strong spatial genetic signatures, such as local loss of genetic diversity, or conflicting histories from mitochondrial versus nuclear markers. Investigating these genetic patterns is important, as they may reveal obscured processes and players. The maternally inherited bacterium Wolbachia is among the most widespread symbionts in insects. Wolbachia typically spreads within host species by conferring direct fitness benefits, and/or by manipulating its host reproduction to favour infected over uninfected females. Under sufficient selective advantage, the mitochondrial haplotype associated with the favoured maternally-inherited symbiotic strains will spread (i.e. hitchhike), resulting in low mitochondrial genetic variation across the host species range. Method The common bluetail damselfly (Ischnura elegans: van der Linden, 1820) has recently emerged as a model organism for genetics and genomic signatures of range expansion during climate change. Although there is accumulating data on the consequences of such expansion on the genetics of I. elegans, no study has screened for Wolbachia in the damselfly genus Ischnura. Here, we present the biogeographic variation in Wolbachia prevalence and penetrance across Europe and Japan (including samples from 17 populations), and from close relatives in the Mediterranean area (i.e. I. genei: Rambur, 1842; and I. saharensis: Aguesse, 1958). Results Our data reveal (a) multiple Wolbachia-strains, (b) potential transfer of the symbiont through hybridization, (c) higher infection rates at higher latitudes, and (d) reduced mitochondrial diversity in the north-west populations, indicative of hitchhiking associated with the selective sweep of the most common strain. We found low mitochondrial haplotype diversity in the Wolbachia-infected north-western European populations (Sweden, Scotland, the Netherlands, Belgium, France and Italy) of I. elegans, and, conversely, higher mitochondrial diversity in populations with low penetrance of Wolbachia (Ukraine, Greece, Montenegro and Cyprus). The timing of the selective sweep associated with infected lineages was estimated between 20,000 and 44,000 years before present, which is consistent with the end of the last glacial period about 20,000 years. Conclusions Our findings provide an example of how endosymbiont infections can shape spatial variation in their host evolutionary genetics during postglacial expansion. These results also challenge population genetic studies that do not consider the prevalence of symbionts in many insects, which we show can impact geographic patterns of mitochondrial genetic diversity.
Collapse
Affiliation(s)
- Junchen Deng
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden.,Institute of Environmental Sciences, Jagiellonian University in Kraków, Gronostajowa 7, 30-387, Kraków, Poland
| | - Giacomo Assandri
- Area per l'Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPA), Via Ca' Fornacetta 9, 40064, Ozzano Emilia, BO, Italy
| | - Pallavi Chauhan
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden
| | - Ryo Futahashi
- Bioproduction Research Institute, National Institute of Advance Industrial Science and Technology (AIST), Trukuba, Ibaraki, 305-8566, Japan
| | - Andrea Galimberti
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Bengt Hansson
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden
| | - Lesley T Lancaster
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Yuma Takahashi
- Graduate School of Science, Chiba University, Chiba, Japan
| | - Erik I Svensson
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden
| | - Anne Duplouy
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden. .,Insect Symbiosis Ecology and Evolution Lab, Organismal and Evolutionary Biology Research Program, The University of Helsinki, Viikinkaari 1, 00014, Helsinki, Finland.
| |
Collapse
|
35
|
Malassigné S, Minard G, Vallon L, Martin E, Valiente Moro C, Luis P. Diversity and Functions of Yeast Communities Associated with Insects. Microorganisms 2021; 9:microorganisms9081552. [PMID: 34442634 PMCID: PMC8399037 DOI: 10.3390/microorganisms9081552] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/28/2022] Open
Abstract
Following the concept of the holobiont, insect-microbiota interactions play an important role in insect biology. Many examples of host-associated microorganisms have been reported to drastically influence insect biological processes such as development, physiology, nutrition, survival, immunity, or even vector competence. While a huge number of studies on insect-associated microbiota have focused on bacteria, other microbial partners including fungi have been comparatively neglected. Yeasts, which establish mostly commensal or symbiotic relationships with their host, can dominate the mycobiota of certain insects. This review presents key advances and progress in the research field highlighting the diversity of yeast communities associated with insects, as well as their impact on insect life-history traits, immunity, and behavior.
Collapse
|
36
|
Mioduchowska M, Nitkiewicz B, Roszkowska M, Kačarević U, Madanecki P, Pinceel T, Namiotko T, Gołdyn B, Kaczmarek Ł. Taxonomic classification of the bacterial endosymbiont Wolbachia based on next-generation sequencing: is there molecular evidence for its presence in tardigrades? Genome 2021; 64:951-958. [PMID: 34015229 DOI: 10.1139/gen-2020-0036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We used high-throughput sequencing of 16S rRNA to test whether tardigrade species are infected with Wolbachia parasites. We applied SILVA and Greengenes databases that allowed taxonomic classification of bacterial sequences to OTUs. The results obtained from both databases differed considerably in the number of OTUs, and only the Greengenes database allowed identification of Wolbachia (infection was also supported by comparison of sequences to NCBI database). The putative bacterial endosymbiont Wolbachia was discovered only in adult eutardigrades, while bacteria identified down to the order Rickettsiales were detected in both eutardigrade eggs and adult specimens. Nevertheless, the frequency of Wolbachia in the bacterial communities of the studied eutardigrades was low. Similarly, in our positive control, i.e., a fairy shrimp Streptocephalus cafer, which was found to be infected with Wolbachia in our previous study using Sanger sequencing, only the Rickettsiales were detected. We also carried out phylogenetic reconstruction using Wolbachia sequences from the SILVA and Greengenes databases, Alphaproteobacteria putative endosymbionts and Rickettsiales OTUs obtained in previous studies on the microbial community of tardigrades, and Rickettsiales and Wolbachia OTUs obtained in the current study. Our discovery of Wolbachia in tardigrades can fuel new research to uncover the specifics of this interaction.
Collapse
Affiliation(s)
- Monika Mioduchowska
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.,Department of Marine Plankton Research, Institute of Oceanography, University of Gdansk, Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland; Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Bartosz Nitkiewicz
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, M. Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Milena Roszkowska
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.,Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Uroš Kačarević
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Piotr Madanecki
- Department of Biology and Pharmaceutical Botany, Faculty of Pharmacy, Medical University of Gdansk, J. Hallera 107, 80-416 Gdansk, Poland
| | - Tom Pinceel
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Charles Deberiotstraat 32, 3000 Leuven, Belgium.,Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa
| | - Tadeusz Namiotko
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Bartłomiej Gołdyn
- Department of General Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
37
|
Manoj RRS, Latrofa MS, Epis S, Otranto D. Wolbachia: endosymbiont of onchocercid nematodes and their vectors. Parasit Vectors 2021; 14:245. [PMID: 33962669 PMCID: PMC8105934 DOI: 10.1186/s13071-021-04742-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
Background Wolbachia is an obligate intracellular maternally transmitted, gram-negative bacterium which forms a spectrum of endosymbiotic relationships from parasitism to obligatory mutualism in a wide range of arthropods and onchocercid nematodes, respectively. In arthropods Wolbachia produces reproductive manipulations such as male killing, feminization, parthenogenesis and cytoplasmic incompatibility for its propagation and provides an additional fitness benefit for the host to protect against pathogens, whilst in onchocercid nematodes, apart from the mutual metabolic dependence, this bacterium is involved in moulting, embryogenesis, growth and survival of the host. Methods This review details the molecular data of Wolbachia and its effect on host biology, immunity, ecology and evolution, reproduction, endosymbiont-based treatment and control strategies exploited for filariasis. Relevant peer-reviewed scientic papers available in various authenticated scientific data bases were considered while writing the review. Conclusions The information presented provides an overview on Wolbachia biology and its use in the control and/or treatment of vectors, onchocercid nematodes and viral diseases of medical and veterinary importance. This offers the development of new approaches for the control of a variety of vector-borne diseases. Graphic Abstract ![]()
Collapse
Affiliation(s)
| | | | - Sara Epis
- Department of Biosciences and Pediatric CRC 'Romeo Ed Enrica Invernizzi', University of Milan, Milan, Italy
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy. .,Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
38
|
Sinotte VM, Conlon BH, Seibel E, Schwitalla JW, de Beer ZW, Poulsen M, Bos N. Female-biased sex allocation and lack of inbreeding avoidance in Cubitermes termites. Ecol Evol 2021; 11:5598-5605. [PMID: 34026032 PMCID: PMC8131773 DOI: 10.1002/ece3.7462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 11/08/2022] Open
Abstract
Sexually reproducing organisms face a strong selective pressure to find a mate and ensure reproduction. An important criterion during mate-selection is to avoid closely related individuals and subsequent potential fitness costs of resulting inbred offspring. Inbreeding avoidance can be active through kin recognition during mate choice, or passive through differential male and female-biased sex ratios, which effectively prevents sib-mating. In addition, sex allocation, or the resources allotted to male and female offspring, can impact mating and reproductive success. Here, we investigate mate choice, sex ratios, and sex allocation in dispersing reproductives (alates) from colonies of the termite Cubitermes tenuiceps. Termites have a short time to select a mate for life, which should intensify any fitness consequences of inbreeding. However, alates did not actively avoid inbreeding through mate choice via kin recognition based on genetic or environmental cues. Furthermore, the majority of colonies exhibited a female-biased sex ratio, and none exhibited a male-bias, indicating that differential bias does not reduce inbreeding. Sex allocation was generally female-biased, as females also were heavier, but the potential fitness effect of this costly strategy remains unclear. The bacterium Wolbachia, known in other insects to parasitically distort sex allocation toward females, was present within all alates. While Wolbachia is commonly associated with termites, parasitism has yet to be demonstrated, warranting further study of the nature of the symbiosis. Both the apparent lack of inbreeding avoidance and potential maladaptive sex allocation implies possible negative effects on mating and fitness.
Collapse
Affiliation(s)
- Veronica M. Sinotte
- Department of BiologySection for Ecology and EvolutionUniversity of CopenhagenCopenhagen EastDenmark
| | - Benjamin H. Conlon
- Department of BiologySection for Ecology and EvolutionUniversity of CopenhagenCopenhagen EastDenmark
| | - Elena Seibel
- Leibniz Institute for Natural Product Research and Infection BiologyHans‐Knöll‐InstituteJenaGermany
| | - Jan W. Schwitalla
- Leibniz Institute for Natural Product Research and Infection BiologyHans‐Knöll‐InstituteJenaGermany
| | - Z. Wilhelm de Beer
- Department of Microbiology and Plant PathologyForestry and Agriculture Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
| | - Michael Poulsen
- Department of BiologySection for Ecology and EvolutionUniversity of CopenhagenCopenhagen EastDenmark
| | - Nick Bos
- Department of BiologySection for Ecology and EvolutionUniversity of CopenhagenCopenhagen EastDenmark
| |
Collapse
|
39
|
Konecka E, Olszanowski Z. Wolbachia supergroup E found in Hypochthonius rufulus (Acari: Oribatida) in Poland. INFECTION GENETICS AND EVOLUTION 2021; 91:104829. [PMID: 33794350 DOI: 10.1016/j.meegid.2021.104829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 11/19/2022]
Abstract
Data on the spread of intracellular bacteria in oribatid mites (Acari: Oribatida) are scarce. Our work fills a gap in the research on endosymbionts in this group of invertebrates and provides information on Wolbachia infection in Hypochthonius rufulus (Acari: Oribatida) from soil, litter and moss sample collected in south-eastern Poland. This is the first report of Wolbachia in H. rufulus. Phylogeny based on the analysis of the 16S rRNA, gatB, fbpA, gltA, ftsZ and hcpA gene sequences revealed that Wolbachia from H. rufulus represented supergroup E and was related to bacterial endosymbionts of Collembola. The unique sequence within Wolbachia supergroup E was detected for the 16S rRNA gene of the bacteria from H. rufulus. The sequences of Wolbachia 16S rRNA and housekeeping genes have been deposited in publicly available databases and are an important source of molecular data for comparative studies.
Collapse
Affiliation(s)
- Edyta Konecka
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Ziemowit Olszanowski
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
40
|
Schlum KA, Lamour K, de Bortoli CP, Banerjee R, Meagher R, Pereira E, Murua MG, Sword GA, Tessnow AE, Viteri Dillon D, Linares Ramirez AM, Akutse KS, Schmidt-Jeffris R, Huang F, Reisig D, Emrich SJ, Jurat-Fuentes JL. Whole genome comparisons reveal panmixia among fall armyworm (Spodoptera frugiperda) from diverse locations. BMC Genomics 2021; 22:179. [PMID: 33711916 PMCID: PMC7953542 DOI: 10.1186/s12864-021-07492-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/26/2021] [Indexed: 11/12/2022] Open
Abstract
Background The fall armyworm (Spodoptera frugiperda (J.E. Smith)) is a highly polyphagous agricultural pest with long-distance migratory behavior threatening food security worldwide. This pest has a host range of > 80 plant species, but two host strains are recognized based on their association with corn (C-strain) or rice and smaller grasses (R-strain). The population genomics of the United States (USA) fall armyworm remains poorly characterized to date despite its agricultural threat. Results In this study, the population structure and genetic diversity in 55 S. frugiperda samples from Argentina, Brazil, Kenya, Puerto Rico and USA were surveyed to further our understanding of whole genome nuclear diversity. Comparisons at the genomic level suggest a panmictic S. frugiperda population, with only a minor reduction in gene flow between the two overwintering populations in the continental USA, also corresponding to distinct host strains at the mitochondrial level. Two maternal lines were detected from analysis of mitochondrial genomes. We found members from the Eastern Hemisphere interspersed within both continental USA overwintering subpopulations, suggesting multiple individuals were likely introduced to Africa. Conclusions Our research is the largest diverse collection of United States S. frugiperda whole genome sequences characterized to date, covering eight continental states and a USA territory (Puerto Rico). The genomic resources presented provide foundational information to understand gene flow at the whole genome level among S. frugiperda populations. Based on the genomic similarities found between host strains and laboratory vs. field samples, our findings validate the experimental use of laboratory strains and the host strain differentiation based on mitochondria and sex-linked genetic markers extends to minor genome wide differences with some exceptions showing mixture between host strains is likely occurring in field populations. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07492-7.
Collapse
Affiliation(s)
- Katrina A Schlum
- Genome Science and Technology Graduate Program, University of Tennessee, Knoxville, TN, 37996, USA
| | - Kurt Lamour
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA
| | | | - Rahul Banerjee
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Robert Meagher
- USDA-ARS Center for Medical, Agricultural and Veterinary Entomology (CMAVE), Insect Behavior and Biocontrol Research Unit, Gainesville, FL, 32608, USA
| | - Eliseu Pereira
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570, Brazil
| | - Maria Gabriela Murua
- Estación Experimental Agroindustrial Obispo Colombres, T4101XAC, Las Talitas, Tucumán, Argentina
| | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Ashley E Tessnow
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Diego Viteri Dillon
- Department of Agro-Environmental Sciences, Isabel Research Substation, University of Puerto Rico, Isabela, PR, 00662, USA
| | - Angela M Linares Ramirez
- Department of Agro-Environmental Sciences, Lajas Research Substation, University of Puerto Rico, Lajas, PR, 00667, USA
| | - Komivi S Akutse
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | | | - Fangneng Huang
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Dominic Reisig
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Scott J Emrich
- Genome Science and Technology Graduate Program, University of Tennessee, Knoxville, TN, 37996, USA. .,Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA.
| | - Juan Luis Jurat-Fuentes
- Genome Science and Technology Graduate Program, University of Tennessee, Knoxville, TN, 37996, USA. .,Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
41
|
Xia X, Peng CW, Cui JR, Jin PY, Yang K, Hong XY. Wolbachia affects reproduction in the spider mite Tetranychus truncatus (Acari: Tetranychidae) by regulating chorion protein S38-like and Rop. INSECT MOLECULAR BIOLOGY 2021; 30:18-29. [PMID: 32945029 DOI: 10.1111/imb.12669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/20/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Wolbachia-induced reproductive regulation in hosts has been used to control pest populations, but little is known about the molecular mechanism underlying Wolbachia regulation of host genes. Here, reproductive regulation by Wolbachia in the spider mite Tetranychus truncatus was studied at the molecular level. Infection with Wolbachia resulted in decreasing oviposition and cytoplasmic incompatibility in T. truncatus. Further RNA-seq revealed genes regulated by Wolbachia in T. truncatus. Real-time quantitative polymerase chain reaction (qPCR) showed that genes, including chorion protein S38-like and Rop were down-regulated by Wolbachia. RNA interference (RNAi) of chorion protein S38-like and Rop in Wolbachia-uninfected T. truncatus decreased oviposition, which was consistent with Wolbachia-induced oviposition decrease. Interestingly, suppressing Rop in Wolbachia-infected T. truncatus led to increased Wolbachia titres in eggs; however, this did not occur after RNAi of chorion protein S38-like. This is the first study to show that chorion protein S38-like and Rop facilitate Wolbachia-mediated changes in T. truncatus fertility. In addition, RNAi of Rop turned the body colour of Wolbachia-uninfected T. truncatus black, which indicates that the role of Rop is not limited to the reproductive regulation of T. truncatus.
Collapse
Affiliation(s)
- X Xia
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - C-W Peng
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - J-R Cui
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - P-Y Jin
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - K Yang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - X-Y Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
42
|
Gil JC, Helal ZH, Risatti G, Hird SM. Ixodes scapularis microbiome correlates with life stage, not the presence of human pathogens, in ticks submitted for diagnostic testing. PeerJ 2020; 8:e10424. [PMID: 33344080 PMCID: PMC7718787 DOI: 10.7717/peerj.10424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/03/2020] [Indexed: 12/29/2022] Open
Abstract
Ticks are globally distributed arthropods and a public health concern due to the many human pathogens they carry and transmit, including the causative agent of Lyme disease, Borrelia burgdorferi. As tick species' ranges increase, so do the number of reported tick related illnesses. The microbiome is a critical part of understanding arthropod biology, and the microbiome of pathogen vectors may provide critical insight into disease transmission and management. Yet we lack a comprehensive understanding of the microbiome of wild ticks, including what effect the presence of multiple tick-borne pathogens (TBPs) has on the microbiome. In this study we chose samples based on life stage (adult or nymph) and which TBPs were present. We used DNA from previously extracted Ixodes scapularis ticks that tested positive for zero, one, two or three common TBPs (B. burgdorferi, B. miyamotoi, Anaplasma phagocytophilum, Babesia microti). We produced 16S rRNA amplicon data for the whole tick microbiome and compared samples across TBPs status, single vs multiple coinfections, and life stages. Focusing on samples with a single TBP, we found no significant differences in microbiome diversity in ticks that were infected with B. burgdorferi and ticks with no TBPs. When comparing multiple TBPs, we found no significant difference in both alpha and beta diversity between ticks with a single TBP and ticks with multiple TBPs. Removal of TBPs from the microbiome did not alter alpha or beta diversity results. Life stage significantly correlated to variation in beta diversity and nymphs had higher alpha diversity than adult ticks. Rickettsia, a common tick endosymbiont, was the most abundant genus. This study confirms that the wild tick microbiome is highly influenced by life stage and much less by the presence of human pathogenic bacteria.
Collapse
Affiliation(s)
- Joshua C. Gil
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States of America
| | - Zeinab H. Helal
- Pathobiology and Veterinary Medicine, University of Connecticut, Storrs, CT, United States of America
| | - Guillermo Risatti
- Pathobiology and Veterinary Medicine, University of Connecticut, Storrs, CT, United States of America
| | - Sarah M. Hird
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States of America
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States of America
| |
Collapse
|
43
|
Spencer HG. Beyond Equilibria: The Neglected Role of History in Ecology and Evolution. THE QUARTERLY REVIEW OF BIOLOGY 2020. [DOI: 10.1086/711803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
44
|
Lee J, Yek S, Wilson R, Rahman S. Characterization of the Aedes albopictus (Diptera: Culicidae) holobiome: bacterial composition across land use type and mosquito sex in Malaysia. Acta Trop 2020; 212:105683. [PMID: 32888935 DOI: 10.1016/j.actatropica.2020.105683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/04/2023]
Abstract
Understanding the diversity and dynamics of the microbiota within the mosquito holobiome is of great importance to apprehend how the microbiota modulates various complex processes and interactions. This study examined the bacterial composition of Aedes albopictus across land use type and mosquito sex in the state of Selangor, Malaysia using 16S rRNA sequencing. The bacterial community structure in mosquitoes was found to be influenced by land use type and mosquito sex, with the environment and mosquito diet respectively identified to be the most likely sources of microbes. We found that approximately 70% of the microbiota samples were dominated by Wolbachia and removing Wolbachia from analyses revealed the relatively even composition of the remaining bacterial microbiota. Furthermore, microbial interaction network analysis highlighted the prevalence of co-exclusionary patterns in all networks regardless of land use and mosquito sex, with Wolbachia exhibiting co-exclusionary interactions with other residential bacteria such as Xanthomonas, Xenophilus and Zymobacter.
Collapse
|
45
|
Semiatizki A, Weiss B, Bagim S, Rohkin-Shalom S, Kaltenpoth M, Chiel E. Effects, interactions, and localization of Rickettsia and Wolbachia in the house fly parasitoid, Spalangia endius. MICROBIAL ECOLOGY 2020; 80:718-728. [PMID: 32488484 DOI: 10.1007/s00248-020-01520-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Many insect species harbor facultative microbial symbionts that affect their biology in diverse ways. Here, we studied the effects, interactions, and localization of two bacterial symbionts-Wolbachia and Rickettsia-in the parasitoid Spalangia endius. We crossed between four S. endius colonies-Wolbachia only (W), Rickettsia only (R), both (WR), and none (aposymbiotic, APS) (16 possible crosses) and found that Wolbachia induces incomplete cytoplasmic incompatibility (CI), both when the males are W or WR. Rickettsia did not cause reproductive manipulations and did not rescue the Wolbachia-induced CI. However, when R females were crossed with W or WR males, significantly less offspring were produced compared with that of control crosses. In non-CI crosses, the presence of Wolbachia in males caused a significant reduction in offspring numbers. Females' developmental time was significantly prolonged in the R colony, with adults starting to emerge one day later than the other colonies. Other fitness parameters did not differ significantly between the colonies. Using fluorescence in situ hybridization microscopy in females, we found that Wolbachia is localized alongside Rickettsia inside oocytes, follicle cells, and nurse cells in the ovaries. However, Rickettsia is distributed also in muscle cells all over the body, in ganglia, and even in the brain.
Collapse
Affiliation(s)
- Amit Semiatizki
- Department of Biology and Environment, University of Haifa-Oranim, 36006, Tivon, Israel
| | - Benjamin Weiss
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Shir Bagim
- Department of Biology and Environment, University of Haifa-Oranim, 36006, Tivon, Israel
| | - Sarit Rohkin-Shalom
- Department of Biology and Environment, University of Haifa-Oranim, 36006, Tivon, Israel
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Elad Chiel
- Department of Biology and Environment, University of Haifa-Oranim, 36006, Tivon, Israel.
| |
Collapse
|
46
|
Noh P, Oh S, Park S, Kwon T, Kim Y, Choe JC, Jeong G. Association between host wing morphology polymorphism and Wolbachia infection in Vollenhovia emeryi (Hymenoptera: Myrmicinae). Ecol Evol 2020; 10:8827-8837. [PMID: 32884660 PMCID: PMC7452775 DOI: 10.1002/ece3.6582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/14/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
Many eusocial insects, including ants, show complex colony structures, distributions, and reproductive strategies. In the ant Vollenhovia emeryi Wheeler (Hymenoptera: Myrmicinae), queens and males are produced clonally, while sterile workers arise sexually, unlike other ant species and Hymenopteran insects in general. Furthermore, there is a wing length polymorphism in the queen caste. Despite its evolutionary remarkable traits, little is known about the population structure of this ant species, which may provide insight into its unique reproductive mode and polymorphic traits. We performed in-depth analyses of ant populations from Korea, Japan, and North America using three mitochondrial genes (COI, COII, and Cytb). The long-winged (L) morph is predominant in Korean populations, and the short-winged (S) morph is very rare. Interestingly, all L morphs were infected with Wolbachia, while all Korean S morphs lacked Wolbachia, demonstrating a association between a symbiont and a phenotypic trait. A phylogenetic analysis revealed that the S morph is derived from the L morph. We propose that the S morph is associated with potential resistance to Wolbachia infection and that Wolbachia infection does not influence clonal reproduction (as is the case in other ant species).
Collapse
Affiliation(s)
- Pureum Noh
- Division of EcoScienceEwha Womans UniversitySeoulKorea
- National Institute of EcologySeochun‐gunKorea
- Present address:
Herbal Medicine Resources Research CenterKorea Institute of Oriental MedicineNajuKorea
| | - Seung‐Yoon Oh
- School of Biological SciencesSeoul National UniversitySeoulKorea
| | - Soyeon Park
- National Institute of EcologySeochun‐gunKorea
- Interdisciplinary Program of EcoCreativeThe Graduate SchoolEwha Womans UniversitySeoulKorea
| | - Taesung Kwon
- Division of Forest EcologyKorea Forest Research InstituteSeoulKorea
| | - Yonghwan Kim
- Department of PhysicsKonkuk UniversitySeoulKorea
| | - Jae Chun Choe
- Division of EcoScienceEwha Womans UniversitySeoulKorea
- National Institute of EcologySeochun‐gunKorea
| | - Gilsang Jeong
- Division of EcoScienceEwha Womans UniversitySeoulKorea
- National Institute of EcologySeochun‐gunKorea
| |
Collapse
|
47
|
Ajene IJ, Khamis FM, van Asch B, Pietersen G, Rasowo BA, Ombura FL, Wairimu AW, Akutse KS, Sétamou M, Mohamed S, Ekesi S. Microbiome diversity in Diaphorina citri populations from Kenya and Tanzania shows links to China. PLoS One 2020; 15:e0235348. [PMID: 32589643 PMCID: PMC7319306 DOI: 10.1371/journal.pone.0235348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/12/2020] [Indexed: 11/18/2022] Open
Abstract
The Asian citrus psyllid (Diaphorina citri) is a key pest of Citrus spp. worldwide, as it acts as a vector for “Candidatus Liberibacter asiaticus (Las)”, the bacterial pathogen associated with the destructive Huanglongbing (HLB) disease. Recent detection of D. citri in Africa and reports of Las-associated HLB in Ethiopia suggest that the citrus industry on the continent is under imminent threat. Endosymbionts and gut bacteria play key roles in the biology of arthropods, especially with regards to vector-pathogen interactions and resistance to antibiotics. Thus, we aim to profile the bacterial genera and to identify antibiotic resistance genes within the microbiome of different populations worldwide of D. citri. The metagenome of D. citri was sequenced using the Oxford Nanopore full-length 16S metagenomics protocol, and the “What’s in my pot” (WIMP) analysis pipeline. Microbial diversity within and between D. citri populations was assessed, and antibiotic resistance genes were identified using the WIMP-ARMA workflow. The most abundant genera were key endosymbionts of D. citri (“Candidatus Carsonella”, “Candidatus Profftella”, and Wolbachia). The Shannon diversity index showed that D. citri from Tanzania had the highest diversity of bacterial genera (1.92), and D. citri from China had the lowest (1.34). The Bray-Curtis dissimilarity showed that China and Kenya represented the most diverged populations, while the populations from Kenya and Tanzania were the least diverged. The WIMP-ARMA analyses generated 48 CARD genes from 13 bacterial species in each of the populations. Spectinomycin resistance genes were the most frequently found, with an average of 65.98% in all the populations. These findings add to the knowledge on the diversity of the African D. citri populations and the probable introduction source of the psyllid in these African countries.
Collapse
Affiliation(s)
- Inusa J. Ajene
- International Center of Insect Physiology and Ecology, Nairobi, Kenya
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
- Department of Crop Protection, Ahmadu Bello University, Zaria, Nigeria
| | - Fathiya M. Khamis
- International Center of Insect Physiology and Ecology, Nairobi, Kenya
- * E-mail:
| | - Barbara van Asch
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Gerhard Pietersen
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Brenda A. Rasowo
- International Center of Insect Physiology and Ecology, Nairobi, Kenya
| | - Fidelis L. Ombura
- International Center of Insect Physiology and Ecology, Nairobi, Kenya
| | - Anne W. Wairimu
- International Center of Insect Physiology and Ecology, Nairobi, Kenya
| | - Komivi S. Akutse
- International Center of Insect Physiology and Ecology, Nairobi, Kenya
| | - Mamoudou Sétamou
- Texas A&M University, Kingsville Citrus Center, Weslaco, Texas, United States of America
| | - Samira Mohamed
- International Center of Insect Physiology and Ecology, Nairobi, Kenya
| | - Sunday Ekesi
- International Center of Insect Physiology and Ecology, Nairobi, Kenya
| |
Collapse
|
48
|
Novel Mitochondrial DNA Lineage Found among Ochlerotatus communis (De Geer, 1776) of the Nordic-Baltic Region. INSECTS 2020; 11:insects11060397. [PMID: 32604846 PMCID: PMC7348767 DOI: 10.3390/insects11060397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 11/26/2022]
Abstract
The Ochlerotatus (Oc.) communis complex consist of three Northern American species as well as a common Holarctic mosquito (Diptera: Culicidae) Oc. communis (De Geer, 1776). These sister species exhibit important ecological differences and are capable of transmitting various pathogens, but cannot always be differentiated by morphological traits. To investigate the Oc. communis complex in Europe, we compared three molecular markers (COI, ND5 and ITS2) from 54 Estonian mosquitoes as well as two COI marker sequences from Sweden. These sequences were subjected to phylogenetic analysis and screened for Wolbachia Hertig and Wolbach symbionts. Within and between groups, distances were calculated for each marker to better understand the relationships among individuals. Results demonstrate that a group of samples, extracted from adult female mosquitoes matching the morphology of Oc. communis, show a marked difference from the main species when comparing the mitochondrial markers COI and ND5. However, there is no variance between the same specimens when considering the nuclear ITS2. We conclude that Oc. communis encompasses two distinct mitochondrial DNA lineages in the Nordic-Baltic region. Further research is needed to investigate the origin and extent of these genetic differences.
Collapse
|
49
|
Detection of Wolbachia Infections in Natural and Laboratory Populations of the Moroccan Hessian Fly, Mayetiola destructor (Say). INSECTS 2020; 11:insects11060340. [PMID: 32498270 PMCID: PMC7349215 DOI: 10.3390/insects11060340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/08/2023]
Abstract
Mayetiola destructor (Hessian fly) is a destructive pest of wheat in several parts of the world. Here, we investigated the presence of reproductive symbionts and the effect of the geographical location on the bacterial community associated to adult Hessian flies derived from four major wheat producing areas in Morocco. Using specific 16S rDNA PCR assay, Wolbachia infection was observed in 3% of the natural populations and 10% of the laboratory population. High throughput sequencing of V3-V4 region of the bacterial 16S rRNA gene revealed that the microbiota of adult Hessian flies was significantly influenced by their native regions. A total of 6 phyla, 10 classes and 79 genera were obtained from all the samples. Confirming the screening results, Wolbachia was identified as well in the natural Hessian flies. Phylogenetic analysis using the sequences obtained in this study indicated that there is one Wolbachia strain belonging to supergroup A. To our knowledge, this is the first report of Wolbachia in Hessian fly populations. The observed low abundance of Wolbachia most likely does not indicate induction of reproductive incompatibility. Yet, this infection may give a new insight into the use of Wolbachia for the fight against Hessian fly populations.
Collapse
|
50
|
A High-Quality Genome Assembly from Short and Long Reads for the Non-biting Midge Chironomus riparius (Diptera). G3-GENES GENOMES GENETICS 2020; 10:1151-1157. [PMID: 32060047 PMCID: PMC7144091 DOI: 10.1534/g3.119.400710] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chironomus riparius is of great importance as a study species in various fields like ecotoxicology, molecular genetics, developmental biology and ecology. However, only a fragmented draft genome exists to date, hindering the recent rush of population genomic studies in this species. Making use of 50 NGS datasets, we present a hybrid genome assembly from short and long sequence reads that make C. riparius’ genome one of the most contiguous Dipteran genomes published, the first complete mitochondrial genome of the species, and the respective recombination rate among the first insect recombination rates at all. The genome assembly and associated resources will be highly valuable to the broad community working with dipterans in general and chironomids in particular. The estimated recombination rate will help evolutionary biologists gaining a better understanding of commonalities and differences of genomic patterns in insects.
Collapse
|