1
|
Back JP, Bicca-Marques JC. Urinary health indicators in folivorous-frugivorous primates with and without food supplementation. Primates 2024:10.1007/s10329-024-01164-2. [PMID: 39485588 DOI: 10.1007/s10329-024-01164-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/03/2024] [Indexed: 11/03/2024]
Abstract
Food supplementation by humans in peri-urban and urban landscapes can lead to excessive intake of energy and certain macronutrients, and affect animal health. In this study, we evaluated the influence of food supplementation on urinary health indicators in brown howler monkeys (Alouatta guariba) by comparing supplemented and non-supplemented free-ranging peri-urban groups. We also evaluated the effect of sex, day shift, and season of sampling. Between August 2021 and August 2022, we non-invasively collected 61 samples (43 from females and 18 from males) from adult individuals (N = 10) in three supplemented groups and 56 samples (25 from females and 31 from males) from adults (N = 7) in three non-supplemented groups. The supplements, mostly raw foods (e.g., fruits, vegetables, and tubers) and bread, represented 18% of the total fresh mass ingested by the supplemented groups. We assessed pH, density, and the presence of eight urine components (glucose, bilirubin, ketones, protein, urobilinogen, nitrite, blood, and leukocytes) using reagent urine strips. Season of sampling predicted urine density (mean = 1.022), while both season and day shift predicted pH (mean = 6.5). The occurrence of supplementation was a weak predictor of these parameters. Finally, we detected leukocytes in 21% of the 117 samples. We did not identify any visible signs of disease in any individual throughout the study and found no clinical changes in urine under the conditions studied. We urge validation of the results with urine strips to facilitate monitoring of the health of howler monkeys living in anthropogenic landscapes in the presence or absence of dietary supplementation.
Collapse
Affiliation(s)
- Janaína Paula Back
- Laboratório de Primatologia, Programa de Pós-Graduação em Ecologia e Evolução da Biodiversidade, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga 6681, Prédio 12D, Sala 401.02, Porto Alegre, RS, 90619-900, Brazil
| | - Júlio César Bicca-Marques
- Laboratório de Primatologia, Programa de Pós-Graduação em Ecologia e Evolução da Biodiversidade, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga 6681, Prédio 12D, Sala 401.02, Porto Alegre, RS, 90619-900, Brazil.
| |
Collapse
|
2
|
Ostridge HJ, Fontsere C, Lizano E, Soto DC, Schmidt JM, Saxena V, Alvarez-Estape M, Barratt CD, Gratton P, Bocksberger G, Lester JD, Dieguez P, Agbor A, Angedakin S, Assumang AK, Bailey E, Barubiyo D, Bessone M, Brazzola G, Chancellor R, Cohen H, Coupland C, Danquah E, Deschner T, Dotras L, Dupain J, Egbe VE, Granjon AC, Head J, Hedwig D, Hermans V, Hernandez-Aguilar RA, Jeffery KJ, Jones S, Junker J, Kadam P, Kaiser M, Kalan AK, Kambere M, Kienast I, Kujirakwinja D, Langergraber KE, Lapuente J, Larson B, Laudisoit A, Lee KC, Llana M, Maretti G, Martín R, Meier A, Morgan D, Neil E, Nicholl S, Nixon S, Normand E, Orbell C, Ormsby LJ, Orume R, Pacheco L, Preece J, Regnaut S, Robbins MM, Rundus A, Sanz C, Sciaky L, Sommer V, Stewart FA, Tagg N, Tédonzong LR, van Schijndel J, Vendras E, Wessling EG, Willie J, Wittig RM, Yuh YG, Yurkiw K, Vigilant L, Piel A, Boesch C, Kühl HS, Dennis MY, Marques-Bonet T, Arandjelovic M, Andrés AM. Local genetic adaptation to habitat in wild chimpanzees. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.601734. [PMID: 39026872 PMCID: PMC11257515 DOI: 10.1101/2024.07.09.601734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
How populations adapt to their environment is a fundamental question in biology. Yet we know surprisingly little about this process, especially for endangered species such as non-human great apes. Chimpanzees, our closest living relatives, are particularly interesting because they inhabit diverse habitats, from rainforest to woodland-savannah. Whether genetic adaptation facilitates such habitat diversity remains unknown, despite having wide implications for evolutionary biology and conservation. Using 828 newly generated exomes from wild chimpanzees, we find evidence of fine-scale genetic adaptation to habitat. Notably, adaptation to malaria in forest chimpanzees is mediated by the same genes underlying adaptation to malaria in humans. This work demonstrates the power of non-invasive samples to reveal genetic adaptations in endangered populations and highlights the importance of adaptive genetic diversity for chimpanzees.
Collapse
Affiliation(s)
- Harrison J Ostridge
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Claudia Fontsere
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Esther Lizano
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Daniela C Soto
- University of California, Davis, Genome Center, MIND Institute, Department of Biochemistry & Molecular Medicine, One Shields Drive, Davis, CA, 95616, USA
| | - Joshua M Schmidt
- Flinders Health and Medical Research Institute (FHMRI), Department of Ophthalmology, Flinders University Sturt Rd, Bedford Park South Australia 5042 Australia
| | - Vrishti Saxena
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Marina Alvarez-Estape
- University of California, Davis, Genome Center, MIND Institute, Department of Biochemistry & Molecular Medicine, One Shields Drive, Davis, CA, 95616, USA
| | - Christopher D Barratt
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Puschstrasse 4, 04103 Leipzig, Germany
| | - Paolo Gratton
- University of Rome "Tor Vergata" Department of Biology Via Cracovia, 1, Roma, Italia
| | - Gaëlle Bocksberger
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage, 60325 Frankfurt am Main, Germany
| | - Jack D Lester
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Paula Dieguez
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Puschstrasse 4, 04103 Leipzig, Germany
| | - Anthony Agbor
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Samuel Angedakin
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Alfred Kwabena Assumang
- Department of Wildlife and Range Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Emma Bailey
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Donatienne Barubiyo
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Mattia Bessone
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- University of Konstanz, Centre for the Advanced Study of Collective Behaviour, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Gregory Brazzola
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Rebecca Chancellor
- West Chester University, Depts of Anthropology & Sociology and Psychology, West Chester, PA, 19382 USA
| | - Heather Cohen
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Puschstrasse 4, 04103 Leipzig, Germany
| | - Charlotte Coupland
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Emmanuel Danquah
- Department of Wildlife and Range Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Tobias Deschner
- Institute of Cognitive Science, University of Osnabrück, Artilleriestrasse 34, 49076 Osnabrück, Germany
| | - Laia Dotras
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
- Department of Social Psychology and Quantitative Psychology, Serra Hunter Programme, University of Barcelona, Barcelona, Spain
| | - Jef Dupain
- Antwerp Zoo Foundation, RZSA, Kon.Astridplein 26, 2018 Antwerp, Belgium
| | - Villard Ebot Egbe
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Anne-Céline Granjon
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Josephine Head
- The Biodiversity Consultancy, 3E Kings Parade, Cambridge, CB2 1SJ, UK
| | - Daniela Hedwig
- Elephant Listening Project, K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
| | - Veerle Hermans
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 20-26, B-2018 Antwerp, Belgium
| | - R Adriana Hernandez-Aguilar
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
- Department of Social Psychology and Quantitative Psychology, Serra Hunter Programme, University of Barcelona, Barcelona, Spain
| | - Kathryn J Jeffery
- School of Natural Sciences, University of Stirling, UK
- Agence National des Parcs Nationaux (ANPN) Batterie 4, BP20379, Libreville, Gabon
| | - Sorrel Jones
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Jessica Junker
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Puschstrasse 4, 04103 Leipzig, Germany
| | - Parag Kadam
- Greater Mahale Ecosystem Research and Conservation Project
| | - Michael Kaiser
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Ammie K Kalan
- Department of Anthropology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada
| | - Mbangi Kambere
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Ivonne Kienast
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY 14850, USA
- K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA
| | - Deo Kujirakwinja
- Wildlife Conservation Society (WCS), 2300 Southern Boulevard. Bronx, New York 10460, USA
| | - Kevin E Langergraber
- School of Human Evolution and Social Change, Institute of Human Origins, Arizona State University, 777 East University Drive, Tempe, AZ 85287 Arizona State University, PO Box 872402, Tempe, AZ 85287-2402 USA
- Institute of Human Origins, Arizona State University, 900 Cady Mall, Tempe, AZ 85287 Arizona State University, PO Box 872402, Tempe, AZ 85287-2402 USA
| | - Juan Lapuente
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | | | | | - Kevin C Lee
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA
| | - Manuel Llana
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
| | - Giovanna Maretti
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Rumen Martín
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Amelia Meier
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- Hawai'i Insititute of Marine Biology, University of Hawai'i at Manoa, 46-007 Lilipuna Place, Kaneohe, HI, 96744, USA
| | - David Morgan
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, 2001 North Clark Street, Chicago, Illinois 60614 USA
| | - Emily Neil
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Sonia Nicholl
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Stuart Nixon
- North of England Zoological Society, Chester Zoo, Upton by Chester, CH2 1LH, United Kingdom
| | | | - Christopher Orbell
- Panthera, 8 W 40TH ST, New York, NY 10018, USA
- School of Natural Sciences, University of Stirling, UK
| | - Lucy Jayne Ormsby
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Robinson Orume
- Korup Rainforest Conservation Society, c/o Korup National Park, P.O. Box 36 Mundemba, South West Region, Cameroon
| | - Liliana Pacheco
- Save the Dogs and Other Animals, DJ 223 Km 3, 905200 Cernavoda CT, Romania
| | - Jodie Preece
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | | | - Martha M Robbins
- Max Planck Institute for Evolutionary Anthropology, Department of Primate Behavior and Evolution, Deutscher Platz 6, 04103 Leipzig
| | - Aaron Rundus
- West Chester University, Depts of Anthropology & Sociology and Psychology, West Chester, PA, 19382 USA
| | - Crickette Sanz
- Washington University in Saint Louis, Department of Anthropology, One Brookings Drive, St. Louis, MO 63130, USA
- Congo Program, Wildlife Conservation Society, 151 Avenue Charles de Gaulle, Brazzaville, Republic of Congo
| | - Lilah Sciaky
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Volker Sommer
- University College London, Department of Anthropology, 14 Taviton Street, London WC1H 0BW, UK
| | - Fiona A Stewart
- University College London, Department of Anthropology, 14 Taviton Street, London WC1H 0BW, UK
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Nikki Tagg
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 20-26, B-2018 Antwerp, Belgium
- Born Free Foundation, Floor 2 Frazer House, 14 Carfax, Horsham, RH12 1ER, UK
| | - Luc Roscelin Tédonzong
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 20-26, B-2018 Antwerp, Belgium
| | - Joost van Schijndel
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Elleni Vendras
- Frankfurt Zoological Society, Bernhard-Grzimek-Allee 1, 60316 Frankfurt, Germany
| | - Erin G Wessling
- Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen,Göttingen, Germany
- German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Jacob Willie
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 20-26, B-2018 Antwerp, Belgium
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University (UGent), K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Roman M Wittig
- Ape Social Mind Lab, Institute for Cognitive Sciences Marc Jeannerod, CNRS UMR 5229 CNRS, 67 bd Pinel, 69675 Bron CEDEX, France
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, BP 1301, Abidjan 01, CI
| | - Yisa Ginath Yuh
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Kyle Yurkiw
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Linda Vigilant
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Alex Piel
- University College London, Department of Anthropology, 14 Taviton Street, London WC1H 0BW, UK
| | | | - Hjalmar S Kühl
- Senckenberg Museum for Natural History Görlitz, Senckenberg - Member of the Leibniz Association Am Museum 1, 02826 Görlitz, Germany
- International Institute Zittau, Technische Universität Dresden, Markt 23, 02763 Zittau, Germany
| | - Megan Y Dennis
- University of California, Davis, Genome Center, MIND Institute, Department of Biochemistry & Molecular Medicine, One Shields Drive, Davis, CA, 95616, USA
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Mimi Arandjelovic
- Max Planck Institute for Evolutionary Anthropology, Department of Primate Behavior and Evolution, Deutscher Platz 6, 04103 Leipzig
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103
| | - Aida M Andrés
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
3
|
Debetencourt B, Barry MM, Arandjelovic M, Stephens C, Maldonado N, Boesch C. Camera traps unveil demography, social structure, and home range of six unhabituated Western chimpanzee groups in the Moyen Bafing National Park, Guinea. Am J Primatol 2024; 86:e23578. [PMID: 37985945 DOI: 10.1002/ajp.23578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023]
Abstract
Precise estimates of population dynamics and social grouping patterns are required for effective conservation of wild animal populations. It is difficult to obtain such information on non-human great apes as they have slow reproductive rates. To gain a better understanding of demography in these populations, previous research has typically involved habituation\, a process that requires years. Here, we collected data continuously over year-long periods to monitor an unhabituated population of critically endangered Western chimpanzees (Pan troglodytes verus) in the Moyen Bafing National Park, Guinea. We used two arrays of 100 camera traps that were placed opportunistically in two distinct 100 km2 sites, named Bakoun and Koukoutamba. We identified 227 individuals in Bakoun and 207 in Koukoutamba through their unique facial features. Our camera trap data make clear that these individuals belong to six and seven closed groups, respectively. Six of those groups were near-completely sampled with an average minimum size of 46.8 individuals (range: 37-58), and a mean adult sex ratio of 1.32 (range: 0.93-2.10). We described the demographic composition of these groups and use Bayesian social network analysis to understand population structure. The network analyses suggested that the social bonds within the two populations were structured by sex homophily, with male chimpanzees being more or equally likely to be observed together than other adult associations. Through estimation of minimum convex polygons, we described the minimum home range for those groups. Compared to other chimpanzee groups living in a similar environment (mosaic savanna-forest), the Moyen Bafing region seems to host a high-density of chimpanzees with small home ranges for their group size. Our research highlights the potential of camera traps for studying the demographic composition of chimpanzee populations with high resolution and obtaining crucial information on several groups in a time-efficient and cost-effective way.
Collapse
Affiliation(s)
- Benjamin Debetencourt
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology (MPI-EVA), Leipzig, Germany
- Wild Chimpanzee Foundation, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mamadou Moussa Barry
- Wild Chimpanzee Foundation, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mimi Arandjelovic
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology (MPI-EVA), Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Colleen Stephens
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology (MPI-EVA), Leipzig, Germany
| | - Nuria Maldonado
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology (MPI-EVA), Leipzig, Germany
| | - Christophe Boesch
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology (MPI-EVA), Leipzig, Germany
- Wild Chimpanzee Foundation, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
4
|
Rosenbaum S, Kuzawa CW. The promise of great apes as model organisms for understanding the downstream consequences of early life experiences. Neurosci Biobehav Rev 2023; 152:105240. [PMID: 37211151 DOI: 10.1016/j.neubiorev.2023.105240] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023]
Abstract
Early life experiences have a significant influence on adult health and aging processes in humans. Despite widespread interest in the evolutionary roots of this phenomenon, very little research on this topic has been conducted in humans' closest living relatives, the great apes. The longitudinal data sets that are now available on wild and captive great ape populations hold great promise to clarify the nature, evolutionary function, and mechanisms underlying these connections in species which share key human life history characteristics. Here, we explain features of great ape life history and socioecologies that make them of particular interest for this topic, as well as those that may limit their utility as comparative models; outline the ways in which available data are complementary to and extend the kinds of data that are available for humans; and review what is currently known about the connections among early life experiences, social behavior, and adult physiology and biological fitness in our closest living relatives. We conclude by highlighting key next steps for this emerging area of research.
Collapse
Affiliation(s)
| | - Christopher W Kuzawa
- Department of Anthropology, Northwestern University, USA; Institute for Policy Research, Northwestern University, USA
| |
Collapse
|
5
|
Negrey JD, Deschner T, Langergraber KE. Lean muscle mass, not aggression, mediates a link between dominance rank and testosterone in wild male chimpanzees. Anim Behav 2023; 202:99-109. [PMID: 37483564 PMCID: PMC10358427 DOI: 10.1016/j.anbehav.2023.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Testosterone promotes mating effort, which involves intraspecific aggression for males of many species. Therefore, males with higher testosterone levels are often thought to be more aggressive. For mammals living in multimale groups, aggression is hypothesized to link male social status (i.e. dominance rank) and testosterone levels, given that high status predicts mating success and is acquired partly through aggressive intragroup competition. In male chimpanzees, Pan troglodytes, dominance rank has been repeatedly linked to interindividual variation in testosterone levels, but evidence directly linking interindividual variation in testosterone and aggression is lacking. In the present study, we test both aggression levels and lean muscle mass, as measured by urinary creatinine, as links between dominance rank and testosterone levels in a large sample of wild male chimpanzees. Multivariate analyses indicated that dominance rank was positively associated with total rates of intragroup aggression, average urinary testosterone levels and average urinary creatinine levels. Testosterone was positively associated with creatinine levels but negatively associated with total aggression rates. Furthermore, mediation analyses showed that testosterone levels facilitated an association between dominance rank and creatinine levels. Our results indicate that (1) adult male chimpanzees with higher average testosterone levels are often higher ranking but not more aggressive than males with lower testosterone and (2) lean muscle mass links dominance rank and testosterone levels in Ngogo males. We assert that aggression rates are insufficient to explain links between dominance rank and testosterone levels in male chimpanzees and that other social variables (e.g. male-male relationship quality) may regulate testosterone's links to aggression.
Collapse
Affiliation(s)
- Jacob D. Negrey
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, U.S.A
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, U.S.A
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-
Salem, NC, U.S.A
| | - Tobias Deschner
- Comparative BioCognition, Institute of Cognitive Science, University of Osnabrück, Osnabrück,
Germany
| | - Kevin E. Langergraber
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, U.S.A
- Institute of Human Origins, Arizona State University, Tempe, AZ, U.S.A
| |
Collapse
|
6
|
Tkaczynski PJ, Mafessoni F, Girard-Buttoz C, Samuni L, Ackermann CY, Fedurek P, Gomes C, Hobaiter C, Löhrich T, Manin V, Preis A, Valé PD, Wessling EG, Wittiger L, Zommers Z, Zuberbuehler K, Vigilant L, Deschner T, Wittig RM, Crockford C. Shared community effects and the non-genetic maternal environment shape cortisol levels in wild chimpanzees. Commun Biol 2023; 6:565. [PMID: 37237178 DOI: 10.1038/s42003-023-04909-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Mechanisms of inheritance remain poorly defined for many fitness-mediating traits, especially in long-lived animals with protracted development. Using 6,123 urinary samples from 170 wild chimpanzees, we examined the contributions of genetics, non-genetic maternal effects, and shared community effects on variation in cortisol levels, an established predictor of survival in long-lived primates. Despite evidence for consistent individual variation in cortisol levels across years, between-group effects were more influential and made an overwhelming contribution to variation in this trait. Focusing on within-group variation, non-genetic maternal effects accounted for 8% of the individual differences in average cortisol levels, significantly more than that attributable to genetic factors, which was indistinguishable from zero. These maternal effects are consistent with a primary role of a shared environment in shaping physiology. For chimpanzees, and perhaps other species with long life histories, community and maternal effects appear more relevant than genetic inheritance in shaping key physiological traits.
Collapse
Affiliation(s)
- Patrick J Tkaczynski
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire.
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK.
| | - Fabrizio Mafessoni
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Weizmann Institute of Science, Department of Plant and Environmental Sciences, Rehovot, Israel.
| | - Cédric Girard-Buttoz
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
- The Ape Social Mind Lab, Institut des Sciences Cognitives, CNRS UMR 5229, Lyon, France
| | - Liran Samuni
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Centre for Social Learning & Cognitive Evolution, School of Psychology & Neuroscience, University of St Andrews, St Andrews, UK
| | - Corinne Y Ackermann
- Universite de Neuchatel, Institut de Biologie, Cognition Compare, Neuchatel, Switzerland
| | - Pawel Fedurek
- Division of Psychology, University of Stirling, Stirling, UK
| | - Cristina Gomes
- Tropical Conservation Institute, Institute of Environment, College of Arts, Science and Education, Florida International University, Miami, FL, USA
| | - Catherine Hobaiter
- Centre for Social Learning & Cognitive Evolution, School of Psychology & Neuroscience, University of St Andrews, St Andrews, UK
| | - Therese Löhrich
- World Wide Fund for Nature, Dzanga Sangha Protected Areas, BP 1053, Bangui, Central African Republic
- Robert Koch Institute, Epidemiology of Highly Pathogenic Microorganisms, Berlin, Germany
| | - Virgile Manin
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
| | - Anna Preis
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
| | - Prince D Valé
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
- Unité de Formation et de Recherche Agroferesterie, Université Jean Lorougnon Guédé, Daloa, Côte d'Ivoire
| | - Erin G Wessling
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | | | - Zinta Zommers
- Perry World House, University of Pennsylvania, Philadelphia, USA
| | - Klaus Zuberbuehler
- Universite de Neuchatel, Institut de Biologie, Cognition Compare, Neuchatel, Switzerland
| | - Linda Vigilant
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Tobias Deschner
- Institute of Cognitive Science, Comparative BioCognition, University of Osnabrück, Osnabrück, Germany
| | - Roman M Wittig
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
- The Ape Social Mind Lab, Institut des Sciences Cognitives, CNRS UMR 5229, Lyon, France
| | - Catherine Crockford
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
- The Ape Social Mind Lab, Institut des Sciences Cognitives, CNRS UMR 5229, Lyon, France
| |
Collapse
|
7
|
Wessling EG, Samuni L, Mundry R, Pascual MA, Lucchesi S, Kambale B, Surbeck M. Evaluating the efficacy of a consumer-centric method for ecological sampling: Using bonobo ( Pan paniscus) feeding patterns as an instrument for tropical forest characterization. Ecol Evol 2022; 12:e9606. [PMID: 36619712 PMCID: PMC9798251 DOI: 10.1002/ece3.9606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 09/15/2022] [Accepted: 11/19/2022] [Indexed: 12/30/2022] Open
Abstract
Characteristics of food availability and distribution are key components of a species' ecology. Objective ecological surveying used in animal behavior research does not consider aspects of selection by the consumer and therefore may produce imprecise measures of availability. We propose a method to integrate ecological sampling of an animal's environment into existing behavioral data collection systems by using the consumer as the surveyor. Here, we evaluate the consumer-centric method (CCM) of assessing resource availability for its ability to measure food resource abundance, distribution, and dispersion. This method catalogs feeding locations observed during behavioral observation and uses aggregated data to characterize these ecological metrics. We evaluated the CCM relative to traditional vegetation plot surveying using accumulated feeding locations across 3 years visited by a tropical frugivore, the bonobo (Pan paniscus), and compared it with data derived from over 200 vegetation plots across their 50 km2+ home ranges. We demonstrate that food species abundance estimates derived from the CCM are comparable to those derived from traditional vegetation plot sampling in less than 2 years of data collection, and agreement improved when accounting for aspects of consumer selectivity in objective vegetation plot sampling (e.g., tree size minima). Density correlated between CCM and plot-derived estimates and was relatively insensitive to home range inclusion and other species characteristics, however, it was sensitive to sampling frequency. Agreement between the methods in relative distribution of resources performed better across species than expected by chance, although measures of dispersion correlated poorly. Once tested in other systems, the CCM may provide a robust measure of food availability for use in relative food availability indices and can be incorporated into existing observational data collection. The CCM has an advantage over traditional sampling methods as it incorporates sampling biases relevant to the consumer, thereby serving as a promising method for animal behavioral research.
Collapse
Affiliation(s)
- Erin G. Wessling
- Harvard UniversityCambridgeMassachusettsUSA
- St. Andrews, School of Psychology and NeuroscienceUniversity of St AndrewsSt AndrewsUK
| | - Liran Samuni
- Harvard UniversityCambridgeMassachusettsUSA
- St. Andrews, School of Psychology and NeuroscienceUniversity of St AndrewsSt AndrewsUK
| | - Roger Mundry
- Platform Bioinformatics and BiostatisticsVetMedUniViennaAustria
- Cognitive Ethology Laboratory, German Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
- Department for Primate CognitionGeorg‐August‐University GöttingenGöttingenGermany
- Leibniz Science Campus Primate CognitionGöttingenGermany
| | | | - Stefano Lucchesi
- Harvard UniversityCambridgeMassachusettsUSA
- Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Bienfait Kambale
- Centre de Surveillance de la Biodiversité de l'Université de KisanganiKisanganiDemocratic Republic of the Congo
| | - Martin Surbeck
- Harvard UniversityCambridgeMassachusettsUSA
- Kokolopori Bonobo Research ProjectTshuapaDemocratic Republic of the Congo
- Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
| |
Collapse
|
8
|
Cáceres N, Cerezer FO, Bubadué J. Size reduction and skull shape parallelism following the evolutionary forest‐to‐savanna transition in Platyrrhini monkeys. Am J Primatol 2022; 84:e23447. [DOI: 10.1002/ajp.23447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 09/15/2022] [Accepted: 10/01/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Nilton Cáceres
- Departamento de Ecologia e Evolução, CCNE Universidade Federal de Santa Maria Santa Maria Rio Grande do Sul Brazil
| | - Felipe O. Cerezer
- Programa de Pós‐Graduacão em Biodiversidade Animal, Departamento de Ecologia e Evolução, CCNE Universidade Federal de Santa Maria Santa Maria Rio Grande do Sul Brazil
| | - Jamile Bubadué
- Programa de Pós‐Graduacão em Biodiversidade Animal, Departamento de Ecologia e Evolução, CCNE Universidade Federal de Santa Maria Santa Maria Rio Grande do Sul Brazil
- Laboratório de Ciências Ambientais, CBB, Universidade Estadual do Norte Fluminense Darcy Ribeiro Campos dos Goytacazes Rio de Janeiro Brazil
| |
Collapse
|
9
|
Bründl AC, Girard-Buttoz C, Bortolato T, Samuni L, Grampp M, Löhrich T, Tkaczynski P, Wittig RM, Crockford C. Maternal effects on the development of vocal communication in wild chimpanzees. iScience 2022; 25:105152. [PMID: 36238895 PMCID: PMC9550609 DOI: 10.1016/j.isci.2022.105152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/08/2022] [Accepted: 09/14/2022] [Indexed: 11/19/2022] Open
Abstract
Early-life experiences, such as maternal care received, influence adult social integration and survival. We examine what changes to social behavior through ontogeny lead to these lifelong effects, particularly whether early-life maternal environment impacts the development of social communication. Chimpanzees experience prolonged social communication development. Focusing on a central communicative trait, the "pant-hoot" contact call used to solicit social engagement, we collected cross-sectional data on wild chimpanzees (52 immatures and 36 mothers). We assessed early-life socioecological impacts on pant-hoot rates across development, specifically: mothers' gregariousness, age, pant-hoot rates and dominance rank, maternal loss, and food availability, controlling for current maternal effects. We found that early-life maternal gregariousness correlated positively with offspring pant-hoot rates, while maternal loss led to reduced pant-hoot rates across development. Males had steeper developmental trajectories in pant-hoot rates than females. We demonstrate the impact of maternal effects on developmental trajectories of a rarely investigated social trait, vocal production.
Collapse
Affiliation(s)
- Aisha C. Bründl
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, 01 BP 1303, Abidjan, Côte d’Ivoire
| | - Cédric Girard-Buttoz
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, 01 BP 1303, Abidjan, Côte d’Ivoire
- The Great Ape Social Mind Lab, Institut des Sciences Cognitives, CNRS, 67 Boulevard Pinel, Bron, 69675 Lyon, France
| | - Tatiana Bortolato
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, 01 BP 1303, Abidjan, Côte d’Ivoire
- The Great Ape Social Mind Lab, Institut des Sciences Cognitives, CNRS, 67 Boulevard Pinel, Bron, 69675 Lyon, France
| | - Liran Samuni
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, 01 BP 1303, Abidjan, Côte d’Ivoire
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Mathilde Grampp
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, 01 BP 1303, Abidjan, Côte d’Ivoire
- The Great Ape Social Mind Lab, Institut des Sciences Cognitives, CNRS, 67 Boulevard Pinel, Bron, 69675 Lyon, France
| | - Therese Löhrich
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, 01 BP 1303, Abidjan, Côte d’Ivoire
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Seestraße 10, Berlin 13353, Germany
- World Wide Fund for Nature, Dzanga Sangha Protected Areas, Bangui BP 1053, Central African Republic
- Veterinary Group Practice Heeslingen, Stader Straße 5, 27404 Heeslingen, Germany
| | - Patrick Tkaczynski
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, 01 BP 1303, Abidjan, Côte d’Ivoire
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L33AF, UK
| | - Roman M. Wittig
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, 01 BP 1303, Abidjan, Côte d’Ivoire
| | - Catherine Crockford
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, 01 BP 1303, Abidjan, Côte d’Ivoire
- The Great Ape Social Mind Lab, Institut des Sciences Cognitives, CNRS, 67 Boulevard Pinel, Bron, 69675 Lyon, France
| |
Collapse
|
10
|
Almeida-Warren K, Camara HD, Matsuzawa T, Carvalho S. Landscaping the Behavioural Ecology of Primate Stone Tool Use. INT J PRIMATOL 2022. [DOI: 10.1007/s10764-022-00305-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractEcology is fundamental in the development, transmission, and perpetuity of primate technology. Previous studies on tool site selection have addressed the relevance of targeted resources and raw materials for tools, but few have considered the broader foraging landscape. In this landscape-scale study of the ecological contexts of wild chimpanzee (Pan troglodytes verus) tool use, we investigated the conditions required for nut-cracking to occur and persist in discrete locations at the long-term field site of Bossou, Guinea. We examined this at three levels: selection, frequency of use, and inactivity. We collected data on plant foods, nut trees, and raw materials using transect and quadrat methods, and conducted forest-wide surveys to map the location of nests and watercourses. We analysed data at the quadrat level (n = 82) using generalised linear models and descriptive statistics. We found that, further to the presence of a nut tree and availability of raw materials, abundance of food-providing trees as well as proximity to nest sites were significant predictors of nut-cracking occurrence. This suggests that the spatial distribution of nut-cracking sites is mediated by the broader behavioural landscape and is influenced by non-extractive foraging of perennial resources and non-foraging activities. Additionally, the number of functional tools was greater at sites with higher nut-cracking frequency, and was negatively correlated with site inactivity. Our research indicates that the technological landscape of Bossou chimpanzees shares affinities with the ‘favoured places’ model of hominin site formation, providing a comparative framework for reconstructing landscape-scale patterns of ancient human behaviour. A French translation of this abstract is provided in theelectronic supplementary information: EMS 2.
Collapse
|
11
|
Péter H, Zuberbühler K, Hobaiter C. Well-digging in a community of forest-living wild East African chimpanzees (Pan troglodytes schweinfurthii). Primates 2022; 63:355-364. [PMID: 35662388 PMCID: PMC9273564 DOI: 10.1007/s10329-022-00992-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/07/2022] [Indexed: 10/31/2022]
Abstract
Access to resources shapes species' physiology and behaviour. Water is not typically considered a limiting resource for rainforest-living chimpanzees; however, several savannah and savannah-woodland communities show behavioural adaptations to limited water. Here, we provide a first report of habitual well-digging in a rainforest-living group of East African chimpanzees (Pan troglodytes schweinfurthii) and suggest that it may have been imported into the community's behavioural repertoire by an immigrant female. We describe the presence and frequency of well-digging and related behaviour, and suggest that its subsequent spread in the group may have involved some degree of social learning. We highlight that subsurface water is a concealed resource, and that the limited spread of well-digging in the group may highlight the cognitive, rather than physical, challenges it presents in a rainforest environment.
Collapse
Affiliation(s)
- Hella Péter
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK.,School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Klaus Zuberbühler
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK.,Department of Comparative Cognition, University of Neuchâtel, Neuchâtel, Switzerland.,Budongo Conservation Field Station, PO Box 362, Masindi, Uganda
| | - Catherine Hobaiter
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK. .,Budongo Conservation Field Station, PO Box 362, Masindi, Uganda.
| |
Collapse
|
12
|
Nelson RS, Lonsdorf EV, Terio KA, Wellens KR, Lee SM, Murray CM. Drinking frequency in wild lactating chimpanzees (Pan troglodytes schweinfurthii) and their offspring. Am J Primatol 2022; 84:e23371. [PMID: 35235684 DOI: 10.1002/ajp.23371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 11/10/2022]
Abstract
Maintaining water balance is essential for organismal health, and lactating females must balance individual needs with milk production and offspring hydration. Primate milk is dilute and presumed to be the primary source for infant hydration for a considerable time period. Few studies have investigated the hydration burden that lactation may place on female primates. In this study, we investigated sources of variation in female and offspring drinking frequency among wild chimpanzees (Pan troglodytes). We hypothesized females would experience seasonal and lactation hydration burdens and adjust their drinking behavior to accommodate these, but this hydration burden would vary between females of different dominance ranks. We also predicted that parity would relate to maternal drinking frequency since primiparous females are still investing in their own growth. Finally, we predicted that offspring would drink more in the dry season and as they aged and lost milk as a water source, but that offspring of high-ranking females would be buffered from these effects. Using 41 years of long-term data on the behavior of mothers and offspring of Gombe National Park, we found that mothers drank more in the dry season, but there was no significant difference between mothers of different ranks during this period. Low-ranking females drank significantly more than mid- and high-ranking females during late lactation. Offspring also drank more in the dry season and as they aged, but there was no evidence of buffering for those with high-ranking mothers. While chimpanzees in our study population drank infrequently, they do demonstrate noticeable shifts in drinking behavior that suggests seasonal and reproductive hydration burdens.
Collapse
Affiliation(s)
- Rachel S Nelson
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Elizabeth V Lonsdorf
- Department of Psychology, Franklin and Marshall College, Lancaster, Pennsylvania, USA
| | - Karen A Terio
- Zoological Pathology Program, College of Veterinary Medicine, University of Illinois, Maywood, Illinois, USA
| | - Kaitlin R Wellens
- Department of Biology, Trinity Washington University, Washington, District of Columbia, USA
| | - Sean M Lee
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Carson M Murray
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
13
|
Love thy neighbour: behavioural and endocrine correlates of male strategies during intergroup encounters in bonobos. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Giuliano C, Stewart FA, Piel AK. Chimpanzee (Pan troglodytes schweinfurthii) grouping patterns in an open and dry savanna landscape, Issa Valley, western Tanzania. J Hum Evol 2022; 163:103137. [DOI: 10.1016/j.jhevol.2021.103137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022]
|
15
|
Shultz S, Britnell JA, Harvey N. Untapped potential of physiology, behaviour and immune markers to predict range dynamics and marginality. Ecol Evol 2021; 11:16446-16461. [PMID: 34938448 PMCID: PMC8668750 DOI: 10.1002/ece3.8331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 09/09/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Linking environmental conditions to the modulators of individual fitness is necessary to predict long-term population dynamics, viability, and resilience. Functional physiological, behavioral, and reproductive markers can provide this mechanistic insight into how individuals perceive physiological, psychological, chemical, and physical environmental challenges through physiological and behavioral responses that are fitness proxies. We propose a Functional Marginality framework where relative changes in allostatic load, reproductive health, and behavior can be scaled up to evidence and establish causation of macroecological processes such as local extirpation, colonization, population dynamics, and range dynamics. To fully exploit functional traits, we need to move beyond single biomarker studies to develop an integrative approach that models the interactions between extrinsic challenges, physiological, and behavioral pathways and their modulators. In addition to providing mechanistic markers of range dynamics, this approach can also serve as a valuable conservation tool for evaluating individual- and population-level health, predicting responses to future environmental change and measuring the impact of interventions. We highlight specific studies that have used complementary biomarkers to link extrinsic challenges to population performance. These frameworks of integrated biomarkers have untapped potential to identify causes of decline, predict future changes, and mitigate against future biodiversity loss.
Collapse
Affiliation(s)
- Susanne Shultz
- School of Earth and Environmental SciencesUniversity of ManchesterManchesterUK
| | - Jake A. Britnell
- School of Earth and Environmental SciencesUniversity of ManchesterManchesterUK
- Chester ZooUpton‐By‐ChesterUK
| | - Nicholas Harvey
- School of Earth and Environmental SciencesUniversity of ManchesterManchesterUK
- Chester ZooUpton‐By‐ChesterUK
| |
Collapse
|
16
|
Lindshield S, Hernandez-Aguilar RA, Korstjens AH, Marchant LF, Narat V, Ndiaye PI, Ogawa H, Piel AK, Pruetz JD, Stewart FA, van Leeuwen KL, Wessling EG, Yoshikawa M. Chimpanzees (Pan troglodytes) in savanna landscapes. Evol Anthropol 2021; 30:399-420. [PMID: 34542218 DOI: 10.1002/evan.21924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/17/2020] [Accepted: 07/29/2021] [Indexed: 12/22/2022]
Abstract
Chimpanzees (Pan troglodytes) are the only great apes that inhabit hot, dry, and open savannas. We review the environmental pressures of savannas on chimpanzees, such as food and water scarcity, and the evidence for chimpanzees' behavioral responses to these landscapes. In our analysis, savannas were generally associated with low chimpanzee population densities and large home ranges. In addition, thermoregulatory behaviors that likely reduce hyperthermia risk, such as cave use, were frequently observed in the hottest and driest savanna landscapes. We hypothesize that such responses are evidence of a "savanna landscape effect" in chimpanzees and offer pathways for future research to understand its evolutionary processes and mechanisms. We conclude by discussing the significance of research on savanna chimpanzees to modeling the evolution of early hominin traits and informing conservation programs for these endangered apes.
Collapse
Affiliation(s)
- Stacy Lindshield
- Department of Anthropology, Purdue University, West Lafayette, Indiana, USA
| | - R Adriana Hernandez-Aguilar
- Department of Social Psychology and Quantitative Psychology, Faculty of Psychology, University of Barcelona, Barcelona, Spain.,Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Amanda H Korstjens
- Life and Environmental Sciences Department, Bournemouth University, Talbot Campus, Poole, UK
| | | | - Victor Narat
- CNRS/MNHN/Paris Diderot, UMR 7206 Eco-anthropology, Paris, France
| | - Papa Ibnou Ndiaye
- Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - Hideshi Ogawa
- School of International Liberal Studies, Chukyo University, Toyota, Aichi, Japan
| | - Alex K Piel
- Department of Anthropology, University College London, London, UK
| | - Jill D Pruetz
- Department of Anthropology, Texas State University, San Marcos, Texas, USA
| | - Fiona A Stewart
- Department of Anthropology, University College London, London, UK.,School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Kelly L van Leeuwen
- Department of Life and Environmental Sciences, Bournemouth University, Talbot Campus, Poole, UK
| | - Erin G Wessling
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Midori Yoshikawa
- Department of Zoology, National Museum of Nature and Science, Ibaraki, Tokyo, Japan
| |
Collapse
|
17
|
Barratt CD, Lester JD, Gratton P, Onstein RE, Kalan AK, McCarthy MS, Bocksberger G, White LC, Vigilant L, Dieguez P, Abdulai B, Aebischer T, Agbor A, Assumang AK, Bailey E, Bessone M, Buys B, Carvalho JS, Chancellor R, Cohen H, Danquah E, Deschner T, Dongmo ZN, Doumbé OA, Dupain J, Duvall CS, Eno-Nku M, Etoga G, Galat-Luong A, Garriga R, Gatti S, Ghiurghi A, Goedmakers A, Granjon AC, Hakizimana D, Head J, Hedwig D, Herbinger I, Hermans V, Jones S, Junker J, Kadam P, Kambi M, Kienast I, Kouakou CY, N Goran KP, Langergraber KE, Lapuente J, Laudisoit A, Lee KC, Maisels F, Mirghani N, Moore D, Morgan B, Morgan D, Neil E, Nicholl S, Nkembi L, Ntongho A, Orbell C, Ormsby LJ, Pacheco L, Piel AK, Pintea L, Plumptre AJ, Rundus A, Sanz C, Sommer V, Sop T, Stewart FA, Sunderland-Groves J, Tagg N, Todd A, Ton E, van Schijndel J, VanLeeuwe H, Vendras E, Welsh A, Wenceslau JFC, Wessling EG, Willie J, Wittig RM, Yoshihiro N, Yuh YG, Yurkiw K, Boesch C, Arandjelovic M, Kühl H. Quantitative estimates of glacial refugia for chimpanzees (Pan troglodytes) since the Last Interglacial (120,000 BP). Am J Primatol 2021; 83:e23320. [PMID: 34402081 DOI: 10.1002/ajp.23320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 07/06/2021] [Accepted: 07/28/2021] [Indexed: 11/12/2022]
Abstract
Paleoclimate reconstructions have enhanced our understanding of how past climates have shaped present-day biodiversity. We hypothesize that the geographic extent of Pleistocene forest refugia and suitable habitat fluctuated significantly in time during the late Quaternary for chimpanzees (Pan troglodytes). Using bioclimatic variables representing monthly temperature and precipitation estimates, past human population density data, and an extensive database of georeferenced presence points, we built a model of changing habitat suitability for chimpanzees at fine spatio-temporal scales dating back to the Last Interglacial (120,000 BP). Our models cover a spatial resolution of 0.0467° (approximately 5.19 km2 grid cells) and a temporal resolution of between 1000 and 4000 years. Using our model, we mapped habitat stability over time using three approaches, comparing our modeled stability estimates to existing knowledge of Afrotropical refugia, as well as contemporary patterns of major keystone tropical food resources used by chimpanzees, figs (Moraceae), and palms (Arecacae). Results show habitat stability congruent with known glacial refugia across Africa, suggesting their extents may have been underestimated for chimpanzees, with potentially up to approximately 60,000 km2 of previously unrecognized glacial refugia. The refugia we highlight coincide with higher species richness for figs and palms. Our results provide spatio-temporally explicit insights into the role of refugia across the chimpanzee range, forming the empirical foundation for developing and testing hypotheses about behavioral, ecological, and genetic diversity with additional data. This methodology can be applied to other species and geographic areas when sufficient data are available.
Collapse
Affiliation(s)
- Christopher D Barratt
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany.,Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Jack D Lester
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Paolo Gratton
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Department of Biology, University of Rome "Tor Vergata", Roma, Italy
| | - Renske E Onstein
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany
| | - Ammie K Kalan
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Maureen S McCarthy
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Gaëlle Bocksberger
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Lauren C White
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Linda Vigilant
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Paula Dieguez
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Barrie Abdulai
- Research for Evidence-based and Achievable Decisions Sierra Leone (READ-SL), Sierra Leone
| | - Thierry Aebischer
- Conservation et Plan d'aménagement de l'Aire de Conservation de Chinko, African Parks Network, Chinko Project, Kocho, RCA and active collaborator of the University of Fribourg, WegmannLab, Fribourg, Switzerland
| | - Anthony Agbor
- African Parks Centurion Building, Lonehill, South Africa
| | - Alfred K Assumang
- Department of Wildlife and Range Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Emma Bailey
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mattia Bessone
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Joana S Carvalho
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Rebecca Chancellor
- Departments of Anthropology & Sociology and Psychology, West Chester University, West Chester, Pennsylvania, USA
| | - Heather Cohen
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Emmanuel Danquah
- Department of Wildlife and Range Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Tobias Deschner
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | | | - Jef Dupain
- Antwerp Zoo Foundation, Antwerp Zoo Society, Antwerpen, Belgium
| | - Chris S Duvall
- Department of Geography and Environmental Studies, University of New Mexico, Albuquerque, New Mexico, USA
| | - Manasseh Eno-Nku
- World Wide Fund for Nature, Panda House Bastos, Yaounde, Cameroon
| | - Gilles Etoga
- World Wide Fund for Nature, Panda House Bastos, Yaounde, Cameroon
| | - Anh Galat-Luong
- IRD (The French National Research Institute for Development), France
| | - Rosa Garriga
- Tacugama Chimpanzee Sanctuary, Freetown, Sierra Leone
| | - Sylvain Gatti
- West African Primate Conservation Action (WAPCA), Accra, Ghana
| | | | | | - Anne-Céline Granjon
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Josephine Head
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Daniela Hedwig
- Elephant Listening Project, Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, New York, USA
| | | | - Veerle Hermans
- Taï Chimpanzee Project, CSRS, Abidjan, Ivory Coast.,Centre for Research and Conservation, Antwerp Zoo Society, Antwerpen, Belgium
| | - Sorrel Jones
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Jessica Junker
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany
| | - Parag Kadam
- Department of Archaeology and Anthropology, University of Cambridge, Cambridge, UK
| | - Mohamed Kambi
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Ivonne Kienast
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Kouamé P N Goran
- World Wide Fund for Nature, Panda House Bastos, Yaounde, Cameroon
| | - Kevin E Langergraber
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA.,Institute of Human Origins, Arizona State University, Tempe, Arizona, USA
| | - Juan Lapuente
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Comoé Chimpanzee Conservation Project, Comoé National Park, Kakpin, Ivory Coast
| | - Anne Laudisoit
- Ecohealth Alliance, New York City, New York, USA.,Department of Biology, Evolutionary Ecology Group, University of Antwerp, Antwerpen, Belgium
| | - Kevin C Lee
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Fiona Maisels
- Wildlife Conservation Society (WCS), Bronx, New York, USA.,Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, UK
| | - Nadia Mirghani
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
| | - Deborah Moore
- Department of Anthropology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Bethan Morgan
- Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, UK.,San Diego Zoo Global, Escondido, California, USA.,Ebo Forest Research Project, Yaounde, Cameroon
| | - David Morgan
- Lester E Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, Illinois, USA
| | - Emily Neil
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Sonia Nicholl
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Louis Nkembi
- Environment and Rural Development Foundation, Buea, Cameroon
| | - Anne Ntongho
- World Wide Fund for Nature, Panda House Bastos, Yaounde, Cameroon
| | | | - Lucy Jayne Ormsby
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Alex K Piel
- Department of Anthropology, University College London, London, UK
| | | | - Andrew J Plumptre
- Key Biodiversity Area Secretariat, c/o BirdLife International, Cambridge, UK
| | - Aaron Rundus
- Department of Psychology, West Chester University, West Chester, Pennsylvania, USA
| | - Crickette Sanz
- Department of Anthropology, Washington University in St. Louis, Saint Louis, Missouri, USA.,Wildlife Conservation Society, Congo Program, Brazzaville, Republic of Congo
| | - Volker Sommer
- Department of Anthropology, University College London, London, UK.,Gashaka Primate Project, Serti, Taraba State, Nigeria
| | - Tenekwetche Sop
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany.,Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Fiona A Stewart
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK.,Wildlife Conservation Society, Congo Program, Brazzaville, Republic of Congo
| | | | - Nikki Tagg
- Centre for Research and Conservation, Antwerp Zoo Society, Antwerpen, Belgium
| | | | - Els Ton
- Chimbo Foundation, Oudemirdum, Netherlands
| | | | | | - Elleni Vendras
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Adam Welsh
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Erin G Wessling
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Jacob Willie
- Centre for Research and Conservation, Antwerp Zoo Society, Antwerpen, Belgium
| | - Roman M Wittig
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Taï Chimpanzee Project, CSRS, Abidjan, Ivory Coast
| | | | - Yisa Ginath Yuh
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Department of Geography, Planning and Environmental Studies, University of Concordia, Montréal, Quebec, Canada
| | - Kyle Yurkiw
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Pan Verus Project, Outamba-Kilimi National Park, Sierra Leone
| | - Christophe Boesch
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mimi Arandjelovic
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Hjalmar Kühl
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany.,Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
18
|
Martínez-Íñigo L, Baas P, Klein H, Pika S, Deschner T. Home range size in central chimpanzees (Pan troglodytes troglodytes) from Loango National Park, Gabon. Primates 2021; 62:723-734. [PMID: 34218403 PMCID: PMC8410711 DOI: 10.1007/s10329-021-00927-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 06/21/2021] [Indexed: 11/25/2022]
Abstract
Ranging behavior has been studied extensively in eastern (Pan troglodytes schweinfurthii) and western (P. t. verus) chimpanzees, but relatively little is known regarding home ranges of the other two subspecies (P. t. ellioti; P. t. troglodytes). In this study, we determined the home range size and space use of a habituated community (Rekambo) of central chimpanzees living in a habitat mosaic in Loango National Park, Gabon. Data on travel routes were collected during follows between January 2017 and April 2019 (N = 670,616 relocations, collected over 640 days and 5690 h of observation). We used three methods for calculating home range size (minimum convex polygon, kernel density estimation, and biased random bridges). We compare our estimates to those obtained from prior genetic and camera trap studies of the Rekambo community and contrast them with estimates from other chimpanzee communities of the four chimpanzee subspecies. Depending on the methodology used, the home range size of the Rekambo community ranged between 27.64 and 59.03 km2. The location of the center of the home range remained relatively stable over the last decade, while the overall size decreased. The Rekambo home range is, therefore, one of the largest documented so far for chimpanzees outside savannah-woodland habitats. We discuss several explanations, including the presence of savannah, interspecies competition, and intercommunity interactions.
Collapse
Affiliation(s)
- Laura Martínez-Íñigo
- Interim Group Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany. .,Wild Chimpanzee Foundation - Guinean Representation, Commune de Dixinn, BP1487P, Conakry, Guinea.
| | - Pauline Baas
- Interim Group Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Harmonie Klein
- Interim Group Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Simone Pika
- Institute of Cognitive Science, Comparative BioCognition, Osnabrück University, Artilleriestrasse 34, 49076, Osnabrück, Germany
| | - Tobias Deschner
- Interim Group Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| |
Collapse
|
19
|
Girard-Buttoz C, Tkaczynski PJ, Samuni L, Fedurek P, Gomes C, Löhrich T, Manin V, Preis A, Valé PF, Deschner T, Wittig RM, Crockford C. Early maternal loss leads to short- but not long-term effects on diurnal cortisol slopes in wild chimpanzees. eLife 2021; 10:e64134. [PMID: 34133269 PMCID: PMC8208813 DOI: 10.7554/elife.64134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/19/2021] [Indexed: 12/18/2022] Open
Abstract
The biological embedding model (BEM) suggests that fitness costs of maternal loss arise when early-life experience embeds long-term alterations to hypothalamic-pituitary-adrenal (HPA) axis activity. Alternatively, the adaptive calibration model (ACM) regards physiological changes during ontogeny as short-term adaptations. Both models have been tested in humans but rarely in wild, long-lived animals. We assessed whether, as in humans, maternal loss had short- and long-term impacts on orphan wild chimpanzee urinary cortisol levels and diurnal urinary cortisol slopes, both indicative of HPA axis functioning. Immature chimpanzees recently orphaned and/or orphaned early in life had diurnal cortisol slopes reflecting heightened activation of the HPA axis. However, these effects appeared short-term, with no consistent differences between orphan and non-orphan cortisol profiles in mature males, suggesting stronger support for the ACM than the BEM in wild chimpanzees. Compensatory mechanisms, such as adoption, may buffer against certain physiological effects of maternal loss in this species.
Collapse
Affiliation(s)
- Cédric Girard-Buttoz
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Taï Chimpanzee Project, Centre Suisse de Recherches ScientifiquesAbidjanCôte d'Ivoire
| | - Patrick J Tkaczynski
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Taï Chimpanzee Project, Centre Suisse de Recherches ScientifiquesAbidjanCôte d'Ivoire
| | - Liran Samuni
- Taï Chimpanzee Project, Centre Suisse de Recherches ScientifiquesAbidjanCôte d'Ivoire
- Department of Primatology, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Department of Human Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Pawel Fedurek
- Division of Psychology, University of StirlingStirlingUnited Kingdom
| | - Cristina Gomes
- Tropical Conservation Institute, Florida International UniversityMiamiUnited States
| | - Therese Löhrich
- World Wide Fund for Nature, Dzanga Sangha Protected AreasBanguiCentral African Republic
- Robert Koch Institute, Epidemiology of Highly Pathogenic MicroorganismsBerlinGermany
| | - Virgile Manin
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Taï Chimpanzee Project, Centre Suisse de Recherches ScientifiquesAbidjanCôte d'Ivoire
| | - Anna Preis
- Department of Primatology, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Prince F Valé
- Taï Chimpanzee Project, Centre Suisse de Recherches ScientifiquesAbidjanCôte d'Ivoire
- Department of Primatology, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Centre Suisse de Recherches Scientifiques en Côte d'IvoireAbidjanCôte d'Ivoire
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët BoignyAbidjanCôte d'Ivoire
| | - Tobias Deschner
- Interim Group Primatology, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Roman M Wittig
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Taï Chimpanzee Project, Centre Suisse de Recherches ScientifiquesAbidjanCôte d'Ivoire
| | - Catherine Crockford
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Taï Chimpanzee Project, Centre Suisse de Recherches ScientifiquesAbidjanCôte d'Ivoire
- Institut des Sciences Cognitives, CNRSLyonFrance
| |
Collapse
|
20
|
Carvalho JS, Graham B, Bocksberger G, Maisels F, Williamson EA, Wich S, Sop T, Amarasekaran B, Barca B, Barrie A, Bergl RA, Boesch C, Boesch H, Brncic TM, Buys B, Chancellor R, Danquah E, Doumbé OA, Le‐Duc SY, Galat‐Luong A, Ganas J, Gatti S, Ghiurghi A, Goedmakers A, Granier N, Hakizimana D, Haurez B, Head J, Herbinger I, Hillers A, Jones S, Junker J, Maputla N, Manasseh E, McCarthy MS, Molokwu‐Odozi M, Morgan BJ, Nakashima Y, N’Goran PK, Nixon S, Nkembi L, Normand E, Nzooh LD, Olson SH, Payne L, Petre C, Piel AK, Pintea L, Plumptre AJ, Rundus A, Serckx A, Stewart FA, Sunderland‐Groves J, Tagg N, Todd A, Vosper A, Wenceslau JF, Wessling EG, Willie J, Kühl HS. Predicting range shifts of African apes under global change scenarios. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
21
|
|
22
|
Cold Discomfort: A Model to Explain Repetitive Linear Enamel Hypoplasia Among Pan troglodytes and Pan paniscus. INT J PRIMATOL 2021. [DOI: 10.1007/s10764-021-00206-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Lester JD, Vigilant L, Gratton P, McCarthy MS, Barratt CD, Dieguez P, Agbor A, Álvarez-Varona P, Angedakin S, Ayimisin EA, Bailey E, Bessone M, Brazzola G, Chancellor R, Cohen H, Danquah E, Deschner T, Egbe VE, Eno-Nku M, Goedmakers A, Granjon AC, Head J, Hedwig D, Hernandez-Aguilar RA, Jeffery KJ, Jones S, Junker J, Kadam P, Kaiser M, Kalan AK, Kehoe L, Kienast I, Langergraber KE, Lapuente J, Laudisoit A, Lee K, Marrocoli S, Mihindou V, Morgan D, Muhanguzi G, Neil E, Nicholl S, Orbell C, Ormsby LJ, Pacheco L, Piel A, Robbins MM, Rundus A, Sanz C, Sciaky L, Siaka AM, Städele V, Stewart F, Tagg N, Ton E, van Schijndel J, Vyalengerera MK, Wessling EG, Willie J, Wittig RM, Yuh YG, Yurkiw K, Zuberbuehler K, Boesch C, Kühl HS, Arandjelovic M. Recent genetic connectivity and clinal variation in chimpanzees. Commun Biol 2021; 4:283. [PMID: 33674780 PMCID: PMC7935964 DOI: 10.1038/s42003-021-01806-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 02/04/2021] [Indexed: 01/31/2023] Open
Abstract
Much like humans, chimpanzees occupy diverse habitats and exhibit extensive behavioural variability. However, chimpanzees are recognized as a discontinuous species, with four subspecies separated by historical geographic barriers. Nevertheless, their range-wide degree of genetic connectivity remains poorly resolved, mainly due to sampling limitations. By analyzing a geographically comprehensive sample set amplified at microsatellite markers that inform recent population history, we found that isolation by distance explains most of the range-wide genetic structure of chimpanzees. Furthermore, we did not identify spatial discontinuities corresponding with the recognized subspecies, suggesting that some of the subspecies-delineating geographic barriers were recently permeable to gene flow. Substantial range-wide genetic connectivity is consistent with the hypothesis that behavioural flexibility is a salient driver of chimpanzee responses to changing environmental conditions. Finally, our observation of strong local differentiation associated with recent anthropogenic pressures portends future loss of critical genetic diversity if habitat fragmentation and population isolation continue unabated.
Collapse
Affiliation(s)
- Jack D Lester
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany.
| | - Linda Vigilant
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Paolo Gratton
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Maureen S McCarthy
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Christopher D Barratt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Paula Dieguez
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Anthony Agbor
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Paula Álvarez-Varona
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
| | - Samuel Angedakin
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | | | - Emma Bailey
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Mattia Bessone
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Gregory Brazzola
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Rebecca Chancellor
- West Chester University, Depts of Anthropology & Sociology and Psychology, West Chester, PA, USA
| | - Heather Cohen
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Emmanuel Danquah
- Department of Wildlife and Range Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Tobias Deschner
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Villard Ebot Egbe
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | | | | | - Anne-Céline Granjon
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Josephine Head
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Daniela Hedwig
- Elephant Listening Project, Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY, USA
| | - R Adriana Hernandez-Aguilar
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
- Department of Social Psychology and Quantitative Psychology, Faculty of Psychology, University of Barcelona, Barcelona, Spain
| | - Kathryn J Jeffery
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Sorrel Jones
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Jessica Junker
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | | | - Michael Kaiser
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Ammie K Kalan
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Laura Kehoe
- Wild Chimpanzee Foundation (WCF), Leipzig, Germany
| | - Ivonne Kienast
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Kevin E Langergraber
- School of Human Evolution and Social Change, Arizona State University, 900 Cady Mall, Tempe, AZ 85287 Arizona State University, Tempe, AZ, USA
| | - Juan Lapuente
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
- Comoé Chimpanzee Conservation Project, Comoé National Park, Kakpin, Côte d'Ivoire
| | - Anne Laudisoit
- Ecohealth Alliance, New York, NY, USA
- University of Antwerp, Campus Drie Eiken, lokaal D.133, Universiteitsplein 1 - 2610, Antwerpen, Belgium
| | - Kevin Lee
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Sergio Marrocoli
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Vianet Mihindou
- Agence National des Parcs Nationaux (ANPN) Batterie 4, Libreville, Gabon
- Ministère des Eaux, des Forêts, de la Mer, de l'Environnement, Chargé du Plan Climat, des Objectifs de Développement Durable et du Plan d'Affectation des Terres, Libreville, Gabon
| | - David Morgan
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL, USA
| | | | - Emily Neil
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Sonia Nicholl
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | | | - Lucy Jayne Ormsby
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Liliana Pacheco
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
| | - Alex Piel
- Department of Anthropology, University College London, London, UK
| | - Martha M Robbins
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Aaron Rundus
- West Chester University, Department of Psychology, West Chester, PA, USA
| | - Crickette Sanz
- Washington University in Saint Louis, Department of Anthropology, One Brookings Drive, St. Louis, MO, USA
- Wildlife Conservation Society, Congo Program, Brazzaville, Republic of Congo
| | - Lilah Sciaky
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Alhaji M Siaka
- National Protected Area Authority, Freetown, Sierra Leone
| | - Veronika Städele
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Fiona Stewart
- School of Biological & Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Nikki Tagg
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | - Els Ton
- Chimbo Foundation, Amsterdam, Netherlands
| | | | | | - Erin G Wessling
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Jacob Willie
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | - Roman M Wittig
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
| | - Yisa Ginath Yuh
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Kyle Yurkiw
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
- Pan Verus Project Outamba-Kilimi National Park, Freetown, Sierra Leone
| | - Klaus Zuberbuehler
- Budongo Conservation Field Station, Masindi, Uganda
- Université de Neuchâtel, Institut de Biologie, Neuchâtel, Switzerland
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Christophe Boesch
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Hjalmar S Kühl
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Mimi Arandjelovic
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany.
| |
Collapse
|
24
|
Chitayat AB, Wich SA, Lewis M, Stewart FA, Piel AK. Ecological correlates of chimpanzee (Pan troglodytes schweinfurthii) density in Mahale Mountains National Park, Tanzania. PLoS One 2021; 16:e0246628. [PMID: 33577598 PMCID: PMC7880473 DOI: 10.1371/journal.pone.0246628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/22/2021] [Indexed: 11/18/2022] Open
Abstract
Understanding the ecological factors that drive animal density patterns in time and space is key to devising effective conservation strategies. In Tanzania, most chimpanzees (~75%) live outside national parks where human activities threaten their habitat's integrity and connectivity. Mahale Mountains National Park (MMNP), therefore, is a critical area for chimpanzees (Pan troglodytes schweinfurthii) in the region due to its location and protective status. Yet, despite its importance and long history of chimpanzee research (>50 years), a park-wide census of the species has never been conducted. The park is categorized as a savanna-woodland mosaic, interspersed with riparian forest, wooded grassland, and bamboo thicket. This heterogeneous landscape offers an excellent opportunity to assess the ecological characteristics associated with chimpanzee density, a topic still disputed, which could improve conservation plans that protect crucial chimpanzee habitat outside the park. We examined the influence of fine-scale vegetative characteristics and topographical features on chimpanzee nest density, modeling nest counts using hierarchical distance sampling. We counted 335 nests in forest and woodland habitats across 102 transects in 13 survey sites. Nests were disproportionately found more in or near evergreen forests, on steep slopes, and in feeding tree species. We calculated chimpanzee density in MMNP to be 0.23 ind/km2, although density varied substantially among sites (0.09-3.43 ind/km2). Density was associated with factors related to the availability of food and nesting trees, with topographic heterogeneity and the total basal area of feeding tree species identified as significant positive predictors. Species-rich habitats and floristic diversity likely play a principal role in shaping chimpanzee density within a predominately open landscape with low food abundance. Our results provide valuable baseline data for future monitoring efforts in MMNP and enhance our understanding of this endangered species' density and distribution across Tanzania.
Collapse
Affiliation(s)
- Adrienne B. Chitayat
- Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Serge A. Wich
- Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Matthew Lewis
- Loango Gorilla Project (Gabon), Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Fiona A. Stewart
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- Department of Anthropology, University College London, London, United Kingdom
| | - Alex K. Piel
- Department of Anthropology, University College London, London, United Kingdom
| |
Collapse
|
25
|
Cheng L, Lucchesi S, Mundry R, Samuni L, Deschner T, Surbeck M. Variation in aggression rates and urinary cortisol levels indicates intergroup competition in wild bonobos. Horm Behav 2021; 128:104914. [PMID: 33373622 DOI: 10.1016/j.yhbeh.2020.104914] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/08/2023]
Abstract
Intergroup competition is a widespread phenomenon across taxa and groups typically compete over access to limited resources, such as food and mates. Such competition may be quantified by changes in individuals' behavioral and physiological status in response to intergroup encounters (IGEs). Bonobos, one of our closest living relatives, are often regarded as xenophilic and exhibit high tolerance towards out-group individuals. This tolerance between groups may still be accompanied by intergroup competition over resources. We hereby compared variation in aggression rates and urinary cortisol levels of bonobos during and outside contexts of IGEs in the Kokolopori Bonobo Reserve and investigated whether food and mate availability influenced males' and females' aggression and cortisol levels, when controlling for dominance rank and the number of individuals present. We found that although females had higher aggression rates and urinary cortisol levels during than outside contexts of IGEs, these increases were not related to food availability or changes in between-group dynamics when maximally tumescent females were present, rather than absent. Furthermore, males showed higher aggression rates and urinary cortisol levels during than outside contexts of IGEs. However, males' responses during IGEs were not related to the presence of maximally tumescent females and food availability. Taken together, while competition intensified during seemingly tolerant IGEs in bonobos, such competition was unrelated to short-term changes in food and mate availability. Despite physical and physiological costs of aggression, bonobos associate with out-group individuals frequently and for extended periods. This suggests potential benefits of bonobo intergroup associations.
Collapse
Affiliation(s)
- Leveda Cheng
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138, USA; Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.
| | - Stefano Lucchesi
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138, USA; Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Roger Mundry
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Liran Samuni
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138, USA; Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Tobias Deschner
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Martin Surbeck
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138, USA; Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| |
Collapse
|
26
|
Energetic management in wild chimpanzees (Pan troglodytes verus) in Taï National Park, Côte d’Ivoire. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02935-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Socioecological theories predict that, in mammals, feeding and mating competitions affect male and female energetic conditions differently but energetic studies investigating both sexes simultaneously are rare. We investigated the effect of socioecological factors on the energetic conditions of male and female western chimpanzees, a long-lived species with high degrees of male-male competition. We used behavioural data collected on one chimpanzee community in the Taï National Park over 12 months, phenological data and urinary c-peptide (UCP) measures, a marker of energy balance. We found a positive effect of food availability on UCP levels in both sexes. Dominance rank also affected chimpanzee UCP levels. High-ranking females had higher UCP levels than low-ranking ones but only in periods when no oestrus females were present in the community. In contrast, high-ranking males had higher UCP levels than low-ranking males in the presence of oestrus females but lower UCP levels in their absence. Our results suggest that oestrus female presence lessened the competitive advantages of high-ranking females in feeding competition and that low-ranking males bore higher energetic costs related to mating competition than high-ranking ones. Yet caution should apply in interpreting these results since the statistical model was only close to significance. High-ranking male and female chimpanzees spent significantly less energy. Furthermore, all chimpanzees significantly spent less time feeding and spent more energy when food availability was high. Finally, our behavioural measure of energy intake and expenditure did not correlate with UCP levels highlighting the value of non-invasive hormonal markers for field studies.
Significance statement
General socioecological theories hypothesize that the social grouping dynamic and energetics of females are highly influenced by food competition, whereas in males, competition for sexual partners is more influential for these factors. Recent studies in the non-invasive physiological assessment of energy balance in primates have begun to test the implied relationship between chimpanzee socioecology and individual energetic condition, with inconsistent results. However, only a few studies have investigated this relationship concurrently for both sexes. Here, using non-invasive measures of energy balance in wild western chimpanzees, we found that the energetics of both males and females are related to ecological factors, such as food availability. However, female energy balance appears also to be related to increased male mating competition, as this can result in increased aggression directed from males to females, with apparent energetic costs for females.
Collapse
|
27
|
Marchant LF, Wessling EG, Lindshield SM. Introduction to the Special Issue on Savanna Chimpanzees. INT J PRIMATOL 2020. [DOI: 10.1007/s10764-020-00188-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
28
|
Wessling EG, Dieguez P, Llana M, Pacheco L, Pruetz JD, Kühl HS. Chimpanzee (Pan troglodytes verus) Density and Environmental Gradients at Their Biogeographical Range Edge. INT J PRIMATOL 2020. [DOI: 10.1007/s10764-020-00182-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Environmental variability supports chimpanzee behavioural diversity. Nat Commun 2020; 11:4451. [PMID: 32934202 PMCID: PMC7493986 DOI: 10.1038/s41467-020-18176-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 08/07/2020] [Indexed: 11/18/2022] Open
Abstract
Large brains and behavioural innovation are positively correlated, species-specific traits, associated with the behavioural flexibility animals need for adapting to seasonal and unpredictable habitats. Similar ecological challenges would have been important drivers throughout human evolution. However, studies examining the influence of environmental variability on within-species behavioural diversity are lacking despite the critical assumption that population diversification precedes genetic divergence and speciation. Here, using a dataset of 144 wild chimpanzee (Pan troglodytes) communities, we show that chimpanzees exhibit greater behavioural diversity in environments with more variability — in both recent and historical timescales. Notably, distance from Pleistocene forest refugia is associated with the presence of a larger number of behavioural traits, including both tool and non-tool use behaviours. Since more than half of the behaviours investigated are also likely to be cultural, we suggest that environmental variability was a critical evolutionary force promoting the behavioural, as well as cultural diversification of great apes. Environmental variability is one potential driver of behavioural and cultural diversity in humans and other animals. Here, the authors show that chimpanzee behavioural diversity is higher in habitats that are more seasonal and historically unstable, and in savannah woodland relative to forested sites.
Collapse
|
30
|
Tkaczynski PJ, Behringer V, Ackermann CY, Fedurek P, Fruth B, Girard-Buttoz C, Hobaiter C, Lee SM, Löhrich T, Preis A, Samuni L, Zommers Z, Zuberbühler K, Deschner T, Wittig RM, Hohmann G, Crockford C. Patterns of urinary cortisol levels during ontogeny appear population specific rather than species specific in wild chimpanzees and bonobos. J Hum Evol 2020; 147:102869. [PMID: 32866765 DOI: 10.1016/j.jhevol.2020.102869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022]
Abstract
Compared with most mammals, postnatal development in great apes is protracted, presenting both an extended period of phenotypic plasticity to environmental conditions and the potential for sustained mother-offspring and/or sibling conflict over resources. Comparisons of cortisol levels during ontogeny can reveal physiological plasticity to species or population specific socioecological factors and in turn how these factors might ameliorate or exaggerate mother-offspring and sibling conflict. Here, we examine developmental patterns of cortisol levels in two wild chimpanzee populations (Budongo and Taï), with two and three communities each, and one wild bonobo population (LuiKotale), with two communities. Both species have similar juvenile life histories. Nonetheless, we predicted that key differences in socioecological factors, such as feeding competition, would lead to interspecific variation in mother-offspring and sibling conflict and thus variation in ontogenetic cortisol patterns. We measured urinary cortisol levels in 1394 samples collected from 37 bonobos and 100 chimpanzees aged up to 12 years. The significant differences in age-related variation in cortisol levels appeared population specific rather than species specific. Both bonobos and Taï chimpanzees had comparatively stable and gradually increasing cortisol levels throughout development; Budongo chimpanzees experienced declining cortisol levels before increases in later ontogeny. These age-related population differences in cortisol patterns were not explained by mother-offspring or sibling conflict specifically; instead, the comparatively stable cortisol patterns of bonobos and Taï chimpanzees likely reflect a consistency in experience of competition and the social environment compared with Budongo chimpanzees, where mothers may adopt more variable strategies related to infanticide risk and resource availability. The clear population-level differences within chimpanzees highlight potential intraspecific flexibility in developmental processes in apes, suggesting the flexibility and diversity in rearing strategies seen in humans may have a deep evolutionary history.
Collapse
Affiliation(s)
- Patrick J Tkaczynski
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Ivory Coast.
| | - Verena Behringer
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Corinne Y Ackermann
- Université de Neuchâtel, Institut de Biologie, Cognition Comparée, Neuchâtel, Switzerland
| | - Pawel Fedurek
- Division of Psychology, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Barbara Fruth
- School of Natural Sciences and Psychology, Liverpool John Moores University, L3 3AF, Liverpool, UK; Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | - Cédric Girard-Buttoz
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Ivory Coast
| | - Catherine Hobaiter
- Centre for Social Learning & Cognitive Evolution, School of Psychology & Neuroscience, University of St Andrews, St Andrews, UK
| | - Sean M Lee
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, George Washington University, Washington, DC, USA
| | - Therese Löhrich
- World Wide Fund for Nature, Dzanga Sangha Protected Areas, BP 1053, Bangui Central African Republic; Robert Koch Institute, Epidemiology of Highly Pathogenic Microorganisms, Seestraße 10, 13353, Berlin, Germany
| | - Anna Preis
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Ivory Coast
| | - Liran Samuni
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Ivory Coast; Department of Human Evolutionary Biology, Havard University, Cambridge, MA, USA
| | - Zinta Zommers
- United Nations Environment Programme, Washington, DC, USA
| | - Klaus Zuberbühler
- Université de Neuchâtel, Institut de Biologie, Cognition Comparée, Neuchâtel, Switzerland
| | - Tobias Deschner
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Roman M Wittig
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Ivory Coast
| | - Gottfried Hohmann
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Catherine Crockford
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Ivory Coast
| |
Collapse
|
31
|
Tkaczynski PJ, Mielke A, Samuni L, Preis A, Wittig RM, Crockford C. Long-term repeatability in social behaviour suggests stable social phenotypes in wild chimpanzees. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200454. [PMID: 32968512 PMCID: PMC7481694 DOI: 10.1098/rsos.200454] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/09/2020] [Indexed: 05/07/2023]
Abstract
Consistent individual differences in social phenotypes have been observed in many animal species. Changes in demographics, dominance hierarchies or ecological factors, such as food availability or disease prevalence, are expected to influence decision-making processes regarding social interactions. Therefore, it should be expected that individuals show flexibility rather than stability in social behaviour over time to maximize the fitness benefits of social living. Understanding the processes that create and maintain social phenotypes requires data encompassing a range of socioecological settings and variation in intrinsic state or life-history stage or strategy. Using observational data spanning up to 19 years for some individuals, we demonstrate that multiple types of social behaviour are repeatable over the long term in wild chimpanzees, a long-lived species with complex fission-fusion societies. We controlled for temporal, ecological and demographic changes, limiting pseudo-repeatability. We conclude that chimpanzees living in natural ecological settings have relatively stable long-term social phenotypes over years that may be independent of life-history or reproductive strategies. Our results add to the growing body of the literature suggesting consistent individual differences in social tendencies are more likely the rule rather than the exception in group-living animals.
Collapse
Affiliation(s)
- Patrick J. Tkaczynski
- Department of Human Behaviour, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Alexander Mielke
- School of Anthropology and Museum Ethnography, University of Oxford, Oxford, UK
| | - Liran Samuni
- Department of Human Behaviour, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
| | - Anna Preis
- Wild Chimpanzee Foundation, Conakry, Guinea
| | - Roman M. Wittig
- Department of Human Behaviour, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
| | - Catherine Crockford
- Department of Human Behaviour, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
| |
Collapse
|
32
|
Classifying Chimpanzee (Pan troglodytes) Landscapes Across Large-Scale Environmental Gradients in Africa. INT J PRIMATOL 2020. [DOI: 10.1007/s10764-020-00164-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AbstractPrimates are sometimes categorized in terms of their habitat. Although such categorization can be oversimplistic, there are scientific benefits from the clarity and consistency that habitat categorization can bring. Chimpanzees (Pan troglodytes) inhabit various environments, but researchers often refer to “forest” or “savanna” chimpanzees. Despite the wide use of this forest–savanna distinction, clear definitions of these landscapes for chimpanzees, based on environmental variables at study sites or determined in relation to existing bioclimatic classifications, are lacking. The robustness of the forest–savanna distinction thus remains to be assessed. We review 43 chimpanzee study sites to assess how the landscape classifications of researchers fit with the environmental characteristics of study sites and with three bioclimatic classifications. We use scatterplots and principal components analysis to assess the distribution of chimpanzee field sites along gradients of environmental variables (temperature, rainfall, precipitation seasonality, forest cover, and satellite-derived Hansen tree cover). This revealed an environmental continuum of chimpanzee study sites from savanna to dense forest, with a rarely acknowledged forest mosaic category in between, but with no natural separation into these three classes and inconsistencies with the bioclimatic classifications assessed. The current forest–savanna dichotomy therefore masks a progression of environmental adaptation for chimpanzees, and we propose that recognizing an additional, intermediate “forest mosaic” category is more meaningful than focusing on the ends of this environmental gradient only. Future studies should acknowledge this habitat continuum, place their study sites on the forest–savanna gradient, and include detailed environmental data to support further attempts at quantification.
Collapse
|
33
|
Stewart FA, Pruetz JD. Sex Bias and Social Influences on Savanna Chimpanzee (Pan troglodytes verus) Nest Building Behavior. INT J PRIMATOL 2020. [DOI: 10.1007/s10764-020-00157-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AbstractMany primates show sex differences in behavior, particularly social behavior, but also tool use for extractive foraging. All great apes learn to build a supportive structure for sleep. Whether sex differences exist in building, as in extractive foraging, is unknown, and little is known about how building skills develop and vary between individuals in the wild. We therefore aimed to describe the nesting behavior of savanna chimpanzees (Pan troglodytes verus) in Fongoli, Senegal to provide comparative data and to investigate possible sex or age differences in nest building behaviors and nest characteristics. We followed chimpanzee groups to their night nesting sites to record group (55 nights) and individual level data (17 individuals) on nest building initiation and duration (57 nests) during the dry season between October 2007 and March 2008. We returned the following morning to record nest and tree characteristics (71 nests built by 25 individuals). Fongoli chimpanzees nested later than reported for other great apes, but no sex differences in initiating building emerged. Observations were limited but suggest adult females and immature males to nest higher, in larger trees than adult males, and adult females to take longer to build than either adult or immature males. Smaller females and immature males may avoid predation or access thinner, malleable branches, by nesting higher than adult males. These differences suggest that sex differences described for chimpanzee tool use may extend to nest building, with females investing more time and effort in constructing a safe, warm structure for sleep than males do.
Collapse
|
34
|
Bründl AC, Tkaczynski PJ, Nohon Kohou G, Boesch C, Wittig RM, Crockford C. Systematic mapping of developmental milestones in wild chimpanzees. Dev Sci 2020; 24:e12988. [DOI: 10.1111/desc.12988] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/17/2020] [Accepted: 05/05/2020] [Indexed: 01/29/2023]
Affiliation(s)
- Aisha C. Bründl
- Department of Human Behavior, Ecology and Culture Max Planck Institute for Evolutionary Anthropology Leipzig Germany
- Department of Neuropsychology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
- Taï Chimpanzee Project Centre Suisse de Recherches Scientifiques Abidjan Côte d’Ivoire
| | - Patrick J. Tkaczynski
- Department of Human Behavior, Ecology and Culture Max Planck Institute for Evolutionary Anthropology Leipzig Germany
- Taï Chimpanzee Project Centre Suisse de Recherches Scientifiques Abidjan Côte d’Ivoire
| | - Grégoire Nohon Kohou
- Taï Chimpanzee Project Centre Suisse de Recherches Scientifiques Abidjan Côte d’Ivoire
| | - Christophe Boesch
- Taï Chimpanzee Project Centre Suisse de Recherches Scientifiques Abidjan Côte d’Ivoire
- Department of Primatology Max Planck Institute for Evolutionary Anthropology Leipzig Germany
| | - Roman M. Wittig
- Taï Chimpanzee Project Centre Suisse de Recherches Scientifiques Abidjan Côte d’Ivoire
- Department of Primatology Max Planck Institute for Evolutionary Anthropology Leipzig Germany
| | - Catherine Crockford
- Department of Human Behavior, Ecology and Culture Max Planck Institute for Evolutionary Anthropology Leipzig Germany
- Taï Chimpanzee Project Centre Suisse de Recherches Scientifiques Abidjan Côte d’Ivoire
| |
Collapse
|
35
|
Samuni L, Tkaczynski P, Deschner T, Löhrrich T, Wittig RM, Crockford C. Maternal effects on offspring growth indicate post-weaning juvenile dependence in chimpanzees ( Pan troglodytes verus). Front Zool 2020; 17:1. [PMID: 31911809 PMCID: PMC6945487 DOI: 10.1186/s12983-019-0343-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In animals with altricial offspring, most growth occurs after birth and may be optimized by post-natal maternal care. Maternal effects on growth may be influenced by individual characteristics of the mothers, such as social status, individual investment strategies and the length of association with offspring. The prolonged juvenile dependence seen in humans is a distinctive life history adaptation, which may have evolved to facilitate sustained somatic and brain growth.In chimpanzees, offspring are typically weaned at approximately 4 years old, yet immature individuals continue to associate with their mothers for up to 10 years beyond weaning. Whether this lengthy association or the individual characteristics of mothers influences growth patterns in this species is not clear.The relationship between urinary creatinine and specific gravity is an established non-invasive measure of muscle mass in humans and chimpanzees. We analysed the urinary creatinine and specific gravity of 1318 urine samples from 70 wild chimpanzees from the Taï Forest, Ivory Coast aged 4 to 15 years. RESULTS We showed a clear increase in urinary creatinine levels with age in both males and females, replicating established growth curves in this species and reaffirming this measure as a reliable proxy for lean body mass. Comparing those who experience maternal loss (orphans) with non-orphan chimpanzees, maternal presence beyond weaning age and into late juvenility positively influenced offspring muscle mass throughout ontogeny such that orphans had significantly less muscle mass than age-matched non-orphans. In age-matched offspring with mothers, those with high-ranking mothers had greater muscle mass. Accounting for variation in muscle mass attributable to maternal presence, we found no effect of maternal investment (length of inter birth interval, from own birth to birth of following sibling) on offspring muscle mass. CONCLUSION Chimpanzee mothers have an extended and multi-faceted influence on offspring phenotypes. Our results suggest that maternal investment extends beyond lactation and into early adulthood and has clear benefits to offspring physical development. Therefore, prolonged juvenile dependence, although unique in its form in human societies, may be a trait with deeper evolutionary origins.
Collapse
Affiliation(s)
- Liran Samuni
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Ivory Coast
- Department of Human Evolutionary Biology, Harvard University, Cambridge, UK
| | - Patrick Tkaczynski
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Tobias Deschner
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Therese Löhrrich
- World Wide Fund for Nature, Dzanga Sangha Protected Areas, Bangui, Central African Republic
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | - Roman M. Wittig
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Ivory Coast
| | - Catherine Crockford
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Ivory Coast
| |
Collapse
|
36
|
Lemoine S, Preis A, Samuni L, Boesch C, Crockford C, Wittig RM. Between-Group Competition Impacts Reproductive Success in Wild Chimpanzees. Curr Biol 2020; 30:312-318.e3. [PMID: 31902731 PMCID: PMC6971690 DOI: 10.1016/j.cub.2019.11.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/16/2019] [Accepted: 11/12/2019] [Indexed: 12/23/2022]
Abstract
Between-group competition in social animals appears to be a prominent selective pressure shaping the evolution of territoriality and cooperation [1-4]. Evidence for an effect of between-group competition on fitness in territorial species, however, is mostly lacking because of difficulty in measuring between-group competition and its long-term impact [5]. Between-group competition corresponds to a complex set of interactions between neighboring groups, and its intensity seems to depend on the competitive abilities of each interacting group [6, 7]. We tested whether the competitive ability of groups and the pressure exerted by neighboring groups affected the reproductive success of wild female chimpanzees (Pan troglodytes verus). Using long-term data on four neighboring groups in the Taï National Park, Côte d'Ivoire, collected over the course of 54 observation years, we measured the competitive ability of habituated groups using the number of mature males and the pressure exerted by non-habituated neighbors with an index of neighbor pressure that combined the frequency of neighboring encounters and related spatial information. Importantly, we found that experiencing low neighbor pressure provides fitness benefits through increased offspring survival and shorter inter-birth intervals. Also, many males in a group are associated with shorter inter-birth intervals. We conclude that high between-group competition hampers fast reproduction and offspring survival when exposure is during the prenatal period. Our findings suggest that having many males in a group results in fitness benefits and that between-group competition should be considered as a potential selective pressure that shaped key social adaptations in the hominoid lineage.
Collapse
Affiliation(s)
- Sylvain Lemoine
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Taï Chimpanzee Project, Centre Suisse de Recherche Scientifique en Côte d'Ivoire, 01 BP 1303 Yopougon, Abidjan, Ivory Coast; Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.
| | - Anna Preis
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Taï Chimpanzee Project, Centre Suisse de Recherche Scientifique en Côte d'Ivoire, 01 BP 1303 Yopougon, Abidjan, Ivory Coast
| | - Liran Samuni
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Taï Chimpanzee Project, Centre Suisse de Recherche Scientifique en Côte d'Ivoire, 01 BP 1303 Yopougon, Abidjan, Ivory Coast
| | - Christophe Boesch
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Catherine Crockford
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Taï Chimpanzee Project, Centre Suisse de Recherche Scientifique en Côte d'Ivoire, 01 BP 1303 Yopougon, Abidjan, Ivory Coast; Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Roman M Wittig
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Taï Chimpanzee Project, Centre Suisse de Recherche Scientifique en Côte d'Ivoire, 01 BP 1303 Yopougon, Abidjan, Ivory Coast; Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.
| |
Collapse
|
37
|
Negrey JD, Sandel AA, Langergraber KE. Dominance rank and the presence of sexually receptive females predict feces-measured body temperature in male chimpanzees. Behav Ecol Sociobiol 2020; 74:5. [PMID: 34079157 PMCID: PMC8168630 DOI: 10.1007/s00265-019-2788-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 12/08/2019] [Accepted: 12/13/2019] [Indexed: 12/25/2022]
Abstract
Quantifying the costs of mating is key for understanding life-history trade-offs. As a reflection of metabolic rate, body temperature is one metric for assaying these costs. However, conventional methods for measuring body temperature are invasive and unsuitable for the study of free-living populations of endangered species, including great apes. A promising proxy for body temperature is fecal temperature, the internal temperature of fecal deposits shortly following defecation. We validated this method with humans, finding that maximum fecal temperature is a reliable proxy for rectal temperature. We then applied this method to wild chimpanzees (Pan troglodytes schweinfurthii) at Ngogo, Kibale National Park, Uganda. We collected and analyzed 101 fecal temperature measurements from 43 adult chimpanzees (male: N = 28; female: N = 15). Chimpanzee fecal temperature ranged from 33.4 to 38.9 °C, with a mean of 35.8 °C. Although fecal temperature was not predicted by sex, age, or ambient temperature, male fecal temperature was 1.1 °C higher on days when sexually receptive females were present and was positively correlated with male dominance rank. Post hoc analyses showed that overall copulation rates, but not aggression rates, were positively correlated with fecal temperature, suggesting that sexual physiology and behavior best explain mating-related temperature variation. Together, these results indicate fecal temperature is a reliable proxy for core body temperature in large-bodied mammals, captures metabolic costs associated with male mating behavior, and represents a valuable noninvasive tool for biological field research.
Collapse
Affiliation(s)
- Jacob D. Negrey
- Department of Anthropology, Boston University, Boston, MA 02215, USA
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Aaron A. Sandel
- Department of Anthropology, University of Texas at Austin, Austin, TX 78705, USA
| | - Kevin E. Langergraber
- School of Human Evolution and Social Change and Institute of Human Origins, Arizona State University, 900 S. Cady Mall, Tempe, AZ 85281, USA
| |
Collapse
|
38
|
Samuni L, Mielke A, Preis A, Crockford C, Wittig RM. Intergroup Competition Enhances Chimpanzee (Pan troglodytes verus) In-group Cohesion. INT J PRIMATOL 2019. [DOI: 10.1007/s10764-019-00112-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractIn-group cohesion is an essential component of successful intergroup competition in both human and nonhuman animals, likely facilitating group members access to potential benefits. However, when benefits are equally shared among group members, group defense becomes a collective action problem, which might subvert cohesive participation during intergroup competition. There is a lack of consensus across studies and species with regard to the link between in-group cohesion and intergroup competition, likely as a result of species differences in managing the collective action problem. Here, we examine this link in a species with a striking example of collective action during intergroup competition, chimpanzees (Pan troglodytes verus). Using two years of focal-follow data on males and females in two groups at the Taï Forest, Côte d’Ivoire, we investigated the immediate and long-term effects of intergroup competition (border patrols and intergroup encounters) on measures of in-group cohesion, namely modularity, party size, and intergroup aggression. We found that groups’ association patterns were less modular (more cohesive) in months in which they engaged in more border patrols and intergroup encounters. We found that current and greater prior engagement in intergroup competition predicted larger party sizes. Furthermore, current, but not prior engagement in intergroup competition, predicted reduced intragroup aggression by males but not by females. Increased in-group cohesion in chimpanzees likely reduces potential costs of intergroup competition engagement, by facilitating joint participation in current and future intergroup conflicts, overcoming the collective action problem.
Collapse
|
39
|
Abstract
Maternal cannibalism has been reported in several animal taxa, prompting speculations that the behavior may be part of an evolved strategy. In chimpanzees, however, maternal cannibalism has been conspicuously absent, despite high levels of infant mortality and reports of non-maternal cannibalism. The typical response of chimpanzee mothers is to abandon their deceased infant, sometimes after prolonged periods of carrying and grooming the corpse. Here, we report two anomalous observations of maternal cannibalism in communities of wild chimpanzees in Uganda and Ivory Coast and discuss the evolutionary implications. Both infants likely died under different circumstances; one apparently as a result of premature birth, the other possibly as a result of infanticide. In both cases, the mothers consumed parts of the corpse and participated in meat sharing with other group members. Neither female presented any apparent signs of ill health before or after the events. We concluded that, in both cases, cannibalizing the infant was unlikely due to health-related issues by the mothers. We discuss these observations against a background of chimpanzee mothers consistently refraining from maternal cannibalism, despite ample opportunities and nutritional advantages. We conclude that maternal cannibalism is extremely rare in this primate, likely due to early and strong mother–offspring bond formation, which may have been profoundly disrupted in the current cases.
Collapse
|
40
|
Cortisol and oxytocin show independent activity during chimpanzee intergroup conflict. Psychoneuroendocrinology 2019; 104:165-173. [PMID: 30851601 DOI: 10.1016/j.psyneuen.2019.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 11/20/2022]
Abstract
The oxytocinergic system is involved in a range of functions, from attachment and social bonding to aggression and stress responses. Whether oxytocin is released in response to a stressor, shows contradictory results across species and potential contexts-dependent differences. To avoid unintended contextual changes due to experimental procedures, we tested this question non-invasively in wild chimpanzees in an ecologically valid context. We collected endogenous hormonal measures during exposure to a known natural stressor, intergroup conflict. Specifically, we tested for potential synchronous activation patterns between urinary oxytocin and cortisol in male and female chimpanzees during stressor exposure. Oxytocinergic system reactivity during chimpanzee intergroup conflict has already been established in this study population. Thus, we first investigated urinary cortisol levels during border patrol and intergroup encounter days, in comparison to another potential stressor, hunting, and control days. We found higher urinary cortisol levels during intergroup encounter days compared with control and hunting days. We then compared secretion patterns of oxytocin and cortisol in relation to increased levels of out-group contact and hostility ('out-group risk') during intergroup conflict. We found that increased 'out-group risk' was associated with higher cortisol levels, especially when involving direct visual or physical contact with rival groups. Although urinary oxytocin levels were high across intergroup conflict contexts, increasing levels of out-group risk showed no significant variation. Taken together, results indicate independent secretion of oxytocin and cortisol during chimpanzee intergroup conflict, emphasizing that stressor exposure in this context is not the main trigger of oxytocin secretion.
Collapse
|
41
|
Preis A, Samuni L, Deschner T, Crockford C, Wittig RM. Urinary Cortisol, Aggression, Dominance and Competition in Wild, West African Male Chimpanzees. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00107] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
42
|
Schulz‐Kornas E, Stuhlträger J, Clauss M, Wittig RM, Kupczik K. Dust affects chewing efficiency and tooth wear in forest dwelling Western chimpanzees (Pan troglodytesverus). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 169:66-77. [DOI: 10.1002/ajpa.23808] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/04/2019] [Accepted: 02/13/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Ellen Schulz‐Kornas
- Max Planck Institute for Evolutionary AnthropologyMax Planck Weizmann Center for Integrative Archaeology and Anthropology Leipzig Germany
| | - Julia Stuhlträger
- Max Planck Institute for Evolutionary AnthropologyMax Planck Weizmann Center for Integrative Archaeology and Anthropology Leipzig Germany
| | - Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse FacultyUniversity of Zuerich Zürich Switzerland
| | - Roman M. Wittig
- Department of PrimatologyMax Planck Institute for Evolutionary Anthropology Leipzig Germany
- Taï Chimpanzee ProjectCentre Suisse de Recherches Scientifiques Abidjan Côte d'Ivoire
| | - Kornelius Kupczik
- Max Planck Institute for Evolutionary AnthropologyMax Planck Weizmann Center for Integrative Archaeology and Anthropology Leipzig Germany
| |
Collapse
|
43
|
Heinicke S, Mundry R, Boesch C, Amarasekaran B, Barrie A, Brncic T, Brugière D, Campbell G, Carvalho J, Danquah E, Dowd D, Eshuis H, Fleury-Brugière MC, Gamys J, Ganas J, Gatti S, Ginn L, Goedmakers A, Granier N, Herbinger I, Hillers A, Jones S, Junker J, Kouakou CY, Lapeyre V, Leinert V, Marrocoli S, Molokwu-Odozi M, N'Goran PK, Normand E, Pacheco L, Regnaut S, Sop T, Ton E, van Schijndel J, Vendras E, Vergnes V, Welsh A, Wessling EG, Kühl HS. Characteristics of Positive Deviants in Western Chimpanzee Populations. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
44
|
Wessling EG, Oelze VM, Eshuis H, Pruetz JD, Kühl HS. Stable isotope variation in savanna chimpanzees (Pan troglodytes verus) indicate avoidance of energetic challenges through dietary compensation at the limits of the range. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 168:665-675. [PMID: 30693959 DOI: 10.1002/ajpa.23782] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/20/2018] [Accepted: 01/02/2019] [Indexed: 11/08/2022]
Abstract
OBJECTIVES Food scarcity is proposed to be a limitation to chimpanzees at the limits of their range; however, such a constraint has never been investigated in this context. We investigated patterns of δ13 C and δ15 N variation along a latitudinal gradient at the northwestern West African chimpanzee (Pan troglodytes verus) range limit with the expectation that isotope ratios of chimpanzees at the range limit will indicate different dietary strategies or higher physiological constraints than chimpanzees further from the edge. MATERIALS AND METHODS We measured δ13 C and δ15 N values in hair (n = 81) and plant food (n = 342) samples from five chimpanzee communities located along a latitudinal gradient in Southeastern Senegal. RESULTS We found clear grouping patterns in hair δ13 C and δ15 N in the four southern sites compared to the northernmost site. Environmental baseline samples collected from these sites revealed overall higher plant δ15 N values at the northernmost site, but similar δ13 C values across sites. By accounting for environmental baseline, Δ13 C and Δ15 N values were clustered for all five sites relative to total Pan variation, but indicated a 13 C-enriched diet at the range limit. DISCUSSION Clustering in Δ13 C and Δ15 N values supports that strategic shifting between preferred and fallback foods is a likely ubiquitous but necessary strategy employed by these chimpanzees to cope with their environment, potentially allowing chimpanzees at their limits to avoid periods of starvation. These results also underline the necessity of accounting for local isotopic baseline differences during inter-site comparison.
Collapse
Affiliation(s)
- Erin G Wessling
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Vicky M Oelze
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Department of Anthropology, University of California Santa Cruz, Santa Cruz, California
| | - Henk Eshuis
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Jill D Pruetz
- Department of Anthropology, Texas State University, San Marcos, Texas
| | - Hjalmar S Kühl
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| |
Collapse
|