1
|
Kelliher JM, Johnson LYD, Robinson AJ, Longley R, Hanson BT, Cailleau G, Bindschedler S, Junier P, Chain PSG. Fabricated devices for performing bacterial-fungal interaction experiments across scales. Front Microbiol 2024; 15:1380199. [PMID: 39171270 PMCID: PMC11335632 DOI: 10.3389/fmicb.2024.1380199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
Diverse and complex microbiomes are found in virtually every environment on Earth. Bacteria and fungi often co-dominate environmental microbiomes, and there is growing recognition that bacterial-fungal interactions (BFI) have significant impacts on the functioning of their associated microbiomes, environments, and hosts. Investigating BFI in vitro remains a challenge, particularly when attempting to examine interactions at multiple scales of system complexity. Fabricated devices can provide control over both biotic composition and abiotic factors within an experiment to enable the characterization of diverse BFI phenotypes such as modulation of growth rate, production of biomolecules, and alterations to physical movements. Engineered devices ranging from microfluidic chips to simulated rhizosphere systems have been and will continue to be invaluable to BFI research, and it is anticipated that such devices will continue to be developed for diverse applications in the field. This will allow researchers to address specific questions regarding the nature of BFI and how they impact larger microbiome and environmental processes such as biogeochemical cycles, plant productivity, and overall ecosystem resilience. Devices that are currently used for experimental investigations of bacteria, fungi, and BFI are discussed herein along with some of the associated challenges and several recommendations for future device design and applications.
Collapse
Affiliation(s)
- Julia M. Kelliher
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Leah Y. D. Johnson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Aaron J. Robinson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Reid Longley
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Buck T. Hanson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Guillaume Cailleau
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Patrick S. G. Chain
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| |
Collapse
|
2
|
Redko V, Wolska L, Potrykus M, Olkowska E, Cieszyńska-Semenowicz M, Tankiewicz M. Environmental impacts of 5-year plastic waste deposition on municipal waste landfills: A follow-up study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167710. [PMID: 37832682 DOI: 10.1016/j.scitotenv.2023.167710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/14/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
Depositing plastic waste has long been a prevalent method of utilization, persisting today. Plastic waste within municipal waste landfills (MWL) undergoes diverse (bio-)degradation processes, which may be a potential source of chemicals and microorganisms harmful to the environment and human health. Soil and air samples were collected from modern MWL to identify environmental contamination caused by 5 years of plastic (bio-)degradation. The pH of soil samples was higher than in the reference area (RA), which was possibly caused by alterations in soil anionic composition detected with ion chromatography. The presence of plastic additives with a toxic potential was detected in soil samples by gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). With the use of thermal desorption and GC - MS, hazardous substances (phthalic anhydride, phenylmaleic anhydride, ethylbenzene, xylene) with a known impact on the human endocrine system were also detected. The number of microorganisms, both fungi, and bacteria, was highly increased in soil and air in the MWL as compared to the RA. The soil collected in the MWL area appeared to be phytotoxic, and inhibited seed germination (Phytotoxkit FTM bioassay), while acute toxicity Microtox® bioassay showed a hormetic effect towards Aliivibrio fischeri. Obtained results exhibited massive soil and air contamination, with both chemical substances and microorganisms while plastic waste undergoes (bio-)degradation. It may contribute to serious environmental contamination and pose a threat to human health.
Collapse
Affiliation(s)
- Vladyslav Redko
- Division of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Debowa 23 A, 80-204 Gdansk, Poland.
| | - Lidia Wolska
- Division of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Debowa 23 A, 80-204 Gdansk, Poland.
| | - Marta Potrykus
- Division of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Debowa 23 A, 80-204 Gdansk, Poland.
| | - Ewa Olkowska
- Division of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Debowa 23 A, 80-204 Gdansk, Poland.
| | - Monika Cieszyńska-Semenowicz
- Division of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Debowa 23 A, 80-204 Gdansk, Poland.
| | - Maciej Tankiewicz
- Division of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Debowa 23 A, 80-204 Gdansk, Poland.
| |
Collapse
|
3
|
Ji C, Huang J, Li J, Zhang X, Yang G, Ma Y, Hao Z, Zhang X, Chen B. Deciphering the impacts of chromium contamination on soil bacterial communities: A comparative analysis across various soil types. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119335. [PMID: 37857212 DOI: 10.1016/j.jenvman.2023.119335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Addressing the widespread concern of chromium (Cr) pollution, this study investigated its impacts on bacterial communities across eight soil types, alongside the potential Cr transformation-related genes. Utilizing real-time PCR, 16S rRNA gene sequencing and gene prediction, we revealed shifts in bacterial community structure and function at three Cr exposure levels. Our results showed that the bacterial abundance in all eight soil types was influenced by Cr to varying extents, with yellow‒brown soil being the most sensitive. The bacterial community composition of different soil types exhibited diverse responses to Cr, with only the relative abundance of Proteobacteria decreasing with increasing Cr concentration across all soil types. Beta diversity analysis revealed that while Cr concentration impacted the assembly process of bacterial communities to a certain extent, the influence on the compositional structure of bacterial communities was primarily driven by soil type rather than Cr concentration. The study also identified biomarkers for each soil type under three Cr levels, offering a basis for monitoring changes in Cr pollution. By predicting crucial functional genes related to Cr transformation, it was observed that the relative abundance of chrA (chromate transporter) in yellow‒brown soil significantly exceeded that in all other soil types, suggesting its potential for Cr adaptation. The study also revealed correlations among soil physicochemical properties, Cr concentration, and these functional genes, providing a foundation for future research aimed at more precise functional analysis and the development of effective soil remediation strategies.
Collapse
Affiliation(s)
- Chuning Ji
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment Science and Spatial Information, China University of Mining and Technology, Xuzhou City, Jiangsu, 221116, China
| | - Jiu Huang
- School of Environment Science and Spatial Information, China University of Mining and Technology, Xuzhou City, Jiangsu, 221116, China
| | - Jinglong Li
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Xuemeng Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; RDFZ CHAOYANG School, Beijing, 100028, China
| | - Guang Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Youran Ma
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zhipeng Hao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Shoup D, Ursell T. Bacterial bioconvection confers context-dependent growth benefits and is robust under varying metabolic and genetic conditions. J Bacteriol 2023; 205:e0023223. [PMID: 37787517 PMCID: PMC10601612 DOI: 10.1128/jb.00232-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/17/2023] [Indexed: 10/04/2023] Open
Abstract
Microbes often respond to environmental cues by adopting collective behaviors-like biofilms or swarming-that benefit the population. During "bioconvection," microbes gather in dense groups and plume downward through fluid environments, driving flow and mixing on the scale of millions of cells. Though bioconvection was observed a century ago, the effects of differing physical and chemical inputs and its potential selective advantages for different species of microbes remain largely unexplored. In Bacillus subtilis, vertical oxygen gradients that originate from air-liquid interfaces create cell-density inversions that drive bioconvection. Here, we develop Escherichia coli as a complementary model for the study of bioconvection. In the context of a still fluid, we found that motile and chemotactic genotypes of both E. coli and B. subtilis bioconvect and show increased growth compared to immotile or non-chemotactic genotypes, whereas in a well-mixed fluid, there is no growth advantage to motility or chemotaxis. We found that fluid depth, cell concentration, and carbon availability affect the emergence and timing of bioconvective patterns. Also, whereas B. subtilis requires oxygen gradients to bioconvect, E. coli deficient in aerotaxis (Δaer) or energy-taxis (Δtsr) still bioconvects, as do cultures that lack an air-liquid interface. Thus, in two distantly related microbes, bioconvection may confer context-dependent growth benefits, and E. coli bioconvection is robustly elicited by multiple types of chemotaxis. These results greatly expand the set of physical and metabolic conditions in which this striking collective behavior can be expected and demonstrate its potential to be a generic force for behavioral selection across ecological contexts. IMPORTANCE Individual microorganisms frequently move in response to gradients in their fluid environment, with corresponding metabolic benefits. At a population level, such movements can create density variations in a fluid that couple to gravity and drive large-scale convection and mixing called bioconvection. In this work, we provide evidence that this collective behavior confers a selective benefit on two distantly related species of bacteria. We develop new methods for quantifying this behavior and show that bioconvection in Escherichia coli is surprisingly robust to changes in cell concentration, fluid depth, interface conditions, metabolic sensing, and carbon availability. These results greatly expand the set of conditions known to elicit this collective behavior and indicate its potential to be a selective pressure across ecological contexts.
Collapse
Affiliation(s)
- Daniel Shoup
- Department of Physics, University of Oregon, Eugene, Oregon, USA
- Rocky Mountain National Laboratories (NIH), Hamilton, Montana, USA
| | - Tristan Ursell
- Department of Physics, University of Oregon, Eugene, Oregon, USA
- Material Science Institute, Eugene, Oregon, USA
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
5
|
Romero-Olivares AL, Frey SD, Treseder KK. Tracking fungal species-level responses in soil environments exposed to long-term warming and associated drying. FEMS Microbiol Lett 2023; 370:fnad128. [PMID: 38059856 DOI: 10.1093/femsle/fnad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023] Open
Abstract
Climate change is affecting fungal communities and their function in terrestrial ecosystems. Despite making progress in the understanding of how the fungal community responds to global change drivers in natural ecosystems, little is known on how fungi respond at the species level. Understanding how fungal species respond to global change drivers, such as warming, is critical, as it could reveal adaptation pathways to help us to better understand ecosystem functioning in response to global change. Here, we present a model study to track species-level responses of fungi to warming-and associated drying-in a decade-long global change field experiment; we focused on two free-living saprotrophic fungi which were found in high abundance in our site, Mortierella and Penicillium. Using microbiological isolation techniques, combined with whole genome sequencing of fungal isolates, and community level metatranscriptomics, we investigated transcription-level differences of functional categories and specific genes involved in catabolic processes, cell homeostasis, cell morphogenesis, DNA regulation and organization, and protein biosynthesis. We found that transcription-level responses were mostly species-specific but that under warming, both fungi consistently invested in the transcription of critical genes involved in catabolic processes, cell morphogenesis, and protein biosynthesis, likely allowing them to withstand a decade of chronic stress. Overall, our work supports the idea that fungi that invest in maintaining their catabolic rates and processes while growing and protecting their cells may survive under global climate change.
Collapse
Affiliation(s)
| | - Serita D Frey
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH 03824, Unites States
| | - Kathleen K Treseder
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, United States
| |
Collapse
|
6
|
Perry EK, Meirelles LA, Newman DK. From the soil to the clinic: the impact of microbial secondary metabolites on antibiotic tolerance and resistance. Nat Rev Microbiol 2022; 20:129-142. [PMID: 34531577 PMCID: PMC8857043 DOI: 10.1038/s41579-021-00620-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 02/08/2023]
Abstract
Secondary metabolites profoundly affect microbial physiology, metabolism and stress responses. Increasing evidence suggests that these molecules can modulate microbial susceptibility to commonly used antibiotics; however, secondary metabolites are typically excluded from standard antimicrobial susceptibility assays. This may in part account for why infections by diverse opportunistic bacteria that produce secondary metabolites often exhibit discrepancies between clinical antimicrobial susceptibility testing results and clinical treatment outcomes. In this Review, we explore which types of secondary metabolite alter antimicrobial susceptibility, as well as how and why this phenomenon occurs. We discuss examples of molecules that opportunistic and enteric pathogens either generate themselves or are exposed to from their neighbours, and the nuanced impacts these molecules can have on tolerance and resistance to certain antibiotics.
Collapse
Affiliation(s)
- Elena K Perry
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lucas A Meirelles
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
7
|
Liang Y, Ma A, Zhuang G. Construction of Environmental Synthetic Microbial Consortia: Based on Engineering and Ecological Principles. Front Microbiol 2022; 13:829717. [PMID: 35283862 PMCID: PMC8905317 DOI: 10.3389/fmicb.2022.829717] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/31/2022] [Indexed: 01/30/2023] Open
Abstract
In synthetic biology, engineering principles are applied to system design. The development of synthetic microbial consortia represents the intersection of synthetic biology and microbiology. Synthetic community systems are constructed by co-cultivating two or more microorganisms under certain environmental conditions, with broad applications in many fields including ecological restoration and ecological theory. Synthetic microbial consortia tend to have high biological processing efficiencies, because the division of labor reduces the metabolic burden of individual members. In this review, we focus on the environmental applications of synthetic microbial consortia. Although there are many strategies for the construction of synthetic microbial consortia, we mainly introduce the most widely used construction principles based on cross-feeding. Additionally, we propose methods for constructing synthetic microbial consortia based on traits and spatial structure from the perspective of ecology to provide a basis for future work.
Collapse
Affiliation(s)
- Yu Liang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Anzhou Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Guoqiang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Miguel MA, Kim SH, Lee SS, Cho YI. Impact of Soil Microbes and Oxygen Availability on Bacterial Community Structure of Decomposing Poultry Carcasses. Animals (Basel) 2021; 11:2937. [PMID: 34679958 PMCID: PMC8532636 DOI: 10.3390/ani11102937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
The impact of soil with an intact microbial community and oxygen availability on moisture content, soil pH, and bacterial communities during decomposition of poultry carcasses was investigated. Poultry carcasses were decomposed in soil with or without a microbial community, under aerobic or anaerobic conditions. The samples collected in each microcosm burial set-up were analyzed by targeted 16S rRNA amplicon sequencing and Amplicon sequence variants (ASV) method. Our results showed that moisture was high in the burial set-ups under anaerobic conditions and pH was high in the burial set-ups under aerobic conditions. Meanwhile, the Chao1 and Shannon index significantly differed between the different burial set-ups and across different time points. In addition, bacterial taxa composition during the early period of decomposition differed from that of the late period. A total of 23 phyla, 901 genera, and 1992 species were identified. Firmicutes was the most dominant phyla in all burial set-ups throughout the decomposition. At day 60, Pseudogracilibacillus was dominant in the burial set-ups under aerobic conditions, while Lentibacillus dominated in the burial set-ups under anaerobic conditions. This study demonstrated that the soil microbial community and availability of oxygen significantly affected the changes in moisture content, pH, and bacterial composition during the decomposition process.
Collapse
Affiliation(s)
| | | | | | - Yong-Il Cho
- Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (M.A.M.); (S.-H.K.); (S.-S.L.)
| |
Collapse
|
9
|
Metagenomic Analyses of Plant Growth-Promoting and Carbon-Cycling Genes in Maize Rhizosphere Soils with Distinct Land-Use and Management Histories. Genes (Basel) 2021; 12:genes12091431. [PMID: 34573413 PMCID: PMC8466292 DOI: 10.3390/genes12091431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/04/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Many studies have shown that the maize rhizosphere comprises several plant growth-promoting microbes, but there is little or no study on the effects of land-use and management histories on microbial functional gene diversity in the maize rhizosphere soils in Africa. Analyzing microbial genes in the rhizosphere of plants, especially those associated with plant growth promotion and carbon cycling, is important for improving soil fertility and crop productivity. Here, we provide a comparative analysis of microbial genes present in the rhizosphere samples of two maize fields with different agricultural histories using shotgun metagenomics. Genes involved in the nutrient mobilization, including nifA, fixJ, norB, pstA, kefA and B, and ktrB were significantly more abundant (α = 0.05) in former grassland (F1) rhizosphere soils. Among the carbon-cycling genes, the abundance of 12 genes, including all those involved in the degradation of methane were more significant (α = 0.05) in the F1 soils, whereas only five genes were significantly more abundant in the F2 soils. α-diversity indices were different across the samples and significant differences were observed in the β diversity of plant growth-promoting and carbon-cycling genes between the fields (ANOSIM, p = 0.01 and R = 0.52). Nitrate-nitrogen (N-NO3) was the most influential physicochemical parameter (p = 0.05 and contribution = 31.3%) that affected the distribution of the functional genes across the samples. The results indicate that land-use and management histories impact the composition and diversity of plant growth-promoting and carbon-cycling genes in the plant rhizosphere. The study widens our understanding of the effects of anthropogenic activities on plant health and major biogeochemical processes in soils.
Collapse
|
10
|
Smercina DN, Bailey VL, Hofmockel KS. Micro on a macroscale: relating microbial-scale soil processes to global ecosystem function. FEMS Microbiol Ecol 2021; 97:6315324. [PMID: 34223869 DOI: 10.1093/femsec/fiab091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/01/2021] [Indexed: 11/13/2022] Open
Abstract
Soil microorganisms play a key role in driving major biogeochemical cycles and in global responses to climate change. However, understanding and predicting the behavior and function of these microorganisms remains a grand challenge for soil ecology due in part to the microscale complexity of soils. It is becoming increasingly clear that understanding the microbial perspective is vital to accurately predicting global processes. Here, we discuss the microbial perspective including the microbial habitat as it relates to measurement and modeling of ecosystem processes. We argue that clearly defining and quantifying the size, distribution and sphere of influence of microhabitats is crucial to managing microbial activity at the ecosystem scale. This can be achieved using controlled and hierarchical sampling designs. Model microbial systems can provide key data needed to integrate microhabitats into ecosystem models, while adapting soil sampling schemes and statistical methods can allow us to collect microbially-focused data. Quantifying soil processes, like biogeochemical cycles, from a microbial perspective will allow us to more accurately predict soil functions and address long-standing unknowns in soil ecology.
Collapse
Affiliation(s)
- Darian N Smercina
- Biological Sciences Division, Earth and Biological Sciences Directorate, 3335 Innovation Blvd, Richland, WA, 99354, USA
| | - Vanessa L Bailey
- Biological Sciences Division, Earth and Biological Sciences Directorate, 3335 Innovation Blvd, Richland, WA, 99354, USA
| | - Kirsten S Hofmockel
- Biological Sciences Division, Earth and Biological Sciences Directorate, 3335 Innovation Blvd, Richland, WA, 99354, USA.,Department of Agronomy, Iowa State University, 716 Farm House Ln, Ames, IA 50011, USA
| |
Collapse
|