1
|
Kumaraswamy S, Kopparthi Av S, Dattatraya H R, Pagadala Damodaram KJ. Parasitoids as biocontrol agents in India. CURRENT OPINION IN INSECT SCIENCE 2024; 66:101282. [PMID: 39396776 DOI: 10.1016/j.cois.2024.101282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
Amid concerns over chemical pesticide resistance and its associated environmental hazards, parasitoids offer an alternative long-term solution to manage insect pests in agriculture. India's use of parasitoids in pest management has developed in tandem with the rest of the world, and this review summarizes the history of parasitoid-based biocontrol from the past to the present, focusing on problems such as climate adaptability, ecological compatibility, research-based advances, and policy-making. It focuses on successful classical, conservative, and augmentative techniques that form the foundation for implementing effective and sustainable biological control strategies involving parasitoids in India. The components that influence the efficiency of biocontrol activities, such as suitable phenological stages of parasitoids, field deployment techniques, quality assurance, environmental conditions, area-wide approaches, the need for sound habitat management, policy interventions, and public-private partnership are highlighted. Recent advancements in parasitoid mass production, quality control, and understanding competitive ecological interactions have provided prospects for designing effective parasitoid-centered biocontrol programs. The review presents historical breakthroughs in explaining how parasitoids help stabilize the agroecological dynamics that support sustainable food systems, primarily in India.
Collapse
Affiliation(s)
- Sunil Kumaraswamy
- ICAR-Indian Institute of Horticultural Research, Bengaluru 560089, India
| | | | | | | |
Collapse
|
2
|
Xie J, Liu J, Khashaveh A, Tang H, Liu X, Zhao D, Wang Q, Shi W, Liu T, Zhang Y. Two Structural Analogs of Kairomones are Detected by an Odorant Receptor HvarOR28 in the Coccinellid Hippodamia variegata. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21624-21634. [PMID: 39300682 DOI: 10.1021/acs.jafc.4c05493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
In natural environments, general plant volatiles and herbivore-induced plant volatiles (HIPVs) serve as critical clues for predatory natural enemies in the search for prey. The insect olfactory system plays a vital role in perceiving plant volatiles including HIPVs. In this study, we found that HIPV (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT) and the plant volatile geranyl acetate (GA), two structurally similar chemicals, displayed electrophysiological activities on the antennae of the ladybird Hippodamia variegata, but were only attractive to adult females in behavior. Moreover, mated female ladybirds laid a significantly higher number of eggs on TMTT-treated and GA-treated cotton leaves compared to controls. Screening of female-biased odorant receptors (ORs) from the antennal transcriptomes, performing Xenopus oocytes expression coupled with two-electrode voltage clamp recordings, suggested that HvarOR28 specifically tuned to TMTT and GA. Molecular docking and site-directed mutagenesis revealed that the amino acid residues Tyr143 and Phe81 of HvarOR28 are the key site for binding with TMTT and GA. Furthermore, RNA interference (RNAi) assay demonstrated that HvarOR28-silenced individuals demonstrated a notable decrease in electrophysiological responses, even female adults almost lost behavioral preference for the two compounds. Thus, it could be concluded that HvarOR28 in H. variegata contributes to facilitating egg laying through the perception of TMTT and GA. These findings may help to develop new olfactory modulators based on the behaviorally active ligands of HvarOR28.
Collapse
Affiliation(s)
- Jiaoxin Xie
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingtao Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Sichuan University of Arts and Science, Dazhou 635000, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haoyu Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Xiaoxu Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Danyang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Qingnan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wangpeng Shi
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Tinghui Liu
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
3
|
Fischer A, Fernando Y, Preston A, Moniz-de-Sa S, Gries G. Widow spiders alter web architecture and attractiveness in response to same-sex competition for prey and mates, and predation risk. Commun Biol 2023; 6:1028. [PMID: 37821674 PMCID: PMC10567780 DOI: 10.1038/s42003-023-05392-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
Female-female competition in animals has rarely been studied. Responses of females that compete context-dependently for mates and prey, and seek safety from predators, are ideally studied with web-building spiders. Cobwebs possess unique sections for prey capture and safety, which can be quantified. We worked with Steaoda grossa females because their pheromone is known, and adjustments in response to mate competition could be measured. Females exposed to synthetic sex pheromone adjusted their webs, indicating a perception of intra-sexual competition via their sex pheromone. When females sequentially built their webs in settings of low and high intra-sexual competition, they adjusted their webs to increase prey capture and lower predation risk. In settings with strong mate competition, females deposited more contact pheromone components on their webs and accelerated their breakdown to mate-attractant pheromone components, essentially increasing their webs' attractiveness. We show that females respond to sexual, social and natural selection pressures originating from intra-sexual competition.
Collapse
Affiliation(s)
- Andreas Fischer
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.
| | - Yasasi Fernando
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - April Preston
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Sarah Moniz-de-Sa
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
4
|
Kansman JT, Jaramillo JL, Ali JG, Hermann SL. Chemical ecology in conservation biocontrol: new perspectives for plant protection. TRENDS IN PLANT SCIENCE 2023; 28:1166-1177. [PMID: 37271617 DOI: 10.1016/j.tplants.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023]
Abstract
Threats to food security require novel sustainable agriculture practices to manage insect pests. One strategy is conservation biological control (CBC), which relies on pest control services provided by local populations of arthropod natural enemies. Research has explored manipulative use of chemical information from plants and insects that act as attractant cues for natural enemies (predators and parasitoids) and repellents of pests. In this review, we reflect on past strategies using chemical ecology in CBC, such as herbivore-induced plant volatiles and the push-pull technique, and propose future directions, including leveraging induced plant defenses in crop plants, repellent insect-based signaling, and genetically engineered crops. Further, we discuss how climate change may disrupt CBC and stress the importance of context dependency and yield outcomes.
Collapse
Affiliation(s)
- Jessica T Kansman
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA, USA.
| | - Jorge L Jaramillo
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Jared G Ali
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Sara L Hermann
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
5
|
Thomas G, Rusman Q, Morrison WR, Magalhães DM, Dowell JA, Ngumbi E, Osei-Owusu J, Kansman J, Gaffke A, Pagadala Damodaram KJ, Kim SJ, Tabanca N. Deciphering Plant-Insect-Microorganism Signals for Sustainable Crop Production. Biomolecules 2023; 13:997. [PMID: 37371577 PMCID: PMC10295935 DOI: 10.3390/biom13060997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Agricultural crop productivity relies on the application of chemical pesticides to reduce pest and pathogen damage. However, chemical pesticides also pose a range of ecological, environmental and economic penalties. This includes the development of pesticide resistance by insect pests and pathogens, rendering pesticides less effective. Alternative sustainable crop protection tools should therefore be considered. Semiochemicals are signalling molecules produced by organisms, including plants, microbes, and animals, which cause behavioural or developmental changes in receiving organisms. Manipulating semiochemicals could provide a more sustainable approach to the management of insect pests and pathogens across crops. Here, we review the role of semiochemicals in the interaction between plants, insects and microbes, including examples of how they have been applied to agricultural systems. We highlight future research priorities to be considered for semiochemicals to be credible alternatives to the application of chemical pesticides.
Collapse
Affiliation(s)
- Gareth Thomas
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Quint Rusman
- Department of Systematic and Evolutionary Botany, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland;
| | - William R. Morrison
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Center for Grain and Animal Health Research, 1515 College Ave., Manhattan, KS 66502, USA;
| | - Diego M. Magalhães
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil;
| | - Jordan A. Dowell
- Department of Plant Sciences, University of California, Davis, One Shields Ave., Davis, CA 95616, USA;
| | - Esther Ngumbi
- Department of Entomology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA;
| | - Jonathan Osei-Owusu
- Department of Biological, Physical and Mathematical Sciences, University of Environment and Sustainable Development, Somanya EY0329-2478, Ghana;
| | - Jessica Kansman
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Alexander Gaffke
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Center for Medical, Agricultural, and Veterinary Entomology, 6383 Mahan Dr., Tallahassee, FL 32308, USA;
| | | | - Seong Jong Kim
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Natural Products Utilization Research Unit, University, MS 38677, USA;
| | - Nurhayat Tabanca
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Subtropical Horticulture Research Station, 13601 Old Cutler Rd., Miami, FL 33158, USA
| |
Collapse
|
6
|
Valle D, Mujica V, Gonzalez A. Herbivore-Dependent Induced Volatiles in Pear Plants Cause Differential Attractive Response by Lacewing Larvae. J Chem Ecol 2023; 49:262-275. [PMID: 36690765 DOI: 10.1007/s10886-023-01403-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Biological control may benefit from the behavioral manipulation of natural enemies using volatile organic compounds (VOCs). Among these, herbivore-induced plant volatiles (HIPVs) provide potential tools for attracting or retaining predators and parasitoids of insect pests. This work aimed to characterize the VOCs emitted by pear plants in response to attack by Cacopsylla bidens (Hemiptera: Psyllidae), a major pest in pear orchards, to compare these with VOCs induced by a leaf chewing insect, Argyrotaenia sphaleropa (Lepidoptera: Tortricidae), and to evaluate the behavioral response of Chrysoperla externa (Neuroptera: Chrysopidae) to HIPVs from pear plants damaged by either herbivore. The results demonstrated that plants damaged by the pear psylla emitted VOC blends with increased amounts of aliphatic aldehydes. Leafroller damage resulted in increased amounts of benzeneacetonitrile, (E)-4,8-dimethylnona-1,3,7-triene, β-ocimene and caryophyllene. In olfactometer bioassays, larvae of C. externa were attracted to herbivore-damaged plants when contrasted with undamaged plants. When plant odors from psylla-damaged were contrasted with those of leafroller-damaged plants, C.externa preferred the former, also showing shorter response lag-times and higher response rates when psylla-damaged plants were present. Our results suggest that pear plants respond to herbivory by modifying their volatile profile, and that psylla-induced volatiles may be used as prey-specific chemical cues by chrysopid larvae. Our study is the first to report HIPVs in pear plants attacked by C. bidens, as well as the attraction of C. externa to psyllid-induced volatiles.
Collapse
Affiliation(s)
- D Valle
- Protección Vegetal, Instituto Nacional de Investigación Agropecuaria, INIA Las Brujas, Canelones, Uruguay.
| | - V Mujica
- Protección Vegetal, Instituto Nacional de Investigación Agropecuaria, INIA Las Brujas, Canelones, Uruguay
| | - A Gonzalez
- Laboratorio de Ecología Química, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
7
|
Greenberg LO, Huigens ME, Groot AT, Cusumano A, Fatouros NE. Finding an egg in a haystack: variation in chemical cue use by egg parasitoids of herbivorous insects. CURRENT OPINION IN INSECT SCIENCE 2023; 55:101002. [PMID: 36535578 DOI: 10.1016/j.cois.2022.101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Egg parasitoids of herbivorous insects use an interplay of short- and long-range chemical cues emitted by hosts and host plants to find eggs to parasitize. Volatile compounds that attract egg parasitoids can be identified via behavioral assays and used to manipulate parasitoid behavior in the field for biological control of herbivorous pests. However, how and when a particular cue will be used varies over the life of an individual, as well as at and below species level. Future research should expand taxonomic coverage to explore variation in chemical cue use in more natural, dynamic settings. More nuanced understanding of the variability of egg parasitoid host-finding strategies will aid in disentangling the underlying genetics and further enhancing biological control.
Collapse
Affiliation(s)
- Liana O Greenberg
- Biosystematics Group, Wageningen University, Wageningen, the Netherlands
| | - Martinus E Huigens
- Education and Student Affairs, Wageningen University, Wageningen, the Netherlands
| | - Astrid T Groot
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, the Netherlands
| | - Antonino Cusumano
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | - Nina E Fatouros
- Biosystematics Group, Wageningen University, Wageningen, the Netherlands.
| |
Collapse
|
8
|
Colazza S, Peri E, Cusumano A. Chemical Ecology of Floral Resources in Conservation Biological Control. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:13-29. [PMID: 36130040 DOI: 10.1146/annurev-ento-120220-124357] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Conservation biological control aims to enhance populations of natural enemies of insect pests in crop habitats, typically by intentional provision of flowering plants as food resources. Ideally, these flowering plants should be inherently attractive to natural enemies to ensure that they are frequently visited. We review the chemical ecology of floral resources in a conservation biological control context, with a focus on insect parasitoids. We highlight the role of floral volatiles as semiochemicals that attract parasitoids to the food resources. The discovery that nectar-inhabiting microbes can be hidden players in mediating parasitoid responses to flowering plants has highlighted the complexity of the interactions between plants and parasitoids. Furthermore, because food webs in agroecosystems do not generally stop at the third trophic level, we also consider responses of hyperparasitoids to floral resources. We thus provide an overview of floral compounds as semiochemicals from a multitrophic perspective, and we focus on the remaining questions that need to be addressed to move the field forward.
Collapse
Affiliation(s)
- Stefano Colazza
- Department of Agricultural, Food, and Forest Sciences, University of Palermo, Palermo, Italy; , ,
| | - Ezio Peri
- Department of Agricultural, Food, and Forest Sciences, University of Palermo, Palermo, Italy; , ,
| | - Antonino Cusumano
- Department of Agricultural, Food, and Forest Sciences, University of Palermo, Palermo, Italy; , ,
| |
Collapse
|
9
|
Hilker M, Salem H, Fatouros NE. Adaptive Plasticity of Insect Eggs in Response to Environmental Challenges. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:451-469. [PMID: 36266253 DOI: 10.1146/annurev-ento-120120-100746] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Insect eggs are exposed to a plethora of abiotic and biotic threats. Their survival depends on both an innate developmental program and genetically determined protective traits provided by the parents. In addition, there is increasing evidence that (a) parents adjust the egg phenotype to the actual needs, (b) eggs themselves respond to environmental challenges, and (c) egg-associated microbes actively shape the egg phenotype. This review focuses on the phenotypic plasticity of insect eggs and their capability to adjust themselves to their environment. We outline the ways in which the interaction between egg and environment is two-way, with the environment shaping the egg phenotype but also with insect eggs affecting their environment. Specifically, insect eggs affect plant defenses, host biology (in the case of parasitoid eggs), and insect oviposition behavior. We aim to emphasize that the insect egg, although it is a sessile life stage, actively responds to and interacts with its environment.
Collapse
Affiliation(s)
- Monika Hilker
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany;
| | - Hassan Salem
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen, Germany;
| | - Nina E Fatouros
- Biosystematics Group, Wageningen University and Research, Wageningen, The Netherlands;
| |
Collapse
|
10
|
Ali MY, Naseem T, Holopainen JK, Liu T, Zhang J, Zhang F. Tritrophic Interactions among Arthropod Natural Enemies, Herbivores and Plants Considering Volatile Blends at Different Scale Levels. Cells 2023; 12:251. [PMID: 36672186 PMCID: PMC9856403 DOI: 10.3390/cells12020251] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Herbivore-induced plant volatiles (HIPVs) are released by plants upon damaged or disturbance by phytophagous insects. Plants emit HIPV signals not merely in reaction to tissue damage, but also in response to herbivore salivary secretions, oviposition, and excrement. Although certain volatile chemicals are retained in plant tissues and released rapidly upon damaged, others are synthesized de novo in response to herbivore feeding and emitted not only from damaged tissue but also from nearby by undamaged leaves. HIPVs can be used by predators and parasitoids to locate herbivores at different spatial scales. The HIPV-emitting spatial pattern is dynamic and heterogeneous in nature and influenced by the concentration, chemical makeup, breakdown of the emitted mixes and environmental elements (e.g., turbulence, wind and vegetation) which affect the foraging of biocontrol agents. In addition, sensory capability to detect volatiles and the physical ability to move towards the source were also different between natural enemy individuals. The impacts of HIPVs on arthropod natural enemies have been partially studied at spatial scales, that is why the functions of HIPVs is still subject under much debate. In this review, we summarized the current knowledge and loopholes regarding the role of HIPVs in tritrophic interactions at multiple scale levels. Therefore, we contend that closing these loopholes will make it much easier to use HIPVs for sustainable pest management in agriculture.
Collapse
Affiliation(s)
- Muhammad Yasir Ali
- MARA-CABI Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Insect Ecology and Molecular Biology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- CABI East & South-East Asia, Beijing 100081, China
| | - Tayyaba Naseem
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Jarmo K. Holopainen
- Department of Environmental Science, University of Eastern Finland, 77100 Kuopio, Finland
| | - Tongxian Liu
- Key Laboratory of Insect Ecology and Molecular Biology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Jinping Zhang
- MARA-CABI Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- CABI East & South-East Asia, Beijing 100081, China
| | - Feng Zhang
- MARA-CABI Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- CABI East & South-East Asia, Beijing 100081, China
| |
Collapse
|
11
|
Zhan Y, Wang J, Kong X, Liu Y. Perception and kairomonal response of the coccinellid predator ( Harmonia axyridis) to the fall armyworm ( Spodoptera frugiperda) sex pheromone. Front Physiol 2023; 14:1167174. [PMID: 37101702 PMCID: PMC10123280 DOI: 10.3389/fphys.2023.1167174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/27/2023] [Indexed: 04/28/2023] Open
Abstract
Pheromone cues released from hosts or prey are of crucial importance to natural enemies for prey and habitat location. The use of herbivorous insect sex pheromones has long been considered as a potential pest control alternative that is non-toxic and harmless to beneficials. We hypothesized that Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), a major predatory coccinellid beetle of the devastating migratory pest Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae), could perceive and use the sex pheromone of S. frugiperda to locate its habitat. Here we tested the electrophysiological and behavioral responses of H. axyridis to the two components Z7-12:Ac and Z9-14:Ac of S. frugiperda sex pheromone by using electroantennography (EAG) and Y-tube bioassay. The 3D modeling of H. axyridis odorant-binding proteins (HaxyOBPs) and molecular docking were also performed. The results showed that both female and male H. axyridis exhibited significantly higher electrophysiological and behavioral responses to Z9-14:Ac at the concentrations of 0.001, 0.01, and 0.1 μg/μL, while no significant electrophysiological and behavioral responses of H. axyridis were observed to Z7-12:Ac. The blend of Z7-12:Ac and Z9-14:Ac at the ratio of 1:100 had a significant attraction to both male and female H. axyridis at the concentrations of 0.01 and 0.1 μg/μL based on electrophysiological and behavioral assays, but no significant behavioral responses were observed at the ratios of 1:9. According to the 3D modeling of HaxyOBPs and molecular docking, HaxyOBP12 has a good affinity with Z9-14:Ac. Z9-14:Ac is bound to the HaxyOBP12 by hydrogen bonding and hydrophobic interactions. However, there were no credible docking results between HaxyOBPs and Z7-12:Ac. Our findings revealed that H. axyridis can perceive Z9-14:Ac and could use it as a chemical cue to locate prey habitat. We speculated that Z7-12:Ac, which showed some antagonistic effect toward the response of H. axyridis to Z9-14:Ac, could improve the adaptability of S. frugiperda in the presence of predators. This study provides new insights into the application of pheromones to manipulate natural enemy behavior for pest control.
Collapse
|
12
|
Qin Y, Zhang S, Li Z. Kairomonal Effect of Aphid Alarm Pheromones and Analogs on the Parasitoid Diaeretiella rapae. INSECTS 2022; 13:1055. [PMID: 36421958 PMCID: PMC9697894 DOI: 10.3390/insects13111055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Aphid alarm pheromones, as important semiochemicals, not only mediate behavioral response of aphids, but can also act as kairomones to attract their natural enemies. The sesquiterpene (E)-β-farnesene (EβF), the major alarm pheromone component of most aphid species, has been shown to have a kairomonal effect on the predators of aphids, but other alarm pheromone components, especially the monoterpenes and analogs, are rarely investigated. Here, two EβF analogs were successfully synthesized via the nucleophilic substitution reaction, and we then examined the kairomonal effects of four alarm pheromone components and two EβF analogs on the aphid parasitoid, Diaeretiella rapae. In olfactory bioassays, D. rapae females generally showed no significant behavioral response to these alarm pheromone components and analogs under low concentrations (0.1 μg/μL). Nevertheless, their olfactory response to these compounds gradually enhanced with increasing concentrations. Among the four pheromone components, EβF showed the highest attractive activity, but the parasitoid preferred blends over single compounds. Moreover, the response time decreased as the concentration increased. We confirmed the kairomonal effect of monoterpene alarm pheromone components and their blends, in addition to EβF, on the natural enemies of aphids. This is the first report that the blend of alarm pheromone components and their analogs has a stronger kairomonal effect than do the single components on the natural enemies of aphids. This study contributes to our understanding of the mechanisms involved in the regulation of parasitoid behaviors by kairomones and provides a promising opportunity for designing kairomones for the aphid parasitoid to mediate aphid populations in the field.
Collapse
|
13
|
Piesik D, Bocianowski J, Kotwica K, Lemańczyk G, Piesik M, Ruzsanyi V, Mayhew CA. Responses of Adult Hypera rumicis L. to Synthetic Plant Volatile Blends. Molecules 2022; 27:molecules27196290. [PMID: 36234827 PMCID: PMC9572268 DOI: 10.3390/molecules27196290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
The behavioral responses of Hypera rumicis L. adults to varying blends of synthetic plant volatiles (SPVs) at various concentrations in lieu of single compounds are reported for the first time. For this study, Rumex confertus plants were treated with two blends of SPVs at different quantities that act as either attractants or repellents to insects. Blend 1 (B1) consisted of five green leaf volatiles (GLVs), namely (Z)-3-hexenal, (E)-2-hexenal, (Z)-3-hexenol, (E)-2-hexenol, and (Z)-3-hexen-1-yl acetate. Blend 2 (B2) contained six plant volatiles, namely (Z)-ocimene, linalool, benzyl acetate, methyl salicylate, β-caryophyllene, and (E)-β-farnesene. Each blend was made available in four different amounts of volatiles, corresponding to each compound being added to 50 µL of hexane in amounts of 1, 5, 25 and 125 ng. The effects of the two blends at the different concentrations on the insects were evaluated using a Y-tube olfactometer. Both sexes of the insects were found to be significantly repelled by the highest volatile levels of B1 and by two levels of B2 (25 and 125 ng). Females were also observed to be repelled using B2 with 5 ng of each volatile. Attraction was observed for both sexes only for B1 at the three lower volatile levels (1, 5 and 25 ng). In additional experiments, using only attractants, unmated females were found to be attracted to males, whereas mated females were only attracted to B1. Both unmated and mated males (previously observed in copula) were attracted only to females.
Collapse
Affiliation(s)
- Dariusz Piesik
- Department of Biology and Plant Protection, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 7 Prof. Kaliskiego Ave., 85-796 Bydgoszcz, Poland
- Correspondence: (D.P.); (C.A.M.)
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 28 Wojska Polskiego, 60-637 Poznań, Poland
| | - Karol Kotwica
- Department of Agronomy, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 7 Prof. Kaliskiego Ave., 85-796 Bydgoszcz, Poland
| | - Grzegorz Lemańczyk
- Department of Biology and Plant Protection, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 7 Prof. Kaliskiego Ave., 85-796 Bydgoszcz, Poland
| | - Magdalena Piesik
- Oncology Center of F. Łukaszczyk in Bydgoszcz, 2 I. Romanowskiej St., 85-796 Bydgoszcz, Poland
| | - Veronika Ruzsanyi
- Institute for Breath Research, University of Innsbruck and Tiroler Krebsforschungsinstitut (TKFI), Innrain 66, A-6020 Innsbruck, Austria
| | - Chris A. Mayhew
- Institute for Breath Research, University of Innsbruck and Tiroler Krebsforschungsinstitut (TKFI), Innrain 66, A-6020 Innsbruck, Austria
- Correspondence: (D.P.); (C.A.M.)
| |
Collapse
|
14
|
Yu H, Kivimäenpää M, Blande JD. Volatile-mediated between-plant communication in Scots pine and the effects of elevated ozone. Proc Biol Sci 2022; 289:20220963. [PMID: 36069014 PMCID: PMC9449471 DOI: 10.1098/rspb.2022.0963] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Conifers are dominant tree species in boreal forests, but are susceptible to attack by bark beetles. Upon bark beetle attack, conifers release substantial quantities of volatile organic compounds known as herbivore-induced plant volatiles (HIPVs). Earlier studies of broadleaved plants have shown that HIPVs provide information to neighbouring plants, which may enhance their defences. However, the defence responses of HIPV-receiver plants have not been described for conifers. Here we advance knowledge of plant-plant communication in conifers by documenting a suite of receiver-plant responses to bark-feeding-induced volatiles. Scots pine seedlings exposed to HIPVs were more resistant to subsequent weevil feeding and received less damage. Receiver plants had both induced and primed volatile emissions and their resin ducts had an increased epithelial cell (EC) mean area and an increased number of cells located in the second EC layer. Importantly, HIPV exposure increased stomatal conductance and net photosynthesis rate of receiver plants. Receiver-plant responses were also examined under elevated ozone conditions and found to be significantly altered. However, the final defence outcome was not affected. These findings demonstrate that HIPVs modulate conifer metabolism through responses spanning photosynthesis and chemical defence. The responses are adjusted under ozone stress, but the defence benefits remain intact.
Collapse
Affiliation(s)
- Hao Yu
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| | - Minna Kivimäenpää
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| | - James D Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
15
|
Ayelo PM, Yusuf AA, Chailleux A, Mohamed SA, Pirk CWW, Deletre E. Chemical Cues From Honeydew and Cuticular Extracts of Trialeurodes Vaporariorum Serve as Kairomones for The Parasitoid Encarsia Formosa. J Chem Ecol 2022; 48:370-383. [PMID: 35257255 DOI: 10.1007/s10886-022-01354-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/25/2022]
Abstract
Kairomones are semiochemicals that are emitted by an organism and which mediate interspecific interaction that is of benefit to an organism of another species that receives these chemical substances. Parasitoids find and recognize their hosts through eavesdropping on the kairomones emitted from the by-products or the body of the host. Hemipteran insect pests feed on plant sap and excrete the digested plant materials as honeydew. Honeydew serves as a nutritional food source for parasitoids and a medium for micro-organisms whose activity induces the release of volatiles exploited by parasitoids for host location. The parasitoid Encarsia formosa preferentially parasitizes its host, the greenhouse whitefly, Trialeurodes vaporariorum, on tomato Solanum lycopersicum, but little is known about the chemicals that mediate these interactions. We investigated the olfactory responses of the parasitoid E. formosa to odours from honeydew and nymphs of T. vaporariorum in a Y-tube olfactometer. Arrestment behaviour of the parasitoid to honeydew and nymph extracts, as well as to synthetic hydrocarbons, was also observed in Petri-dish bioassays. We found that T. vaporariorum honeydew volatiles attracted the parasitoid E. formosa but odours from the whitefly nymphs did not. We also found that the parasitoid spent more time searching on areas treated with extracts of honeydew and nymphs than on untreated areas. Gas-chromatography-mass spectrometric analysis revealed that the honeydew volatiles contained compounds such as (Z)-3-hexenol, δ-3-carene, 3-octanone, α-phellandrene, methyl salicylate, β-ocimene, β-myrcene, and (E)-β-caryophyllene which are known to be attractive to E. formosa. The cuticular extracts of the nymphs predominantly contained alkanes, alkenes, and esters. Among the alkanes, synthetic nonacosane arrested the parasitoid. Our findings are discussed in relation to how the parasitoid E. formosa uses these chemicals to locate its host, T. vaporariorum.
Collapse
Affiliation(s)
- Pascal Mahukpe Ayelo
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya.
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa.
| | - Abdullahi A Yusuf
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Anaïs Chailleux
- CIRAD-UPR HORTSYS, University of Montpellier, Montpellier, France
- Biopass2, Cirad-IRD-ISRA-UGB, Dakar, Senegal
| | - Samira A Mohamed
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Christian W W Pirk
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Emilie Deletre
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya.
- CIRAD-UPR HORTSYS, University of Montpellier, Montpellier, France.
| |
Collapse
|
16
|
Xie J, Liu T, Yi C, Liu X, Tang H, Sun Y, Shi W, Khashaveh A, Zhang Y. Antenna-Biased Odorant Receptor HvarOR25 in Hippodamia variegata Tuned to Allelochemicals from Hosts and Habitat Involved in Perceiving Preys. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1090-1100. [PMID: 35072468 DOI: 10.1021/acs.jafc.1c05593] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Odorant receptors (ORs) of ladybird Hippodamia variegata play vital chemosensory roles in searching and locating preys. In the current study, 37 ORs were initially identified from the antennal transcriptome of H. variegata. The quantitative polymerase chain reaction demonstrated that several HvarORs including HvarOR25 were specific or enriched in ladybird antennae. In two-electrode voltage clamp recordings, recombinant HvarOR25 was narrowly tuned to six chemical ligands including aphid-induced, aphid-derived, and plant-derived volatiles. In electroantennogram assays, all six volatiles elicited electrophysiological responses. Among the six volatiles, cis-3-hexenyl acetate, hexyl butyrate, hexyl hexanoate, and 3-methyl-3-buten-1-ol were attractive for both sexes of H. variegata. Additionally, molecular docking indicated that HvarOR25 was bound to all ligands with high binding affinities. Taken together, HvarOR25 facilitates perception of preys by recognizing relevant allelochemicals from hosts and habitat. Our findings provide valuable insights into understanding biological functions of HvarORs and help to develop a novel biocontrol strategy based on olfactory-active compounds.
Collapse
Affiliation(s)
- Jiaoxin Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Tinghui Liu
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Chaoqun Yi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Xiaoxu Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Haoyu Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yang Sun
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Wangpeng Shi
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
17
|
Ayelo PM, Yusuf AA, Pirk CW, Chailleux A, Mohamed SA, Deletre E. Terpenes from herbivore-induced tomato plant volatiles attract Nesidiocoris tenuis (Hemiptera: Miridae), a predator of major tomato pests. PEST MANAGEMENT SCIENCE 2021; 77:5255-5267. [PMID: 34310838 DOI: 10.1002/ps.6568] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Biological control plays a key role in reducing crop damage by Tuta absoluta (Meyrick) and Trialeurodes vaporariorum (Westwood), which cause huge yield losses in tomato (Solanum lycopersicum L.). The mirid predator Nesidiocoris tenuis (Reuter) preys heavily on these pests, with satisfying control levels in tomato greenhouses. Although N. tenuis is known to be attracted to volatiles of tomato plants infested by T. absoluta and whitefly, little is known about the specific attractive compounds and the effect of prey density on the predator response. RESULTS Y-tube olfactometer bioassays revealed that the attraction of N. tenuis to tomato volatiles was positively correlated with the density of T. absoluta infestation, unlike T. vaporariorum infestation. The predator was also attracted to volatiles of T. absoluta larval frass, but not to T. vaporariorum honeydew or T. absoluta sex pheromone. Among the herbivore-induced plant volatiles (HIPVs) that characterised the attractive plants infested with 20 T. absoluta larvae, olfactometer bioassays revealed that N. tenuis is attracted to the monoterpenes α-pinene, α-phellandrene, 3-carene, β-phellandrene and β-ocimene, whereas (E)-β-caryophyllene was found to repel the predator. In dose-response bioassays, the five-component blend of the attractants elicited a relatively low attraction in the predator, and removal of β-phellandrene from the blend enhanced the attraction of the predator to the resulting four-component blend, suggesting synergism among four monoterpenes. CONCLUSION These findings suggest that a four-component blend of α-pinene, α-phellandrene, 3-carene and β-ocimene could be used as a kairomone-based lure to recruit the predator for the biological control of T. absoluta and T. vaporariorum.
Collapse
Affiliation(s)
- Pascal M Ayelo
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Abdullahi A Yusuf
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Christian Ww Pirk
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Anaïs Chailleux
- UPR HORTSYS, University of Montpellier, CIRAD, Montpellier, France
- Biopass2, Cirad-IRD-ISRA-UGB - Centre de coopération internationale en recherche agronomique pour le développement, Institut de Recherche pour le Développement-Institut Sénégalais de Recherches Agricoles, Université Gaston Berger, Dakar, Senegal
| | - Samira A Mohamed
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Emilie Deletre
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- UPR HORTSYS, University of Montpellier, CIRAD, Montpellier, France
| |
Collapse
|
18
|
Inter-population variation and phenotypic plasticity in kairomone use by a poly-specialist spider-eating predator. J ETHOL 2021. [DOI: 10.1007/s10164-021-00725-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Abd El-Ghany NM, Faucheux MJ. Sensory structures on the larval antennae and mouthparts of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). ZOOL ANZ 2021. [DOI: 10.1016/j.jcz.2021.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|