1
|
Goldberg LR, Yao EJ, Kelliher JC, Reed ER, Cox JW, Parks C, Kirkpatrick SL, Beierle JA, Chen MM, Johnson WE, Homanics GE, Williams RW, Bryant CD, Mulligan MK. A quantitative trait variant in Gabra2 underlies increased methamphetamine stimulant sensitivity. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12774. [PMID: 34677900 PMCID: PMC9083095 DOI: 10.1111/gbb.12774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/19/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022]
Abstract
Psychostimulant (methamphetamine, cocaine) use disorders have a genetic component that remains mostly unknown. We conducted genome-wide quantitative trait locus (QTL) analysis of methamphetamine stimulant sensitivity. To facilitate gene identification, we employed a Reduced Complexity Cross between closely related C57BL/6 mouse substrains and examined maximum speed and distance traveled over 30 min following methamphetamine (2 mg/kg, i.p.). For maximum methamphetamine-induced speed following the second and third administration, we identified a single genome-wide significant QTL on chromosome 11 that peaked near the Cyfip2 locus (LOD = 3.5, 4.2; peak = 21 cM [36 Mb]). For methamphetamine-induced distance traveled following the first and second administration, we identified a genome-wide significant QTL on chromosome 5 that peaked near a functional intronic indel in Gabra2 coding for the alpha-2 subunit of the GABA-A receptor (LOD = 3.6-5.2; peak = 34-35 cM [66-67 Mb]). Striatal cis-expression QTL mapping corroborated Gabra2 as a functional candidate gene underlying methamphetamine-induced distance traveled. CRISPR/Cas9-mediated correction of the mutant intronic deletion on the C57BL/6J background to the wild-type C57BL/6NJ allele was sufficient to reduce methamphetamine-induced locomotor activity toward the wild-type C57BL/6NJ-like level, thus validating the quantitative trait variant (QTV). These studies show the power and efficiency of Reduced Complexity Crosses in identifying causal variants underlying complex traits. Functionally restoring Gabra2 expression decreased methamphetamine stimulant sensitivity and supports preclinical and human genetic studies implicating the GABA-A receptor in psychostimulant addiction-relevant traits. Importantly, our findings have major implications for studying psychostimulants in the C57BL/6J strain-the gold standard strain in biomedical research.
Collapse
Affiliation(s)
- Lisa R. Goldberg
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston, Massachusetts, USA
- NIGMS T32 Ph.D. Training Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Emily J. Yao
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston, Massachusetts, USA
| | - Julia C. Kelliher
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston, Massachusetts, USA
| | - Eric R. Reed
- Ph.D. Program in Bioinformatics, Boston University, Boston, Massachusetts, USA
| | - Jiayi Wu Cox
- Program in Biomedical Sciences, Graduate Program in Genetics and Genomics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Cory Parks
- Department of Agricultural, Biology, and Health Sciences, Cameron University, Lawton, Oklahoma, USA
| | - Stacey L. Kirkpatrick
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston, Massachusetts, USA
| | - Jacob A. Beierle
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston, Massachusetts, USA
- NIGMS T32 Ph.D. Training Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Melanie M. Chen
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston, Massachusetts, USA
| | - William E. Johnson
- Department of Medicine, Computational Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Gregg E. Homanics
- Departments of Anesthesiology, Neurobiology, and Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Camron D. Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston, Massachusetts, USA
| | - Megan K. Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
2
|
Shab G, Fultz EK, Page A, Coelho MA, Brewin LW, Stailey N, Brown CN, Bryant CD, Kippin TE, Szumlinski KK. The motivational valence of methamphetamine relates inversely to subsequent methamphetamine self-administration in female C57BL/6J mice. Behav Brain Res 2020; 398:112959. [PMID: 33053382 DOI: 10.1016/j.bbr.2020.112959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/21/2020] [Accepted: 10/05/2020] [Indexed: 01/21/2023]
Abstract
Understanding the mechanisms underpinning individual variance in addiction vulnerability requires the development of validated, high-throughput screens. In a prior study of a large sample of male isogenic C57BL/6J mice, the direction and magnitude of methamphetamine (MA)-induced place-conditioning predicts the propensity to acquire oral MA self-administration, as well as the efficacy of MA to serve as a reinforcer. The present study examined whether or not such a predictive relationship also exists in females. Adult C57BL/6J females underwent a 4-day MA place-conditioning paradigm (once daily injections of 2 mg/kg) and were then trained to nose-poke for delivery of a 20 mg/L MA solution under increasing schedules of reinforcement, followed by dose-response testing (5-400 mg/L MA). Akin to males, 53 % of the females exhibited a conditioned place-preference, while 32 % of the mice were MA-neutral and 15 % exhibited a conditioned place-aversion. However, unlike males, the place-conditioning phenotype did not transfer to MA-reinforced nose-poking behavior under operant-conditioning procedures, with 400 mg/L MA intake being inversely correlated place-conditioning. While only one MA-conditioning dose has been assayed to date, these data indicate that sex does not significantly shift the proportion of C57BL/6J mice that perceive MA's interoceptive effects as positive, neutral or aversive. However, a sex difference appears to exist regarding the predictive relationship between the motivational valence of MA and subsequent drug-taking behavior; females exhibit MA-taking behavior and reinforcement, despite their initial perception of the stimulant interoceptive effects as positive, neutral or negative.
Collapse
Affiliation(s)
- Gabriella Shab
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Elissa K Fultz
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Ariana Page
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Michal A Coelho
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Lindsey W Brewin
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Nicholas Stailey
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Chelsea N Brown
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Camron D Bryant
- Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Tod E Kippin
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA; Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA, USA; Institute for Collaborative Biology, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA; Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
3
|
Gonzales NM, Seo J, Hernandez Cordero AI, St Pierre CL, Gregory JS, Distler MG, Abney M, Canzar S, Lionikas A, Palmer AA. Genome wide association analysis in a mouse advanced intercross line. Nat Commun 2018; 9:5162. [PMID: 30514929 PMCID: PMC6279738 DOI: 10.1038/s41467-018-07642-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022] Open
Abstract
The LG/J x SM/J advanced intercross line of mice (LG x SM AIL) is a multigenerational outbred population. High minor allele frequencies, a simple genetic background, and the fully sequenced LG and SM genomes make it a powerful population for genome-wide association studies. Here we use 1,063 AIL mice to identify 126 significant associations for 50 traits relevant to human health and disease. We also identify thousands of cis- and trans-eQTLs in the hippocampus, striatum, and prefrontal cortex of ~200 mice. We replicate an association between locomotor activity and Csmd1, which we identified in an earlier generation of this AIL, and show that Csmd1 mutant mice recapitulate the locomotor phenotype. Our results demonstrate the utility of the LG x SM AIL as a mapping population, identify numerous novel associations, and shed light on the genetic architecture of mammalian behavior.
Collapse
Affiliation(s)
- Natalia M Gonzales
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Jungkyun Seo
- Center for Genomic & Computational Biology, Duke University, Durham, NC, 27708, USA
- Graduate Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, 27708, USA
| | - Ana I Hernandez Cordero
- School of Medicine, Medical Sciences and Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Celine L St Pierre
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63108, USA
| | - Jennifer S Gregory
- School of Medicine, Medical Sciences and Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Margaret G Distler
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Mark Abney
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Stefan Canzar
- Gene Center, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Arimantas Lionikas
- School of Medicine, Medical Sciences and Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
4
|
King CP, Militello L, Hart A, St Pierre CL, Leung E, Versaggi CL, Roberson N, Catlin J, Palmer AA, Richards JB, Meyer PJ. Cdh13 and AdipoQ gene knockout alter instrumental and Pavlovian drug conditioning. GENES, BRAIN, AND BEHAVIOR 2017; 16:686-698. [PMID: 28387990 PMCID: PMC5595635 DOI: 10.1111/gbb.12382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/30/2017] [Accepted: 04/02/2017] [Indexed: 12/11/2022]
Abstract
Genome-wide association studies in humans have suggested that variants of the cadherin-13 (CDH13) gene are associated with substance use disorder, subjective response to amphetamine, and attention deficit hyperactivity disorder. To examine the role of the Cdh13 and its peptide ligand adiponectin (AdipoQ) in addiction-related behaviors, we assessed Cdh13 knockout (KO) rats and AdipoQ KO mice using intravenous cocaine self-administration and conditioned place preference (CPP) paradigms. During intravenous cocaine self-administration, male Cdh13 heterozygous (+/-) and KO (-/-) rats showed increased cue-induced reinstatement compared with wild-type (WT) rats when presented with a cocaine-paired stimulus, whereas female Cdh13 rats showed no differences across genotype. Cdh13 -/- rats showed higher responding for a saccharin reinforcer and learned the choice reaction time (RT) task more slowly than WTs. However, we found no differences between Cdh13 -/- and +/+ rats in responding for sensory reinforcement, number of premature responses in the RT task, tendency to approach a Pavlovian food cue, CPP and locomotor activation to cocaine (10 or 20 mg/kg). In AdipoQ -/- mice, there was a significant increase in CPP to methamphetamine (1 mg/kg) but not to a range of d-amphetamine doses (0.5, 1, 2 and 4 mg/kg). Taken together, these data suggest that Cdh13 and AdipoQ regulate sensitivity to psychomotor stimulants and palatable rewards without producing major changes in other behaviors. In humans, these two genes may regulate sensitivity to natural and drug rewards, thus influencing susceptibility to the conditioned drug effects and relapse.
Collapse
Affiliation(s)
| | | | - Amy Hart
- Dept. of Human Genetics, Univ. of Chicago, Chicago, IL
- Dept. of Immunology, Janssen R&D, Spring House, PA
| | - Celine L. St Pierre
- Dept. of Human Genetics, Univ. of Chicago, Chicago, IL
- Dept. of Psychiatry, Univ. of California San Diego, La Jolla, CA
| | - Emily Leung
- Dept. of Human Genetics, Univ. of Chicago, Chicago, IL
| | | | | | - James Catlin
- Dept. of Psychology, Univ. at Buffalo, Buffalo, NY
| | - Abraham A. Palmer
- Dept. of Human Genetics, Univ. of Chicago, Chicago, IL
- Dept. of Psychiatry, Univ. of California San Diego, La Jolla, CA
- Institute for Genomic Medicine, Univ. of California San Diego, La Jolla, CA
| | | | | |
Collapse
|
5
|
Szumlinski KK, Lominac KD, Campbell RR, Cohen M, Fultz EK, Brown CN, Miller BW, Quadir SG, Martin D, Thompson AB, von Jonquieres G, Klugmann M, Phillips TJ, Kippin TE. Methamphetamine Addiction Vulnerability: The Glutamate, the Bad, and the Ugly. Biol Psychiatry 2017; 81:959-970. [PMID: 27890469 PMCID: PMC5391296 DOI: 10.1016/j.biopsych.2016.10.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/30/2016] [Accepted: 10/05/2016] [Indexed: 01/23/2023]
Abstract
BACKGROUND The high prevalence and severity of methamphetamine (MA) abuse demands greater neurobiological understanding of its etiology. METHODS We conducted immunoblotting and in vivo microdialysis procedures in MA high/low drinking mice, as well as in isogenic C57BL/6J mice that varied in their MA preference/taking, to examine the glutamate underpinnings of MA abuse vulnerability. Neuropharmacological and Homer2 knockdown approaches were also used in C57BL/6J mice to confirm the role for nucleus accumbens (NAC) glutamate/Homer2 expression in MA preference/aversion. RESULTS We identified a hyperglutamatergic state within the NAC as a biochemical trait corresponding with both genetic and idiopathic vulnerability for high MA preference and taking. We also confirmed that subchronic subtoxic MA experience elicits a hyperglutamatergic state within the NAC during protracted withdrawal, characterized by elevated metabotropic glutamate 1/5 receptor function and Homer2 receptor-scaffolding protein expression. A high MA-preferring phenotype was recapitulated by elevating endogenous glutamate within the NAC shell of mice and we reversed MA preference/taking by lowering endogenous glutamate and/or Homer2 expression within this subregion. CONCLUSIONS Our data point to an idiopathic, genetic, or drug-induced hyperglutamatergic state within the NAC as a mediator of MA addiction vulnerability.
Collapse
Affiliation(s)
- Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, California; Molecular, Cellular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, California.
| | - Kevin D Lominac
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, California
| | - Rianne R Campbell
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, California
| | - Matan Cohen
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, California
| | - Elissa K Fultz
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, California
| | - Chelsea N Brown
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, California
| | - Bailey W Miller
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, California
| | - Sema G Quadir
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, California
| | - Douglas Martin
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, California
| | - Andrew B Thompson
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, California
| | - Georg von Jonquieres
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, New South Wales, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, New South Wales, Australia
| | - Tamara J Phillips
- Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University; VA Portland Health Care System, Portland, Oregon
| | - Tod E Kippin
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, California; Molecular, Cellular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, California; Neuroscience Research Institute, and Institute for Collaborative Biotechnology, University of California at Santa Barbara, Santa Barbara, California
| |
Collapse
|
6
|
Lipinska G, Timol R, Thomas KGF. The implications of sleep disruption for cognitive and affective processing in methamphetamine abuse. Med Hypotheses 2015; 85:914-21. [PMID: 26384529 DOI: 10.1016/j.mehy.2015.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/01/2015] [Accepted: 09/09/2015] [Indexed: 11/25/2022]
Abstract
Sleep is disrupted during active use of methamphetamine (MA), during withdrawal from the drug, and during abstinence from its use. However, relatively little is known about possible mediatory functions of disrupted sleep in the emergence, manifestation, and maintenance of cognitive and affective symptoms of MA abuse. We hypothesise that sleep functions as a mediator for stimulant drug effects. Specifically, we propose that objectively-measured sleep parameters can be used to explain some of the variability in the experience and presentation of memory deficits and emotion dysregulation in MA abusers. After describing how important healthy sleep is to unimpaired cognitive and affective functioning, we review literature describing how sleep is disrupted in MA abuse. Then, we provide a conceptual framework for our hypothesis by explaining the relationship between MA abuse, sleep disruption, memory deficits, emotion dysregulation, and changes in reward-related brain networks. We conclude by discussing implications of the hypothesis for research and treatment.
Collapse
Affiliation(s)
- Gosia Lipinska
- ACSENT Laboratory, Department of Psychology, University of Cape Town, South Africa
| | - Ridwana Timol
- ACSENT Laboratory, Department of Psychology, University of Cape Town, South Africa
| | - Kevin G F Thomas
- ACSENT Laboratory, Department of Psychology, University of Cape Town, South Africa.
| |
Collapse
|
7
|
Dickson PE, Ndukum J, Wilcox T, Clark J, Roy B, Zhang L, Li Y, Lin DT, Chesler EJ. Association of novelty-related behaviors and intravenous cocaine self-administration in Diversity Outbred mice. Psychopharmacology (Berl) 2015; 232:1011-24. [PMID: 25238945 PMCID: PMC4774545 DOI: 10.1007/s00213-014-3737-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/28/2014] [Indexed: 01/22/2023]
Abstract
RATIONALE The preference for and reaction to novelty are strongly associated with addiction to cocaine and other drugs. However, the genetic variants and molecular mechanisms underlying these phenomena remain largely unknown. Although the relationship between novelty- and addiction-related traits has been observed in rats, studies in mice have failed to demonstrate this association. New, genetically diverse, high-precision mouse populations including Diversity Outbred (DO) mice provide an opportunity to assess an expanded range of behavioral variation enabling detection of associations of novelty- and addiction-related traits in mice. METHODS To examine the relationship between novelty- and addiction-related traits, male (n = 51) and female (n = 47) DO mice were tested on open field exploration, hole board exploration, and novelty preference followed by intravenous cocaine self-administration (IVSA; ten 2-h sessions of fixed ratio 1 and one 6-h session of progressive ratio). RESULTS We observed high variation of cocaine IVSA in DO mice with 43 % reaching and 57 % not reaching conventional acquisition criteria. As a group, mice that did not reach these criteria still demonstrated significant lever discrimination. Mice experiencing catheter occlusion or other technical issues (n = 17) were excluded from the analysis. Novelty-related behaviors were positively associated with cocaine IVSA. Multivariate analysis of associations among novelty- and addiction-related traits revealed a large degree of shared variance (45 %). CONCLUSIONS Covariation among cocaine IVSA and novelty-related phenotypes in DO mice indicates that this relationship is amenable to genetic dissection. The high genetic precision and phenotypic diversity in the DO may facilitate discovery of previously undetectable mechanisms underlying predisposition to develop addiction disorders.
Collapse
Affiliation(s)
| | - Juliet Ndukum
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609
| | - Troy Wilcox
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609
| | - James Clark
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609
| | - Brittany Roy
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609
| | - Lifeng Zhang
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224
| | - Yun Li
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224
| | - Da-Ting Lin
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224
| | | |
Collapse
|
8
|
Kirkpatrick SL, Bryant CD. Behavioral architecture of opioid reward and aversion in C57BL/6 substrains. Front Behav Neurosci 2015; 8:450. [PMID: 25628547 PMCID: PMC4290583 DOI: 10.3389/fnbeh.2014.00450] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 12/16/2014] [Indexed: 12/02/2022] Open
Abstract
Drug liking vs. drug disliking is a subjective motivational measure in humans that assesses the addiction liability of drugs. Variation in this trait is hypothesized to influence vulnerability vs. resilience toward substance abuse disorders and likely contains a genetic component. In rodents and humans, conditioned place preference (CPP)/aversion (CPA) is a Pavlovian conditioning paradigm whereby a learned preference for the drug-paired environment is used to infer drug liking whereas a learned avoidance or aversion is used to infer drug disliking. C57BL/6 inbred mouse substrains are nearly genetically identical, yet demonstrate robust differences in addiction-relevant behaviors, including locomotor sensitization to cocaine and consumption of ethanol. Here, we tested the hypothesis that B6 substrains would demonstrate differences in the rewarding properties of the mu opioid receptor agonist oxycodone (5 mg/kg, i.p.) and the aversive properties of the opioid receptor antagonist naloxone (4 mg/kg, i.p.). Both substrains showed similar degrees of oxycodone-induced CPP; however, there was a three-fold enhancement of naloxone-induced CPA in agonist-naïve C57BL/6J relative to C57Bl/6NJ mice. Exploratory factor analysis of CPP and CPA identified unique factors that explain variance in behavioral expression of reward vs. aversion. “Conditioned Opioid-Like Behavior” was a reward-based factor whereby drug-free locomotor variables resembling opioid treatment co-varied with the degree of CPP. “Avoidance and Freezing” was an aversion-based factor, whereby the increase in the number of freezing bouts co-varied with the degree of aversion. These results provide new insight into the behavioral architecture of the motivational properties of opioids. Future studies will use quantitative trait locus mapping in B6 substrains to identify novel genetic factors that contribute to the marked strain difference in NAL-CPA.
Collapse
Affiliation(s)
- Stacey L Kirkpatrick
- Laboratory of Addiction Genetics, Pharmacology and Experimental Therapeutics, Boston University School of Medicine Boston, MA, USA
| | - Camron D Bryant
- Laboratory of Addiction Genetics, Pharmacology and Experimental Therapeutics, Boston University School of Medicine Boston, MA, USA
| |
Collapse
|
9
|
Bryant CD, Guido MA, Kole LA, Cheng R. The heritability of oxycodone reward and concomitant phenotypes in a LG/J × SM/J mouse advanced intercross line. Addict Biol 2014; 19:552-61. [PMID: 23231598 DOI: 10.1111/adb.12016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The rewarding property of opioids likely contributes to their abuse potential. Therefore, determining the genetic basis of opioid reward could aid in understanding the neurobiological mechanisms of opioid addiction, provided that it is a heritable trait. Here, we characterized the rewarding property of the widely abused prescription opioid oxycodone (OXY) in the conditioned place preference (CPP) assay using LG/J and SM/J parental inbred mouse strains and 17 parent-offspring families of a LG/J × SM/J F47 /F48 advanced intercross line (AIL). Following OXY training (5 mg/kg, i.p.), SM/J mice and AIL mice, but not LG/J mice, showed an increase in preference for the OXY-paired side, suggesting a genetic basis for OXY-CPP. SM/J mice showed greater locomotor activity than LG/J mice in response to both saline and OXY. LG/J, SM/J, and AIL mice all exhibited robust OXY-induced locomotor sensitization. Narrow-sense heritability (h(2) ) estimates of the phenotypes using linear regression and maximum likelihood estimation showed good agreement (r = 0.91). OXY-CPP was clearly not a heritable trait whereas drug-free- and OXY-induced locomotor activity and sensitization were significantly and sometimes highly heritable (h(2) = 0.30-0.84). Interestingly, the number of transitions between the saline- and OXY-paired sides emerged as a reliably heritable trait following OXY training (h(2) = 0.46-0.66) and could represent a genetic component of drug-seeking behavior. Thus, although OXY-CPP does not appear to be amenable to genome-wide quantitative trait locus mapping, this protocol will be useful for mapping other traits potentially relevant to opioid abuse.
Collapse
Affiliation(s)
- Camron D. Bryant
- Department of Human Genetics; The University of Chicago; Chicago IL USA
| | - Michael A. Guido
- Department of Human Genetics; The University of Chicago; Chicago IL USA
| | - Loren A. Kole
- Department of Human Genetics; The University of Chicago; Chicago IL USA
| | - Riyan Cheng
- Department of Human Genetics; The University of Chicago; Chicago IL USA
| |
Collapse
|
10
|
Abstract
Quantitative trait locus (QTL) mapping in animal populations has been a successful strategy for identifying genomic regions that play a role in complex diseases and traits. When conducted in an F2 intercross or backcross population, the resulting QTL is frequently large, often encompassing 30 Mb or more and containing hundreds of genes. To narrow the locus and identify candidate genes, additional strategies are needed. Congenic strains have proven useful but work less well when there are multiple tightly linked loci, frequently resulting in loss of phenotype. As an alternative, we discuss the use of highly recombinant outbred models for directly fine-mapping QTL to only a few megabases. We discuss the use of several currently available models such as the advanced intercross (AI), heterogeneous stocks (HS), the diversity outbred (DO), and commercially available outbred stocks (CO). Once a QTL has been fine-mapped, founder sequence and expression QTL mapping can be used to identify candidate genes. In this regard, the large number of alleles found in outbred stocks can be leveraged to identify causative genes and variants. We end this review by discussing some important statistical considerations when analyzing outbred populations. Fine-resolution mapping in outbred models, coupled with full genome sequence, has already led to the identification of several underlying causative genes for many complex traits and diseases. These resources will likely lead to additional successes in the coming years.
Collapse
Affiliation(s)
- Leah C Solberg Woods
- Department of Pediatrics, Human and Molecular Genetics Center and Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
11
|
Han ZL, Wang ZL, Tang HZ, Li N, Fang Q, Li XH, Yang XL, Zhang XY, Wang R. Neuropeptide FF attenuates the acquisition and the expression of conditioned place aversion to endomorphin-2 in mice. Behav Brain Res 2013; 248:51-6. [DOI: 10.1016/j.bbr.2013.03.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/25/2013] [Accepted: 03/28/2013] [Indexed: 12/28/2022]
|