1
|
Ji X, Meng W, Liu Z, Mu X. Emerging Roles of lncRNAs Regulating RNA-Mediated Type-I Interferon Signaling Pathway. Front Immunol 2022; 13:811122. [PMID: 35280983 PMCID: PMC8914027 DOI: 10.3389/fimmu.2022.811122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
The type-I interferon (IFN-I) signaling pathway plays pivot roles in defending against pathogen invasion. Exogenous ssRNA and dsRNA could be immunogenic. RNA-mediated IFN signaling is extensively studied in the field. The incorrect functioning of this pathway leads to either autoimmune diseases or suffering from microorganism invasion. From the discrimination of “self” and “non-self” molecules by receptors to the fine-tune modulations in downstream cascades, all steps are under the surveillance featured by complex feedbacks and regulators. Studies in recent years highlighted the emerging roles of long noncoding RNAs (lncRNAs) as a reservoir for signaling regulation. LncRNAs bind to targets through the structure and sequence, and thus the mechanisms of action can be complex and specific. Here, we summarized lncRNAs modulating the RNA-activated IFN-I signaling pathway according to the event order during the signaling. We hope this review help understand how lncRNAs are participating in the regulation of IFN-I signaling.
Collapse
Affiliation(s)
- Xiaoxin Ji
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China
| | - Wei Meng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China
| | - Zichuan Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China
- *Correspondence: Zichuan Liu, ; Xin Mu,
| | - Xin Mu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China
- *Correspondence: Zichuan Liu, ; Xin Mu,
| |
Collapse
|
2
|
lncRNA PVT1 in the Pathogenesis and Clinical Management of Renal Cell Carcinoma. Biomolecules 2021; 11:biom11050664. [PMID: 33947142 PMCID: PMC8145429 DOI: 10.3390/biom11050664] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/24/2022] Open
Abstract
LncRNA PVT1 (plasmacytoma variant translocation 1) has become a staple of the lncRNA profile in patients with renal cell carcinoma (RCC). Common dysregulation in renal tumors outlines the essential role of PVT1 in the development of RCC. There is already a plethora of publications trying to uncover the cellular mechanisms of PVT1-mediated regulation and its potential exploitation in management of RCC. In this review, we summarize the literature focused on PVT1 in RCC and aim to synthesize the current knowledge on its role in the cells of the kidney. Further, we provide an overview of the lncRNA profiling studies that have identified a more or less significant association of PVT1 with the clinical behavior of RCC. Based on our search, we analyzed the 17 scientific papers discussed in this review that provide robust support for the indispensable role of PVT1 in RCC development and future personalized therapy.
Collapse
|
3
|
Shirvani Farsani Z, Zahirodin A, Ghaderian SMH, Shams J, Naghavi Gargari B. The role of long non-coding RNA MALAT1 in patients with bipolar disorder. Metab Brain Dis 2020; 35:1077-1083. [PMID: 32458337 DOI: 10.1007/s11011-020-00580-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023]
Abstract
Bipolar disorders are known as chronic, recurrent, and heterogenic diseases. Regarding, diagnosis and treatment of them are very complex. The molecular mechanism and pathophysiology of bipolar disorder are slightly known. Accordingly, long noncoding RNAs are considered as one of the main factors that are dysfunctional in many diseases such as the nervous system diseases. Hence, we aim to investigate the expression of two long non coding RNAs, MALAT1 and UCA1, in patients in bipolar disorder. The levels of MALAT1 and UCA1 lncRNA were evaluated in peripheral blood mononuclear cells (PBMCs) of 50 bipolar patients and 50 healthy controls with real-time PCR. Also, ROC curve analysis and correlation analysis were performed between the gene expression and some clinical features of bipolar individuals. The significant decline of MALAT1 expression level was found in the patients compared to controls; but no significant difference was observed in the UCA1 expression level between the patients and controls. Furthermore, computational analysis of CpG Islands and miRNAs binding sites on LncRNAs, MALAT1, and UCA1 was conducted. Also, The ROC curve area (AUC) of MALAT1 was 0.80. The current results suggest that the expression level of MALAT1 could serve as a potential diagnostic biomarker for bipolar patients.
Collapse
Affiliation(s)
- Zeinab Shirvani Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C, Tehran, IR, Iran
| | - Alireza Zahirodin
- Behavioral Science Research Center, Shahid Beheshti University of Medical Sciences, Tehran, IR, Iran
| | | | - Jamal Shams
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR, Iran
| | - Bahar Naghavi Gargari
- Department of Basic Sciences, Faculty of Nursing & Midwifery, Shahid Beheshti University of Medical Sciences, IR, Tehran, Iran.
| |
Collapse
|
4
|
Altered ANRIL Methylation in Epileptic Patients. J Mol Neurosci 2020; 71:193-199. [PMID: 32662045 DOI: 10.1007/s12031-020-01666-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
Abstract
Long non-coding RNAs (lncRNAs) have regulatory roles in several aspects of cellular physiology. Recent studies have also revealed their role in neuronal differentiation and the pathophysiology of neurologic disorders such as epilepsy. We have recently reported altered expression of a number of lncRNAs in the peripheral blood of epileptic patients in association with their response to antiepileptic drugs. One the most significantly altered lncRNAs in epileptic patients is the antisense non-coding RNA in the INK4 locus (ANRIL), whose expression has been found to be higher in both refractory and non-refractory groups compared with controls. In the current study, we aimed to identify the methylation status of this lncRNA to suggest a potential mechanism for deregulated ANRIL expression. Thus, we assessed the methylation status of the ANRIL promoter in 40 patients with refractory epilepsy, 40 patients with non-refractory epilepsy and 40 normal controls using the high-resolution melting (HRM) method. The HRM results showed hypomethylation of the ANRIL promoter region in both refractory epilepsy and non-refractory epilepsy patients compared with normal controls. This methylation pattern was consistent with the recently reported upregulation of this lncRNA in patients with epilepsy. Thus, we suggest altered methylation of the ANRIL promoter as a potential cause of its aberrant expression in peripheral blood of epileptic patients.
Collapse
|
5
|
Ma J, Chen S, Hao L, Sheng W, Chen W, Ma X, Zhang B, Ma D, Huang G. Hypermethylation-mediated down-regulation of lncRNA TBX5-AS1:2 in Tetralogy of Fallot inhibits cell proliferation by reducing TBX5 expression. J Cell Mol Med 2020; 24:6472-6484. [PMID: 32368852 PMCID: PMC7294119 DOI: 10.1111/jcmm.15298] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/06/2019] [Accepted: 03/28/2020] [Indexed: 12/26/2022] Open
Abstract
Tetralogy of Fallot (TOF) is the most common complex congenital heart disease (CHD) with uncertain cause. Although long non‐coding RNAs (lncRNAs) have been implicated in heart development and several CHDs, their role in TOF is not well understood. This study aimed to investigate how dysregulated lncRNAs contribute to TOF. Using Gene Expression Omnibus data mining, bioinformatics analysis and clinical heart tissue sample detecting, we identified a novel antisense lncRNA TBX5‐AS1:2 with unknown function that was significantly down‐regulated in injured cardiac tissues from TOF patients. LncRNA TBX5‐AS1:2 was mainly located in the nucleus of the human embryonic kidney 293 (HEK293T) cells and formed an RNA‐RNA double‐stranded structure in the overlapping region with its sense mRNA T‐box transcription factor 5 (TBX5), which is an important regulator in heart development. Knock‐down of lncRNA TBX5‐AS1:2 via promoter hypermethylation reduced TBX5 expression at both the mRNA and protein levels by affecting its mRNA stability through RNA‐RNA interaction. Moreover, lncRNA TBX5‐AS1:2 knock‐down inhibited the proliferation of HEK293T cells. In conclusion, these results indicated that lncRNA TBX5‐AS1:2 may be involved in TOF by affecting cell proliferation by targeting TBX5.
Collapse
Affiliation(s)
- Jing Ma
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, Research Center for Birth Defects, Institutes of Biomedical Sciences, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shiyu Chen
- Department of Biochemistry and Molecular Biology, Research Center for Birth Defects, Institutes of Biomedical Sciences, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lili Hao
- Department of Biochemistry and Molecular Biology, Research Center for Birth Defects, Institutes of Biomedical Sciences, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Sheng
- Children's Hospital of Fudan University, Shanghai, China
| | - WeiCheng Chen
- Children's Hospital of Fudan University, Shanghai, China
| | - Xiaojing Ma
- Children's Hospital of Fudan University, Shanghai, China
| | - Bowen Zhang
- Department of Biochemistry and Molecular Biology, Research Center for Birth Defects, Institutes of Biomedical Sciences, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Duan Ma
- Department of Biochemistry and Molecular Biology, Research Center for Birth Defects, Institutes of Biomedical Sciences, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Children's Hospital of Fudan University, Shanghai, China
| | - Guoying Huang
- Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
6
|
Gao M, Fu J, Wang Y. The lncRNA FAL1 protects against hypoxia-reoxygenation- induced brain endothelial damages through regulating PAK1. J Bioenerg Biomembr 2020; 52:17-25. [PMID: 31927658 DOI: 10.1007/s10863-019-09819-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/12/2019] [Indexed: 01/03/2023]
Abstract
Dysregulation of cerebral microvascular endothelial cells plays an important role in the pathogenesis of stroke. However, the underlying mechanisms still need to be elucidated. In the current study, we found that the long non-coding RNA (lncRNA) FAL1 was significantly reduced in response to oxygen-glucose deprivation and reoxygenation (OGD/R) stimulation in human primary brain microvascular endothelial cells (HBMVECs). Interestingly, overexpression of FAL1 ameliorated OGD/R-induced oxidative stress by reducing the production of reactive oxygen species (ROS) and increasing the level of reduced glutathione (GSH). Also, overexpression of FAL1 suppressed OGD/R-induced secretions of interleukin-6 (IL-6), monocyte chemotactic protein-1 (MCP-1), and high mobility group box-1 (HMGB-1). We then found that OGD/R-induced reduction of cell viability and release of lactate dehydrogenase (LDH) were prevented by overexpression of FAL1. Additionally, exposure to OGD/R significantly reduced the phosphorylated levels of PAK1 and AKT as well as the total level of proliferating cell nuclear antigen (PCNA), which was restored by overexpression of FAL1. Importantly, overexpression of FAL1 restored OGD/R-induced reduction in the expression of endothelial nitric oxide synthase (eNOS) and the subsequent release of nitric oxide (NO). Our results implicate that FAL1 might be involved in the process of brain endothelial cell damage.
Collapse
Affiliation(s)
- Mingqing Gao
- Department of Neurosurgery, The Affiliated Hospital of Wei fang Medical University, No. 2428, Yuhe Road, Weifang, 261031, Shandong, China
| | - Jieting Fu
- Department of Hematology, The Affiliated Hospital of Wei fang Medical University, Shandong, China
| | - Yanqiang Wang
- Department of Neurology, The Affiliated Hospital of Wei fang Medical University, Shandong, China.
| |
Collapse
|
7
|
Bartoszewski R, Sikorski AF. Editorial focus: understanding off-target effects as the key to successful RNAi therapy. Cell Mol Biol Lett 2019; 24:69. [PMID: 31867046 PMCID: PMC6902517 DOI: 10.1186/s11658-019-0196-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022] Open
Abstract
With the first RNA interference (RNAi) drug (ONPATTRO (patisiran)) on the market, we witness the RNAi therapy field reaching a critical turning point, when further improvements in drug candidate design and delivery pipelines should enable fast delivery of novel life changing treatments to patients. Nevertheless, ignoring parallel development of RNAi dedicated in vitro pharmacological profiling aiming to identify undesirable off-target activity may slow down or halt progress in the RNAi field. Since academic research is currently fueling the RNAi development pipeline with new therapeutic options, the objective of this article is to briefly summarize the basics of RNAi therapy, as well as to discuss how to translate basic research into better understanding of related drug candidate safety profiles early in the process.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Aleksander F. Sikorski
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
8
|
Cheng L, Zhao H, Wang P, Zhou W, Luo M, Li T, Han J, Liu S, Jiang Q. Computational Methods for Identifying Similar Diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:590-604. [PMID: 31678735 PMCID: PMC6838934 DOI: 10.1016/j.omtn.2019.09.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 02/01/2023]
Abstract
Although our knowledge of human diseases has increased dramatically, the molecular basis, phenotypic traits, and therapeutic targets of most diseases still remain unclear. An increasing number of studies have observed that similar diseases often are caused by similar molecules, can be diagnosed by similar markers or phenotypes, or can be cured by similar drugs. Thus, the identification of diseases similar to known ones has attracted considerable attention worldwide. To this end, the associations between diseases at the molecular, phenotypic, and taxonomic levels were used to measure the pairwise similarity in diseases. The corresponding performance assessment strategies for these methods involving the terms “category-based,” “simulated-patient-based,” and “benchmark-data-based” were thus further emphasized. Then, frequently used methods were evaluated using a benchmark-data-based strategy. To facilitate the assessment of disease similarity scores, researchers have designed dozens of tools that implement these methods for calculating disease similarity. Currently, disease similarity has been advantageous in predicting noncoding RNA (ncRNA) function and therapeutic drugs for diseases. In this article, we review disease similarity methods, evaluation strategies, tools, and their applications in the biomedical community. We further evaluate the performance of these methods and discuss the current limitations and future trends for calculating disease similarity.
Collapse
Affiliation(s)
- Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Hengqiang Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Pingping Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Wenyang Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Meng Luo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Tianxin Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.
| | - Shulin Liu
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, Heilongjiang, China; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
| | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China.
| |
Collapse
|
9
|
Hilliard AT, Xie D, Ma Z, Snyder MP, Fernald RD. Genome-wide effects of social status on DNA methylation in the brain of a cichlid fish, Astatotilapia burtoni. BMC Genomics 2019; 20:699. [PMID: 31506062 PMCID: PMC6737626 DOI: 10.1186/s12864-019-6047-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Successful social behavior requires real-time integration of information about the environment, internal physiology, and past experience. The molecular substrates of this integration are poorly understood, but likely modulate neural plasticity and gene regulation. In the cichlid fish species Astatotilapia burtoni, male social status can shift rapidly depending on the environment, causing fast behavioral modifications and a cascade of changes in gene transcription, the brain, and the reproductive system. These changes can be permanent but are also reversible, implying the involvement of a robust but flexible mechanism that regulates plasticity based on internal and external conditions. One candidate mechanism is DNA methylation, which has been linked to social behavior in many species, including A. burtoni. But, the extent of its effects after A. burtoni social change were previously unknown. RESULTS We performed the first genome-wide search for DNA methylation patterns associated with social status in the brains of male A. burtoni, identifying hundreds of Differentially Methylated genomic Regions (DMRs) in dominant versus non-dominant fish. Most DMRs were inside genes supporting neural development, synapse function, and other processes relevant to neural plasticity, and DMRs could affect gene expression in multiple ways. DMR genes were more likely to be transcription factors, have a duplicate elsewhere in the genome, have an anti-sense lncRNA, and have more splice variants than other genes. Dozens of genes had multiple DMRs that were often seemingly positioned to regulate specific splice variants. CONCLUSIONS Our results revealed genome-wide effects of A. burtoni social status on DNA methylation in the brain and strongly suggest a role for methylation in modulating plasticity across multiple biological levels. They also suggest many novel hypotheses to address in mechanistic follow-up studies, and will be a rich resource for identifying the relationships between behavioral, neural, and transcriptional plasticity in the context of social status.
Collapse
Affiliation(s)
| | - Dan Xie
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Zhihai Ma
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | | |
Collapse
|
10
|
Gendron J, Colace-Sauty C, Beaume N, Cartonnet H, Guegan J, Ulveling D, Pardanaud-Glavieux C, Moszer I, Cheval H, Ravassard P. Long non-coding RNA repertoire and open chromatin regions constitute midbrain dopaminergic neuron - specific molecular signatures. Sci Rep 2019; 9:1409. [PMID: 30723217 PMCID: PMC6363776 DOI: 10.1038/s41598-018-37872-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 12/12/2018] [Indexed: 01/24/2023] Open
Abstract
Midbrain dopaminergic (DA) neurons are involved in diverse neurological functions, including control of movements, emotions or reward. In turn, their dysfunctions cause severe clinical manifestations in humans, such as the appearance of motor and cognitive symptoms in Parkinson’s Disease. The physiology and pathophysiology of these neurons are widely studied, mostly with respect to molecular mechanisms implicating protein-coding genes. In contrast, the contribution of non-coding elements of the genome to DA neuron function is poorly investigated. In this study, we isolated DA neurons from E14.5 ventral mesencephalons in mice, and used RNA-seq and ATAC-seq to establish and describe repertoires of long non-coding RNAs (lncRNAs) and putative DNA regulatory regions specific to this neuronal population. We identified 1,294 lncRNAs constituting the repertoire of DA neurons, among which 939 were novel. Most of them were not found in hindbrain serotonergic (5-HT) neurons, indicating a high degree of cell-specificity. This feature was also observed regarding open chromatin regions, as 39% of the ATAC-seq peaks from the DA repertoire were not detected in the 5-HT neurons. Our work provides for the first time DA-specific catalogues of non-coding elements of the genome that will undoubtedly participate in deepening our knowledge regarding DA neuronal development and dysfunctions.
Collapse
Affiliation(s)
- J Gendron
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - C Colace-Sauty
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - N Beaume
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - H Cartonnet
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - J Guegan
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - D Ulveling
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - C Pardanaud-Glavieux
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - I Moszer
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - H Cheval
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.
| | - P Ravassard
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.
| |
Collapse
|
11
|
Paraboschi EM, Cardamone G, Soldà G, Duga S, Asselta R. Interpreting Non-coding Genetic Variation in Multiple Sclerosis Genome-Wide Associated Regions. Front Genet 2018; 9:647. [PMID: 30619471 PMCID: PMC6304422 DOI: 10.3389/fgene.2018.00647] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/30/2018] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is the most common neurological disorder in young adults. Despite extensive studies, only a fraction of MS heritability has been explained, with association studies focusing primarily on protein-coding genes, essentially for the difficulty of interpreting non-coding features. However, non-coding RNAs (ncRNAs) and functional elements, such as super-enhancers (SE), are crucial regulators of many pathways and cellular mechanisms, and they have been implicated in a growing number of diseases. In this work, we searched for possible enrichments in non-coding elements at MS genome-wide associated loci, with the aim to highlight their possible involvement in the susceptibility to the disease. We first reconstructed the linkage disequilibrium (LD) structure of the Italian population using data of 727,478 single-nucleotide polymorphisms (SNPs) from 1,668 healthy individuals. The genomic coordinates of the obtained LD blocks were intersected with those of the top hits identified in previously published MS genome-wide association studies (GWAS). By a bootstrapping approach, we hence demonstrated a striking enrichment of non-coding elements, especially of circular RNAs (circRNAs) mapping in the 73 LD blocks harboring MS-associated SNPs. In particular, we found a total of 482 circRNAs (annotated in publicly available databases) vs. a mean of 194 ± 65 in the random sets of LD blocks, using 1,000 iterations. As a proof of concept of a possible functional relevance of this observation, we experimentally verified that the expression levels of a circRNA derived from an MS-associated locus, i.e., hsa_circ_0043813 from the STAT3 gene, can be modulated by the three genotypes at the disease-associated SNP. Finally, by evaluating RNA-seq data of two cell lines, SH-SY5Y and Jurkat cells, representing tissues relevant for MS, we identified 18 (two novel) circRNAs derived from MS-associated genes. In conclusion, this work showed for the first time that MS-GWAS top hits map in LD blocks enriched in circRNAs, suggesting circRNAs as possible novel contributors to the disease pathogenesis.
Collapse
Affiliation(s)
| | - Giulia Cardamone
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Giulia Soldà
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Humanitas Clinical and Research Center, Milan, Italy
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Humanitas Clinical and Research Center, Milan, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Humanitas Clinical and Research Center, Milan, Italy
| |
Collapse
|
12
|
Abstract
The past decade has seen tremendous efforts in biomarker discovery and validation for neurodegenerative diseases. The source and type of biomarkers has continued to grow for central nervous system diseases, from biofluid-based biomarkers (blood or cerebrospinal fluid (CSF)), to nucleic acids, tissue, and imaging. While DNA remains a predominant biomarker used to identify familial forms of neurodegenerative diseases, various types of RNA have more recently been linked to familial and sporadic forms of neurodegenerative diseases during the past few years. Imaging approaches continue to evolve and are making major contributions to target engagement and early diagnostic biomarkers. Incorporation of biomarkers into drug development and clinical trials for neurodegenerative diseases promises to aid in the development and demonstration of target engagement and drug efficacy for neurologic disorders. This review will focus on recent advancements in developing biomarkers for clinical utility in Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
| | - Robert Bowser
- Iron Horse Diagnostics, Inc., Scottsdale, AZ, 85255, USA.
- Divisions of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W Thomas Rd, Phoenix, AZ, 85013, USA.
| |
Collapse
|
13
|
Wei CW, Luo T, Zou SS, Wu AS. The Role of Long Noncoding RNAs in Central Nervous System and Neurodegenerative Diseases. Front Behav Neurosci 2018; 12:175. [PMID: 30323747 PMCID: PMC6172704 DOI: 10.3389/fnbeh.2018.00175] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/27/2018] [Indexed: 11/13/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) refer to a group of noncoding RNAs (ncRNAs) that has a transcript of more than 200 nucleotides in length in eukaryotic cells. The lncRNAs regulate gene expression at epigenetic, transcriptional, and post-transcriptional levels by multiple action modes. In this review, we describe the diverse roles reported for lncRNAs, and discuss how they could mechanistically be involved in the development of central nervous system (CNS) and neurodegenerative diseases. Further studies on the function of lncRNAs and their mechanism will help deepen our understanding of the development, function, and diseases of the CNS, and provide new ideas for the design and development of some therapeutic drugs.
Collapse
Affiliation(s)
- Chang-Wei Wei
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ting Luo
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shan-Shan Zou
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - An-Shi Wu
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Bartoszewski R, Sikorski AF. Editorial focus: entering into the non-coding RNA era. Cell Mol Biol Lett 2018; 23:45. [PMID: 30250489 PMCID: PMC6145373 DOI: 10.1186/s11658-018-0111-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022] Open
Abstract
Recent developments in high-throughput genotyping technologies have revealed the existence of several new classes of RNA that do not encode proteins but serve other cellular roles. To date, these non-coding RNAs (ncRNAs) have been shown to modulate both gene expression and genome remodeling, thus contributing to the control of both normal and disease-related cellular processes. The attraction of this research topic can be seen in the increasing number of submissions on ncRNAs to molecular biology journals, including Cellular Molecular Biology Letters (CMBL). As researchers attempt to deepen the understanding of the role of ncRNAs in cell biology, it is worth discussing the broader importance of this research.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- 1Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Aleksander F Sikorski
- 2Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
15
|
Frías-Lasserre D, Villagra CA, Guerrero-Bosagna C. Stress in the Educational System as a Potential Source of Epigenetic Influences on Children's Development and Behavior. Front Behav Neurosci 2018; 12:143. [PMID: 30057532 PMCID: PMC6053942 DOI: 10.3389/fnbeh.2018.00143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/25/2018] [Indexed: 11/24/2022] Open
Abstract
Despite current advances on the relevance of environmental cues and epigenetic mechanisms in biological processes, including behavior, little attention has been paid to the potential link between epigenetic influences and educational sciences. For instance, could the learning environment and stress determine epigenetic marking, affecting students' behavior development? Could this have consequences on educational outcomes? So far, it has been shown that environmental stress influences neurological processes and behavior both in humans and rats. Through epigenetic mechanisms, offspring from stressed individuals develop altered behavior without any exposure to traumatizing experiences. Methylated DNA and noncoding RNAs regulate neurological processes such as synaptic plasticity and brain cortex development in children. The malfunctioning of these processes is associated with several neurological disorders, and these findings open up new avenues for the design of enriched environments for education and therapy. In this article, we discuss current cases of stress and behavioral disorders found in youngsters, and highlight the importance of considering epigenetic processes affecting the development of cognitive abilities and learning within the educational environment and for the development of teaching methodologies.
Collapse
Affiliation(s)
- Daniel Frías-Lasserre
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Cristian A. Villagra
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | | |
Collapse
|
16
|
Vučićević D, Gehre M, Dhamija S, Friis-Hansen L, Meierhofer D, Sauer S, Ørom UA. The long non-coding RNA PARROT is an upstream regulator of c-Myc and affects proliferation and translation. Oncotarget 2017; 7:33934-47. [PMID: 27129154 PMCID: PMC5085129 DOI: 10.18632/oncotarget.8985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/16/2016] [Indexed: 12/26/2022] Open
Abstract
Long non-coding RNAs are important regulators of gene expression and signaling pathways. The expression of long ncRNAs is dysregulated in cancer and other diseases. The identification and characterization of long ncRNAs is often challenging due to their low expression level and localization to chromatin. Here, we identify a functional long ncRNA, PARROT (Proliferation Associated RNA and Regulator Of Translation) transcribed by RNA polymerase II and expressed at a relatively high level in a number of cell lines. The PARROT long ncRNA is associated with proliferation in both transformed and normal cell lines. We characterize the long ncRNA PARROT as an upstream regulator of c-Myc affecting cellular proliferation and translation using RNA sequencing and mass spectrometry following depletion of the long ncRNA. PARROT is repressed during senescence of human mammary epithelial cells and overexpressed in some cancers, suggesting an important association with proliferation through regulation of c-Myc. With this study, we add to the knowledge of cytoplasmic functional long ncRNAs and extent the long ncRNA-Myc regulatory network in transformed and normal cells.
Collapse
Affiliation(s)
- Dubravka Vučićević
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Maja Gehre
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,EMBL, Heidelberg, Germany
| | - Sonam Dhamija
- Medizinische Hochschule Hannover Institute of Biochemistry, Hannover, Germany.,RNA Biology and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | |
Collapse
|
17
|
Using Human iPSC-Derived Neurons to Uncover Activity-Dependent Non-Coding RNAs. Genes (Basel) 2017; 8:genes8120401. [PMID: 29261115 PMCID: PMC5748719 DOI: 10.3390/genes8120401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 12/27/2022] Open
Abstract
Humans are arguably the most complex organisms present on Earth with their ability to imagine, create, and problem solve. As underlying mechanisms enabling these capacities reside in the brain, it is not surprising that the brain has undergone an extraordinary increase in size and complexity within the last few million years. Human induced pluripotent stem cells (hiPSCs) can be differentiated into many cell types that were virtually inaccessible historically, such as neurons. Here, we used hiPSC-derived neurons to investigate the cellular response to activation at the transcript level. Neuronal activation was performed with potassium chloride (KCl) and its effects were assessed by RNA sequencing. Our results revealed the involvement of long non-coding RNAs and human-specific genetic variants in response to neuronal activation and help validate hiPSCs as a valuable resource for the study of human neuronal networks. In summary, we find that genes affected by KCl-triggered activation are implicated in pathways that drive cell proliferation, differentiation, and the emergence of specialized morphological features. Interestingly, non-coding RNAs of various classes are amongst the most highly expressed genes in activated hiPSC-derived neurons, thus suggesting these play crucial roles in neural pathways and may significantly contribute to the unique functioning of the human brain.
Collapse
|
18
|
Scholz CJ, Weber H, Jungwirth S, Danielczyk W, Reif A, Tragl KH, Fischer P, Riederer P, Deckert J, Grünblatt E. Explorative results from multistep screening for potential genetic risk loci of Alzheimer's disease in the longitudinal VITA study cohort. J Neural Transm (Vienna) 2017; 125:77-87. [PMID: 29027019 DOI: 10.1007/s00702-017-1796-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/04/2017] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that preferentially affects individuals of advanced age. Heritability estimates for AD range between 60 and 80%, but only few genetic risk factors have been identified so far. In the present explorative study, we aimed at characterizing the genetic contribution to late-onset AD in participants of the Vienna Transdanube Aging (VITA) longitudinal birth cohort study in a two-step approach. First, we performed a genome-wide screen of pooled DNA samples (n = 588) to identify allele frequency differences between AD patients and non-AD individuals using life-time diagnoses made at the age of 80 (t = 60 months). This analysis suggested a high proportion of brain-expressed genes required for cell adhesion, cell signaling and cell morphogenesis, and also scored in known AD risk genes. In a second step, we confirmed associations using individual genotypes of top-ranked markers examining AD diagnoses as well as the dimensional scores: FULD and MMSE determined up to the age of 82.5 (t = 90 months). Taken together, our study proposes genes ANKS1B, ENST00000414107, LOC100505811, SLC22A14, QRFPR, ZDHHC8P1, ADAMTS3 and PPFIA1 as possible new candidates involved in the etiology of late-onset AD, with further research being needed to clarify their exact roles.
Collapse
Affiliation(s)
- Claus-Jürgen Scholz
- Core Unit Systems Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Heike Weber
- Department of Psychiatry, Psychosomatics, Psychotherapy, University Hospital Frankfurt/Main, Frankfurt/Main, Germany
- Center of Mental Health, Clinic and Policlinic of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Susanne Jungwirth
- Ludwig Boltzmann Society, L. Boltzmann Institute of Aging Research, Vienna, Austria
- Department of Psychiatry, Social Medicine Center East- Donauspital, Vienna, Austria
| | - Walter Danielczyk
- Ludwig Boltzmann Society, L. Boltzmann Institute of Aging Research, Vienna, Austria
| | - Andreas Reif
- Department of Psychiatry, Psychosomatics, Psychotherapy, University Hospital Frankfurt/Main, Frankfurt/Main, Germany
| | - Karl-Heinz Tragl
- Ludwig Boltzmann Society, L. Boltzmann Institute of Aging Research, Vienna, Austria
| | - Peter Fischer
- Ludwig Boltzmann Society, L. Boltzmann Institute of Aging Research, Vienna, Austria
- Department of Psychiatry, Social Medicine Center East- Donauspital, Vienna, Austria
| | - Peter Riederer
- Center of Mental Health, Clinic and Policlinic of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Jürgen Deckert
- Center of Mental Health, Clinic and Policlinic of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Edna Grünblatt
- Center of Mental Health, Clinic and Policlinic of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany.
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Wagistrasse 12, Schlieren, 8952, Zurich, Switzerland.
| |
Collapse
|
19
|
Quan Z, Zheng D, Qing H. Regulatory Roles of Long Non-Coding RNAs in the Central Nervous System and Associated Neurodegenerative Diseases. Front Cell Neurosci 2017; 11:175. [PMID: 28713244 PMCID: PMC5491930 DOI: 10.3389/fncel.2017.00175] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/09/2017] [Indexed: 12/12/2022] Open
Abstract
Accumulating studies have revealed that the human genome encodes tens of thousands of long non-coding RNAs (lncRNAs), which participate in multiple biological networks modulating gene expression via transcriptional, post-transcriptional and epigenetic regulation. Strikingly, a large fraction of tissue-specific lncRNAs are expressed in the Central Nervous System (CNS) with precisely regulated temporal and spatial expression patterns. These brain-specific lncRNAs are also featured with the cell-type specificity, the highest signals of evolutionary conservation, and their preferential location adjacent to brain-expressed protein-coding genes. Mounting evidence has indicated dysregulation or mutations in lncRNA gene loci are associated with a variety of CNS-associated neurodegenerative disorders, such as Alzheimer's, Parkinson's, Huntington's diseases, Amyotrophic Lateral Sclerosis and others. However, how lncRNAs contribute to these disorders remains to be further explored and studied. In this review article, we systematically and comprehensively summarize the current studies of lncRNAs, demonstrate the specificity of lncRNAs expressed in the brain, their functions during neural development and expression profiles in major cell types of the CNS, highlight the regulatory mechanisms of several studied lncRNAs that may play essential roles in the pathophysiology of neurodegenerative diseases, and discuss the current challenges and future perspectives of lncRNA studies involved in neurodegenerative and other diseases.
Collapse
Affiliation(s)
- Zhenzhen Quan
- School of Life Science, Beijing Institute of TechnologyBeijing, China
| | - Da Zheng
- School of Life Science, Beijing Institute of TechnologyBeijing, China
| | - Hong Qing
- School of Life Science, Beijing Institute of TechnologyBeijing, China
| |
Collapse
|
20
|
Liao Q, Wang Y, Cheng J, Dai D, Zhou X, Zhang Y, Li J, Yin H, Gao S, Duan S. DNA methylation patterns of protein-coding genes and long non-coding RNAs in males with schizophrenia. Mol Med Rep 2016; 12:6568-76. [PMID: 26503909 PMCID: PMC4626154 DOI: 10.3892/mmr.2015.4249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 04/20/2015] [Indexed: 01/06/2023] Open
Abstract
Schizophrenia (SCZ) is one of the most complex mental illnesses affecting ~1% of the population worldwide. SCZ pathogenesis is considered to be a result of genetic as well as epigenetic alterations. Previous studies have aimed to identify the causative genes of SCZ. However, DNA methylation of long non-coding RNAs (lncRNAs) involved in SCZ has not been fully elucidated. In the present study, a comprehensive genome-wide analysis of DNA methylation was conducted using samples from two male patients with paranoid and undifferentiated SCZ, respectively. Methyl-CpG binding domain protein-enriched genome sequencing was used. In the two patients with paranoid and undifferentiated SCZ, 1,397 and 1,437 peaks were identified, respectively. Bioinformatic analysis demonstrated that peaks were enriched in protein-coding genes, which exhibited nervous system and brain functions. A number of these peaks in gene promoter regions may affect gene expression and, therefore, influence SCZ-associated pathways. Furthermore, 7 and 20 lncRNAs, respectively, in the Refseq database were hypermethylated. According to the lncRNA dataset in the NONCODE database, ~30% of intergenic peaks overlapped with novel lncRNA loci. The results of the present study demonstrated that aberrant hypermethylation of lncRNA genes may be an important epigenetic factor associated with SCZ. However, further studies using larger sample sizes are required.
Collapse
|
21
|
Pian C, Zhang G, Chen Z, Chen Y, Zhang J, Yang T, Zhang L. LncRNApred: Classification of Long Non-Coding RNAs and Protein-Coding Transcripts by the Ensemble Algorithm with a New Hybrid Feature. PLoS One 2016; 11:e0154567. [PMID: 27228152 PMCID: PMC4882039 DOI: 10.1371/journal.pone.0154567] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 04/15/2016] [Indexed: 12/31/2022] Open
Abstract
As a novel class of noncoding RNAs, long noncoding RNAs (lncRNAs) have been verified to be associated with various diseases. As large scale transcripts are generated every year, it is significant to accurately and quickly identify lncRNAs from thousands of assembled transcripts. To accurately discover new lncRNAs, we develop a classification tool of random forest (RF) named LncRNApred based on a new hybrid feature. This hybrid feature set includes three new proposed features, which are MaxORF, RMaxORF and SNR. LncRNApred is effective for classifying lncRNAs and protein coding transcripts accurately and quickly. Moreover,our RF model only requests the training using data on human coding and non-coding transcripts. Other species can also be predicted by using LncRNApred. The result shows that our method is more effective compared with the Coding Potential Calculate (CPC). The web server of LncRNApred is available for free at http://mm20132014.wicp.net:57203/LncRNApred/home.jsp.
Collapse
Affiliation(s)
- Cong Pian
- Department of Mathematics, College of Science, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Guangle Zhang
- Department of Mathematics, College of Science, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Zhi Chen
- Department of Mathematics, College of Science, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Yuanyuan Chen
- Department of Mathematics, College of Science, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Jin Zhang
- Department of Mathematics, College of Science, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Tao Yang
- Department of Mathematics, College of Science, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Liangyun Zhang
- Department of Mathematics, College of Science, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
22
|
Brečević L, Rinčić M, Krsnik Ž, Sedmak G, Hamid AB, Kosyakova N, Galić I, Liehr T, Borovečki F. Association of new deletion/duplication region at chromosome 1p21 with intellectual disability, severe speech deficit and autism spectrum disorder-like behavior: an all-in approach to solving the DPYD enigma. Transl Neurosci 2015; 6:59-86. [PMID: 28123791 PMCID: PMC4936614 DOI: 10.1515/tnsci-2015-0007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/29/2014] [Indexed: 12/14/2022] Open
Abstract
We describe an as yet unreported neocentric small supernumerary marker chromosome (sSMC) derived from chromosome 1p21.3p21.2. It was present in 80% of the lymphocytes in a male patient with intellectual disability, severe speech deficit, mild dysmorphic features, and hyperactivity with elements of autism spectrum disorder (ASD). Several important neurodevelopmental genes are affected by the 3.56 Mb copy number gain of 1p21.3p21.2, which may be considered reciprocal in gene content to the recently recognized 1p21.3 microdeletion syndrome. Both 1p21.3 deletions and the presented duplication display overlapping symptoms, fitting the same disorder category. Contribution of coding and non-coding genes to the phenotype is discussed in the light of cellular and intercellular homeostasis disequilibrium. In line with this the presented 1p21.3p21.2 copy number gain correlated to 1p21.3 microdeletion syndrome verifies the hypothesis of a cumulative effect of the number of deregulated genes - homeostasis disequilibrium leading to overlapping phenotypes between microdeletion and microduplication syndromes. Although miR-137 appears to be the major player in the 1p21.3p21.2 region, deregulation of the DPYD (dihydropyrimidine dehydrogenase) gene may potentially affect neighboring genes underlying the overlapping symptoms present in both the copy number loss and copy number gain of 1p21. Namely, the all-in approach revealed that DPYD is a complex gene whose expression is epigenetically regulated by long non-coding RNAs (lncRNAs) within the locus. Furthermore, the long interspersed nuclear element-1 (LINE-1) L1MC1 transposon inserted in DPYD intronic transcript 1 (DPYD-IT1) lncRNA with its parasites, TcMAR-Tigger5b and pair of Alu repeats appears to be the “weakest link” within the DPYD gene liable to break. Identification of the precise mechanism through which DPYD is epigenetically regulated, and underlying reasons why exactly the break (FRA1E) happens, will consequently pave the way toward preventing severe toxicity to the antineoplastic drug 5-fluorouracil (5-FU) and development of the causative therapy for the dihydropyrimidine dehydrogenase deficiency.
Collapse
Affiliation(s)
- Lukrecija Brečević
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb Medical School, University Hospital Center Zagreb, Šalata 2, 10000 Zagreb, Croatia
- E-mail: ;
| | - Martina Rinčić
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb Medical School, University Hospital Center Zagreb, Šalata 2, 10000 Zagreb, Croatia
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Željka Krsnik
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
| | - Goran Sedmak
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
| | - Ahmed B. Hamid
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Nadezda Kosyakova
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Ivan Galić
- Center for Rehabilitation Stančić, Stančić bb, 10370 Stančić, Croatia
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Fran Borovečki
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb Medical School, University Hospital Center Zagreb, Šalata 2, 10000 Zagreb, Croatia
| |
Collapse
|
23
|
Villegas VE, Zaphiropoulos PG. Neighboring gene regulation by antisense long non-coding RNAs. Int J Mol Sci 2015; 16:3251-66. [PMID: 25654223 PMCID: PMC4346893 DOI: 10.3390/ijms16023251] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/22/2015] [Indexed: 02/06/2023] Open
Abstract
Antisense transcription, considered until recently as transcriptional noise, is a very common phenomenon in human and eukaryotic transcriptomes, operating in two ways based on whether the antisense RNA acts in cis or in trans. This process can generate long non-coding RNAs (lncRNAs), one of the most diverse classes of cellular transcripts, which have demonstrated multifunctional roles in fundamental biological processes, including embryonic pluripotency, differentiation and development. Antisense lncRNAs have been shown to control nearly every level of gene regulation—pretranscriptional, transcriptional and posttranscriptional—through DNA–RNA, RNA–RNA or protein–RNA interactions. This review is centered on functional studies of antisense lncRNA-mediated regulation of neighboring gene expression. Specifically, it addresses how these transcripts interact with other biological molecules, nucleic acids and proteins, to regulate gene expression through chromatin remodeling at the pretranscriptional level and modulation of transcriptional and post-transcriptional processes by altering the sense mRNA structure or the cellular compartmental distribution, either in the nucleus or the cytoplasm.
Collapse
Affiliation(s)
- Victoria E Villegas
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 14183, Sweden.
- Faculty of Natural Sciences and Mathematics & Doctoral Program in Biomedical Sciences, Universidad del Rosario, Bogotá 11001000, Colombia.
| | - Peter G Zaphiropoulos
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 14183, Sweden.
| |
Collapse
|
24
|
Huang Y, Regazzi R, Cho WC. Out of darkness: long non-coding RNAs come of age. Front Genet 2014; 5:388. [PMID: 25426139 PMCID: PMC4224122 DOI: 10.3389/fgene.2014.00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/22/2014] [Indexed: 11/28/2022] Open
Affiliation(s)
- Yingqun Huang
- Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine New Haven, CT, USA
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne Lausanne, Switzerland
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital Kowloon, Hong Kong
| |
Collapse
|
25
|
Agustín-Pavón C, Isalan M. Synthetic biology and therapeutic strategies for the degenerating brain: Synthetic biology approaches can transform classical cell and gene therapies, to provide new cures for neurodegenerative diseases. Bioessays 2014; 36:979-90. [PMID: 25100403 PMCID: PMC4312882 DOI: 10.1002/bies.201400094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Synthetic biology is an emerging engineering discipline that attempts to design and rewire biological components, so as to achieve new functions in a robust and predictable manner. The new tools and strategies provided by synthetic biology have the potential to improve therapeutics for neurodegenerative diseases. In particular, synthetic biology will help design small molecules, proteins, gene networks, and vectors to target disease-related genes. Ultimately, new intelligent delivery systems will provide targeted and sustained therapeutic benefits. New treatments will arise from combining ‘protect and repair’ strategies: the use of drug treatments, the promotion of neurotrophic factor synthesis, and gene targeting. Going beyond RNAi and artificial transcription factors, site-specific genome modification is likely to play an increasing role, especially with newly available gene editing tools such as CRISPR/Cas9 systems. Taken together, these advances will help develop safe and long-term therapies for many brain diseases in human patients.
Collapse
|