1
|
Mohammedsaeed W. Exploring the interplay between DHCR7, vitamin D deficiency, and type 2 diabetes mellitus (T2DM): a systematic review. Mol Biol Rep 2024; 51:1123. [PMID: 39503960 DOI: 10.1007/s11033-024-10072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a growing global health concern. The pathogenesis of T2DM is multifactorial and intricate, involving a complex interplay of genetic predisposition, environmental factors, and molecular interactions. Vitamin D (circulating 25-hydroxyvitamin D concentration) regulates factors crucial for T2DM, including insulin secretion, sensitivity, and inflammation. Thus, vitamin D deficiency has been linked to poor health outcomes in T2DM patients. The cholesterol-synthesizing enzyme 7-dehydrocholesterol reductase (DHCR7) represents a critical regulatory switch between cholesterol and vitamin D3 synthesis. Recent findings suggest that the enzyme DHCR7 may indicate T2DM glycolipid metabolic disorder and is associated with deficient circulating vitamin D (circulating 25-hydroxyvitamin D concentration) status. In this PRISMA-guided systematic review, articles were sourced from two databases, namely, PubMed and Cochrane Library, to evaluate the impact of vitamin D deficiency in patients with T2DM and to explore the emerging role of DHCR7 in T2DM pathogenesis. Our findings strongly indicate a positive correlation between deficient vitamin D status and poor health outcomes in T2DM patients. Finally, this systematic review presents a novel perspective on T2DM development, focusing on the interplay between T2DM-associated hyperglycemia, expression of DHCR7, and abrogation of vitamin D synthesis.
Collapse
Affiliation(s)
- Walaa Mohammedsaeed
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Science, Taibah University, 344, Postal Code 3000, Al-Madinah, Saudi Arabia.
| |
Collapse
|
2
|
Yang S, Ye Z, Ning J, Wang P, Zhou X, Li W, Cheng F. Cholesterol Metabolism and Urinary System Tumors. Biomedicines 2024; 12:1832. [PMID: 39200296 PMCID: PMC11351655 DOI: 10.3390/biomedicines12081832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Cancers of the urinary system account for 13.1% of new cancer cases and 7.9% of cancer-related deaths. Of them, renal cancer, bladder cancer, and prostate cancer are most prevalent and pose a substantial threat to human health and the quality of life. Prostate cancer is the most common malignant tumor in the male urinary system. It is the second most common type of malignant tumor in men, with lung cancer surpassing its incidence and mortality. Bladder cancer has one of the highest incidences and is sex-related, with men reporting a significantly higher incidence than women. Tumor development in the urinary system is associated with factors, such as smoking, obesity, high blood pressure, diet, occupational exposure, and genetics. The treatment strategies primarily involve surgery, radiation therapy, and chemotherapy. Cholesterol metabolism is a crucial physiological process associated with developing and progressing urinary system tumors. High cholesterol levels are closely associated with tumor occurrence, invasion, and metastasis. This warrants thoroughly investigating the role of cholesterol metabolism in urinary system tumors and identifying novel treatment methods for the prevention, early diagnosis, targeted treatment, and drug resistance of urinary system tumors.
Collapse
Affiliation(s)
- Songyuan Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.Y.); (Z.Y.); (J.N.); (P.W.); (X.Z.)
| | - Zehua Ye
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.Y.); (Z.Y.); (J.N.); (P.W.); (X.Z.)
| | - Jinzhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.Y.); (Z.Y.); (J.N.); (P.W.); (X.Z.)
| | - Peihan Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.Y.); (Z.Y.); (J.N.); (P.W.); (X.Z.)
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.Y.); (Z.Y.); (J.N.); (P.W.); (X.Z.)
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.Y.); (Z.Y.); (J.N.); (P.W.); (X.Z.)
| |
Collapse
|
3
|
Yadav P, Bandyopadhayaya S, Soni S, Saini S, Sharma LK, Shrivastava SK, Mandal CC. Simvastatin prevents BMP-2 driven cell migration and invasion by suppressing oncogenic DNMT1 expression in breast cancer cells. Gene 2023; 882:147636. [PMID: 37442305 DOI: 10.1016/j.gene.2023.147636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Both epigenetic and genetic changes in the cancer genome act simultaneously to promote tumor development and metastasis. Aberrant DNA methylation, a prime epigenetic event, is often observed in various cancer types. The elevated DNA methyltransferase 1 (DNMT1) enzyme creates DNA hypermethylation at CpG islands to drive oncogenic potential. This study emphasized to decipher the molecular mechanism of endogenous regulation of DNMT1 expression for finding upstream signaling molecules. Cancer database analyses found an upregulated DNMT1 expression in most cancer types including breast cancer. Overexpression of DNMT1 showed an increased cell migration, invasion, and stemness potential whereas 5-azacytidine (DNMT1 inhibitor) and siRNA mediated knockdown of DNMT1 exhibited inhibition of such cancer activities in breast cancer MDA-MB-231 and MCF-7 cells. Infact, cancer database analyses further found a positive correlation of DNMT1 transcript with both cholesterol pathway regulatory genes and BMP signaling molecules. Experimental observations documented that the cholesterol-lowering drug, simvastatin decreased DNMT1 transcript as well as protein, whereas BMP-2 treatment increased DNMT1 expression in breast cancer cells. In addition, expression of various key cholesterol regulatory genes was found to be upregulated in response to BMP-2 treatment. Moreover, simvastatin inhibited BMP-2 induced DNMT1 expression in breast cancer cells. Thus, this study for the first time reveals that both BMP-2 signaling and cholesterol pathways could regulate endogenous DNMT1 expression in cancer cells.
Collapse
Affiliation(s)
- Pooja Yadav
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, Rajasthan, India
| | - Shreetama Bandyopadhayaya
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, Rajasthan, India
| | - Sneha Soni
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, Rajasthan, India
| | - Sunil Saini
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Lokendra K Sharma
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, U.P., India
| | - Sandeep K Shrivastava
- Centre for Innovation, Research & Development, Dr. B. Lal Clinical Laboratory Pvt Ltd. Jaipur, Rajasthan, India
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, Rajasthan, India.
| |
Collapse
|
4
|
Prakhar P, Bhatt B, Lohia GK, Shah A, Mukherjee T, Kolthur-Seetharam U, Sundaresan NR, Rajmani RS, Balaji KN. G9a and Sirtuin6 epigenetically modulate host cholesterol accumulation to facilitate mycobacterial survival. PLoS Pathog 2023; 19:e1011731. [PMID: 37871034 PMCID: PMC10621959 DOI: 10.1371/journal.ppat.1011731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/02/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023] Open
Abstract
Cholesterol derived from the host milieu forms a critical factor for mycobacterial pathogenesis. However, the molecular circuitry co-opted by Mycobacterium tuberculosis (Mtb) to accumulate cholesterol in host cells remains obscure. Here, we report that the coordinated action of WNT-responsive histone modifiers G9a (H3K9 methyltransferase) and SIRT6 (H3K9 deacetylase) orchestrate cholesterol build-up in in vitro and in vivo mouse models of Mtb infection. Mechanistically, G9a, along with SREBP2, drives the expression of cholesterol biosynthesis and uptake genes; while SIRT6 along with G9a represses the genes involved in cholesterol efflux. The accumulated cholesterol in Mtb infected macrophages promotes the expression of antioxidant genes leading to reduced oxidative stress, thereby supporting Mtb survival. In corroboration, loss-of-function of G9a in vitro and pharmacological inhibition in vivo; or utilization of BMDMs derived from Sirt6-/- mice or in vivo infection in haplo-insufficient Sirt6-/+ mice; hampered host cholesterol accumulation and restricted Mtb burden. These findings shed light on the novel roles of G9a and SIRT6 during Mtb infection and highlight the previously unknown contribution of host cholesterol in potentiating anti-oxidative responses for aiding Mtb survival.
Collapse
Affiliation(s)
- Praveen Prakhar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Bharat Bhatt
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Gaurav Kumar Lohia
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Awantika Shah
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Tanushree Mukherjee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ullas Kolthur-Seetharam
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Nagalingam R. Sundaresan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Raju S. Rajmani
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore–, Karnataka, India
| | | |
Collapse
|
5
|
Mou HZ, Pan J, Zhao CL, Xing L, Mo Y, Kang B, Chen HY, Xu JJ. Nanometer Resolution Mass Spectro-Microtomography for In-Depth Anatomical Profiling of Single Cells. ACS NANO 2023. [PMID: 37184339 DOI: 10.1021/acsnano.3c01449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Visually identifying the molecular changes in single cells is of great importance for unraveling fundamental cellular functions as well as disease mechanisms. Herein, we demonstrated a mass spectro-microtomography with an optimal voxel resolution of ∼300 × 300 × 25 nm3, which enables three-dimensional tomography of chemical substances in single cells. This mass imaging method allows for the distinguishment of abundant endogenous and exogenous molecules in subcellular structures. Combined with statistical analysis, we demonstrated this method for spatial metabolomics analysis of drug distribution and subsequent molecular damages caused by intracellular drug action. More interestingly, thanks to the nanoprecision ablation depth (∼12 nm), we realized metabolomics profiling of cell membrane without the interference of cytoplasm and improved the distinction of cancer cells from normal cells. Our current method holds great potential to be a powerful tool for spatially resolved single-cell metabolomics analysis of chemical components during complex biological processes.
Collapse
Affiliation(s)
- Han-Zhang Mou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jianbin Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Cong-Lin Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lei Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuxiang Mo
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Shang Y, Sun X, Chen X, Wang Q, Wang EJ, Miller E, Xu R, Pieper AA, Qi X. A CHCHD6-APP axis connects amyloid and mitochondrial pathology in Alzheimer's disease. Acta Neuropathol 2022; 144:911-938. [PMID: 36104602 PMCID: PMC9547808 DOI: 10.1007/s00401-022-02499-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 01/26/2023]
Abstract
The mechanistic relationship between amyloid-beta precursor protein (APP) processing and mitochondrial dysfunction in Alzheimer's disease (AD) has long eluded the field. Here, we report that coiled-coil-helix-coiled-coil-helix domain containing 6 (CHCHD6), a core protein of the mammalian mitochondrial contact site and cristae organizing system, mechanistically connects these AD features through a circular feedback loop that lowers CHCHD6 and raises APP processing. In cellular and animal AD models and human AD brains, the APP intracellular domain fragment inhibits CHCHD6 transcription by binding its promoter. CHCHD6 and APP bind and stabilize one another. Reduced CHCHD6 enhances APP accumulation on mitochondria-associated ER membranes and accelerates APP processing, and induces mitochondrial dysfunction and neuronal cholesterol accumulation, promoting amyloid pathology. Compensation for CHCHD6 loss in an AD mouse model reduces AD-associated neuropathology and cognitive impairment. Thus, CHCHD6 connects APP processing and mitochondrial dysfunction in AD. This provides a potential new therapeutic target for patients.
Collapse
Affiliation(s)
- Yutong Shang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave, E516, Cleveland, OH, 44106-4970, USA
| | - Xiaoyan Sun
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave, E516, Cleveland, OH, 44106-4970, USA
| | - Xiaoqin Chen
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave, E516, Cleveland, OH, 44106-4970, USA
| | - Quanqiu Wang
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Evan J Wang
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Beachwood High School, Beachwood, OH, 44122, USA
| | - Emiko Miller
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
- Department of Psychiatry, Geriatric Research Education and Clinical Centers, Case Western Reserve University, Louis Stokes Cleveland VAMC, Cleveland, OH, 44106, USA
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
- Department of Psychiatry, Geriatric Research Education and Clinical Centers, Case Western Reserve University, Louis Stokes Cleveland VAMC, Cleveland, OH, 44106, USA
| | - Xin Qi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave, E516, Cleveland, OH, 44106-4970, USA.
| |
Collapse
|
7
|
Epigenetic regulation of fetal brain development in pig. Gene 2022; 844:146823. [PMID: 35988784 DOI: 10.1016/j.gene.2022.146823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/27/2022] [Accepted: 08/15/2022] [Indexed: 02/01/2023]
Abstract
How fetal brain development is regulated at the molecular level is not well understood. Due to ethical challenges associated with research on the human fetus, large animals particularly pigs are increasingly used to study development and disorders of fetal brain. The pig fetal brain grows rapidly during the last ∼ 50 days before birth which is around day 60 (d60) of pig gestation. But what regulates the onset of accelerated growth of the brain is unknown. The current study tests the hypothesis that epigenetic alteration around d60 is involved in the onset of rapid growth of fetal brain of pig. To test this hypothesis, DNA methylation changes of fetal brain was assessed in a genome-wide manner by Enzymatic Methyl-seq (EM-seq) during two gestational periods (GP): d45 vs. d60 (GP1) and d60 vs. d90 (GP2). The cytosine-guanine (CpG) methylation data was analyzed in an integrative manner with the RNA-seq data generated from the same brain samples from our earlier study. A neural network based modeling approach was implemented to learn changes in methylation patterns of the differentially expressed genes, and then predict methylations of the brain in a genome-wide manner during rapid growth. This approach identified specific methylations that changed in a mutually informative manner during rapid growth of the fetal brain. These methylations were significantly overrepresented in specific genic as well as intergenic features including CpG islands, introns, and untranslated regions. In addition, sex-bias methylations of known single nucleotide polymorphic sites were also identified in the fetal brain ide during rapid growth.
Collapse
|
8
|
Duan Y, Gong K, Xu S, Zhang F, Meng X, Han J. Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics. Signal Transduct Target Ther 2022; 7:265. [PMID: 35918332 PMCID: PMC9344793 DOI: 10.1038/s41392-022-01125-5] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 12/13/2022] Open
Abstract
Disturbed cholesterol homeostasis plays critical roles in the development of multiple diseases, such as cardiovascular diseases (CVD), neurodegenerative diseases and cancers, particularly the CVD in which the accumulation of lipids (mainly the cholesteryl esters) within macrophage/foam cells underneath the endothelial layer drives the formation of atherosclerotic lesions eventually. More and more studies have shown that lowering cholesterol level, especially low-density lipoprotein cholesterol level, protects cardiovascular system and prevents cardiovascular events effectively. Maintaining cholesterol homeostasis is determined by cholesterol biosynthesis, uptake, efflux, transport, storage, utilization, and/or excretion. All the processes should be precisely controlled by the multiple regulatory pathways. Based on the regulation of cholesterol homeostasis, many interventions have been developed to lower cholesterol by inhibiting cholesterol biosynthesis and uptake or enhancing cholesterol utilization and excretion. Herein, we summarize the historical review and research events, the current understandings of the molecular pathways playing key roles in regulating cholesterol homeostasis, and the cholesterol-lowering interventions in clinics or in preclinical studies as well as new cholesterol-lowering targets and their clinical advances. More importantly, we review and discuss the benefits of those interventions for the treatment of multiple diseases including atherosclerotic cardiovascular diseases, obesity, diabetes, nonalcoholic fatty liver disease, cancer, neurodegenerative diseases, osteoporosis and virus infection.
Collapse
Affiliation(s)
- Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Ke Gong
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Suowen Xu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Feng Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xianshe Meng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jihong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China. .,College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| |
Collapse
|
9
|
Cheng W, Ramachandran S, Crawford L. Uncertainty quantification in variable selection for genetic fine-mapping using bayesian neural networks. iScience 2022; 25:104553. [PMID: 35769876 PMCID: PMC9234235 DOI: 10.1016/j.isci.2022.104553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/09/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023] Open
Abstract
In this paper, we propose a new approach for variable selection using a collection of Bayesian neural networks with a focus on quantifying uncertainty over which variables are selected. Motivated by fine-mapping applications in statistical genetics, we refer to our framework as an "ensemble of single-effect neural networks" (ESNN) which generalizes the "sum of single effects" regression framework by both accounting for nonlinear structure in genotypic data (e.g., dominance effects) and having the capability to model discrete phenotypes (e.g., case-control studies). Through extensive simulations, we demonstrate our method's ability to produce calibrated posterior summaries such as credible sets and posterior inclusion probabilities, particularly for traits with genetic architectures that have significant proportions of non-additive variation driven by correlated variants. Lastly, we use real data to demonstrate that the ESNN framework improves upon the state of the art for identifying true effect variables underlying various complex traits.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Computer Science, Brown University, Providence, RI, USA
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Sohini Ramachandran
- Department of Computer Science, Brown University, Providence, RI, USA
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Lorin Crawford
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Department of Biostatistics, Brown University, Providence, RI, USA
- Microsoft Research New England, Cambridge, MA, USA
| |
Collapse
|
10
|
Takahashi M, Kinoshita T, Maruyama K, Suzuki T. CYP7A1, NPC1L1, ABCB1, and CD36 Polymorphisms Associated with Coenzyme Q10 Availability Affect the Subjective Quality of Life Score (SF-36) after Long-Term CoQ10 Supplementation in Women. Nutrients 2022; 14:nu14132579. [PMID: 35807759 PMCID: PMC9268390 DOI: 10.3390/nu14132579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
The single nucleotide polymorphisms (SNPs) rs3808607, rs2072183, rs2032582, and rs1761667 are associated with coenzyme Q10 (CoQ10) bioavailability in women after long-term CoQ10 supplementation. However, the beneficial aspects of the association between these SNPs and CoQ10 supplementation remain unknown. We investigated their relationship using the subjective quality of life score SF-36 by reanalyzing previous data from 92 study participants who were receiving ubiquinol (a reduced form of CoQ10) supplementation for 1 year. Two-way repeated-measures analysis of variance revealed a significant interaction between rs1761667 and the SF-36 scores of role physical (p = 0.016) and mental health (p = 0.017) in women. Subgrouping of participants based on the above four SNPs revealed significant interactions between these SNPs and the SF-36 scores of general health (p = 0.045), role emotional (p = 0.008), and mental health (p = 0.019) and increased serum CoQ10 levels (p = 0.008), suggesting that the benefits of CoQ10 supplementation, especially in terms of psychological parameters, are genotype-dependent in women. However, significant interactions were not observed in men. Therefore, inclusion of SNP subgrouping information in clinical trials of CoQ10 supplementation may provide conclusive evidence supporting other beneficial health effects exerted by the association between these SNPs and CoQ10 on women.
Collapse
Affiliation(s)
- Michiyo Takahashi
- Graduate School of Human Ecology, Wayo Women’s University, 2-3-1 Konodai, Ichikawa 272-8533, Chiba, Japan;
| | - Tetsu Kinoshita
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Ehime, Japan; (T.K.); (K.M.)
- Social Epidemiology Institute, Institute of Community Life Science Co., Ltd., 1383-2 Hiramachi, Matsuyama 791-0243, Ehime, Japan
| | - Koutatsu Maruyama
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Ehime, Japan; (T.K.); (K.M.)
| | - Toshikazu Suzuki
- Graduate School of Human Ecology, Wayo Women’s University, 2-3-1 Konodai, Ichikawa 272-8533, Chiba, Japan;
- Department of Health and Nutrition, Wayo Women’s University, 2-3-1 Konodai, Ichikawa 272-8533, Chiba, Japan
- Correspondence: ; Tel.: +81-47-371-1547
| |
Collapse
|
11
|
Léger-Charnay E, Gambert S, Martine L, Dubus E, Maire MA, Buteau B, Morala T, Gigot V, Bron AM, Bretillon L, Masson EAY. Retinal cholesterol metabolism is perturbated in response to experimental glaucoma in the rat. PLoS One 2022; 17:e0264787. [PMID: 35275950 PMCID: PMC8916636 DOI: 10.1371/journal.pone.0264787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/16/2022] [Indexed: 01/26/2023] Open
Abstract
Alterations of cholesterol metabolism have been described for many neurodegenerative pathologies, such as Alzheimer's disease in the brain and age-related macular degeneration in the retina. Recent evidence suggests that glaucoma, which is characterized by the progressive death of retinal ganglion cells, could also be associated with disruption of cholesterol homeostasis. In the present study we characterized cholesterol metabolism in a rat model of laser-induced intraocular hypertension, the main risk factor for glaucoma. Sterol levels were measured using gas-chromatography and cholesterol-related gene expression using quantitative RT-PCR at various time-points. As early as 18 hours after the laser procedure, genes implicated in cholesterol biosynthesis and uptake were upregulated (+49% and +100% for HMG-CoA reductase and LDLR genes respectively, vs. naive eyes) while genes involved in efflux were downregulated (-26% and -37% for ApoE and CYP27A1 genes, respectively). Cholesterol and precursor levels were consecutively elevated 3 days post-laser (+14%, +40% and +194% for cholesterol, desmosterol and lathosterol, respectively). Interestingly, counter-regulatory mechanisms were transcriptionally activated following these initial dysregulations, which were associated with the restoration of retinal cholesterol homeostasis, favorable to ganglion cell viability, one month after the laser-induced ocular hypertension. In conclusion, we report here for the first time that ocular hypertension is associated with transient major dynamic changes in retinal cholesterol metabolism.
Collapse
Affiliation(s)
- Elise Léger-Charnay
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Ségolène Gambert
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
- Laboratoire de Biochimie Médicale, Plateforme de Biologie Hospitalo-Universitaire, Dijon, France
| | - Lucy Martine
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Elisabeth Dubus
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Marie-Annick Maire
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Bénédicte Buteau
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Tristan Morala
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Vincent Gigot
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Alain M. Bron
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
- Département d’Ophtalmologie, Centre Hospitalo-Universitaire de Dijon, Dijon, France
| | - Lionel Bretillon
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Elodie A. Y. Masson
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
- * E-mail:
| |
Collapse
|
12
|
Schuldt L, Reimann M, von Brandenstein K, Steinmetz J, Döding A, Schulze-Späte U, Jacobs C, Symmank J. Palmitate-Triggered COX2/PGE2-Related Hyperinflammation in Dual-Stressed PdL Fibroblasts Is Mediated by Repressive H3K27 Trimethylation. Cells 2022; 11:955. [PMID: 35326406 PMCID: PMC8946768 DOI: 10.3390/cells11060955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/08/2023] Open
Abstract
The interrelationships between periodontal disease, obesity-related hyperlipidemia and mechanical forces and their modulating effects on the epigenetic profile of periodontal ligament (PdL) cells are assumed to be remarkably complex. The PdL serves as a connective tissue between teeth and alveolar bone and is involved in pathogen defense and the inflammatory responses to mechanical stimuli occurring during tooth movement. Altered inflammatory signaling could promote root resorption and tooth loss. Hyperinflammatory COX2/PGE2 signaling was reported for human PdL fibroblasts (HPdLFs) concomitantly stressed with Porphyromonas gingivalis lipopolysaccharides and compressive force after exposure to palmitic acid (PA). The aim of this study was to investigate the extent to which this was modulated by global and gene-specific changes in histone modifications. The expression of key epigenetic players and global H3Kac and H3K27me3 levels were quantitatively evaluated in dual-stressed HPdLFs exposed to PA, revealing a minor force-related reduction in repressive H3K27me3. UNC1999-induced H3K27me3 inhibition reversed the hyperinflammatory responses of dual-stressed PA cultures characterized by increased COX2 expression, PGE2 secretion and THP1 adhesion. The reduced expression of the gene encoding the anti-inflammatory cytokine IL-10 and the increased presence of H3K27me3 at its promoter-associated sites were reversed by inhibitor treatment. Thus, the data highlight an important epigenetic interplay between the different stimuli to which the PdL is exposed.
Collapse
Affiliation(s)
- Lisa Schuldt
- Orthodontic Research Laboratory, Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (L.S.); (K.v.B.); (J.S.)
| | - Michael Reimann
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (M.R.); (A.D.); (U.S.-S.)
| | - Katrin von Brandenstein
- Orthodontic Research Laboratory, Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (L.S.); (K.v.B.); (J.S.)
| | - Julia Steinmetz
- Orthodontic Research Laboratory, Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (L.S.); (K.v.B.); (J.S.)
| | - Annika Döding
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (M.R.); (A.D.); (U.S.-S.)
| | - Ulrike Schulze-Späte
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (M.R.); (A.D.); (U.S.-S.)
| | - Collin Jacobs
- Center for Dental, Oral and Maxillofacial Medicine, Department of Orthodontics, University Hospital Jena, 07743 Jena, Germany;
| | - Judit Symmank
- Orthodontic Research Laboratory, Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (L.S.); (K.v.B.); (J.S.)
| |
Collapse
|
13
|
Chang M, Kumar A, Kumar S, Huhn S, Timp W, Betenbaugh M, Du Z. Epigenetic Comparison of CHO Hosts and Clones Reveals Divergent Methylation and Transcription Patterns Across Lineages. Biotechnol Bioeng 2022; 119:1062-1076. [PMID: 35028935 DOI: 10.1002/bit.28036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/08/2021] [Accepted: 12/26/2021] [Indexed: 11/11/2022]
Abstract
In this study, we examined DNA methylation and transcription profiles of recombinant clones derived from two different Chinese hamster ovary hosts. We found striking epigenetic differences between the clones, with global hypomethylation in the host 1 clones that produce bispecific antibody with higher productivity and complex assembly efficiency. Whereas the methylation patterns were found mostly inherited from the host, the host 1 clones exhibited continued demethylation reflected by the hypomethylation of newly emerged differential methylation regions (DMRs) even at the clone development stage. Several interconnected biological functions and pathways including cell adhesion, regulation of ion transport, and cholesterol biosynthesis were significantly altered between the clones at the RNA expression level and contained DMR in the promoter and/or gene-body of the transcripts, suggesting epigenetic regulation. Indeed, expression changes of epigenetic regulators were observed including writers (Dnmt1, Setdb1), readers (Mecp2), and erasers (Tet3, Kdm3a, Kdm1b/5c) involved in CpG methylation, histone methylation and heterochromatin maintenance. In addition, we identified putative transcription factors that may be readers or effectors of the epigenetic regulation in these clones. By combining transcriptomics with DNA methylation data, we identified potential processes and factors that may contribute to the variability in cell physiology between different production hosts. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Meiping Chang
- Process Cell Sciences, Biologics Process R&D, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Amit Kumar
- Process Cell Sciences, Biologics Process R&D, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Swetha Kumar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University
| | - Steven Huhn
- Process Cell Sciences, Biologics Process R&D, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University
| | - Michael Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University
| | - Zhimei Du
- Process Cell Sciences, Biologics Process R&D, Merck & Co., Inc., Kenilworth, NJ, USA
| |
Collapse
|
14
|
Pikuleva IA. Targeting cytochrome P450 46A1 and brain cholesterol 24-hydroxylation to treat neurodegenerative diseases. EXPLORATION OF NEUROPROTECTIVE THERAPY 2021; 1:159-172. [PMID: 35156102 DOI: 10.37349/ent.2021.00013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The brain cholesterol content is determined by the balance between the pathways of in situ biosynthesis and cholesterol elimination via 24-hydroxylation catalyzed by CYP46A1 (cytochrome P450 46A1). Both pathways are tightly coupled and determine the rate of brain cholesterol turnover. Evidence is accumulating that modulation of CYP46A1 activity by gene therapy or pharmacologic means could be beneficial in case neurodegenerative and other brain diseases and affect brain processes other than cholesterol biosynthesis and elimination. This minireview summarizes these other processes, most common of which include abnormal protein accumulation, memory and cognition, motor behavior, gene transcription, protein phosphorylation as well as autophagy and lysosomal processing. The unifying mechanisms, by which these processes could be affected by CYP46A targeting are also discussed.
Collapse
Affiliation(s)
- Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
15
|
Huang J, Wang J, He H, Huang Z, Wu S, Chen C, Liu W, Xie L, Tao Y, Cong L, Jiang Y. Close interactions between lncRNAs, lipid metabolism and ferroptosis in cancer. Int J Biol Sci 2021; 17:4493-4513. [PMID: 34803512 PMCID: PMC8579446 DOI: 10.7150/ijbs.66181] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/01/2021] [Indexed: 12/19/2022] Open
Abstract
Abnormal lipid metabolism including synthesis, uptake, modification, degradation and transport has been considered a hallmark of malignant tumors and contributes to the supply of substances and energy for rapid cell growth. Meanwhile, abnormal lipid metabolism is also associated with lipid peroxidation, which plays an important role in a newly discovered type of regulated cell death termed ferroptosis. Long noncoding RNAs (lncRNAs) have been proven to be associated with the occurrence and progression of cancer. Growing evidence indicates that lncRNAs are key regulators of abnormal lipid metabolism and ferroptosis in cancer. In this review, we mainly summarized the mechanism by which lncRNAs regulate aberrant lipid metabolism in cancer, illustrated that lipid metabolism can also influence the expression of lncRNAs, and discussed the mechanism by which lncRNAs affect ferroptosis. A comprehensive understanding of the interactions between lncRNAs, lipid metabolism and ferroptosis could help us to develop novel strategies for precise cancer treatment in the future.
Collapse
Affiliation(s)
- Jingjing Huang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Jin Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210013 Jiangsu, China
| | - Hua He
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Zichen Huang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210013 Jiangsu, China
| | - Sufang Wu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Chao Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210013 Jiangsu, China
| | - Wenbing Liu
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, P.R. China
| | - Li Xie
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, P.R. China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410078 Hunan, China
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| |
Collapse
|
16
|
Mast N, Petrov AM, Prendergast E, Bederman I, Pikuleva IA. Brain Acetyl-CoA Production and Phosphorylation of Cytoskeletal Proteins Are Targets of CYP46A1 Activity Modulation and Altered Sterol Flux. Neurotherapeutics 2021; 18:2040-2060. [PMID: 34235635 PMCID: PMC8609074 DOI: 10.1007/s13311-021-01079-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2021] [Indexed: 02/04/2023] Open
Abstract
Cholesterol and 24-hydroxycholesterol are the most abundant brain sterols and represent the substrate and product, respectively, of cytochrome P450 46A1 (CYP46A1), a CNS-specific enzyme. CYP46A1 controls cholesterol elimination and turnover in the brain, the two processes that determine the rate of brain sterol flux through the plasma membranes and thereby the properties of these membranes. Brain sterol flux is decreased in Cyp46a1-/- mice compared to wild-type mice and increased in 5XFAD mice (a model of Alzheimer's disease) when they are treated with a small dose of efavirenz, a CYP46A1 activator. Herein, we first assessed the brain proteome (synaptosomal fractions) and phospho-proteome (synaptosomal fractions and brain homogenates) of efavirenz-treated and control 5XFAD mice. Then, based on the pattern of protein abundance change, we conducted acetyl-CoA measurements (brain homogenates and mitochondria) and metabolic profiling (brain homogenates). The phospho-proteomics datasets were used for comparative analyses with the datasets obtained by us previously on mice with the same changes (efavirenz-treated and control 5XFAD mice from a different treatment paradigm) or with changes in the opposite direction (Cyp46a1-/- vs wild-type mice) in brain sterol flux. We found that CYP46A1 activity or the rate of brain sterol flux affects acetyl-CoA-related metabolic pathways as well as phosphorylation of cytoskeletal and other proteins. Knowledge of the key roles of acetyl-CoA and cytoskeletal phosphorylation in cell biology expands our understanding of the significance of CYP46A1-mediated cholesterol 24-hydroxylation in the brain and provides an additional explanation for why CYP46A1 activity modulations are beneficial in mouse models of different brain diseases.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Alexey M Petrov
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, 420111, Kazan, Russia
- Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, 420012, Kazan, Russia
| | - Erin Prendergast
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Ilya Bederman
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
17
|
Colardo M, Martella N, Pensabene D, Siteni S, Di Bartolomeo S, Pallottini V, Segatto M. Neurotrophins as Key Regulators of Cell Metabolism: Implications for Cholesterol Homeostasis. Int J Mol Sci 2021; 22:5692. [PMID: 34073639 PMCID: PMC8198482 DOI: 10.3390/ijms22115692] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Neurotrophins constitute a family of growth factors initially characterized as predominant mediators of nervous system development, neuronal survival, regeneration and plasticity. Their biological activity is promoted by the binding of two different types of receptors, leading to the generation of multiple and variegated signaling cascades in the target cells. Increasing evidence indicates that neurotrophins are also emerging as crucial regulators of metabolic processes in both neuronal and non-neuronal cells. In this context, it has been reported that neurotrophins affect redox balance, autophagy, glucose homeostasis and energy expenditure. Additionally, the trophic support provided by these secreted factors may involve the regulation of cholesterol metabolism. In this review, we examine the neurotrophins' signaling pathways and their effects on metabolism by critically discussing the most up-to-date information. In particular, we gather experimental evidence demonstrating the impact of these growth factors on cholesterol metabolism.
Collapse
Affiliation(s)
- Mayra Colardo
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.C.); (N.M.); (D.P.); (S.D.B.)
| | - Noemi Martella
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.C.); (N.M.); (D.P.); (S.D.B.)
| | - Daniele Pensabene
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.C.); (N.M.); (D.P.); (S.D.B.)
| | - Silvia Siteni
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Sabrina Di Bartolomeo
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.C.); (N.M.); (D.P.); (S.D.B.)
| | - Valentina Pallottini
- Department of Science, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy;
- Neuroendocrinology Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Via del Fosso Fiorano 64, 00143 Rome, Italy
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.C.); (N.M.); (D.P.); (S.D.B.)
| |
Collapse
|
18
|
Varghese DS, Ali BR. Pathological Crosstalk Between Oxidized LDL and ER Stress in Human Diseases: A Comprehensive Review. Front Cell Dev Biol 2021; 9:674103. [PMID: 34124059 PMCID: PMC8187772 DOI: 10.3389/fcell.2021.674103] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/26/2021] [Indexed: 02/05/2023] Open
Abstract
The oxidative modification of the major cholesterol carrying lipoprotein, oxLDL, is a biomarker as well as a pathological factor in cardiovascular diseases (CVD), type 2 diabetes mellitus (T2DM), obesity and other metabolic diseases. Perturbed cellular homeostasis due to physiological, pathological and pharmacological factors hinder the proper functioning of the endoplasmic reticulum (ER), which is the major hub for protein folding and processing, lipid biosynthesis and calcium storage, thereby leading to ER stress. The cellular response to ER stress is marked by a defensive mechanism called unfolded protein response (UPR), wherein the cell adapts strategies that favor survival. Under conditions of excessive ER stress, when the survival mechanisms fail to restore balance, UPR switches to apoptosis and eliminates the defective cells. ER stress is a major hallmark in metabolic syndromes such as diabetes, non-alcoholic fatty liver disease (NAFLD), neurological and cardiovascular diseases. Though the pathological link between oxLDL and ER stress in cardiovascular diseases is well-documented, its involvement in other diseases is still largely unexplored. This review provides a deep insight into the common mechanisms in the pathogenicity of diseases involving oxLDL and ER stress as key players. In addition, the potential therapeutic intervention of the targets implicated in the pathogenic processes are also explored.
Collapse
Affiliation(s)
- Divya Saro Varghese
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
19
|
CYP7A1, NPC1L1, ABCB1, and CD36 Polymorphisms Are Associated with Increased Serum Coenzyme Q 10 after Long-Term Supplementation in Women. Antioxidants (Basel) 2021; 10:antiox10030431. [PMID: 33799730 PMCID: PMC7998724 DOI: 10.3390/antiox10030431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 02/03/2023] Open
Abstract
Coenzyme Q10 (CoQ10), an essential component for energy production that exhibits antioxidant activity, is considered a health-supporting and antiaging supplement. However, intervention-controlled studies have provided variable results on CoQ10 supplementation benefits, which may be attributed to individual CoQ10 bioavailability differences. This study aimed to investigate the relationship between genetic polymorphisms and CoQ10 serum levels after long-term supplementation. CoQ10 levels at baseline and after one year of supplementation (150 mg) were determined, and eight single nucleotide polymorphisms (SNPs) in cholesterol metabolism and CoQ10 absorption, efflux, and cellular uptake related genes were assessed. Rs2032582 (ABCB1) and rs1761667 (CD36) were significantly associated with a higher increase in CoQ10 levels in women. In addition, in women, rs3808607 (CYP7A1) and rs2072183 (NPC1L1) were significantly associated with a higher increase in CoQ10 per total cholesterol levels. Subgroup analyses showed that these four SNPs were useful for classifying high- or low-responder to CoQ10 bioavailability after long-term supplementation among women, but not in men. On the other hand, in men, no SNP was found to be significantly associated with increased serum CoQ10. These results collectively provide novel evidence on the relationship between genetics and CoQ10 bioavailability after long-term supplementation, which may help understand and assess CoQ10 supplementation effects, at least in women.
Collapse
|
20
|
Chandra NC. Atherosclerosis and carcinoma: Two facets of dysfunctional cholesterol homeostasis. J Biochem Mol Toxicol 2020; 34:e22595. [PMID: 32761975 DOI: 10.1002/jbt.22595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/04/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022]
Abstract
Although cholesterol is an essential and necessary component for biological systems; inappropriate accumulation of cholesterol in blood vessels and intracellular territory is also detrimental to living things. On one hand, cholesterol is the acting precursor of many metabolic regulators, a component of the structural veracity and scaffold fluidity of biomembranes, an insulator of electrical transmission in nerves and many more; on the other hand, its deposition in blood vessels induces atherosclerotic plaque and cardiovascular complications with the consequences of heart attack and stroke. It is also an emerging fact that cholesterol is a prelate in the cell nucleus for cell proliferation and any oddity in this venture may be the cause of tumorigenesis. Hence, cholesterol homeostasis is a very crucial element in issues of health management. Cholesterol is now a global target for maintaining quality health, particularly to control the two giants of the present world health tragedy: atherosclerosis and carcinoma, which appear to be the two facets of dysfunctional cholesterol homeostasis.
Collapse
Affiliation(s)
- Nimai C Chandra
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, India
| |
Collapse
|
21
|
Li X, Xiao H, Jian X, Zhang X, Zhang H, Mu Y, Wang H, Chen S, Cong R. Epigenetic Regulation of Key Enzymes CYP7a1 and HMGCR Affect Hepatic Cholesterol Metabolism in Different Breeds of Piglets. Front Vet Sci 2020; 7:231. [PMID: 32500085 PMCID: PMC7243736 DOI: 10.3389/fvets.2020.00231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/06/2020] [Indexed: 12/28/2022] Open
Abstract
Liver is the place where cholesterol is synthesized, transported, secreted, and transformed, thus liver takes an irreplaceable role in cholesterol homeostasis. Hepatic cholesterol metabolism differs between breeds, yet the molecular mechanism is unclear. In this study Large White (LW) and Erhualian (EHL) piglets (at birth and 25-day-old) were used, 6 each time point per breed. Erhualian piglets had significantly lower body and liver weight compared with Large White at birth and weaning, but the liver/ body weight ratio was higher at weaning, associated with increased serum and liver cholesterol and triglyceride content. The mRNA expression of Cholesterol-7alpha-hydroxylase (CYP7a1) and Recombinant Acetyl Coenzyme Acetyltransferase 2 (ACAT2) were down-regulated in Erhualian piglets at birth, while hepatic Sterol-regulatory element binding protein 2 (SREBP2) mRNA expression was up-regulated in Erhualian piglets at weaning, as well as SREBP2 protein content, compared with Large White piglets. At birth, the depressed CYP7a1 transcription in Erhualian piglets was associated with decreased Histone H3 (H3) and increased Histone H3 lysine 27 trimethylation (H3K27me3). While the results revealed significant promoter hypermethylation of 3-Hydroxy-3-methylglutaryl-CoA reductase (HMGCR) promoter in Erhualian piglets at weaning, together with increased Histone H3 lysine 9 monomethylation (H3K9me1) and Histone H3 lysine 4 trimethylation (H3K4me3). These results suggest that epigenetic modification may be an important mechanism in hepatic cholesterol metabolism among different species, which is vital for maintaining cholesterol homeostasis and decreasing risk of cardiovascular disease.
Collapse
Affiliation(s)
- Xian Li
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Yangling, China
| | - Hanyang Xiao
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Yangling, China
| | - Xiaoqian Jian
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Yangling, China
| | - Xiangyin Zhang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Yangling, China
| | - Hui Zhang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Yangling, China
| | - Yang Mu
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Yangling, China
| | - Hua Wang
- Shaanxi Animal Health and Slaughter Management Station, Shaanxi Xi'an, China
| | - Shulin Chen
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Yangling, China
| | - Rihua Cong
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Yangling, China
| |
Collapse
|
22
|
Lindberg T, de Ávila RI, Zeller KS, Levander F, Eriksson D, Chawade A, Lindstedt M. An integrated transcriptomic- and proteomic-based approach to evaluate the human skin sensitization potential of glyphosate and its commercial agrochemical formulations. J Proteomics 2020; 217:103647. [PMID: 32006680 DOI: 10.1016/j.jprot.2020.103647] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/11/2019] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
Abstract
We investigated the skin sensitization hazard of glyphosate, the surfactant polyethylated tallow amine (POEA) and two commercial glyphosate-containing formulations using different omics-technologies based on a human dendritic cell (DC)-like cell line. First, the GARD™skin assay, investigating changes in the expression of 200 transcripts upon cell exposure to xenobiotics, was used for skin sensitization prediction. POEA and the formulations were classified as skin sensitizers while glyphosate alone was classified as a non-sensitizer. Interestingly, the mixture of POEA together with glyphosate displayed a similar sensitizing prediction as POEA alone, indicating that glyphosate likely does not increase the sensitizing capacity when associated with POEA. Moreover, mass spectrometry analysis identified differentially regulated protein groups and predicted molecular pathways based on a proteomic approach in response to cell exposures with glyphosate, POEA and the glyphosate-containing formulations. Based on the protein expression data, predicted pathways were linked to immunologically relevant events and regulated proteins further to cholesterol biosynthesis and homeostasis as well as to autophagy, identifying novel aspects of DC responses after exposure to xenobiotics. In summary, we here present an integrative analysis involving advanced technologies to elucidate the molecular mechanisms behind DC activation in the skin sensitization process triggered by the investigated agrochemical materials. SIGNIFICANCE: The use of glyphosate has increased worldwide, and much effort has been made to improve risk assessments and to further elucidate the mechanisms behind any potential human health hazard of this chemical and its agrochemical formulations. In this context, omics-based techniques can provide a multiparametric approach, including several biomarkers, to expand the mechanistic knowledge of xenobiotics-induced toxicity. Based on this, we performed the integration of GARD™skin and proteomic data to elucidate the skin sensitization hazard of POEA, glyphosate and its two commercial mixtures, and to investigate cellular responses more in detail on protein level. The proteomic data indicate the regulation of immune response-related pathways and proteins associated with cholesterol biosynthesis and homeostasis as well as to autophagy, identifying novel aspects of DC responses after exposure to xenobiotics. Therefore, our data show the applicability of a multiparametric integrated approach for the mechanism-based hazard evaluation of xenobiotics, eventually complementing decision making in the holistic risk assessment of chemicals regarding their allergenic potential in humans.
Collapse
Affiliation(s)
- Tim Lindberg
- Department of Immunotechnology, Lund University, Medicon Village, Lund, Sweden
| | - Renato Ivan de Ávila
- Department of Immunotechnology, Lund University, Medicon Village, Lund, Sweden; Laboratory of Education and Research in In Vitro Toxicology (Tox In), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil; SenzaGen AB, Medicon Village, Lund, Sweden
| | - Kathrin S Zeller
- Department of Immunotechnology, Lund University, Medicon Village, Lund, Sweden
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, Medicon Village, Lund, Sweden
| | | | - Aakash Chawade
- Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Medicon Village, Lund, Sweden.
| |
Collapse
|
23
|
Saxena N, Chandra NC. Cholesterol: A Prelate in Cell Nucleus and its Serendipity. Curr Mol Med 2020; 20:692-707. [PMID: 32282300 DOI: 10.2174/1566524020666200413112030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 11/22/2022]
Abstract
Cholesterol is a chameleon bio-molecule in cellular multiplex. It acts as a prelate in almost every cellular compartment with its site specific characteristics viz. regulation of structural veracity and scaffold fluidity of bio-membranes, insulation of electrical transmission in nerves, controlling of genes by making steroid endocrines, acting as precursors of metabolic regulators and many more with its emerging prophecy in the cell nucleus to drive new cell formation. Besides the crucial legacy in cellular functionality, cholesterol is ostracized as a member of LDL particle, which has been proved responsible to clog blood vessels. LDL particles get deposited in the blood vessels because of their poor clearance owing to the non-functioning LDL receptor on the vessel wall and surrounding tissues. Blocking of blood vessel promotes heart attack and stroke. On the other hand, cholesterol has been targeted as pro-cancerous molecule. At this phase again cholesterol is biphasic. Although cholesterol is essential to construct nuclear membrane and its lipid-rafts; in cancer tumour cells, cholesterol is not under the control of intracellular feedback regulation and gets accumulated within cell nucleus by crossing nuclear membrane and promoting cell proliferation. In precancerous stage, the immune cells also die because of the lack of requisite concentration of intracellular and intranuclear cholesterol pool. The existence of cholesterol within the cell nucleus has been found in the nuclear membrane, epichromosomal location and nucleoplasm. The existence of cholesterol in the microdomain of nuclear raft has been reported to be linked with gene transcription, cell proliferation and apoptosis. Hydrolysis of cholesterol esters in chromosomal domain is linked with new cell generation. Apparently, Cholesterol is now a prelate in cell nucleus too ------ A serendipity in cellular haven.
Collapse
Affiliation(s)
- Nimisha Saxena
- Department of Biochemistry, KDMCH & Research Center, Akbarpur, Mathura - 281406, India
| | - Nimai Chand Chandra
- Department of Biochemistry, All India Institute of Medical Sciences, Phulwarisharif, Patna - 801507, India
| |
Collapse
|
24
|
Tonini C, Colardo M, Colella B, Di Bartolomeo S, Berardinelli F, Caretti G, Pallottini V, Segatto M. Inhibition of Bromodomain and Extraterminal Domain (BET) Proteins by JQ1 Unravels a Novel Epigenetic Modulation to Control Lipid Homeostasis. Int J Mol Sci 2020; 21:ijms21041297. [PMID: 32075110 PMCID: PMC7072965 DOI: 10.3390/ijms21041297] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/08/2020] [Accepted: 02/13/2020] [Indexed: 12/19/2022] Open
Abstract
The homeostatic control of lipid metabolism is essential for many fundamental physiological processes. A deep understanding of its regulatory mechanisms is pivotal to unravel prospective physiopathological factors and to identify novel molecular targets that could be employed to design promising therapies in the management of lipid disorders. Here, we investigated the role of bromodomain and extraterminal domain (BET) proteins in the regulation of lipid metabolism. To reach this aim, we used a loss-of-function approach by treating HepG2 cells with JQ1, a powerful and selective BET inhibitor. The main results demonstrated that BET inhibition by JQ1 efficiently decreases intracellular lipid content, determining a significant modulation of proteins involved in lipid biosynthesis, uptake and intracellular trafficking. Importantly, the capability of BET inhibition to slow down cell proliferation is dependent on the modulation of cholesterol metabolism. Taken together, these data highlight a novel epigenetic mechanism involved in the regulation of lipid homeostasis.
Collapse
Affiliation(s)
- Claudia Tonini
- Department of Science, University of Rome “Roma Tre”, Viale Marconi 446, 00146 Rome, Italy; (C.T.); (F.B.); (V.P.)
| | - Mayra Colardo
- Department of Bioscience and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche (Is), Italy; (M.C.); (B.C.); (S.D.B.)
| | - Barbara Colella
- Department of Bioscience and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche (Is), Italy; (M.C.); (B.C.); (S.D.B.)
| | - Sabrina Di Bartolomeo
- Department of Bioscience and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche (Is), Italy; (M.C.); (B.C.); (S.D.B.)
| | - Francesco Berardinelli
- Department of Science, University of Rome “Roma Tre”, Viale Marconi 446, 00146 Rome, Italy; (C.T.); (F.B.); (V.P.)
| | - Giuseppina Caretti
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy;
| | - Valentina Pallottini
- Department of Science, University of Rome “Roma Tre”, Viale Marconi 446, 00146 Rome, Italy; (C.T.); (F.B.); (V.P.)
| | - Marco Segatto
- Department of Bioscience and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche (Is), Italy; (M.C.); (B.C.); (S.D.B.)
- Correspondence:
| |
Collapse
|
25
|
Ando H, Horibata Y, Aoyama C, Shimizu H, Shinohara Y, Yamashita S, Sugimoto H. Side-chain oxysterols suppress the transcription of CTP: Phosphoethanolamine cytidylyltransferase and 3-hydroxy-3-methylglutaryl-CoA reductase by inhibiting the interaction of p300 and NF-Y, and H3K27 acetylation. J Steroid Biochem Mol Biol 2019; 195:105482. [PMID: 31580889 DOI: 10.1016/j.jsbmb.2019.105482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/10/2019] [Accepted: 09/18/2019] [Indexed: 10/25/2022]
Abstract
CTP: phosphoethanolamine cytidylyltransferase (Pcyt2) is the rate-limiting enzyme in mammalian phosphatidylethanolamine (PE) biosynthesis. Previously, we reported that increasedPcyt2 mRNA levels after serum starvation are suppressed by 25-hydroxycholesterol (HC) (25-HC), and that nuclear factor-Y (NF-Y) is involved in the inhibitory effects. Transcription of Hmgcr, which encodes 3-hydroxy-3-methylglutaryl-CoA reductase, is suppressed in the same manner. However, no typical sterol regulatory element (SRE) was detected in the Pcyt2 promoter. We were therefore interested in the effect of 25-HC on the modification of histones and thus treated cells with histone acetyltransferase inhibitor (anacardic acid) or histone deacetylase inhibitor (trichostatin A). The suppressive effect of 25-HC on Pcyt2 and Hmgcr mRNA transcription was ameliorated by trichostatin A. Anacardic acid, 25-HC and 24(S)-HC suppressed their transcription by inhibiting H3K27 acetylation in their promoters as evaluated by chromatin immunoprecipitation (ChIP) assays. 27-HC, 22(S)-HC and 22(R)-HC also suppressed their transcription, but 7α-HC, 7β-HC, the synthetic LXR agonist T0901317 and cholesterol did not. Furthermore, 25-HC inhibited p300 recruitment to the Pcyt2 and Hmgcr promoters, and suppressed H3K27 acetylation. 25-HC in the medium was easily conducted into cells. Based on these results, we concluded that 25-HC (and other side-chain oxysterols) in the medium was easily transferred into cells, suppressed H3K27 acetylation via p300 recruitment on the NF-Y complex in the Pcyt2 and Hmgcr promoters, and then suppressed transcription of these genes although LXR is not involved.
Collapse
Affiliation(s)
- Hiromi Ando
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan
| | - Yasuhiro Horibata
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan
| | - Chieko Aoyama
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan
| | - Hiroaki Shimizu
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan
| | - Yasutake Shinohara
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan
| | - Satoko Yamashita
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan
| | - Hiroyuki Sugimoto
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan.
| |
Collapse
|
26
|
Glucocorticoid programming mechanism for hypercholesterolemia in prenatal ethanol-exposed adult offspring rats. Toxicol Appl Pharmacol 2019; 375:46-56. [PMID: 31075344 DOI: 10.1016/j.taap.2019.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/18/2019] [Accepted: 05/06/2019] [Indexed: 12/27/2022]
Abstract
Our previous studies showed that prenatal ethanol exposure (PEE) elevated blood total cholesterol (TCH) level in adult offspring rats. This study was aimed at elucidating the intrauterine programming mechanism of hypercholesterolemia in adult rats induced by PEE. Pregnant Wistar rats were intragastrically administered ethanol (4 mg/kg∙d) from gestational day (GD) 9 to 20. The offspring rats were euthanized at GD20 and postnatal week 24. Results showed that PEE decreased serum TCH and HDL-C levels (female and male) as well as LDL-C level (female only) in fetal rats but increased serum TCH level and the TCH/HDL-C and LDL-C/HDL-C ratios in adult rats. Furthermore, PEE elevated serum corticosterone levels but inhibited hepatic insulin-like growth factor 1 (IGF1) signaling pathway, cholesterol synthesis and output in fetal rats. The conversed changes were observed in adult rats. Moreover, histone acetylation (H3K9ac and H3K14ac) and expression of hepatic reverse cholesterol transport (RCT) related genes, scavenger receptor BI and low-density lipoprotein receptor were decreased before and after birth by PEE. In HepG2 cells, cortisol negatively regulated the IGF1 signaling pathway and cholesterol metabolic genes, but this inhibition of the cholesterol metabolic genes could be reversed by glucocorticoid receptor antagonist RU486, whereas exogenous IGF1 treatment only reversed the downregulation of RCT genes by cortisol. We confirmed a "two programming" mechanism for PEE-induced hypercholesterolemia in adult rats. The "first programming" was a glucocorticoid (GC)-induced persistent reduction of RCT genes by epigenetic modifications, and the "second programming" was the negative regulation of cholesterol synthesis and output by the GC-IGF1 axis.
Collapse
|
27
|
Vidrascu EM, Bashore AC, Howard TD, Moore JB. Effects of early- and mid-life stress on DNA methylation of genes associated with subclinical cardiovascular disease and cognitive impairment: a systematic review. BMC MEDICAL GENETICS 2019; 20:39. [PMID: 30866842 PMCID: PMC6417232 DOI: 10.1186/s12881-019-0764-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/04/2019] [Indexed: 12/18/2022]
Abstract
Background Traditional and novel risk factors cannot sufficiently explain the differential susceptibility to cardiovascular disease (CVD). Epigenetics may serve to partially explain this residual disparity, with life course stressors shown to modify methylation of genes implicated in various diseases. Subclinical CVD is often comorbid with cognitive impairment (CI), which warrants research into the identification of common genes for both conditions. Methods We conducted a systematic review of the existing literature to identify studies depicting the relationship between life course stressors, DNA methylation, subclinical CVD, and cognition. Results A total of 16 articles (8 human and 8 animal) were identified, with the earliest published in 2008. Four genes (COMT, NOS3, Igfl1, and Sod2) were analyzed by more than one study, but not in association with both CVD and CI. One gene (NR3C1) was associated with both outcomes, albeit not within the same study. There was some consistency among studies with markers used for subclinical CVD and cognition, but considerable variability in stress exposure (especially in human studies), cell type/tissue of interest, method for detection of DNA methylation, and risk factors. Racial and ethnic differences were not considered, but analysis of sex in one human study found statistically significant differentially methylated X-linked loci associated with attention and intelligence. Conclusions This review suggests the need for additional studies to implement more comprehensive and methodologically rigorous study designs that can better identify epigenetic biomarkers to differentiate individuals vulnerable to both subclinical CVD and associated CI. Electronic supplementary material The online version of this article (10.1186/s12881-019-0764-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena M Vidrascu
- Department of Family & Community Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | - Alexander C Bashore
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Timothy D Howard
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Justin B Moore
- Department of Family & Community Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
28
|
Huang X, Sterling NW, Du G, Sun D, Stetter C, Kong L, Zhu Y, Neighbors J, Lewis MM, Chen H, Hohl RJ, Mailman RB. Brain cholesterol metabolism and Parkinson's disease. Mov Disord 2019; 34:386-395. [PMID: 30681742 PMCID: PMC6420391 DOI: 10.1002/mds.27609] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/12/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Circulating cholesterol levels have been linked to PD, but not directly to brain physiology. OBJECTIVE To assess whether brain cholesterol metabolism is related to PD. METHODS Sixty PD patients and 64 controls were recruited from an academic movement disorder clinic (2009-2012). Thirty-five PD patients and 33 controls returned approximately 36 months later. Fasting plasma (S)24-OH-cholesterol (brain-derived cholesterol metabolite) and 27-OH-cholesterol (peripheral cholesterol metabolite) were quantified. Odds ratios for PD were derived from logistic regression models, adjusting for potential confounders. Relationships between the oxysterols and clinical measurements were explored using Spearman correlation coefficients. RESULTS Mean age of PD subjects was 63.8 ± 8.3 years and disease duration was 5.0 ± 5.4 years. Plasma (S)24-OH-cholesterol levels were inversely associated with the odds of having PD, with an odds ratio of 0.92 (95% confidence interval: 0.87-0.97) for each 1-ng/mL increase (P = 0.004). Compared to the lowest tertile, the odds ratio was 0.34 (0.12-0.98) for the second tertile (P = 0.045) and 0.08 (0.02-0.31) for the highest tertile (P < 0.001). Higher (S)24-OH-cholesterol levels also were correlated with better sense of smell (r = 0.35; P = 0.01). No significant associations were found between clinical measures and 27-OH-cholesterol, a peripheral cholesterol metabolite. Furthermore, (S)24-OH-cholesterol levels were stable over time, whereas 27-OH-cholesterol decreased with time in both cases and controls. CONCLUSIONS Results indicate that plasma (S)24-OH-cholesterol (possibly reflecting brain cholesterol metabolism) is inversely linked to PD, is relatively stable over time, and may serve as a new biomarker for PD. Further investigation is necessary to determine the mechanistic and clinical implications. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Xuemei Huang
- Departments of Neurology, Pennsylvania State University, Hershey PA 17033 USA
- Neurosurgery, Pennsylvania State University, Hershey PA 17033 USA
- Radiology, Pennsylvania State University, Hershey PA 17033 USA
- Pharmacology, Pennsylvania State University, Hershey PA 17033 USA
- Kinesiology, Pennsylvania State University, Hershey PA 17033 USA
| | | | - Guangwei Du
- Departments of Neurology, Pennsylvania State University, Hershey PA 17033 USA
| | - Dongxiao Sun
- Pharmacology, Pennsylvania State University, Hershey PA 17033 USA
- Mass Spectrometry Core Facility, Pennsylvania State University, Hershey PA 17033 USA
| | - Christina Stetter
- Public Health Sciences, Pennsylvania State University, Hershey PA 17033 USA
| | - Lan Kong
- Public Health Sciences, Pennsylvania State University, Hershey PA 17033 USA
| | - Yusheng Zhu
- Pathology and Laboratory Medicine, Pennsylvania State University, Hershey PA 17033 USA
| | - Jeffery Neighbors
- Pharmacology, Pennsylvania State University, Hershey PA 17033 USA
- Penn State Cancer Institute, Pennsylvania State University, Hershey PA 17033 USA
| | - Mechelle M. Lewis
- Departments of Neurology, Pennsylvania State University, Hershey PA 17033 USA
- Pharmacology, Pennsylvania State University, Hershey PA 17033 USA
| | - Honglei Chen
- Department of Epidemiology, Michigan State University, East Lansing MI 48824
| | - Raymond J. Hohl
- Pharmacology, Pennsylvania State University, Hershey PA 17033 USA
- Penn State Cancer Institute, Pennsylvania State University, Hershey PA 17033 USA
- Medicine, Pennsylvania State University, Hershey PA 17033 USA
| | - Richard B. Mailman
- Departments of Neurology, Pennsylvania State University, Hershey PA 17033 USA
- Pharmacology, Pennsylvania State University, Hershey PA 17033 USA
| |
Collapse
|
29
|
Göbel A, Breining D, Rauner M, Hofbauer LC, Rachner TD. Induction of 3-hydroxy-3-methylglutaryl-CoA reductase mediates statin resistance in breast cancer cells. Cell Death Dis 2019; 10:91. [PMID: 30692522 PMCID: PMC6349912 DOI: 10.1038/s41419-019-1322-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/18/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022]
Abstract
The mevalonate pathway has emerged as a promising target for several solid tumors. Statins are inhibitors of the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the rate-limiting enzyme of this pathway, and are commonly used to treat patients with hypercholesterolemia. Pleiotropic antitumor mechanisms of statins have been demonstrated for several human cancer types. However, cancer cells differ in their individual statin sensitivity and some cell lines have shown relative resistance. In this study we demonstrate, that the human breast cancer cell lines MDA-MB-231, MDA-MB-468, MCF-7, and T47D are differentially affected by statins. Whereas the vitality of MDA-MB-231 and MDA-MB-468 cells was reduced by up to 60% using atorvastatin, simvastatin, or rosuvastatin (p < 0.001), only marginal effects were seen in T47D and MCF-7 cells following exposure to statins. Statin treatment led to an upregulation of HMGCR mRNA and protein expression by up to sixfolds in the statin-resistant cells lines (p < 0.001), but no alterations of HMGCR were observed in the statin-sensitive MDA-MB-231 and MDA-MB-468 cells. The knockdown of HMGCR prior to statin treatment sensitized the resistant cell lines, reflected by a 70% reduction in vitality, increased apoptotic DNA fragmentation (sixfold) and by accumulation of the apoptosis marker cleaved poly-ADP ribose polymerase. Statins induced a cleavage of the sterol-regulatory element-binding protein (SREBP)-2, a transcriptional activator of the HMGCR, in T47D and MCF-7 cells. The inhibition of SREBP-2 activation by co-administration of dipyridamole sensitized MCF-7 and T47D cells for statins (loss of vitality by 80%; p < 0.001). Furthermore, assessment of a statin-resistant MDA-MB-231 clone, generated by long-term sublethal statin exposure, revealed a significant induction of HMGCR expression by up to 12-folds (p < 0.001). Knockdown of HMGCR restored statin sensitivity back to levels of the parental cells. In conclusion, these results indicate a resistance of cancer cells against statins, which is in part due to the induction of HMGCR.
Collapse
Affiliation(s)
- Andy Göbel
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany. .,German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Dorit Breining
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Tilman D Rachner
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
30
|
Prabhu AV, Luu W, Li D, Sharpe LJ, Brown AJ. DHCR7: A vital enzyme switch between cholesterol and vitamin D production. Prog Lipid Res 2016; 64:138-151. [PMID: 27697512 DOI: 10.1016/j.plipres.2016.09.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 01/07/2023]
Abstract
The conversion of 7-dehydrocholesterol to cholesterol, the final step of cholesterol synthesis in the Kandutsch-Russell pathway, is catalyzed by the enzyme 7-dehydrocholesterol reductase (DHCR7). Homozygous or compound heterozygous mutations in DHCR7 lead to the developmental disease Smith-Lemli-Opitz syndrome, which can also result in fetal mortality, highlighting the importance of this enzyme in human development and survival. Besides serving as a substrate for DHCR7, 7-dehydrocholesterol is also a precursor of vitamin D via the action of ultraviolet light on the skin. Thus, DHCR7 exerts complex biological effects, involved in both cholesterol and vitamin D production. Indeed, we argue that DHCR7 can act as a switch between cholesterol and vitamin D synthesis. This review summarizes current knowledge about the critical enzyme DHCR7, highlighting recent findings regarding its structure, transcriptional and post-transcriptional regulation, and its links to vitamin D synthesis. Greater understanding about DHCR7 function, regulation and its place within cellular metabolism will provide important insights into its biological roles.
Collapse
Affiliation(s)
- Anika V Prabhu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Winnie Luu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Dianfan Li
- National Center for Protein Sciences, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
31
|
Liver-Specific Deletion of SRSF2 Caused Acute Liver Failure and Early Death in Mice. Mol Cell Biol 2016; 36:1628-38. [PMID: 27022105 DOI: 10.1128/mcb.01071-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/21/2016] [Indexed: 12/21/2022] Open
Abstract
The liver performs a variety of unique functions critical for metabolic homeostasis. Here, we show that mice lacking the splicing factor SRSF2 but not SRSF1 in hepatocytes have severe liver pathology and biochemical abnormalities. Histological analyses revealed generalized hepatitis with the presence of ballooned hepatocytes and evidence of fibrosis. Molecular analysis demonstrated that SRSF2 governs splicing of multiple genes involved in the stress-induced cell death pathway in the liver. More importantly, SRSF2 also functions as a potent transcription activator, required for efficient expression of transcription factors mainly responsible for energy homeostasis and bile acid metabolism in the liver. Consistent with the effects of SRSF2 in gene regulation, accumulation of total cholesterol and bile acids was prominently observed in the mutant liver, followed by enhanced generation of reactive oxygen species and increased endoplasmic reticulum stress, as revealed by biochemical and ultrastructural analyses. Taking these observations together, inactivation of SRSF2 in liver caused dysregulated splicing events and hepatic metabolic disorders, which trigger endoplasmic reticulum stress, oxidative stress, and finally liver failure.
Collapse
|
32
|
Sun MY, Linsenbardt AJ, Emnett CM, Eisenman LN, Izumi Y, Zorumski CF, Mennerick S. 24(S)-Hydroxycholesterol as a Modulator of Neuronal Signaling and Survival. Neuroscientist 2016; 22:132-44. [PMID: 25628343 PMCID: PMC4821654 DOI: 10.1177/1073858414568122] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The major cholesterol metabolite in brain, 24(S)-hydroxycholesterol (24S-HC), serves as a vehicle for cholesterol removal. Its effects on neuronal function, however, have only recently begun to be investigated. Here, we review that nascent work. Our own studies have demonstrated that 24S-HC has potent positive modulatory effects on N-methyl-d-aspartate (NMDA) receptor (NMDAR) function. This could have implications not only for brain plasticity but also for pathological NMDAR overuse. Other work has demonstrated effects of 24S-HC on neuronal survival and as a possible biomarker of neurodegenerative disease. Depending on circumstances, both upregulation/mimicry of 24S-HC signaling and down-regulation/antagonism may have therapeutic potential. We are interested in the possibility that synthetic analogues of 24S-HC with positive effects at NMDARs may hold neurotherapeutic promise, given the role of NMDA receptor hypofunction in certain neuropsychiatric disorders.
Collapse
Affiliation(s)
- Min-Yu Sun
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew J Linsenbardt
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Christine M Emnett
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Lawrence N Eisenman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO, USA Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Steve Mennerick
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO, USA Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
33
|
Alphonse PAS, Jones PJH. Revisiting Human Cholesterol Synthesis and Absorption: The Reciprocity Paradigm and its Key Regulators. Lipids 2015. [PMID: 26620375 DOI: 10.1007/s11745‐015‐4096‐7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hypercholesterolemia is a major risk factor for cardiovascular disease. Cholesterol homeostasis in the body is governed by the interplay between absorption, synthesis, and excretion or conversion of cholesterol into bile acids. A reciprocal relationship between cholesterol synthesis and absorption is known to regulate circulating cholesterol in response to dietary or therapeutic interventions. However, the degree to which these factors affect synthesis and absorption and the extent to which one vector shifts in response to the other are not thoroughly understood. Also, huge inter-individual variability exists in the manner in which the two systems act in response to any cholesterol-lowering treatment. Various factors are known to account for this variability and in light of recent experimental advances new players such as gene-gene interactions, gene-environmental effects, and gut microbiome hold immense potential in offering an explanation to the complex traits of inter-individual variability in human cholesterol metabolism. In this context, the objective of the present review is to provide an overview on cholesterol metabolism and discuss the role of potential factors such as genetics, epigenetics, epistasis, and gut microbiome, as well as other regulators in modulating cholesterol metabolism, especially emphasizing the reciprocal relationship between cholesterol synthesis and absorption. Furthermore, an evaluation of the implications of this push-pull mechanism on cholesterol-lowering strategies is presented.
Collapse
Affiliation(s)
- Peter A S Alphonse
- Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Richardson Centre for Functional Foods and Nutraceuticals (RCFFN), University of Manitoba, 196, Innovation Drive, SmartPark, Winnipeg, MB, R3T 2N2, Canada.
| | - Peter J H Jones
- Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
- Richardson Centre for Functional Foods and Nutraceuticals (RCFFN), University of Manitoba, 196, Innovation Drive, SmartPark, Winnipeg, MB, R3T 2N2, Canada
- Food Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
34
|
Alphonse PAS, Jones PJH. Revisiting Human Cholesterol Synthesis and Absorption: The Reciprocity Paradigm and its Key Regulators. Lipids 2015; 51:519-36. [PMID: 26620375 DOI: 10.1007/s11745-015-4096-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/09/2015] [Indexed: 12/22/2022]
Abstract
Hypercholesterolemia is a major risk factor for cardiovascular disease. Cholesterol homeostasis in the body is governed by the interplay between absorption, synthesis, and excretion or conversion of cholesterol into bile acids. A reciprocal relationship between cholesterol synthesis and absorption is known to regulate circulating cholesterol in response to dietary or therapeutic interventions. However, the degree to which these factors affect synthesis and absorption and the extent to which one vector shifts in response to the other are not thoroughly understood. Also, huge inter-individual variability exists in the manner in which the two systems act in response to any cholesterol-lowering treatment. Various factors are known to account for this variability and in light of recent experimental advances new players such as gene-gene interactions, gene-environmental effects, and gut microbiome hold immense potential in offering an explanation to the complex traits of inter-individual variability in human cholesterol metabolism. In this context, the objective of the present review is to provide an overview on cholesterol metabolism and discuss the role of potential factors such as genetics, epigenetics, epistasis, and gut microbiome, as well as other regulators in modulating cholesterol metabolism, especially emphasizing the reciprocal relationship between cholesterol synthesis and absorption. Furthermore, an evaluation of the implications of this push-pull mechanism on cholesterol-lowering strategies is presented.
Collapse
Affiliation(s)
- Peter A S Alphonse
- Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada. .,Richardson Centre for Functional Foods and Nutraceuticals (RCFFN), University of Manitoba, 196, Innovation Drive, SmartPark, Winnipeg, MB, R3T 2N2, Canada.
| | - Peter J H Jones
- Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.,Richardson Centre for Functional Foods and Nutraceuticals (RCFFN), University of Manitoba, 196, Innovation Drive, SmartPark, Winnipeg, MB, R3T 2N2, Canada.,Food Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
35
|
Seo HS, Choi MH. Cholesterol homeostasis in cardiovascular disease and recent advances in measuring cholesterol signatures. J Steroid Biochem Mol Biol 2015; 153:72-9. [PMID: 25910582 DOI: 10.1016/j.jsbmb.2015.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 01/08/2023]
Abstract
Despite the biochemical importance of cholesterol, its abnormal metabolism has serious cellular consequences that lead to endocrine disorders such as cardiovascular disease (CVD). Nevertheless, the impact of blood cholesterol as a CVD risk factor is still debated, and treatment with cholesterol-lowering drugs remains controversial, particularly in older patients. Although, the prevalence of CVD increases with age, the underlying mechanisms for this phenomenon are not well understood, and metabolic changes have not been confirmed as predisposing factors of atherogenesis. The quantification of circulating biomarkers for cholesterol homeostasis is therefore warranted, and reference values for cholesterol absorption and synthesis should be determined in order to establish CVD risk factors. The traditional lipid profile is often derived rather than directly measured and lacks a universal standard to interpret the results. In contrast, mass spectrometry-based cholesterol profiling can accurately measure free cholesterol as a biologically active component. This approach allows to detect alterations in various metabolic pathways that control cholesterol homeostasis, by quantitative analysis of cholesterol and its precursors/metabolites as well as dietary sterols. An overview of the mechanism of cholesterol homeostasis under different physiological conditions may help to identify predictive biomarkers of concomitant atherosclerosis and conventional CVD risk factors.
Collapse
Affiliation(s)
- Hong Seog Seo
- Cardiovascular Center, Korea University Guro Hospital, Seoul 152-703, South Korea; Korea University-Korea Institute of Science and Technology Graduated School of Converging Science and Technology, Seoul 152-703, South Korea
| | - Man Ho Choi
- Materials and Life Science Research Division, Korea Institute of Science and Technology, Seoul 136-791, South Korea.
| |
Collapse
|
36
|
Fatima N, Cohen DC, Sukumar G, Sissung TM, Schooley JF, Haigney MC, Claycomb WC, Cox RT, Dalgard CL, Bates SE, Flagg TP. Histone deacetylase inhibitors modulate KATP subunit transcription in HL-1 cardiomyocytes through effects on cholesterol homeostasis. Front Pharmacol 2015; 6:168. [PMID: 26321954 PMCID: PMC4534802 DOI: 10.3389/fphar.2015.00168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/27/2015] [Indexed: 11/29/2022] Open
Abstract
Histone deacetylase inhibitors (HDIs) are under investigation for the treatment of a number of human health problems. HDIs have proven therapeutic value in refractory cases of cutaneous T-cell lymphoma. Electrocardiographic ST segment morphological changes associated with HDIs were observed during development. Because ST segment morphology is typically linked to changes in ATP sensitive potassium (KATP) channel activity, we tested the hypothesis that HDIs affect cardiac KATP channel subunit expression. Two different HDIs, romidepsin and trichostatin A, caused ~20-fold increase in SUR2 (Abcc9) subunit mRNA expression in HL-1 cardiomyocytes. The effect was specific for the SUR2 subunit as neither compound causes a marked change in SUR1 (Abcc8) expression. Moreover, the effect was cell specific as neither HDI markedly altered KATP subunit expression in MIN6 pancreatic β-cells. We observe significant enrichment of the H3K9Ac histone mark specifically at the SUR2 promoter consistent with the conclusion that chromatin remodeling at this locus plays a role in increasing SUR2 gene expression. Unexpectedly, however, we also discovered that HDI-dependent depletion of cellular cholesterol is required for the observed effects on SUR2 expression. Taken together, the data in the present study demonstrate that KATP subunit expression can be epigenetically regulated in cardiomyocytes, defines a role for cholesterol homeostasis in mediating epigenetic regulation and suggests a potential molecular basis for the cardiac effects of the HDIs.
Collapse
Affiliation(s)
- Naheed Fatima
- Department of Anatomy, Physiology and Genetics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Devin C Cohen
- Department of Anatomy, Physiology and Genetics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Gauthaman Sukumar
- Department of Anatomy, Physiology and Genetics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Tristan M Sissung
- Developmental Therapeutic Branch, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| | - James F Schooley
- Department of Anatomy, Physiology and Genetics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Mark C Haigney
- Department of Medicine, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - William C Claycomb
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center New Orleans, LA, USA
| | - Rachel T Cox
- Department of Biochemistry, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Clifton L Dalgard
- Department of Anatomy, Physiology and Genetics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Susan E Bates
- Developmental Therapeutic Branch, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| | - Thomas P Flagg
- Department of Anatomy, Physiology and Genetics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| |
Collapse
|
37
|
Affiliation(s)
- Steven J Fliesler
- Departments of Ophthalmology and Biochemistry, University at Buffalo-The State University of New York (SUNY); the SUNY Eye Institute; and the Research Service, Veterans Administration Western New York Healthcare System (VAWNYHS), Buffalo, NY 14215
| |
Collapse
|