1
|
Jones DR, Everson J, Leeds TD, Wiens GD, Wargo AR. The Impact of Exposure Dosage and Host Genetics on the Shedding Kinetics of Flavobacterium psychrophilum in Rainbow Trout. JOURNAL OF FISH DISEASES 2024:e14026. [PMID: 39380420 DOI: 10.1111/jfd.14026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024]
Abstract
Flavobacterium psychrophilum, the causative agent of bacterial cold water disease (BCWD), is one of the leading pathogens in rainbow trout (Oncorhynchus mykiss) aquaculture. To date, there is little knowledge of the transmission kinetics of F. psychrophilum over the course of infection. In particular, how transmission is affected by host genotype and pathogen exposure dosage are not well studied. In order to fill in these knowledge gaps, we exposed two divergently selected lines of rainbow trout (ARS-Fp-R and ARS-Fp-S) to a range of dosages of F. psychrophilum (strain CSF117-10). We then measured mortality and bacterial shedding to estimate transmission risk at multiple time points since initial infection. As dosage increased, the number of fish shedding and the amount of bacteria shed increased ranging from 0% to 100% and 103 to 108 cells fish-1 h-1, respectively. In addition, we found that disease resistance (survival) was not correlated with transmission risk blocking, in that 67% of fish which shed bacteria experienced no clinical disease. In general, fish mortality began on Day 3, peaked between Days 5-7 and was higher in the ARS-Fp-R line. Results from this study could be used to develop epidemiological models and improve disease management, particularly in the context of aquaculture and selective breeding.
Collapse
Affiliation(s)
- Darbi R Jones
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, Virginia, USA
| | - Jeremy Everson
- National Center for Cool and Cold Water Aquaculture, Kearneysville, West Virginia, USA
| | - Timothy D Leeds
- National Center for Cool and Cold Water Aquaculture, Kearneysville, West Virginia, USA
| | - Gregory D Wiens
- National Center for Cool and Cold Water Aquaculture, Kearneysville, West Virginia, USA
| | - Andrew R Wargo
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, Virginia, USA
| |
Collapse
|
2
|
Deng F, Wang D, Yu Y, Lu T, Li S. Systemic immune response of rainbow trout exposed to Flavobacterium psychrophilum infection. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109305. [PMID: 38128681 DOI: 10.1016/j.fsi.2023.109305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Bacterial cold-water disease (BCWD) caused by Flavobacterium psychrophilum is one of the most serious bacterial diseases leading to significant economic loss for rainbow trout (Oncorhynchus mykiss) aquaculture. However, little is known about the systemic immune response of rainbow trout against F. psychrophilum infection. This study investigated the immune response of rainbow trout to F. psychrophilum infection using multiple experiments, including bacterial load detection, phagocyte activity assessment, enzyme activity evaluation, and gene expression profiling. Results showed that the spleen index and intestinal pathogen load reached a peak at 3 days post-infection, with strong pro-inflammatory gene expression observed in rainbow trout. Leukocytes RBA and PKA were significantly elevated in the spleen, blood and intestine at 7 days post-infection. Heat map analysis demonstrated that the spleen had a more substantial pro-inflammatory response compared to the intestine post-infection and exhibited higher expression levels of immune-related genes, including IgM, il1β, il6, cd4, cd8a, cd8b, c1q, chathelicidin, inos, and lysozyme. Both Th1 and Th2 polarized responses in the spleen were activated, with Th2 (il4/13a, gata3) (FC > 4) being more intense than Th1 (tnfα, t-bet) (FC > 2). Tight junction proteins exhibited down-regulation followed by up-regulation post-infection. Collectively, the results of this study expand our current understanding of the immune response of rainbow trout post F. psychrophilum infection but also provide new avenues for investigation in salmonid aquaculture.
Collapse
Affiliation(s)
- Furong Deng
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Di Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.
| | - Yang Yu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tongyan Lu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Shaowu Li
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.
| |
Collapse
|
3
|
Wiens GD, Marancik DP, Chadwick CC, Osbourn K, Reid RM, Leeds TD. Plasma proteomic profiling of bacterial cold water disease-resistant and -susceptible rainbow trout lines and biomarker discovery. Front Immunol 2023; 14:1265386. [PMID: 37928534 PMCID: PMC10623068 DOI: 10.3389/fimmu.2023.1265386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Genetic variation for disease resistance is present in salmonid fish; however, the molecular basis is poorly understood, and biomarkers of disease susceptibility/resistance are unavailable. Previously, we selected a line of rainbow trout for high survival following standardized challenge with Flavobacterium psychrophilum (Fp), the causative agent of bacterial cold water disease. The resistant line (ARS-Fp-R) exhibits over 60 percentage points higher survival compared to a reference susceptible line (ARS-Fp-S). To gain insight into the differential host response between genetic lines, we compared the plasma proteomes from day 6 after intramuscular challenge. Pooled plasma from unhandled, PBS-injected, and Fp-injected groups were simultaneously analyzed using a TMT 6-plex label, and the relative abundance of 513 proteins was determined. Data are available via ProteomeXchange, with identifier PXD041308, and the relative protein abundance values were compared to mRNA measured from a prior, whole-body RNA-seq dataset. Our results identified a subset of differentially abundant intracellular proteins was identified, including troponin and myosin, which were not transcriptionally regulated, suggesting that these proteins were released into plasma following pathogen-induced tissue damage. A separate subset of high-abundance, secreted proteins were transcriptionally regulated in infected fish. The highest differentially expressed protein was a C1q family member (designated complement C1q-like protein 3; C1q-LP3) that was upregulated over 20-fold in the infected susceptible line while only modestly upregulated, 1.8-fold, in the infected resistant line. Validation of biomarkers was performed using immunoassays and C1q-LP3, skeletal muscle troponin C, cathelcidin 2, haptoglobin, leptin, and growth and differentiation factor 15 exhibited elevated concentration in susceptible line plasma. Complement factor H-like 1 exhibited higher abundance in the resistant line compared to the susceptible line in both control and challenged fish and thus was a baseline differentiator between lines. C1q-LP3 and STNC were elevated in Atlantic salmon plasma following experimental challenge with Fp. In summary, these findings further the understanding of the differential host response to Fp and identifies salmonid biomarkers that may have use for genetic line evaluation and on-farm health monitoring.
Collapse
Affiliation(s)
- Gregory D. Wiens
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, U.S. Department of Agriculture (USDA), Kearneysville, WV, United States
| | - David P. Marancik
- Department of Pathobiology, School of Veterinary Medicine, St. George’s University, True Blue, Grenada
| | | | - Keira Osbourn
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, U.S. Department of Agriculture (USDA), Kearneysville, WV, United States
| | - Ross M. Reid
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, U.S. Department of Agriculture (USDA), Kearneysville, WV, United States
| | - Timothy D. Leeds
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, U.S. Department of Agriculture (USDA), Kearneysville, WV, United States
| |
Collapse
|
4
|
Lee BH, Quillet E, Rigaudeau D, Dechamp N, Duchaud E, Bernardet JF, Boudinot P, Rochat T. Interplay between a bacterial pathogen and its host in rainbow trout isogenic lines with contrasted susceptibility to cold water disease. Microbes Infect 2023; 25:105140. [PMID: 37062327 DOI: 10.1016/j.micinf.2023.105140] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/18/2023]
Abstract
Infectious diseases are a major constraint on aquaculture. Genetic lines with different susceptibilities to diseases are useful models to identify resistance mechanisms to pathogens and to improve prophylaxis. Bacterial cold-water disease (BCWD) caused by Flavobacterium psychrophilum represents a major threat for freshwater salmonid farming worldwide. A collection of rainbow trout (Oncorhynchus mykiss) isogenic lines was previously produced from a French domestic population. Here, we compared BCWD resistance phenotypes using a subset of isogenic lines chosen for their contrasted susceptibilities to F. psychrophilum. We applied individual monitoring to document the infection process, including time-course quantification of bacteremia and innate immune response. Strikingly, BCWD resistance was correlated with a lower bacterial growth rate in blood. Several immune genes were expressed at higher levels in resistant fish regardless of infection: the Type II arginase (arg2), a marker for M2 macrophages involved in anti-inflammatory responses and tissue repair, and two Toll-like receptors (tlr2/tlr7), responsible for pathogen detection and inflammatory responses. This study highlights the importance of innate and intrinsic defense mechanisms in determining the outcome of F. psychrophilum infections, and illustrates that non-lethal time-course blood sampling for individual monitoring of bacteremia is a powerful tool to resolve within-host pathogen behavior in bacterial fish diseases.
Collapse
Affiliation(s)
- Bo-Hyung Lee
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Edwige Quillet
- Université Paris-Saclay, INRAE, GABI, Jouy-en-Josas, France
| | | | | | - Eric Duchaud
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France.
| | - Tatiana Rochat
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France.
| |
Collapse
|
5
|
Robinson NA, Robledo D, Sveen L, Daniels RR, Krasnov A, Coates A, Jin YH, Barrett LT, Lillehammer M, Kettunen AH, Phillips BL, Dempster T, Doeschl‐Wilson A, Samsing F, Difford G, Salisbury S, Gjerde B, Haugen J, Burgerhout E, Dagnachew BS, Kurian D, Fast MD, Rye M, Salazar M, Bron JE, Monaghan SJ, Jacq C, Birkett M, Browman HI, Skiftesvik AB, Fields DM, Selander E, Bui S, Sonesson A, Skugor S, Østbye TK, Houston RD. Applying genetic technologies to combat infectious diseases in aquaculture. REVIEWS IN AQUACULTURE 2023; 15:491-535. [PMID: 38504717 PMCID: PMC10946606 DOI: 10.1111/raq.12733] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/24/2022] [Accepted: 08/16/2022] [Indexed: 03/21/2024]
Abstract
Disease and parasitism cause major welfare, environmental and economic concerns for global aquaculture. In this review, we examine the status and potential of technologies that exploit genetic variation in host resistance to tackle this problem. We argue that there is an urgent need to improve understanding of the genetic mechanisms involved, leading to the development of tools that can be applied to boost host resistance and reduce the disease burden. We draw on two pressing global disease problems as case studies-sea lice infestations in salmonids and white spot syndrome in shrimp. We review how the latest genetic technologies can be capitalised upon to determine the mechanisms underlying inter- and intra-species variation in pathogen/parasite resistance, and how the derived knowledge could be applied to boost disease resistance using selective breeding, gene editing and/or with targeted feed treatments and vaccines. Gene editing brings novel opportunities, but also implementation and dissemination challenges, and necessitates new protocols to integrate the technology into aquaculture breeding programmes. There is also an ongoing need to minimise risks of disease agents evolving to overcome genetic improvements to host resistance, and insights from epidemiological and evolutionary models of pathogen infestation in wild and cultured host populations are explored. Ethical issues around the different approaches for achieving genetic resistance are discussed. Application of genetic technologies and approaches has potential to improve fundamental knowledge of mechanisms affecting genetic resistance and provide effective pathways for implementation that could lead to more resistant aquaculture stocks, transforming global aquaculture.
Collapse
Affiliation(s)
- Nicholas A. Robinson
- Nofima ASTromsøNorway
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Andrew Coates
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Ye Hwa Jin
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Luke T. Barrett
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | - Ben L. Phillips
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Tim Dempster
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Andrea Doeschl‐Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Francisca Samsing
- Sydney School of Veterinary ScienceThe University of SydneyCamdenAustralia
| | | | - Sarah Salisbury
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | | | | | | | - Dominic Kurian
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Mark D. Fast
- Atlantic Veterinary CollegeThe University of Prince Edward IslandCharlottetownPrince Edward IslandCanada
| | | | | | - James E. Bron
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Sean J. Monaghan
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Celeste Jacq
- Blue Analytics, Kong Christian Frederiks Plass 3BergenNorway
| | | | - Howard I. Browman
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | - Anne Berit Skiftesvik
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | | | - Erik Selander
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
| | - Samantha Bui
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | | | | |
Collapse
|
6
|
Ali A, Salem M. Genome-wide identification of antisense lncRNAs and their association with susceptibility to Flavobacterium psychrophilum in rainbow trout. Front Immunol 2022; 13:1050722. [PMID: 36561762 PMCID: PMC9763276 DOI: 10.3389/fimmu.2022.1050722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic genomes encode long noncoding natural antisense transcripts (lncNATs) that have been increasingly recognized as regulatory members of gene expression. Recently, we identified a few antisense transcripts correlating in expression with immune-related genes. However, a systematic genome-wide analysis of lncNATs in rainbow trout is lacking. This study used 134 RNA-Seq datasets from five different projects to identify antisense transcripts. A total of 13,503 lncNATs were identified genome-wide. About 75% of lncNATs showed multiple exons compared to 36.5% of the intergenic lncRNAs. RNA-Seq datasets from resistant, control, and susceptible rainbow trout genetic lines with significant differences in survival rate following Flavobacterium psychrophilum (Fp) infection were analyzed to investigate the potential role of the lncNATs during infection. Twenty-four pairwise comparisons between the different genetic lines, infectious status, and time points revealed 581 differentially expressed (DE) lncNATs and 179 differentially used exons (DUEs). Most of the DE lncNATs strongly and positively correlated in expression with their corresponding sense transcripts across 24 RNA-Seq datasets. LncNATs complementary to genes related to immunity, muscle contraction, proteolysis, and iron/heme metabolism were DE following infection. LncNATs complementary to hemolysis-related genes were DE in the resistant fish compared to susceptible fish on day 5 post-infection, suggesting enhanced clearance of free hemoglobin (Hb) and heme and increased erythropoiesis. LncNATs complementary to hepcidin, a master negative regulator of the plasma iron concentration, were the most downregulated lncNATs on day 5 of bacterial infection in the resistant fish. Ninety-four DE lncNAT, including five complementary to hepcidin, are located within 26 QTL regions previously identified in association with bacterial cold water disease (BCWD) in rainbow trout. Collectively, lncNATs are involved in the molecular architecture of fish immunity and should be further investigated for potential applications in genomic selection and genetic manipulation in aquaculture.
Collapse
Affiliation(s)
| | - Mohamed Salem
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| |
Collapse
|
7
|
Zhu Y, Lechardeur D, Bernardet JF, Kerouault B, Guérin C, Rigaudeau D, Nicolas P, Duchaud E, Rochat T. Two functionally distinct heme/iron transport systems are virulence determinants of the fish pathogen Flavobacterium psychrophilum. Virulence 2022; 13:1221-1241. [PMID: 35880611 PMCID: PMC9331221 DOI: 10.1080/21505594.2022.2101197] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/02/2022] [Accepted: 07/08/2022] [Indexed: 10/26/2022] Open
Abstract
Bacterial pathogens have a critical impact on aquaculture, a sector that accounts for half of the human fish consumption. Flavobacterium psychrophilum (phylum Bacteroidetes) is responsible for bacterial cold-water disease in salmonids worldwide. The molecular factors involved in host invasion, colonization and haemorrhagic septicaemia are mostly unknown. In this study, we identified two new TonB-dependent receptors, HfpR and BfpR, that are required for adaptation to iron conditions encountered during infection and for virulence in rainbow trout. Transcriptional analyses revealed that their expression is tightly controlled and upregulated under specific iron sources and concentrations. Characterization of deletion mutants showed that they act without redundancy: BfpR is required for optimal growth in the presence of high haemoglobin level, while HfpR confers the capacity to acquire nutrient iron from haem or haemoglobin under iron scarcity. The gene hfpY, co-transcribed with hfpR, encodes a protein related to the HmuY family. We demonstrated that HfpY binds haem and contributes significantly to host colonization and disease severity. Overall, these results are consistent with a model in which both BfpR and Hfp systems promote haem uptake and respond to distinct signals to adapt iron acquisition to the different stages of pathogenesis. Our findings give insight into the molecular basis of pathogenicity of a serious pathogen belonging to the understudied family Flavobacteriaceae and point to the newly identified haem receptors as promising targets for antibacterial development.
Collapse
Affiliation(s)
- Yueying Zhu
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Delphine Lechardeur
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | - Cyprien Guérin
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Pierre Nicolas
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Eric Duchaud
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Tatiana Rochat
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
8
|
Deng F, Wang D, Loch TP, Chen F, Lu T, Cao Y, Fan D, Li S. Time-course transcriptome analyses of spleen in rainbow trout (Oncorhynchus mykiss) post-Flavobacterium psychrophilum infection. Front Immunol 2022; 13:965099. [PMID: 36016951 PMCID: PMC9396386 DOI: 10.3389/fimmu.2022.965099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Flavobacterium psychrophilum, the etiological agent of bacterial coldwater disease and rainbow trout fry syndrome, causes considerable losses in salmonid aquaculture globally. Systemic F. psychrophilum infections in rainbow trout (Oncorhynchus mykiss) lead to a range of clinical signs, including ulcerative lesions in the skin and muscle and splenitis. Previous studies offered an integrative analysis of the skeletal muscle response to F. psychrophilum infection in rainbow trout. However, little is known about the molecular mechanism of immune response in the spleen, which is an important immune organ of rainbow trout. Here, we investigated the time-course splenic transcriptome profiles in uninfected rainbow trout (CK) and F. psychrophilum–infected rainbow trout at day 3 and day 7 (D3, D7) by RNA-seq analyses. Among the 7,170 differentially expressed genes (DEGs) in the three comparisons (D3 vs. CK, D7 vs. CK, D3 vs. D7), 1,286 DEGs showed consistent upregulation or downregulation at D3 and D7 and were associated with pattern recognition, acute-phase response, complement cascade, chemokine and cytokine signaling, and apoptosis. The Real time quantitative PCR (RT-qPCR) analysis of eight DEGs confirmed the accuracy of the RNA-Sequencing (RNA-seq) data. Our results reflected a general process from pathogen recognition to inflammatory cytokine generation and delineated a putative Toll-like receptor signaling pathway in rainbow trout spleen, following F. psychrophilum infection. Taken together, these results provide new insights into the molecular mechanism of the immune response to F. psychrophilum infection and are a valuable resource for future research on the prevention and control of bacterial coldwater disease during salmon culture.
Collapse
Affiliation(s)
- Furong Deng
- Department of Aquatic Animal Health, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Di Wang
- Department of Aquatic Animal Health, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, China
| | - Thomas P. Loch
- Department of Fisheries and Wildlife, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Fuguang Chen
- Department of Aquatic Animal Health, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, China
| | - Tongyan Lu
- Department of Aquatic Animal Health, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, China
| | - Yongsheng Cao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Dan Fan
- Department of Aquatic Animal Health, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shaowu Li
- Department of Aquatic Animal Health, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, China
- *Correspondence: Shaowu Li,
| |
Collapse
|
9
|
Liu S, Martin KE, Gao G, Long R, Evenhuis JP, Leeds TD, Wiens GD, Palti Y. Identification of Haplotypes Associated With Resistance to Bacterial Cold Water Disease in Rainbow Trout Using Whole-Genome Resequencing. Front Genet 2022; 13:936806. [PMID: 35812729 PMCID: PMC9260151 DOI: 10.3389/fgene.2022.936806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Bacterial cold water disease (BCWD) is an important disease in rainbow trout aquaculture. Previously, we have identified and validated two major QTL (quantitative trait loci) for BCWD resistance, located on chromosomes Omy08 and Omy25, in the odd-year Troutlodge May spawning population. We also demonstrated that marker-assisted selection (MAS) for BCWD resistance using the favorable haplotypes associated with the two major QTL is feasible. However, each favorable haplotype spans a large genomic region of 1.3–1.6 Mb. Recombination events within the haplotype regions will result in new haplotypes associated with BCWD resistance, which will reduce the accuracy of MAS for BCWD resistance over time. The objectives of this study were 1) to identify additional SNPs (single nucleotide polymorphisms) associated with BCWD resistance using whole-genome sequencing (WGS); 2) to validate the SNPs associated with BCWD resistance using family-based association mapping; 3) to refine the haplotypes associated with BCWD resistance; and 4) to evaluate MAS for BCWD resistance using the refined QTL haplotypes. Four consecutive generations of the Troutlodge May spawning population were evaluated for BCWD resistance. Parents and offspring were sequenced as individuals and in pools based on their BCWD phenotypes. Over 12 million SNPs were identified by mapping the sequences from the individuals and pools to the reference genome. SNPs with significantly different allele frequencies between the two BCWD phenotype groups were selected to develop SNP assays for family-based association mapping in three consecutive generations of the Troutlodge May spawning population. Among the 78 SNPs derived from WGS, 77 SNPs were associated with BCWD resistance in at least one of the three consecutive generations. The additional SNPs associated with BCWD resistance allowed us to reduce the physical sizes of haplotypes associated with BCWD resistance to less than 0.5 Mb. We also demonstrated that the refined QTL haplotypes can be used for MAS in the Troutlodge May spawning population. Therefore, the SNPs and haplotypes reported in this study provide additional resources for improvement of BCWD resistance in rainbow trout.
Collapse
Affiliation(s)
- Sixin Liu
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
- *Correspondence: Sixin Liu,
| | | | - Guangtu Gao
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
| | - Roseanna Long
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
| | - Jason P. Evenhuis
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
| | - Timothy D. Leeds
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
| | - Gregory D. Wiens
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
| | - Yniv Palti
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
| |
Collapse
|
10
|
Recurrent expansions of B30.2-associated immune receptor families in fish. Immunogenetics 2021; 74:129-147. [PMID: 34850255 DOI: 10.1007/s00251-021-01235-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022]
Abstract
B30.2 domains, also known as PRY/SPRY, are key components of specific subsets of two large families of proteins involved in innate immunity: the tripartite motif proteins (TRIMs) and the Nod-like receptors (NLRs). TRIM proteins are important, often inducible factors of antiviral innate immunity, targeting multiple steps of viral cycles through a variety of mechanisms. NLRs prime and regulate systemic innate defenses, especially against bacteria, and control inflammation. Large TRIM and NLR subsets characterized by the presence of a B30.2 domain have been reported from a few fish species including zebrafish and seem to be strongly prone to gene duplication/expansion. Here, we performed a large-scale survey of these receptors across about 150 fish genomes, focusing on ray-finned fishes. We assessed the number and genomic distribution of domains and domain combinations associated with TRIMs, NLRs, and other genes containing B30.2 domains and looked for gene expansion patterns across fish groups. We then used a model to test the impact of taxonomy, genome size, and environmental variables on the copy numbers of these genes. Our findings reveal novel domain structures, clade-specific gains and losses. They also assist with the timing of the gene expansions, reveal patterns associated with the MHC, and lay the groundwork for further studies delving deeper into the forces that drive the copy number variation of immune genes on a species level.
Collapse
|
11
|
Ali A, Thorgaard GH, Salem M. PacBio Iso-Seq Improves the Rainbow Trout Genome Annotation and Identifies Alternative Splicing Associated With Economically Important Phenotypes. Front Genet 2021; 12:683408. [PMID: 34335690 PMCID: PMC8321248 DOI: 10.3389/fgene.2021.683408] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/14/2021] [Indexed: 01/04/2023] Open
Abstract
Rainbow trout is an important model organism that has received concerted international efforts to study the transcriptome. For this purpose, short-read sequencing has been primarily used over the past decade. However, these sequences are too short of resolving the transcriptome complexity. This study reported a first full-length transcriptome assembly of the rainbow trout using single-molecule long-read isoform sequencing (Iso-Seq). Extensive computational approaches were used to refine and validate the reconstructed transcriptome. The study identified 10,640 high-confidence transcripts not previously annotated, in addition to 1,479 isoforms not mapped to the current Swanson reference genome. Most of the identified lncRNAs were non-coding variants of coding transcripts. The majority of genes had multiple transcript isoforms (average ∼3 isoforms/locus). Intron retention (IR) and exon skipping (ES) accounted for 56% of alternative splicing (AS) events. Iso-Seq improved the reference genome annotation, which allowed identification of characteristic AS associated with fish growth, muscle accretion, disease resistance, stress response, and fish migration. For instance, an ES in GVIN1 gene existed in fish susceptible to bacterial cold-water disease (BCWD). Besides, under five stress conditions, there was a commonly regulated exon in prolyl 4-hydroxylase subunit alpha-2 (P4HA2) gene. The reconstructed gene models and their posttranscriptional processing in rainbow trout provide invaluable resources that could be further used for future genetics and genomics studies. Additionally, the study identified characteristic transcription events associated with economically important phenotypes, which could be applied in selective breeding.
Collapse
Affiliation(s)
- Ali Ali
- Department of Animal and Avian Sciences, University of Maryland, College Park, College Park, MD, United States
| | - Gary H. Thorgaard
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Mohamed Salem
- Department of Animal and Avian Sciences, University of Maryland, College Park, College Park, MD, United States
| |
Collapse
|
12
|
Zwollo P, Quddos F, Bagdassarian C, Seeley ME, Hale RC, Abderhalden L. Polystyrene microplastics reduce abundance of developing B cells in rainbow trout (Oncorhynchus mykiss) primary cultures. FISH & SHELLFISH IMMUNOLOGY 2021; 114:102-111. [PMID: 33930547 DOI: 10.1016/j.fsi.2021.04.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Environmental microplastic pollution (including polystyrene, PS) may have detrimental effects on the health of aquatic organisms. Accumulation of PS microplastics has been reported to affect innate immune cells and inflammatory responses in fish. To date, knowledge on effects of microplastics on the antibody response is still very limited. Here, we investigated effects of small (0.8-20 μm) PS microplastics on the abundance of B lineage cells in primary cultures of developing immune cells from the anterior kidney of rainbow trout. Both purchased PS microbeads and PS microparticles generated from consumer products were used as microplastic sources. We first show that rainbow trout phagocytic B cells efficiently took up small (0.83-3.1 μm) PS microbeads within hours of exposure. In addition, our data revealed that PS microplastic exposure most significantly decreased the abundance of a population of non-phagocytic developing B cells, using both flow cytometry and RT-qPCR. PS microplastics-induced loss of developing B cells further correlated with reduced gene expression of RAG1 and the membrane form of immunoglobulin heavy chains mu and tau. Based on the induced loss of developing B cells observed in our in vitro studies, we speculate that in vivo, chronic PS microplastic-exposure may lead to suboptimal IgM/IgT levels in response to pathogens in teleost species. Considering the highly conserved nature of vertebrate B lymphopoiesis it is likely that PS microplastics will similarly reduce antibody responses in higher vertebrate species, including humans. Further, RAG1 provides an effective biomarker to determine effects of PS microplastics on B cell development in teleost species.
Collapse
Affiliation(s)
- Patty Zwollo
- Department of Biology, William and Mary, Williamsburg, VA, 23185, USA.
| | - Fatima Quddos
- Department of Biology, William and Mary, Williamsburg, VA, 23185, USA
| | - Carey Bagdassarian
- Interdisciplinary Studies, William and Mary, Williamsburg, VA, 23185, USA
| | - Meredith Evans Seeley
- Virginia Institute of Marine Science, Department of Aquatic Health Sciences, William & Mary, Gloucester Point, VA, 23062, USA
| | - Robert C Hale
- Virginia Institute of Marine Science, Department of Aquatic Health Sciences, William & Mary, Gloucester Point, VA, 23062, USA
| | | |
Collapse
|
13
|
Quddos F, Zwollo P. A BCWD-Resistant line of rainbow trout is less sensitive to cortisol implant-induced changes in IgM response as compared to a susceptible (control) line. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103921. [PMID: 33212092 PMCID: PMC7796912 DOI: 10.1016/j.dci.2020.103921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 05/03/2023]
Abstract
In salmonids, stress responses increase cortisol levels and disease susceptibility, including to Flavobacterium psychrophilum (Fp), the causative agent of BCWD. A BCWD-resistant line (R-line) of rainbow trout was used here to investigate potential differences in immunoglobulin response after a combined treatment of cortisol and Fp, as compared to a susceptible (S-line) control line. Expression of membrane and secreted immunoglobulin heavy chains mu and tau were determined by RT-qPCR in spleen and anterior kidney. Cortisol treatment did not affect B cell development in the anterior kidney, but delayed IgM responses at the early stage of infection in the spleen of both lines. An earlier IgM response was a determining factor in differential disease progression between resistant- and susceptible fish after Fp-challenge. S-line fish had a delayed and exacerbated IgM response after cortisol implant indicative of a detrimental cycle of sustained IgM responses and high pathogen loads. In contrast, R-line fish had delayed but milder, and protective IgM responses and cleared pathogen successfully. Fp challenge after cortisol implant increased serum cortisol levels on days 3 and 5 compared to mock treatments in S-line fish, but only on day 3 in R-line. Hence, combined cortisol treatment and Fp challenge differentially modulated B cell activation and Fp loads in BCWD-resistant and susceptible lines of rainbow trout. We propose that under conditions of increased stress, BCWD-resistant fish may remain immunologically better equipped to respond to infections compared to BCWD susceptible fish.
Collapse
Affiliation(s)
- Fatima Quddos
- Department of Biology, William and Mary, Williamsburg, VA, 23185, USA
| | - Patty Zwollo
- Department of Biology, William and Mary, Williamsburg, VA, 23185, USA.
| |
Collapse
|
14
|
Ma H, Han YC, Palti Y, Gao G, Liu S, Palmquist DE, Wiens GD, Shepherd BS. Structure and regulation of the NK-lysin (1-4) and NK-lysin like (a and b) antimicrobial genes in rainbow trout (Oncorhynchus mykiss). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103961. [PMID: 33301795 DOI: 10.1016/j.dci.2020.103961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Nk-lysin (Nkl), an antimicrobial peptide (AMP) product of natural killer cells and cytotoxic T cells in mammals, has recently been characterized in a number of finfish species. In this study, we identified six genes with sequence homology to Nkl and characterized their patterns of mRNA expression and abundances in rainbow trout (Oncorhynchus mykiss). The cDNA sequences for the six Nkls encoded precursor peptides of 128-133 aa in length, and mature peptides of 109-111 aa in length. Genomic DNA of the nkl1-4 genes consisted of five exons and four introns, whereas the nkl-like a & b genes consisted of four exons and three introns. Chromosomal locations of these peptides show that nkl1 was located on chromosome arm 25q, whereas the other five nkl genes were clustered on chromosome arm 19q. Phylogenetic analysis revealed a conserved structure of Nkls among the teleosts and further protein sequence analyses suggests that all six nkl genes fall within the Nkl sub-family of the Saposin family of proteins. Patterns of tissue-specific mRNA expression were asymmetric among the six trout Nkl homologues, with nkl1, nkl3, and nkl-like a & b occurring in immune competent organs such as spleen, gill, intestine and kidney, as well as pineal gland, brain and oocytes. However, nkl2 and nkl4, showed primary abundances in brain, pineal gland and oocyte tissues. Using mRNA sequencing, in whole-body pools of juvenile trout fry (1 g bw) exposed to Flavobacterium psychrophilum infection, we observed modest up-regulation (2-3 fold) of five (nkl 2-4 and nkl-like a & b) of the six nkl mRNAs over the five-day post-challenge time-course. However, no upregulation could be recorded in spleen tissue measured by qPCR in juvenile trout (270 g bw). Using mRNA sequencing again, mRNA abundances were determined in gill of juvenile trout (~57.7 g bw) exposed to various aquaculture stressors. The results indicated that all six nkls (nkl1-4 and nkl-like a and nkl-like b) were downregulated when exposed to high temperature, and that nkl1 was significantly downregulated following salinity challenge. Overall, these newly characterized AMPs may contribute to host innate immunity as they are modulated following pathogen challenge and by physiological stressors.
Collapse
Affiliation(s)
- Hao Ma
- USDA-ARS-NADC-Ruminant Diseases and Immunology Research Unit, 1920 Dayton Ave, Ames, IA, 50010, USA; USDA-ARS-National Center for Cool and Cold Water Aquaculture, 11861 Leetown Rd., Leetown, WV, 25430, USA
| | - Yueh-Chiang Han
- USDA-ARS-School of Freshwater Sciences, 600 E. Greenfield Ave., Milwaukee, WI, 53204, USA
| | - Yniv Palti
- USDA-ARS-National Center for Cool and Cold Water Aquaculture, 11861 Leetown Rd., Leetown, WV, 25430, USA
| | - Guangtu Gao
- USDA-ARS-National Center for Cool and Cold Water Aquaculture, 11861 Leetown Rd., Leetown, WV, 25430, USA
| | - Sixin Liu
- USDA-ARS-National Center for Cool and Cold Water Aquaculture, 11861 Leetown Rd., Leetown, WV, 25430, USA
| | - Debra E Palmquist
- USDA/ARS-Midwest Area Statistics Unit, 1815 N. Street, Peoria, IL, 61604, USA
| | - Gregory D Wiens
- USDA-ARS-National Center for Cool and Cold Water Aquaculture, 11861 Leetown Rd., Leetown, WV, 25430, USA
| | - Brian S Shepherd
- USDA-ARS-School of Freshwater Sciences, 600 E. Greenfield Ave., Milwaukee, WI, 53204, USA.
| |
Collapse
|
15
|
Zuo S, Karami AM, Ødegård J, Mathiessen H, Marana MH, Jaafar RM, von Gersdorff Jørgensen L, Abdu M, Kania PW, Dalsgaard I, Nielsen T, Buchmann K. Immune gene expression and genome-wide association analysis in rainbow trout with different resistance to Yersinia ruckeri infection. FISH & SHELLFISH IMMUNOLOGY 2020; 106:441-450. [PMID: 32791094 DOI: 10.1016/j.fsi.2020.07.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 05/04/2023]
Abstract
Selective breeding programmes involving marker assisted selection of innately pathogen resistant strains of rainbow trout rely on reliable controlled infection studies, extensive DNA typing of individual fish and recording of expression of relevant genes. We exposed juvenile rainbow trout (6 h bath to 2.6 × 105 CFU mL-1) to the fish pathogen Yersinia ruckeri serotype O1, biotype 2, eliciting Enteric Red Mouth Disease ERM, and followed the disease progression over 21 days. Cumulative mortality reached 42% at 12 days post challenge (dpc) after which no disease signs were recorded. All fish were sampled for DNA-typing (50 k SNP chip, Affymetrix®) throughout the course of infection when they showed clinical signs of disease (susceptible fish) or at day 21 when fish showed no clinical signs of disease (survivors - resistant fish). Genome-wide association analyses of 1027 trout applying single nucleotide polymorphisms (SNPs) as markers revealed an association between traits (susceptible/resistant) and certain regions of the trout genome. It was indicated that multiple genes are involved in rainbow trout resistance towards ERM whereby it is considered a polygenic trait. A corresponding trout group was kept as non-exposed controls and a comparative expression analysis of central innate and adaptive immune genes in gills, spleen and liver was performed for three fish groups: 1) moribund trout exhibiting clinical signs 7 dpc (CS), 2) exposed fish without clinical signs at the same sampling point (NCS) and 3) surviving fish at 21 dpc (survivors). Immune genes encoding inflammatory cytokines (IL-1β, IL-2A, IL-6A, IL-8, IL-10A, IL-12, IL-17A/F2A, IL-17C1, IL-17C2, IL-22, IFNγ, TNFα), acute phase reactants (SAA, C3, cathelicidins, lysozyme) were expressed differently in CS and NCS fish. Correlation (negative or positive) between expression of genes and bacterial load suggested involvement of immune genes in protection. Down-regulation of adaptive immune genes including IgDm, IgDs, IgT and TCR-β was seen primarily in CS and NCS fish whereas survivors showed up-regulation of effector molecule genes such as cathelicidins, complement and lysozyme suggesting their role in clearing the infection. In conclusion, SNP analyses indicated that ERM resistance in rainbow trout is a multi-locus trait. The gene expression in surviving fish suggested that several immune genes are associated with the trait conferring resistance.
Collapse
Affiliation(s)
- Shaozhi Zuo
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Asma M Karami
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark.
| | | | - Heidi Mathiessen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Moonika H Marana
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Rzgar M Jaafar
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Louise von Gersdorff Jørgensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Mohamed Abdu
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Per W Kania
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Inger Dalsgaard
- Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Kurt Buchmann
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| |
Collapse
|
16
|
Semple SL, Dixon B. Salmonid Antibacterial Immunity: An Aquaculture Perspective. BIOLOGY 2020; 9:E331. [PMID: 33050557 PMCID: PMC7599743 DOI: 10.3390/biology9100331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
The aquaculture industry is continuously threatened by infectious diseases, including those of bacterial origin. Regardless of the disease burden, aquaculture is already the main method for producing fish protein, having displaced capture fisheries. One attractive sector within this industry is the culture of salmonids, which are (a) uniquely under pressure due to overfishing and (b) the most valuable finfish per unit of weight. There are still knowledge gaps in the understanding of fish immunity, leading to vaccines that are not as effective as in terrestrial species, thus a common method to combat bacterial disease outbreaks is the use of antibiotics. Though effective, this method increases both the prevalence and risk of generating antibiotic-resistant bacteria. To facilitate vaccine design and/or alternative treatment efforts, a deeper understanding of the teleost immune system is essential. This review highlights the current state of teleost antibacterial immunity in the context of salmonid aquaculture. Additionally, the success of current techniques/methods used to combat bacterial diseases in salmonid aquaculture will be addressed. Filling the immunology knowledge gaps highlighted here will assist in reducing aquaculture losses in the future.
Collapse
Affiliation(s)
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| |
Collapse
|
17
|
Cleveland BM, Gao G, Leeds TD. Transcriptomic Response to Selective Breeding for Fast Growth in Rainbow Trout (Oncorhynchus mykiss). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:539-550. [PMID: 32451652 DOI: 10.1007/s10126-020-09974-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Genetic improvement for faster growth is a conventional approach to increase growth rates in aquaculture species; however, the genetic and physiological factors regulating growth performance in fish are not fully characterized. The objective of this study was to identify physiological mechanisms associated with faster growth rates by comparing the liver and muscle transcriptome of a rainbow trout line selectively bred for fast growth (growth line, GL) and a contemporary randomly mated control line (synthetic control, SC) from the same selective breeding program. A third genetic line from a commercial egg supplier (commercial A, CA) was also included to characterize differences in gene expression profiles between populations. Body weight of the GL at harvest was approximately 20% and 8% heavier (p < 0.05) than SC and CA, respectively. There were 145 and 36 differentially expressed genes (DEG) in liver and white muscle, respectively, between the GL and SC that were enriched for the growth hormone/insulin-like growth factor axis (GH/IGF) and PI3K-Akt, JAK-STAT, MAPK, and cAMP signal transduction pathways. A greater concentration of plasma IGF-I was detected in the GL compared with SC (p < 0.05). A unique gene profile was detected in CA, with 11 and 210 DEG in liver and white muscle; these genes associated with innate immunity, complement systems, and metabolic pathways. Collectively, these findings provide a more extensive characterization of the fast-growth phenotype in fish that furthers knowledge of the physiological basis for genetic variation in growth performance in selectively bred rainbow trout.
Collapse
Affiliation(s)
- Beth M Cleveland
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, 11861 Leetown Rd, Kearneysville, WV, 25430, USA.
| | - Guangtu Gao
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, 11861 Leetown Rd, Kearneysville, WV, 25430, USA
| | - Timothy D Leeds
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, 11861 Leetown Rd, Kearneysville, WV, 25430, USA
| |
Collapse
|
18
|
Bruce TJ, Ma J, Knupp C, Loch TP, Faisal M, Cain KD. Cross-protection of a live-attenuated Flavobacterium psychrophilum immersion vaccine against novel Flavobacterium spp. and Chryseobacterium spp. strains. JOURNAL OF FISH DISEASES 2020; 43:915-928. [PMID: 32557714 DOI: 10.1111/jfd.13201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
For salmonid producers, a common threat is Flavobacterium psychrophilum. Recent advancements in bacterial coldwater disease (BCWD) management include the development of a live-attenuated immersion vaccine that cross-protects against an array of F. psychrophilum strains. Emerging family Flavobacteriaceae cases associated with clinical disease have been increasing, including pathogenic isolates of Flavobacterium spp. and Chryseobacterium spp. The cross-protective ability of a live-attenuated F. psychrophilum vaccine was determined against three virulent Flavobacteriaceae isolates. Juvenile rainbow trout were vaccinated, developed high F. psychrophilum-specific antibody titres and were challenged with Chryseobacterium spp. isolates (S25 and T28), a Flavobacterium sp. (S21) isolate, a mixed combination of S21:S25:T28, and a standard virulent F. psychrophilum CSF259-93 strain. Results demonstrated strong protection in the CSF259-93 vaccinated group (relative per cent survival (RPS)=94.44%) when compared to the relevant CSF259-93 controls (p < .001). Protection was also observed for vaccinated fish challenged with the S21:S25:T28 mix (RPS = 85.18%; p < .001). However, protection was not observed with the S21, S25 or T28 isolates alone. Analysis of whole-cell lysates revealed differences in protein banding by SDS-PAGE, but conserved antigenic regions by Western blot in S25 and T28. Results demonstrate that this live-attenuated vaccine provided protection against mixed flavobacterial infection and suggest further benefits against flavobacteriosis.
Collapse
Affiliation(s)
- Timothy J Bruce
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, USA
| | - Jie Ma
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, USA
| | - Christopher Knupp
- Department of Fisheries and Wildlife, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA
| | - Thomas P Loch
- Department of Fisheries and Wildlife, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Mohamed Faisal
- Department of Fisheries and Wildlife, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Kenneth D Cain
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, USA
| |
Collapse
|
19
|
Fraslin C, Quillet E, Rochat T, Dechamp N, Bernardet JF, Collet B, Lallias D, Boudinot P. Combining Multiple Approaches and Models to Dissect the Genetic Architecture of Resistance to Infections in Fish. Front Genet 2020; 11:677. [PMID: 32754193 PMCID: PMC7365936 DOI: 10.3389/fgene.2020.00677] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/02/2020] [Indexed: 12/25/2022] Open
Abstract
Infectious diseases represent a major threat for the sustainable development of fish farming. Efficient vaccines are not available against all diseases, and growing antibiotics resistance limits the use of antimicrobial drugs in aquaculture. It is therefore important to understand the basis of fish natural resistance to infections to help genetic selection and to develop new approaches against infectious diseases. However, the identification of the main mechanisms determining the resistance or susceptibility of a host to a pathogenic microbe is challenging, integrating the complexity of the variation of host genetics, the variability of pathogens, and their capacity of fast evolution and adaptation. Multiple approaches have been used for this purpose: (i) genetic approaches, QTL (quantitative trait loci) mapping or GWAS (genome-wide association study) analysis, to dissect the genetic architecture of disease resistance, and (ii) transcriptomics and functional assays to link the genetic constitution of a fish to the molecular mechanisms involved in its interactions with pathogens. To date, many studies in a wide range of fish species have investigated the genetic determinism of resistance to many diseases using QTL mapping or GWAS analyses. A few of these studies pointed mainly toward adaptive mechanisms of resistance/susceptibility to infections; others pointed toward innate or intrinsic mechanisms. However, in the majority of studies, underlying mechanisms remain unknown. By comparing gene expression profiles between resistant and susceptible genetic backgrounds, transcriptomics studies have contributed to build a framework of gene pathways determining fish responsiveness to a number of pathogens. Adding functional assays to expression and genetic approaches has led to a better understanding of resistance mechanisms in some cases. The development of knock-out approaches will complement these analyses and help to validate putative candidate genes critical for resistance to infections. In this review, we highlight fish isogenic lines as a unique biological material to unravel the complexity of host response to different pathogens. In the future, combining multiple approaches will lead to a better understanding of the dynamics of interaction between the pathogen and the host immune response, and contribute to the identification of potential targets of selection for improved resistance.
Collapse
Affiliation(s)
- Clémence Fraslin
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | - Edwige Quillet
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | - Tatiana Rochat
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Nicolas Dechamp
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Bertrand Collet
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Delphine Lallias
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | - Pierre Boudinot
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
20
|
Mastrochirico-Filho VA, Hata ME, Kuradomi RY, de Freitas MV, Ariede RB, Pinheiro DG, Robledo D, Houston R, Hashimoto DT. Transcriptome Profiling of Pacu ( Piaractus mesopotamicus) Challenged With Pathogenic Aeromonas hydrophila: Inference on Immune Gene Response. Front Genet 2020; 11:604. [PMID: 32582300 PMCID: PMC7295981 DOI: 10.3389/fgene.2020.00604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/18/2020] [Indexed: 11/13/2022] Open
Abstract
Pacu (Piaractus mesopotamicus) is a Neotropical fish of major importance for South American aquaculture. Septicemia caused by Aeromonas hydrophila bacteria is currently considered a substantial threat for pacu aquaculture that have provoked infectious disease outbreaks with high economic losses. The understanding of molecular aspects on progress of A. hydrophila infection and pacu immune response is scarce, which have limited the development of genomic selection for resistance to this infection. The present study aimed to generate information on transcriptome of pacu in face of A. hydrophila infection, and compare the transcriptomic responses between two groups of time-series belonging to a disease resistance challenge, peak mortality (HM) and mortality plateau (PM) groups of individuals. Nine RNA sequencing (RNA-Seq) libraries were prepared from liver tissue of challenged individuals, generating ∼160 million 150 bp pair-end reads. After quality trimming/cleanup, these reads were assembled de novo generating 211,259 contigs. When the expression of genes from individuals of HM group were compared to individuals from control group, a total of 4,413 differentially expressed transcripts were found (2,000 upregulated and 2,413 downregulated candidate genes). Additionally, 433 transcripts were differentially expressed when individuals from MP group were compared with those in the control group (155 upregulated and 278 downregulated candidate genes). The resulting differentially expressed transcripts were clustered into the following functional categories: cytokines and signaling, epithelial protection, antigen processing and presentation, apoptosis, phagocytosis, complement system cascades and pattern recognition receptors. The proposed results revealing relevant differential gene expression on HM and PM groups which will contribute to a better understanding of the molecular defense mechanisms during A. hydrophila infection.
Collapse
Affiliation(s)
| | - Milene Elissa Hata
- Aquaculture Center, São Paulo State University (Unesp), Jaboticabal, Brazil
| | | | | | | | - Daniel Guariz Pinheiro
- Faculty of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | - Diego Robledo
- The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ross Houston
- The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
21
|
Semple SL, Bols NC, Lumsden JS, Dixon B. Understanding the pathogenesis of Flavobacterium psychrophilum using the rainbow trout monocyte/macrophage-like cell line, RTS11, as an infection model. Microb Pathog 2019; 139:103910. [PMID: 31809795 DOI: 10.1016/j.micpath.2019.103910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 02/05/2023]
Abstract
The life cycle of Flavobacterium psychrophilum (Fp), the causative agent of bacterial coldwater disease (BCWD) and rainbow trout fry syndrome (RTFS), appears to involve interactions with spleen and head kidney macrophages. To develop an in vitro model for studying this, F. psychrophilum was incubated with a rainbow trout splenic monocyte/macrophage-like cell line (RTS11) and fundamental macrophage functions evaluated. The animal cell basal medium, L15, supplemented with bovine serum (FBS) supports RTS11 maintenance, and surprisingly, L15 with 2% FBS (L15/FBS) also supported F. psychrophilum growth. L15/FBS in which the bacteria had been grown is referred to as F. psychrophilum conditioned medium (FpCM). Adding FpCM to RTS11 cultures caused a small, yet significant, percentage of cells to die, many cells to become more diffuse, and phagocytosis to be temporarily reduced. FpCM also significantly stimulated transcript expression for pro-inflammatory cytokines (IL-1β, TNFα and IL-6) and the anti-inflammatory cytokine (IL-10) after one day of exposure but this upregulation rapidly declined over time. Adding live F. psychrophilum to RTS11 cultures also altered the cellular morphology and stimulated cytokine expression more profoundly than FpCM. Additionally, the phagocytic activity of RTS11 was also significantly impaired by live F. psychrophilum, but not to the same extent as when exposed to FpCM. Adding heat-killed bacteria to RTS11 cultures elicited few changes. These bacteria/RTS11 co-cultures should be useful for gaining a deeper understanding of the pathogenesis of F. psychrophilum and may aid in the development of effective measures to prevent infection and spread of this troublesome disease.
Collapse
Affiliation(s)
- Shawna L Semple
- University of Waterloo, Department of Biology, Waterloo, Canada
| | - Niels C Bols
- University of Waterloo, Department of Biology, Waterloo, Canada
| | - John S Lumsden
- University of Guelph, Ontario Veterinary College, Department of Pathobiology, Guelph, Canada
| | - Brian Dixon
- University of Waterloo, Department of Biology, Waterloo, Canada.
| |
Collapse
|
22
|
Transcriptomic response of rainbow trout (Oncorhynchus mykiss) skeletal muscle to Flavobacterium psychrophilum. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 31:100596. [PMID: 31174158 DOI: 10.1016/j.cbd.2019.100596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 01/12/2023]
Abstract
Flavobacterium psychrophilum is the etiologic agent of rainbow trout fry syndrome (RTFS). This pathogen infects a wide variety of salmonid species during freshwater stages, causing significant losses in the aquaculture industry. Rainbow trout (Oncorhynchus mykiss) infected with F. psychrophilum, presents as the main external clinical sign ulcerative lesions and necrotic myositis in skeletal muscle. We previously reported the in vitro cytotoxic activity of F. psychrophilum on rainbow trout myoblast, however little is known about the molecular mechanisms underlying the in vivo pathogenesis in skeletal muscle. In this study, we examined the transcriptomic profiles of skeletal muscle tissue of rainbow trout intraperitoneally challenged with low infection dose of F. psychrophilum. Using high-throughput RNA-seq, we found that 233 transcripts were up-regulated, mostly associated to ubiquitin mediated proteolysis and apoptosis. Conversely, 189 transcripts were down-regulated, associated to skeletal muscle contraction. This molecular signature was consistent with creatine kinase activity in plasma and oxidative damage in skeletal muscle. Moreover, the increased caspase activity suggests as a whole skeletal muscle atrophy induced by F. psychrophilum. This study offers an integrative analysis of the skeletal muscle response to F. psychrophilum infection and reveals unknown aspects of its pathogenesis in rainbow trout.
Collapse
|
23
|
Semple SL, Rodríguez-Ramos T, Carpio Y, Lumsden JS, Estrada MP, Dixon B. PACAP Is Lethal to Flavobacterium psychrophilum Through Either Direct Membrane Permeabilization or Indirectly, by Priming the Immune Response in Rainbow Trout Macrophages. Front Immunol 2019; 10:926. [PMID: 31105711 PMCID: PMC6498415 DOI: 10.3389/fimmu.2019.00926] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/10/2019] [Indexed: 01/26/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a multifunctional neuropeptide that is widely distributed in mammals and is capable of performing roles as a neurotransmitter, neuromodulator, and vasodilator. This polypeptide belongs to the glucagon/secretin superfamily, of which some members have been shown to act as antimicrobial peptides in both mammalian and aquatic organisms. In teleosts, PACAP has been demonstrated to have direct antimicrobial activity against several aquatic pathogens, yet this phenomenon has never been studied throughout a live bacterial challenge. The present study focuses on the influence of synthetic Clarias gariepinus 38 amino acid PACAP on the rainbow trout monocyte/macrophage-like cell line, RTS11, when exposed to the coldwater bacterial pathogen Flavobacterium psychrophilum. PACAP was shown to have direct antimicrobial activity on F. psychrophilum when grown in both cytophaga broth and cell culture media (L-15). Further, the ability of teleostean PACAP to permeabilize the membrane of an aquatic pathogen, F. psychrophilum, was demonstrated for the first time. The viability of RTS11 when exposed to PACAP was also observed using a trypan blue exclusion assay to determine optimal experimental doses of the antimicrobial peptide. This displayed that only concentrations higher than 0.1 μM negatively impacted RTS11 survival. Interestingly, when RTS11 was pre-treated with PACAP for 24 h before experiencing infection with live F. psychrophilum, growth of the pathogen was severely inhibited in a dose-dependent manner when compared to cells receiving no pre-treatment with the polypeptide. Relative expression of pro-inflammatory cytokines (IL-1β, TNFα, and IL-6) and PACAP receptors (VPAC1 and PAC1) was also analyzed in RTS11 following PACAP exposure alone and in conjunction with live F. psychrophilum challenge. These qRT-PCR findings revealed that PACAP may have a synergistic effect on RTS11 immune function. The results of this study provide evidence that PACAP has immunostimulatory activity on rainbow trout immune cells as well as antimicrobial activity against aquatic bacterial pathogens such as F. psychrophilum. As there are numerous pathogens that plague the aquaculture industry, PACAP may stimulate the teleost immune system while also providing an efficacious alternative to antibiotic use.
Collapse
Affiliation(s)
- Shawna L Semple
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | - Yamila Carpio
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - John S Lumsden
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Mario P Estrada
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
24
|
Syahputra K, Kania PW, Al-Jubury A, Jafaar RM, Dirks RP, Buchmann K. Transcriptomic analysis of immunity in rainbow trout (Oncorhynchus mykiss) gills infected by Ichthyophthirius multifiliis. FISH & SHELLFISH IMMUNOLOGY 2019; 86:486-496. [PMID: 30513380 DOI: 10.1016/j.fsi.2018.11.075] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/22/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
The parasite Ichthyophthirius multifiliis infecting skin, fins and gills of a wide range of freshwater fish species, including rainbow trout, is known to induce a protective immune response in the host. Although a number of studies have reported activation of several immune genes in infected fish host, the immune response picture is still considered incomplete. In order to address this issue, a comparative transcriptomic analysis was performed on infected versus uninfected rainbow trout gills and it showed that a total of 3352 (7.2%) out of 46,585 identified gene sequences were significantly regulated after parasite infection. Of differentially expressed gene sequences, 1796 genes were up-regulated and 1556 genes were down-regulated. These were classified into 61 Gene Ontology (GO) terms and mapped to 282 reference canonical pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Infection of I. multifiliis induced a clear differential expression of immune genes, related to both innate and adaptive immunity. A total of 268 (6.86%) regulated gene sequences were known to take part in 16 immune-related pathways. These involved pathways related to the innate immunity such as the Chemokine signaling pathway, Platelet activation, Toll-like receptor signaling pathway, NOD-like receptor signaling pathway, and Leukocyte transendothelial migration. Elevated transcription of genes encoding the TLR 8 gene and chemokines (CCL4, CCL19, CCL28, CXCL8, CXCL11, CXCL13, CXCL14) was recorded indicating their roles in recognition of I. multifiliis and subsequent induction of the inflammatory response, respectively. A number of upregulated genes in infected gills were associated with antigen processing/presentation and T and B cell receptor signaling (including B cell marker CD22 involved in B cell development). Overall the analysis supports the notion that I. multifiliis induces a massive and varied innate response upon which a range of adaptive immune responses are established which may contribute to the long lasting protection of immunized rainbow trout.
Collapse
Affiliation(s)
- Khairul Syahputra
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Per W Kania
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Azmi Al-Jubury
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Rzgar M Jafaar
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Ron P Dirks
- Future Genomics Technologies B.V., Leiden, the Netherlands
| | - Kurt Buchmann
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
25
|
Brown RM, Wiens GD, Salinas I. Analysis of the gut and gill microbiome of resistant and susceptible lines of rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2019; 86:497-506. [PMID: 30513381 PMCID: PMC8040288 DOI: 10.1016/j.fsi.2018.11.079] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/25/2018] [Accepted: 11/30/2018] [Indexed: 05/09/2023]
Abstract
Commensal microorganisms present at mucosal surfaces play a vital role in protecting the host organism from bacterial infection. There are multiple factors that contribute to selecting for the microbiome, including host genetics. Flavobacterium psychrophilum, the causative agent of Bacterial Cold Water Disease in salmonids, accounts for acute losses in wild and farmed rainbow trout (Oncorhynchus mykiss). The U.S. National Center for Cool and Cold Water Aquaculture has used family-based selective breeding to generate a line of rainbow trout with enhanced resistance to F. psychrophilum. The goal of this study is to determine whether selective breeding impacts the gut and gill microbiome of the F. psychrophilum-resistant as compared to a background matched susceptible trout line. Mid-gut and gill samples were collected from juvenile fish maintained at high or low stocking densities and microbial diversity assessed by 16S rDNA amplicon sequencing. Results indicate that alpha diversity was significantly higher in the mid-gut of the susceptible line compared to the resistant line, while no significant differences in alpha diversity were observed in the gills. Mycoplasma sp. was the dominant taxon in the mid-gut of both groups, although it was present at a decreased abundance in the susceptible line. We also observed an increased abundance of the potential opportunistic pathogen Brevinema andersonii in the susceptible line. Within the gills, both lines exhibited similar microbial profiles, with Candidatus Branchiomonas being the dominant taxon. Together, these results suggest that selectively bred F. psychrophilum-resistant trout may harness a more resilient gut microbiome, attributing to the disease resistant phenotype. Importantly, interactions between host genetics and environmental factors such as stocking density have a significant impact in shaping trout microbial communities.
Collapse
Affiliation(s)
- Ryan M Brown
- University of New Mexico, Department of Biology, Center for Evolutionary and Theoretical Immunology (CETI), Albuquerque, NM, USA
| | - Gregory D Wiens
- National Center for Cool and Cold Water Aquaculture, Agriculture Research Service, United States Department of Agriculture Kearneysville, WV, USA
| | - Irene Salinas
- University of New Mexico, Department of Biology, Center for Evolutionary and Theoretical Immunology (CETI), Albuquerque, NM, USA.
| |
Collapse
|
26
|
Moore C, Hennessey E, Smith M, Epp L, Zwollo P. Innate immune cell signatures in a BCWD-Resistant line of rainbow trout before and after in vivo challenge with Flavobacterium psychrophilum. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 90:47-54. [PMID: 30172909 PMCID: PMC6436949 DOI: 10.1016/j.dci.2018.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 05/04/2023]
Abstract
Phenotypes of myeloid-lineage cells remain poorly understood in the rainbow trout, and were the focus of this study, including effects of in vivo challenge to Flavobacterium psychrophilum (Fp), the cause of Bacterial Cold Water Disease (BCWD). A genetic line was used that is highly resistant to BCWD (R-line) as well as a susceptible control line (S-line). Using flow cytometry, we describe two Pax5-negative, myeloid-lineage populations: Population 1 consisted of small cells with high SSC and strong staining for Q4E, MPO, Pu1, EBF, and IL- 1β, which we named "neutrophil-like" cell. Population 2 had high Q4E, but weaker MPO, Pu1, EBF, and IL-1β staining. Five days after Fp-challenge, both genetic lines had a reduced abundance of neutrophil-like cells in anterior kidney, PBL, and spleen. Pop. 2 abundance was reduced in anterior kidney, and increased in spleen. S-line fish responded more strongly to Fp-challenge compared to R-line fish. Challenged fish with a higher abundance of neutrophil-like cells had significantly lower Fp-loads after challenge, suggesting that these cells aid in the resistance to BCWD.
Collapse
Affiliation(s)
- Catherine Moore
- Department of Biology, The College of William and Mary, Williamsburg, VA, 23185, USA
| | - Erin Hennessey
- Department of Biology, The College of William and Mary, Williamsburg, VA, 23185, USA
| | - Meaghan Smith
- Department of Biology, The College of William and Mary, Williamsburg, VA, 23185, USA
| | - Lidia Epp
- Department of Biology, The College of William and Mary, Williamsburg, VA, 23185, USA
| | - Patty Zwollo
- Department of Biology, The College of William and Mary, Williamsburg, VA, 23185, USA.
| |
Collapse
|
27
|
Shaw CH, Gao G, Wiens GD. Differential expression and evolution of three tandem, interleukin-1 receptor-like 1 genes in rainbow trout (Oncorhynchus mykiss). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:193-203. [PMID: 29886053 DOI: 10.1016/j.dci.2018.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/06/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
Interleukin-1 receptor-like 1 (Il1rl1 or ST2), a member of the interleukin-1 receptor family, has pleiotropic roles including tissue homeostasis, inflammation, immune polarization, and disease resistance in mammals. A single orthologue was previously described in salmonid fish; however, a recently improved genome assembly of rainbow trout (Oncorhynchus mykiss) revealed three adjacent, tandem il1rl1 orthologues on chromosome Omy 03. Here, we report the genomic organization and evolution of the three il1rl1 genes (il1rl1α, il1rl1β, il1rl1γ), and use both RNA-seq and gene-specific qPCR methods to quantify expression patterns. Nucleotide sequence homology between the three genes is >95% and each predicted protein contains three IG/IG-like domains, a transmembrane region and a TIR domain. The amino acid sequence homology of the rainbow trout il1rl1 genes are highly related to two functional copies in Atlantic and Coho salmon (∼94%) but relatively low (22-26%) with avian and mammalian species. Transcript abundance measured by RNA-seq in 15 tissues of healthy adult rainbow trout indicate constitutive expression of each gene. In whole body lysates, il1rl1α was shown to have >20 fold mRNA expression compared to il1rl1β and il1rl1γ as measured by qPCR assays specific to il1rl1α or il1rl1γ, as well as a multi-gene qPCR assay (il1rl1α,β,γ). Unrooted phylogenetic trees grouped the rainbow trout il1rl1 genes apart from other interleukin-1 receptor family genes and genomic comparisons identify preserved synteny between mammals, birds and salmonids albeit a pseudogene is present in both Atlantic salmon and Coho salmon. Phylogenetic analyses suggest that the three genes arose by tandem duplication but are inconclusive whether these events occurred prior-to or after salmonid speciation. These findings further the understanding of interleukin receptor family evolution and their contribution to teleost immune function.
Collapse
Affiliation(s)
- Cassidy H Shaw
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, USDA, Kearneysville, WV 25430, USA.
| | - Guangtu Gao
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, USDA, Kearneysville, WV 25430, USA
| | - Gregory D Wiens
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, USDA, Kearneysville, WV 25430, USA.
| |
Collapse
|
28
|
Salem M, Al-Tobasei R, Ali A, Lourenco D, Gao G, Palti Y, Kenney B, Leeds TD. Genome-Wide Association Analysis With a 50K Transcribed Gene SNP-Chip Identifies QTL Affecting Muscle Yield in Rainbow Trout. Front Genet 2018; 9:387. [PMID: 30283492 PMCID: PMC6157414 DOI: 10.3389/fgene.2018.00387] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/27/2018] [Indexed: 11/13/2022] Open
Abstract
Detection of coding/functional SNPs that change the biological function of a gene may lead to identification of putative causative alleles within QTL regions and discovery of genetic markers with large effects on phenotypes. This study has two-fold objectives, first to develop, and validate a 50K transcribed gene SNP-chip using RNA-Seq data. To achieve this objective, two bioinformatics pipelines, GATK and SAMtools, were used to identify ~21K transcribed SNPs with allelic imbalances associated with important aquaculture production traits including body weight, muscle yield, muscle fat content, shear force, and whiteness in addition to resistance/susceptibility to bacterial cold-water disease (BCWD). SNPs ere identified from pooled RNA-Seq data collected from ~620 fish, representing 98 families from growth- and 54 families from BCWD-selected lines with divergent phenotypes. In addition, ~29K transcribed SNPs without allelic-imbalances were strategically added to build a 50K Affymetrix SNP-chip. SNPs selected included two SNPs per gene from 14K genes and ~5K non-synonymous SNPs. The SNP-chip was used to genotype 1728 fish. The average SNP calling-rate for samples passing quality control (QC; 1,641 fish) was ≥ 98.5%. The second objective of this study was to test the feasibility of using the new SNP-chip in GWA (Genome-wide association) analysis to identify QTL explaining muscle yield variance. GWA study on 878 fish (representing 197 families from 2 consecutive generations) with muscle yield phenotypes and genotyped for 35K polymorphic markers (passing QC) identified several QTL regions explaining together up to 28.40% of the additive genetic variance for muscle yield in this rainbow trout population. The most significant QTLs were on chromosomes 14 and 16 with 12.71 and 10.49% of the genetic variance, respectively. Many of the annotated genes in the QTL regions were previously reported as important regulators of muscle development and cell signaling. No major QTLs were identified in a previous GWA study using a 57K genomic SNP chip on the same fish population. These results indicate improved detection power of the transcribed gene SNP-chip in the target trait and population, allowing identification of large-effect QTLs for important traits in rainbow trout.
Collapse
Affiliation(s)
- Mohamed Salem
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN, United States.,Computational Science Program, Middle Tennessee State University, Murfreesboro, TN, United States
| | - Rafet Al-Tobasei
- Computational Science Program, Middle Tennessee State University, Murfreesboro, TN, United States.,Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ali Ali
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN, United States
| | - Daniela Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Guangtu Gao
- National Center for Cool and Cold Water Aquaculture, USDA Agricultural Research Service, Kearneysville, WV, United States
| | - Yniv Palti
- National Center for Cool and Cold Water Aquaculture, USDA Agricultural Research Service, Kearneysville, WV, United States
| | - Brett Kenney
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV, United States
| | - Timothy D Leeds
- National Center for Cool and Cold Water Aquaculture, USDA Agricultural Research Service, Kearneysville, WV, United States
| |
Collapse
|
29
|
Ye H, Lin Q, Luo H. Applications of transcriptomics and proteomics in understanding fish immunity. FISH & SHELLFISH IMMUNOLOGY 2018; 77:319-327. [PMID: 29631024 DOI: 10.1016/j.fsi.2018.03.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
With the development of intensive aquaculture, economic losses increasingly result from fish mortality due to pathogen infection. In recent years, a growing number of researchers have used transcriptomic and proteomic analyses to study fish immune responses to exogenous pathogen infection. Integrating transcriptomic and proteomic analyses provides a better understanding of the fish immune system including gene expression, regulation, and the intricate biological processes underlying immune responses against infection. This review focuses on the recent advances in the fields of transcriptomics and proteomics, which have contributed to our understanding of fish immunity to exogenous pathogens.
Collapse
Affiliation(s)
- Hua Ye
- College of Animal Science, Southwest University, Chongqing 402460, China; Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Hui Luo
- College of Animal Science, Southwest University, Chongqing 402460, China.
| |
Collapse
|
30
|
Paneru B, Ali A, Al-Tobasei R, Kenney B, Salem M. Crosstalk among lncRNAs, microRNAs and mRNAs in the muscle 'degradome' of rainbow trout. Sci Rep 2018; 8:8416. [PMID: 29849185 PMCID: PMC5976669 DOI: 10.1038/s41598-018-26753-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/18/2018] [Indexed: 01/17/2023] Open
Abstract
In fish, protein-coding and noncoding genes involved in muscle atrophy are not fully characterized. In this study, we characterized coding and noncoding genes involved in gonadogenesis-associated muscle atrophy, and investigated the potential functional interplay between these genes. Using RNA-Seq, we compared expression pattern of mRNAs, long noncoding RNAs (lncRNAs) and microRNAs of atrophying skeletal muscle from gravid females and control skeletal muscle from age-matched sterile individuals. A total of 852 mRNAs, 1,160 lncRNAs and 28 microRNAs were differentially expressed (DE) between the two groups. Muscle atrophy appears to be mediated by many genes encoding ubiquitin-proteasome system, autophagy related proteases, lysosomal proteases and transcription factors. Transcripts encoding atrogin-1 and mir-29 showed exceptional high expression in atrophying muscle, suggesting an important role in bulk muscle proteolysis. DE genes were co-localized in the genome with strong expression correlation, and they exhibited extensive 'lncRNA-mRNA', 'lncRNA-microRNA', 'mRNA-microRNA' and 'lncRNA-protein' physical interactions. DE genes exhibiting potential functional interactions comprised the highly correlated 'lncRNA-mRNA-microRNA' gene network described as 'degradome'. This study pinpoints extensive coding and noncoding RNA interactions during muscle atrophy in fish, and provides valuable resources for future mechanistic studies.
Collapse
Affiliation(s)
- Bam Paneru
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Ali Ali
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Rafet Al-Tobasei
- Computational Science Program, Middle Tennessee State University, Murfreesboro, TN, 37132, USA.,Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, 35294-0022, USA
| | - Brett Kenney
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, 26506-6108, West Virginia, USA
| | - Mohamed Salem
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN, 37132, USA. .,Computational Science Program, Middle Tennessee State University, Murfreesboro, TN, 37132, USA.
| |
Collapse
|
31
|
Muscle and liver transcriptome characterization and genetic marker discovery in the farmed meagre, Argyrosomus regius. Mar Genomics 2018; 39:39-44. [PMID: 29395623 DOI: 10.1016/j.margen.2018.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 11/22/2022]
Abstract
Meagre (Argyrosomus regius), a teleost fish of the family Sciaenidae, is part of a group of marine fish species considered new for Mediterranean aquaculture representing the larger fish cultured in the region. Meagre aquaculture started ~25years ago in West Mediterranean, and the supply of juveniles has been dominated by few hatcheries. This fact has raised concerns on possible inbreeding, urging the need for genetic information on the species and for an assessment of the polymorphisms found in the genome. To that end we characterized the muscle and liver transcriptome of a pool of meagre individuals, from different families and phenotypic size, to obtain a backbone that can support future studies regarding physiology, immunology and genetics of the species. The assembled transcripts were assigned to a wide range of biological processes including growth, reproduction, metabolism, development, stress and behavior. Then, to infer its genetic diversity and provide a catalogue of markers for future use, we scanned the reconstructed transcripts for polymorphic genetic markers. Our search revealed a total of 42,933 high quality SNP and 20,581 STR markers. We found a relatively low rate of polymorphism in the transcriptome that may indicate that inbreeding has taken place. This study has led to a catalogue of genetic markers at the expressed part of the genome and has set the ground for understanding growth and other traits of interest in meagre.
Collapse
|
32
|
The circadian transcriptome of marine fish (Sparus aurata) larvae reveals highly synchronized biological processes at the whole organism level. Sci Rep 2017; 7:12943. [PMID: 29021622 PMCID: PMC5636797 DOI: 10.1038/s41598-017-13514-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/22/2017] [Indexed: 02/07/2023] Open
Abstract
The regulation of circadian gene expression remains largely unknown in farmed fish larvae. In this study, a high-density oligonucleotide microarray was used to examine the daily expression of 13,939 unique genes in whole gilthead sea bream (Sparus aurata) larvae with fast growth potentiality. Up to 2,229 genes were differentially expressed, and the first two components of Principal Component Analysis explained more than 81% of the total variance. Clustering analysis of differentially expressed genes identified 4 major clusters that were triggered sequentially, with a maximum expression at 0 h, 3 h, 9–15 h and 18-21 h zeitgeber time. Various core clock genes (per1, per2, per3, bmal1, cry1, cry2, clock) were identified in clusters 1–3, and their expression was significantly correlated with several genes in each cluster. Functional analysis revealed a daily consecutive activation of canonical pathways related to phototransduction, intermediary metabolism, development, chromatin remodeling, and cell cycle regulation. This daily transcriptome of whole larvae resembles a cell cycle (G1/S, G2/M, and M/G1 transitions) in synchronization with multicellular processes, such as neuromuscular development. This study supports that the actively feeding fish larval transcriptome is temporally organized in a 24-h cycle, likely for maximizing growth and development.
Collapse
|
33
|
Jacobson G, Muncaster S, Mensink K, Forlenza M, Elliot N, Broomfield G, Signal B, Bird S. Omics and cytokine discovery in fish: Presenting the Yellowtail kingfish (Seriola lalandi) as a case study. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 75:63-76. [PMID: 28416435 DOI: 10.1016/j.dci.2017.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/01/2017] [Accepted: 04/01/2017] [Indexed: 06/07/2023]
Abstract
A continued programme of research is essential to overcome production bottlenecks in any aquacultured fish species. Since the introduction of genetic and molecular techniques, the quality of immune research undertaken in fish has greatly improved. Thousands of species specific cytokine genes have been discovered, which can be used to conduct more sensitive studies to understand how fish physiology is affected by aquaculture environments or disease. Newly available transcriptomic technologies, make it increasingly easier to study the immunogenetics of farmed species for which little data exists. This paper reviews how the application of transcriptomic procedures such as RNA Sequencing (RNA-Seq) can advance fish research. As a case study, we present some preliminary findings using RNA-Seq to identify cytokine related genes in Seriola lalandi. These will allow in-depth investigations to understand the immune responses of these fish in response to environmental change or disease and help in the development of therapeutic approaches.
Collapse
Affiliation(s)
- Gregory Jacobson
- Molecular Genetics, Department of Biological Sciences, School of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Simon Muncaster
- School Applied Science, Bay of Plenty Polytechnic, 70 Windermere Dr, Poike, Tauranga 3112, New Zealand
| | - Koen Mensink
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Maria Forlenza
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Nick Elliot
- Molecular Genetics, Department of Biological Sciences, School of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Grant Broomfield
- Molecular Genetics, Department of Biological Sciences, School of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Beth Signal
- Molecular Genetics, Department of Biological Sciences, School of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Steve Bird
- Molecular Genetics, Department of Biological Sciences, School of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.
| |
Collapse
|
34
|
Zwollo P, Hennessey E, Moore C, Marancik DP, Wiens GD, Epp L. A BCWD-resistant line of rainbow trout exhibits higher abundance of IgT + B cells and heavy chain tau transcripts compared to a susceptible line following challenge with Flavobacterium psychrophilum. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 74:190-199. [PMID: 28479345 PMCID: PMC5551897 DOI: 10.1016/j.dci.2017.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/30/2017] [Accepted: 04/30/2017] [Indexed: 05/04/2023]
Abstract
Bacterial Cold Water Disease (BCWD) is a common, chronic disease in rainbow trout, and is caused by the gram-negative bacterium Flavobacterium psychrophilum (Fp). Through selective breeding, the National Center for Cool and Cold Water Aquaculture has generated a genetic line that is highly resistant to Fp challenge, designated ARS-Fp-R (or R-line), as well as a susceptible "control" line, ARS-Fp-S (S-line). In previous studies, resistance to Fp had been shown to correlate with naive animal spleen size, and further, naïve R-line trout had been shown to have a lower abundance of IgM+ and IgM++ cells compared to S-line fish. Here we wished to first determine whether the abundance of IgT+ and/or IgT++ cells differed between the two lines in naïve fish, and if so, how these patterns differed after in vivo challenge with Fp. Fp challenge was by intramuscular injection of live Fp and tissue collections were on days 5, 6, and/or 28 post-challenge, in two independent challenge experiments. Flow cytometric and gene expression analyses revealed that naïve R-line fish had a higher abundance of IgT+ B cells in their anterior kidney, spleen, and blood, compared to S line fish. Further, that after Fp challenge, this difference was maintained between the two lines. Lastly, abundance of IgT+ B cells and expression of secHCtau correlated with lower Fp pathogen loads in challenged fish. In the anterior kidney, IgM+ B cell abundance correlated with increased Fp loads. Together, these results suggest that IgT+ B lineage cells may have a protective function in the immune response to Fp.
Collapse
Affiliation(s)
- Patty Zwollo
- Department of Biology, The College of William and Mary, Williamsburg, VA 23185, USA.
| | - Erin Hennessey
- Department of Biology, The College of William and Mary, Williamsburg, VA 23185, USA
| | - Catherine Moore
- Department of Biology, The College of William and Mary, Williamsburg, VA 23185, USA
| | - David P Marancik
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, USDA, Kearneysville, WV 25430, USA
| | - Gregory D Wiens
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, USDA, Kearneysville, WV 25430, USA
| | - Lidia Epp
- Department of Biology, The College of William and Mary, Williamsburg, VA 23185, USA
| |
Collapse
|
35
|
Paneru BD, Al-Tobasei R, Kenney B, Leeds TD, Salem M. RNA-Seq reveals MicroRNA expression signature and genetic polymorphism associated with growth and muscle quality traits in rainbow trout. Sci Rep 2017; 7:9078. [PMID: 28831113 PMCID: PMC5567286 DOI: 10.1038/s41598-017-09515-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/25/2017] [Indexed: 02/01/2023] Open
Abstract
The role of microRNA expression and genetic variation in microRNA-binding sites of target genes on growth and muscle quality traits is poorly characterized. We used RNA-Seq approach to investigate their importance on 5 growth and muscle quality traits: whole body weight (WBW), muscle yield, muscle crude-fat content, muscle shear force and whiteness. Phenotypic data were collected from 471 fish, representing 98 families (~5 fish/family) from a growth-selected line. Muscle microRNAs and mRNAs were sequenced from 22 families showing divergent phenotypes. Ninety microRNAs showed differential expression between families with divergent phenotypes, and their expression was strongly associated with variation in phenotypes. A total of 204 single nucleotide polymorphisms (SNPs) present in 3′ UTR of target genes either destroyed or created novel illegitimate microRNA target sites; of them, 78 SNPs explained significant variation in the aforementioned 5 muscle traits. Majority of the phenotype-associated SNPs were present in microRNA-binding sites of genes involved in energy metabolism and muscle structure. These findings suggest that variation in microRNA expression and/or sequence variation in microRNA binding sites in target genes play an important role in mediating differences in fish growth and muscle quality phenotypes.
Collapse
Affiliation(s)
- Bam Dev Paneru
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN, 37132, United States
| | - Rafet Al-Tobasei
- Computational Science Program, Middle Tennessee State University, Murfreesboro, TN, 37132, United States
| | - Brett Kenney
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, 26506-6108, West Virginia, United States
| | - Timothy D Leeds
- The National Center for Cool and Cold Water Aquaculture, USDA Agricultural Research Service, Kearneysville, WV, 25430, United States
| | - Mohamed Salem
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN, 37132, United States. .,Computational Science Program, Middle Tennessee State University, Murfreesboro, TN, 37132, United States.
| |
Collapse
|
36
|
Abdelrahman H, ElHady M, Alcivar-Warren A, Allen S, Al-Tobasei R, Bao L, Beck B, Blackburn H, Bosworth B, Buchanan J, Chappell J, Daniels W, Dong S, Dunham R, Durland E, Elaswad A, Gomez-Chiarri M, Gosh K, Guo X, Hackett P, Hanson T, Hedgecock D, Howard T, Holland L, Jackson M, Jin Y, Khalil K, Kocher T, Leeds T, Li N, Lindsey L, Liu S, Liu Z, Martin K, Novriadi R, Odin R, Palti Y, Peatman E, Proestou D, Qin G, Reading B, Rexroad C, Roberts S, Salem M, Severin A, Shi H, Shoemaker C, Stiles S, Tan S, Tang KFJ, Thongda W, Tiersch T, Tomasso J, Prabowo WT, Vallejo R, van der Steen H, Vo K, Waldbieser G, Wang H, Wang X, Xiang J, Yang Y, Yant R, Yuan Z, Zeng Q, Zhou T. Aquaculture genomics, genetics and breeding in the United States: current status, challenges, and priorities for future research. BMC Genomics 2017; 18:191. [PMID: 28219347 PMCID: PMC5319170 DOI: 10.1186/s12864-017-3557-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/06/2017] [Indexed: 12/31/2022] Open
Abstract
Advancing the production efficiency and profitability of aquaculture is dependent upon the ability to utilize a diverse array of genetic resources. The ultimate goals of aquaculture genomics, genetics and breeding research are to enhance aquaculture production efficiency, sustainability, product quality, and profitability in support of the commercial sector and for the benefit of consumers. In order to achieve these goals, it is important to understand the genomic structure and organization of aquaculture species, and their genomic and phenomic variations, as well as the genetic basis of traits and their interrelationships. In addition, it is also important to understand the mechanisms of regulation and evolutionary conservation at the levels of genome, transcriptome, proteome, epigenome, and systems biology. With genomic information and information between the genomes and phenomes, technologies for marker/causal mutation-assisted selection, genome selection, and genome editing can be developed for applications in aquaculture. A set of genomic tools and resources must be made available including reference genome sequences and their annotations (including coding and non-coding regulatory elements), genome-wide polymorphic markers, efficient genotyping platforms, high-density and high-resolution linkage maps, and transcriptome resources including non-coding transcripts. Genomic and genetic control of important performance and production traits, such as disease resistance, feed conversion efficiency, growth rate, processing yield, behaviour, reproductive characteristics, and tolerance to environmental stressors like low dissolved oxygen, high or low water temperature and salinity, must be understood. QTL need to be identified, validated across strains, lines and populations, and their mechanisms of control understood. Causal gene(s) need to be identified. Genetic and epigenetic regulation of important aquaculture traits need to be determined, and technologies for marker-assisted selection, causal gene/mutation-assisted selection, genome selection, and genome editing using CRISPR and other technologies must be developed, demonstrated with applicability, and application to aquaculture industries.Major progress has been made in aquaculture genomics for dozens of fish and shellfish species including the development of genetic linkage maps, physical maps, microarrays, single nucleotide polymorphism (SNP) arrays, transcriptome databases and various stages of genome reference sequences. This paper provides a general review of the current status, challenges and future research needs of aquaculture genomics, genetics, and breeding, with a focus on major aquaculture species in the United States: catfish, rainbow trout, Atlantic salmon, tilapia, striped bass, oysters, and shrimp. While the overall research priorities and the practical goals are similar across various aquaculture species, the current status in each species should dictate the next priority areas within the species. This paper is an output of the USDA Workshop for Aquaculture Genomics, Genetics, and Breeding held in late March 2016 in Auburn, Alabama, with participants from all parts of the United States.
Collapse
Affiliation(s)
- Hisham Abdelrahman
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Mohamed ElHady
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | | | - Standish Allen
- Aquaculture Genetics & Breeding Technology Center, Virginia Institute of Marine Science, Gloucester Point, VA, 23062, USA
| | - Rafet Al-Tobasei
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Lisui Bao
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ben Beck
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL, 36832, USA
| | - Harvey Blackburn
- USDA-ARS-NL Wheat & Corn Collections at a Glance GRP, National Animal Germplasm Program, 1111 S. Mason St., Fort Collins, CO, 80521-4500, USA
| | - Brian Bosworth
- USDA-ARS/CGRU, 141 Experimental Station Road, Stoneville, MS, 38701, USA
| | - John Buchanan
- Center for Aquaculture Technologies, 8395 Camino Santa Fe, Suite E, San Diego, CA, 92121, USA
| | - Jesse Chappell
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - William Daniels
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Sheng Dong
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Rex Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Evan Durland
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, 97331, USA
| | - Ahmed Elaswad
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Marta Gomez-Chiarri
- Department of Fisheries, Animal & Veterinary Science, 134 Woodward Hall, 9 East Alumni Avenue, Kingston, RI, 02881, USA
| | - Kamal Gosh
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, 6959 Miller Avenue, Port Norris, NJ, 08349, USA
| | - Perry Hackett
- Department of Genetics, Cell Biology and Development, 5-108 MCB, 420 Washington Avenue SE, Minneapolis, MN, 55455, USA
| | - Terry Hanson
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dennis Hedgecock
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-0371, USA
| | - Tiffany Howard
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Leigh Holland
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Molly Jackson
- Taylor Shellfish Farms, 130 SE Lynch RD, Shelton, WA, 98584, USA
| | - Yulin Jin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Karim Khalil
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Thomas Kocher
- Department of Biology, University of Maryland, 2132 Biosciences Research Building, College Park, MD, 20742, USA
| | - Tim Leeds
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, 25430, USA
| | - Ning Li
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Lauren Lindsey
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shikai Liu
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhanjiang Liu
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| | - Kyle Martin
- Troutlodge, 27090 Us Highway 12, Naches, WA, 98937, USA
| | - Romi Novriadi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ramjie Odin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yniv Palti
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, 25430, USA
| | - Eric Peatman
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dina Proestou
- USDA ARS NEA NCWMAC Shellfish Genetics at the University Rhode Island, 469 CBLS, 120 Flagg Road, Kingston, RI, 02881, USA
| | - Guyu Qin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Benjamin Reading
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695-7617, USA
| | - Caird Rexroad
- USDA ARS Office of National Programs, George Washington Carver Center Room 4-2106, 5601 Sunnyside Avenue, Beltsville, MD, 20705, USA
| | - Steven Roberts
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98105, USA
| | - Mohamed Salem
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Andrew Severin
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, IA, 50011, USA
| | - Huitong Shi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Craig Shoemaker
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL, 36832, USA
| | - Sheila Stiles
- USDOC/NOAA, National Marine Fisheries Service, NEFSC, Milford Laboratory, Milford, Connectcut, 06460, USA
| | - Suxu Tan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Kathy F J Tang
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Wilawan Thongda
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Terrence Tiersch
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, 70820, USA
| | - Joseph Tomasso
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Wendy Tri Prabowo
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Roger Vallejo
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, 25430, USA
| | | | - Khoi Vo
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Geoff Waldbieser
- USDA-ARS/CGRU, 141 Experimental Station Road, Stoneville, MS, 38701, USA
| | - Hanping Wang
- Aquaculture Genetics and Breeding Laboratory, The Ohio State University South Centers, Piketon, OH, 45661, USA
| | - Xiaozhu Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yujia Yang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Roger Yant
- Hybrid Catfish Company, 1233 Montgomery Drive, Inverness, MS, 38753, USA
| | - Zihao Yuan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Qifan Zeng
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tao Zhou
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
37
|
Polinski MP, Bradshaw JC, Inkpen SM, Richard J, Fritsvold C, Poppe TT, Rise ML, Garver KA, Johnson SC. De novo assembly of Sockeye salmon kidney transcriptomes reveal a limited early response to piscine reovirus with or without infectious hematopoietic necrosis virus superinfection. BMC Genomics 2016; 17:848. [PMID: 27806699 PMCID: PMC5094019 DOI: 10.1186/s12864-016-3196-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 10/22/2016] [Indexed: 12/19/2022] Open
Abstract
Background Piscine reovirus (PRV) has been associated with the serious disease known as Heart and Skeletal Muscle Inflammation (HSMI) in cultured Atlantic salmon Salmo salar in Norway. PRV is also prevalent in wild and farmed salmon without overt disease manifestations, suggesting multifactorial triggers or PRV variant-specific factors are required to initiate disease. In this study, we explore the head kidney transcriptome of Sockeye salmon Oncorhynchus nerka during early PRV infection to identify host responses in the absence of disease in hopes of elucidating mechanisms by which PRV may directly alter host functions and contribute to the development of a disease state. We further investigate the role of PRV as a coinfecting agent following superinfection with infectious hematopoietic necrosis virus (IHNV) – a highly pathogenic rhabdovirus endemic to the west coast of North America. Results Challenge of Sockeye salmon with PRV resulted in high quantities of viral transcripts to become present in the blood and kidney of infected fish without manifestations of disease. De novo transcriptome assembly of over 2.3 billion paired RNA-seq reads from the head kidneys of 36 fish identified more than 320,000 putative unigenes, of which less than 20 were suggested to be differentially expressed in response to PRV at either 2 or 3 weeks post challenge by DESeq2 and edgeR analysis. Of these, only one, Ependymin, was confirmed to be differentially expressed by qPCR in an expanded sample set. In contrast, IHNV induced substantial transcriptional changes (differential expression of > 20,000 unigenes) which included transcripts involved in antiviral and inflammatory response pathways. Prior infection with PRV had no significant effect on host responses to superinfecting IHNV, nor did host responses initiated by IHNV exposure influence increasing PRV loads. Conclusions PRV does not substantially alter the head kidney transcriptome of Sockeye salmon during early (2 to 3 week) infection and dissemination in a period of significant increasing viral load, nor does the presence of PRV change the host transcriptional response to an IHNV superinfection. Further, concurrent infections of PRV and IHNV do not appear to significantly influence the infectivity or severity of IHNV associated disease, or conversely, PRV load. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3196-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mark P Polinski
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Rd, Nanaimo, BC, V9T6N7, Canada.
| | - Julia C Bradshaw
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Rd, Nanaimo, BC, V9T6N7, Canada
| | - Sabrina M Inkpen
- Department of Ocean Sciences, Memorial University, St. John's, NF, A1C5S7, Canada
| | - Jon Richard
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Rd, Nanaimo, BC, V9T6N7, Canada
| | - Camilla Fritsvold
- Department of Pathology, Norwegian Veterinary Institute, Oslo, NO-0106, Norway
| | - Trygve T Poppe
- Department of Pathology, Norwegian Veterinary Institute, Oslo, NO-0106, Norway.,Department of Basic Sciences and Aquatic Medicine (Basam), Norwegian University of Life Sciences, P.O. Box 8146, Dep, N-0033, Oslo, Norway
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University, St. John's, NF, A1C5S7, Canada
| | - Kyle A Garver
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Rd, Nanaimo, BC, V9T6N7, Canada
| | - Stewart C Johnson
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Rd, Nanaimo, BC, V9T6N7, Canada
| |
Collapse
|
38
|
Kutyrev I, Cleveland B, Leeds T, Wiens GD. Proinflammatory cytokine and cytokine receptor gene expression kinetics following challenge with Flavobacterium psychrophilum in resistant and susceptible lines of rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2016; 58:542-553. [PMID: 27693200 DOI: 10.1016/j.fsi.2016.09.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Flavobacterium psychrophilum (Fp) is the causative agent of bacterial cold water disease (BCWD) which causes appreciable economic losses in rainbow trout aquaculture. We previously reported development of a genetic line, designated ARS-Fp-R that exhibits higher survival relative to a susceptible line, designated ARS-Fp-S, following either laboratory or natural on-farm challenge. The objectives of this study were to determine the temporal kinetics of gene expression between experimentally-challenged ARS-Fp-R and ARS-Fp-S fish and the correlation between gene expression and pathogen load. We developed a GeXP multiplex RT-PCR assay to simultaneously examine expression of immune-relevant genes, concentrating on tumor necrosis factor and interleukin-1 ligand/receptor systems and acute phase response genes. Spleen tissue was sampled at 6 h, 24 h, 48 h and 144 h post-challenge and pathogen load quantified by qPCR. Transcript abundance of cytokine genes tnfa1, tnfa2, tnfa3, il1b1, il1b2, il11a; acute phase response genes saa and drtp1; and putative cytokine receptors il1r1-like-b, il1r2, tnfrsf1a, tnfrsf9, tnfrsf1a-like-b increased following challenge while the transcript abundance of il1r-like-1 and tnfrsf1a-like-a decreased compared to PBS-injected line-matched control fish. Principal component analysis identified transcript levels of genes il1r-like-1 and tnfrsf1a-like-a as exhibiting differential expression between genetic lines. In summary, Fp i.p. injection challenge elicited a proinflammatory cytokine gene expression response in the spleen, with ARS-Fp-R line fish exhibiting modestly higher basal expression levels of several putative cytokine receptors. This study furthers the understanding of the immune response following Fp challenge and differences in gene expression associated with selective breeding for disease resistance.
Collapse
Affiliation(s)
- Ivan Kutyrev
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, USDA, 11861 Leetown Rd, Kearneysville, WV 25430, USA; Institute of General and Experimental Biology, Siberian Branch of Russian Academy of Sciences, Sakhyanovoi St., 6, 670047 Ulan-Ude, Russia.
| | - Beth Cleveland
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, USDA, 11861 Leetown Rd, Kearneysville, WV 25430, USA
| | - Timothy Leeds
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, USDA, 11861 Leetown Rd, Kearneysville, WV 25430, USA
| | - Gregory D Wiens
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, USDA, 11861 Leetown Rd, Kearneysville, WV 25430, USA.
| |
Collapse
|
39
|
Paneru B, Al-Tobasei R, Palti Y, Wiens GD, Salem M. Differential expression of long non-coding RNAs in three genetic lines of rainbow trout in response to infection with Flavobacterium psychrophilum. Sci Rep 2016; 6:36032. [PMID: 27786264 PMCID: PMC5081542 DOI: 10.1038/srep36032] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/10/2016] [Indexed: 12/15/2022] Open
Abstract
Bacterial cold-water disease caused by Flavobacterium psychrophilum is one of the major causes of mortality of salmonids. Three genetic lines of rainbow trout designated as ARS-Fp-R (resistant), ARS-Fp-C (control) and ARS-Fp-S (susceptible) have significant differences in survival rate following F. psychrophilum infection. Previous study identified transcriptome differences of immune-relevant protein-coding genes at basal and post infection levels among these genetic lines. Using RNA-Seq approach, we quantified differentially expressed (DE) long non-coding RNAs (lncRNAs) in response to F. psychrophilum challenge in these genetic lines. Pairwise comparison between genetic lines and different infection statuses identified 556 DE lncRNAs. A positive correlation existed between the number of the differentially regulated lncRNAs and that of the protein-coding genes. Several lncRNAs showed strong positive and negative expression correlation with their overlapped, neighboring and distant immune related protein-coding genes including complement components, cytokines, chemokines and several signaling molecules involved in immunity. The correlated expressions and genome-wide co-localization suggested that some lncRNAs may be involved in regulating immune-relevant protein-coding genes. This study provides the first evidence of lncRNA-mediated regulation of the anti-bacterial immune response in a commercially important aquaculture species and will likely help developing new genetic markers for rainbow trout disease resistance.
Collapse
Affiliation(s)
- Bam Paneru
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN, 37132, U.S
| | - Rafet Al-Tobasei
- Computational Science Program, Middle Tennessee State University, Murfreesboro, TN 37132, U.S
| | - Yniv Palti
- The National Center for Cool and Cold Water Aquaculture, USDA Agricultural Research Service, Kearneysville, WV 25430, U.S
| | - Gregory D Wiens
- The National Center for Cool and Cold Water Aquaculture, USDA Agricultural Research Service, Kearneysville, WV 25430, U.S
| | - Mohamed Salem
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN, 37132, U.S.,Computational Science Program, Middle Tennessee State University, Murfreesboro, TN 37132, U.S
| |
Collapse
|
40
|
Sea lampreys elicit strong transcriptomic responses in the lake trout liver during parasitism. BMC Genomics 2016; 17:675. [PMID: 27558222 PMCID: PMC4997766 DOI: 10.1186/s12864-016-2959-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 07/21/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The sea lamprey (Petromyzon marinus) is a jawless vertebrate that parasitizes fish as an adult and, with overfishing, was responsible for the decline in lake trout (Salvelinus namaycush) populations in the Great Lakes. While laboratory studies have looked at the rates of wounding on various fish hosts, there have been few investigations on the physiological effects of lamprey wounding on the host. In the current study, two morphotypes of lake trout, leans and siscowets, were parasitized in the laboratory by sea lampreys and the liver transcriptomes of parasitized and nonparasitized fish were analyzed by RNA-seq (DESeq2 and edgeR) to determine which genes and gene pathways (Ingenuity Pathway Analysis) were altered by lamprey parasitism. RESULTS Overall, genes encoding molecules involved in catalytic (e.g., enzymatic) and binding activities (factors and regulators) predominated the regulated gene lists. In siscowets, the top upregulated gene was growth arrest and DNA-damage-inducible protein and for leans it was interleukin-18-binding protein. In leans, the most significantly downregulated gene was UDP-glucuronosyltransferase 2A2 - DESeq2 or phosphotriesterase related - edgeR. For siscowets, the top downregulated gene was C-C motif chemokine 19 - DESeq2 or GTP-binding protein Rhes - edgeR. Gene pathways associated with inflammatory-related responses or factors (cytokines, chemokines, oxidative stress, apoptosis) were regulated following parasitism in both morphotypes. However, pathways related to energy metabolism (glycolysis, gluconeogenesis, lipolysis, lipogenesis) were also regulated. These pathways or the intensity or direction (up/downregulation) of regulation were different between leans and siscowets. Finally, one of the most significantly downregulated pathways in both leans and siscowets was the kynurenine (tryptophan degradation) pathway. CONCLUSIONS The results indicate a strong transcriptional response in the lake trout to lamprey parasitism that entails genes involved in the regulation of inflammation and cellular damage. Responses to energy utilization as well as hydromineral balance also occurred indicating an adjustment in the host to energy demands and osmotic imbalances during parasitism. Given the role of the kynurenine pathway in promoting immunotolerance in mammals, the downregulation observed in this pathway during parasitism may signify an attempt by the host to inhibit any feedback suppression of the immune response to the lamprey.
Collapse
|
41
|
Detection and Validation of QTL Affecting Bacterial Cold Water Disease Resistance in Rainbow Trout Using Restriction-Site Associated DNA Sequencing. PLoS One 2015; 10:e0138435. [PMID: 26376182 PMCID: PMC4574402 DOI: 10.1371/journal.pone.0138435] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 08/31/2015] [Indexed: 12/01/2022] Open
Abstract
Bacterial cold water disease (BCWD) causes significant economic loss in salmonid aquaculture. Using microsatellite markers in a genome scan, we previously detected significant and suggestive QTL affecting phenotypic variation in survival following challenge with Flavobacterium psychrophilum, the causative agent of BCWD in rainbow trout. In this study, we performed selective genotyping of SNPs from restriction-site associated DNA (RAD) sequence data from two pedigreed families (2009070 and 2009196) to validate the major QTL from the previous work and to detect new QTL. The use of RAD SNPs in the genome scans increased the number of mapped markers from ~300 to ~5,000 per family. The significant QTL detected in the microsatellites scan on chromosome Omy8 in family 2009070 was validated explaining up to 58% of the phenotypic variance in that family, and in addition, a second QTL was also detected on Omy8. Two novel QTL on Omy11 and 14 were also detected, and the previously suggestive QTL on Omy1, 7 and 25 were also validated in family 2009070. In family 2009196, the microsatellite significant QTL on Omy6 and 12 were validated and a new QTL on Omy8 was detected, but none of the previously detected suggestive QTL were validated. The two Omy8 QTL from family 2009070 and the Omy12 QTL from family 2009196 were found to be co-localized with handling and confinement stress response QTL that our group has previously identified in a separate pedigreed family. With the currently available data we cannot determine if the co-localized QTL are the result of genes with pleiotropic effects or a mere physical proximity on the same chromosome segment. The genetic markers linked to BCWD resistance QTL were used to query the scaffolds of the rainbow trout reference genome assembly and the QTL-positive scaffold sequences were found to include 100 positional candidate genes. Several of the candidate genes located on or near the two Omy8 QTL detected in family 2009070 suggest potential linkages between stress response and the regulation of immune response in rainbow trout.
Collapse
|
42
|
Yáñez JM, Newman S, Houston RD. Genomics in aquaculture to better understand species biology and accelerate genetic progress. Front Genet 2015; 6:128. [PMID: 25883603 PMCID: PMC4381651 DOI: 10.3389/fgene.2015.00128] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/17/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- José M Yáñez
- Faculty of Veterinary and Animal Sciences, University of Chile Santiago, Chile ; Aquainnovo Puerto Montt, Chile
| | | | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh Midlothian, UK
| |
Collapse
|
43
|
Salem M, Paneru B, Al-Tobasei R, Abdouni F, Thorgaard GH, Rexroad CE, Yao J. Transcriptome assembly, gene annotation and tissue gene expression atlas of the rainbow trout. PLoS One 2015; 10:e0121778. [PMID: 25793877 PMCID: PMC4368115 DOI: 10.1371/journal.pone.0121778] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 02/04/2015] [Indexed: 11/25/2022] Open
Abstract
Efforts to obtain a comprehensive genome sequence for rainbow trout are ongoing and will be complemented by transcriptome information that will enhance genome assembly and annotation. Previously, transcriptome reference sequences were reported using data from different sources. Although the previous work added a great wealth of sequences, a complete and well-annotated transcriptome is still needed. In addition, gene expression in different tissues was not completely addressed in the previous studies. In this study, non-normalized cDNA libraries were sequenced from 13 different tissues of a single doubled haploid rainbow trout from the same source used for the rainbow trout genome sequence. A total of ~1.167 billion paired-end reads were de novo assembled using the Trinity RNA-Seq assembler yielding 474,524 contigs > 500 base-pairs. Of them, 287,593 had homologies to the NCBI non-redundant protein database. The longest contig of each cluster was selected as a reference, yielding 44,990 representative contigs. A total of 4,146 contigs (9.2%), including 710 full-length sequences, did not match any mRNA sequences in the current rainbow trout genome reference. Mapping reads to the reference genome identified an additional 11,843 transcripts not annotated in the genome. A digital gene expression atlas revealed 7,678 housekeeping and 4,021 tissue-specific genes. Expression of about 16,000–32,000 genes (35–71% of the identified genes) accounted for basic and specialized functions of each tissue. White muscle and stomach had the least complex transcriptomes, with high percentages of their total mRNA contributed by a small number of genes. Brain, testis and intestine, in contrast, had complex transcriptomes, with a large numbers of genes involved in their expression patterns. This study provides comprehensive de novo transcriptome information that is suitable for functional and comparative genomics studies in rainbow trout, including annotation of the genome.
Collapse
Affiliation(s)
- Mohamed Salem
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, 37132, United States of America
- * E-mail:
| | - Bam Paneru
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, 37132, United States of America
| | - Rafet Al-Tobasei
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, 37132, United States of America
| | - Fatima Abdouni
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, 37132, United States of America
| | - Gary H. Thorgaard
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164, United States of America
| | - Caird E. Rexroad
- The National Center for Cool and Cold Water Aquaculture, USDA Agricultural Research Service, Leetown, West Virginia 25430, United States of America
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, 26506, United States of America
| |
Collapse
|