1
|
Salinas-Rodriguez A, Manrique-Espinoza B, Rivera-Almaraz A, Sánchez-López JM, Rosas-Vargas H. Telomere Length is Associated with the Prevalence, Persistence, and Incidence of Sarcopenia. Arch Med Res 2024; 55:103007. [PMID: 38805768 DOI: 10.1016/j.arcmed.2024.103007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/27/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Telomere length (TL) shortening has been identified as a marker of aging and associated with adverse health outcomes, but evidence of its association with sarcopenia is inconclusive. AIMS Estimate the cross-sectional and prospective associations between TL and sarcopenia. METHODS We used data from Waves 3 and 4 (2017, 2021) of the Study on Global Aging and Adult Health in Mexico (SAGE-Mexico). The cross-sectional sample consisted of 1,738 adults aged 50 and older, and the longitudinal sample consisted of 1,437. Relative TL was determined by real-time quantitative polymerase chain reaction (qPCR) on DNA extracted from saliva samples and quantified as the telomere/single-copy gene (T/S) ratio. Sarcopenia was defined according to the European Working Group on Sarcopenia in Older People (EWGSOP2). RESULTS The mean salivary TL was 1.50 T/S units (95% CI: 1.49-1.52). The baseline prevalence of sarcopenia was 13.3% (95% CI: 9.8-16.8%). The incidence and persistence of sarcopenia were 6.8% (95% CI: 5.0-9.5%) and 7.0% (95% CI: 5.1-9.6%), respectively. The results showed that a one standard deviation decrease in TL was cross-sectionally associated with higher odds of sarcopenia (OR = 1.31; 95% CI: 1.03-1.67) and prospectively with a higher incidence (RRR = 1.55; 95% CI: 1.06-2.25) and persistence (RRR = 1.50; 95% CI: 1.01-2.24) of sarcopenia. CONCLUSIONS Older adults with shorter TL had higher rates of incident and persistent sarcopenia. Implementation of interventions to delay the decline of TL in older adults is warranted. Further translational studies are needed to elucidate the effects of exercise or diet on DNA repair in the telomeric region and their associations with sarcopenia.
Collapse
Affiliation(s)
- Aaron Salinas-Rodriguez
- Centro de Investigación en Evaluación y Encuestas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Betty Manrique-Espinoza
- Centro de Investigación en Evaluación y Encuestas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico.
| | - Ana Rivera-Almaraz
- Centro de Investigación en Evaluación y Encuestas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - José Manuel Sánchez-López
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano de Seguro Social, Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano de Seguro Social, Mexico City, Mexico
| |
Collapse
|
2
|
Chang L, Fan WW, Yuan HL, Liu X, Wang Q, Ruan GP, Pan XH, Zhu XQ. Role of umbilical cord mesenchymal stromal cells in skin rejuvenation. NPJ Regen Med 2024; 9:20. [PMID: 38729990 PMCID: PMC11087646 DOI: 10.1038/s41536-024-00363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Aging is the main cause of many degenerative diseases. The skin is the largest and the most intuitive organ that reflects the aging of the body. Under the interaction of endogenous and exogenous factors, there are cumulative changes in the structure, function, and appearance of the skin, which are characterized by decreased synthesis of collagen and elastin, increased wrinkles, relaxation, pigmentation, and other aging characteristics. skin aging is inevitable, but it can be delayed. The successful isolation of mesenchymal stromal cells (MSC) in 1991 has greatly promoted the progress of cell therapy in human diseases. The International Society for Cellular Therapy (ISCT) points out that the MSC is a kind of pluripotent progenitor cells that have self-renewal ability (limited) in vitro and the potential for mesenchymal cell differentiation. This review mainly introduces the role of perinatal umbilical cord-derived MSC(UC-MSC) in the field of skin rejuvenation. An in-depth and systematic understanding of the mechanism of UC-MSCs against skin aging is of great significance for the early realization of the clinical transformation of UC-MSCs. This paper summarized the characteristics of skin aging and summarized the mechanism of UC-MSCs in skin rejuvenation reported in recent years. In order to provide a reference for further research of UC-MSCs to delay skin aging.
Collapse
Affiliation(s)
- Le Chang
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Wei-Wen Fan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - He-Ling Yuan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Xin Liu
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Qiang Wang
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Guang-Ping Ruan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Xing-Hua Pan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China.
| | - Xiang-Qing Zhu
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China.
| |
Collapse
|
3
|
Xiang Q, Qu L, Lei H, Duan Z, Zhu C, Yuwen W, Ma X, Fan D. Expression of Multicopy Tandem Recombinant Ginseng Hexapeptide in Bacillus subtilis and the Evaluation of Antiaging Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7266-7278. [PMID: 38523338 DOI: 10.1021/acs.jafc.3c09158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Ginseng oligopeptides are naturally occurring small-molecule peptides extracted from ginseng that exhibit positive effects on health and longevity. However, the current industrial production of ginseng oligopeptides primarily relies on plant extraction and chemical synthesis. In this study, we proposed a novel genetic engineering approach to produce active ginseng peptides through multicopy tandem insertion (5 and 15 times). The recombinant ginseng peptides were successfully produced from engineered Bacillus subtilis with an increasing yield from 356.55 to 2900 mg/L as the repeats multiple. Additionally, an oxidative stress-induced aging model caused by H2O2 was established to evaluate whether the recombinant ginseng peptides, without enzymatic hydrolysis into individual peptides, also have positive effects on antiaging. The results demonstrated that all two kinds of recombinant ginseng peptides could also delay cellular aging through various mechanisms, such as inhibiting cell cycle arrest, suppressing the expression of pro-inflammatory factors, and enhancing cellular antioxidant capacity.
Collapse
Affiliation(s)
- Qingyu Xiang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Linlin Qu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Huan Lei
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Zhiguang Duan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Weigang Yuwen
- Shaanxi Gaint Biotechnology Co., Ltd, Xi'an 710065, Shaanxi, China
| | - Xiaoxuan Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| |
Collapse
|
4
|
Blanco MB, Smith DL, Greene LK, Yoder AD, Ehmke EE, Lin J, Klopfer PH. Telomere dynamics during hibernation in a tropical primate. J Comp Physiol B 2024; 194:213-219. [PMID: 38466418 DOI: 10.1007/s00360-024-01541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 03/13/2024]
Abstract
Hibernation is a widespread metabolic strategy among mammals for surviving periods of food scarcity. During hibernation, animals naturally alternate between metabolically depressed torpor bouts and energetically expensive arousals without ill effects. As a result, hibernators are promising models for investigating mechanisms that buffer against cellular stress, including telomere protection and restoration. In non-hibernators, telomeres, the protective structural ends of chromosomes, shorten with age and metabolic stress. In temperate hibernators, however, telomere shortening and elongation can occur in response to changing environmental conditions and associated metabolic state. We investigate telomere dynamics in a tropical hibernating primate, the fat-tailed dwarf lemur (Cheirogaleus medius). In captivity, these lemurs can hibernate when maintained under cold temperatures (11-15 °C) with limited food provisioning. We study telomere dynamics in eight fat-tailed dwarf lemurs at the Duke Lemur Center, USA, from samples collected before, during, and after the hibernation season and assayed via qPCR. Contrary to our predictions, we found that telomeres were maintained or even lengthened during hibernation, but shortened immediately thereafter. During hibernation, telomere lengthening was negatively correlated with time in euthermia. Although preliminary in scope, our findings suggest that there may be a preemptive, compensatory mechanism to maintain telomere integrity in dwarf lemurs during hibernation. Nevertheless, telomere shortening immediately afterward may broadly result in similar outcomes across seasons. Future studies could profitably investigate the mechanisms that offset telomere shortening within and outside of the hibernation season and whether those mechanisms are modulated by energy surplus or crises.
Collapse
Affiliation(s)
- M B Blanco
- Duke Lemur Center, Durham, NC, 27705, USA.
- Department of Biology, Duke University, Durham, NC, 27708, USA.
| | - D L Smith
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94143, USA
| | - L K Greene
- Duke Lemur Center, Durham, NC, 27705, USA
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - A D Yoder
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - E E Ehmke
- Duke Lemur Center, Durham, NC, 27705, USA
| | - J Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94143, USA
| | - P H Klopfer
- Department of Biology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
5
|
Tenchov R, Sasso JM, Wang X, Zhou QA. Antiaging Strategies and Remedies: A Landscape of Research Progress and Promise. ACS Chem Neurosci 2024; 15:408-446. [PMID: 38214973 PMCID: PMC10853939 DOI: 10.1021/acschemneuro.3c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
Aging is typified by a gradual loss of physiological fitness and accumulation of cellular damage, leading to deteriorated functions and enhanced vulnerability to diseases. Antiaging research has a long history throughout civilization, with many efforts put forth to understand and prevent the effects of aging. Multiple strategies aiming to promote healthy aging and extend the lifespan have been developed including lifestyle adjustments, medical treatments, and social programs. A multitude of antiaging medicines and remedies have also been explored. Here, we use data from the CAS Content Collection to analyze the publication landscape of recent research related to antiaging strategies and treatments. We review the recent advances and delineate trends in research headway of antiaging knowledge and practice across time, geography, and development pipelines. We further assess the state-of-the-art antiaging approaches and explore their correlations with age-related diseases. The landscape of antiaging drugs has been outlined and explored. Well-recognized and novel, currently evaluated antiaging agents have also been summarized. Finally, we review clinical applications of antiaging products with their development pipelines. The objective of this review is to summarize current knowledge on preventive strategies and treatment remedies in the field of aging, to outline challenges and evaluate growth opportunities, in order to further efforts to solve the problems that remain.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a Division of the American
Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Janet M. Sasso
- CAS, a Division of the American
Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Xinmei Wang
- CAS, a Division of the American
Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Qiongqiong Angela Zhou
- CAS, a Division of the American
Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| |
Collapse
|
6
|
Spegg V, Altmeyer M. Genome maintenance meets mechanobiology. Chromosoma 2024; 133:15-36. [PMID: 37581649 PMCID: PMC10904543 DOI: 10.1007/s00412-023-00807-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023]
Abstract
Genome stability is key for healthy cells in healthy organisms, and deregulated maintenance of genome integrity is a hallmark of aging and of age-associated diseases including cancer and neurodegeneration. To maintain a stable genome, genome surveillance and repair pathways are closely intertwined with cell cycle regulation and with DNA transactions that occur during transcription and DNA replication. Coordination of these processes across different time and length scales involves dynamic changes of chromatin topology, clustering of fragile genomic regions and repair factors into nuclear repair centers, mobilization of the nuclear cytoskeleton, and activation of cell cycle checkpoints. Here, we provide a general overview of cell cycle regulation and of the processes involved in genome duplication in human cells, followed by an introduction to replication stress and to the cellular responses elicited by perturbed DNA synthesis. We discuss fragile genomic regions that experience high levels of replication stress, with a particular focus on telomere fragility caused by replication stress at the ends of linear chromosomes. Using alternative lengthening of telomeres (ALT) in cancer cells and ALT-associated PML bodies (APBs) as examples of replication stress-associated clustered DNA damage, we discuss compartmentalization of DNA repair reactions and the role of protein properties implicated in phase separation. Finally, we highlight emerging connections between DNA repair and mechanobiology and discuss how biomolecular condensates, components of the nuclear cytoskeleton, and interfaces between membrane-bound organelles and membraneless macromolecular condensates may cooperate to coordinate genome maintenance in space and time.
Collapse
Affiliation(s)
- Vincent Spegg
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Pelletier D, Blier PU, Vézina F, Dufresne F, Paquin F, Christen F, Guillemette M. Under pressure-exploring partner changes, physiological responses and telomere dynamics in northern gannets across varying breeding conditions. PeerJ 2023; 11:e16457. [PMID: 38054014 PMCID: PMC10695113 DOI: 10.7717/peerj.16457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/23/2023] [Indexed: 12/07/2023] Open
Abstract
Background Life history theory predicts trade-offs between reproduction and survival in species like the northern gannet (Morus bassanus). During breeding, demanding foraging conditions lead them to expand their foraging range and diversify their diet, increasing the risk of reproductive failure. Changing partners may enhance breeding success but lead to more physiological costs. Methods To investigate the physiological costs of reproduction upon partner changes, we measured and compared 21 biomarkers related to telomere dynamics, oxidative stress, inflammation, hematology, nutritional status, and muscle damage. We used a longitudinal approach with gannets (n = 38) over three contrasting years (2017, 2018 and 2019). Results Our results suggest that annual breeding conditions exert a greater influence on physiological changes than partnership status. Individuals that changed partner experienced greater short-term stress than retained partners. This transient increase in stress was marked by short-term increases in oxidative lipid damage, lower antioxidant capacity, signs of inflammation, and greater weight loss than individuals that retained partners. During favorable conditions, individuals that changed mates had stabilized telomere length, decreased antioxidant capacity, glucose concentration, and muscle damage, along with increased oxygen transport capacity. Conversely, unfavorable breeding conditions led to increased telomere attrition, stabilized antioxidant capacity, decreased inflammation susceptibility, diminished oxygen transport capacity, and increased muscle damage. In the cases where partners were retained, distinct physiological changes were observed depending on the year's conditions, yet the telomere dynamics remained consistent across both partnership status categories. During the favorable year, there was an increase in unsaturated fatty acids and oxygen transport capacity in the blood, coupled with a reduction in inflammation potential and protein catabolism. In contrast, during the unfavorable year in the retained mates, we observed an increase in oxidative DNA damage, antioxidant capacity, weight loss, but a decrease in inflammation susceptibility as observed in changed mates. Discussion Our study shows that behavioral flexibility such as mate switching can help seabirds cope with the challenges of food scarcity during reproduction, but these coping strategies may have a negative impact on physiological status at the individual level. In addition, the marked reduction in telomere length observed during harsh conditions, coupled with the stabilization of telomere length in favorable conditions, highlights the long-term physiological impact of annual breeding conditions on seabirds. These findings underscore the effect on their potential survival and fitness, emphasizing that the influence of annual breeding conditions is greater than that of partnership status.
Collapse
Affiliation(s)
- David Pelletier
- Department of Biology, Université du Québec à Rimouski, Rimouski, Québec, Canada
- Department of Biology, Cégep de Rimouski, Rimouski, Québec, Canada
| | - Pierre U. Blier
- Department of Biology, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - François Vézina
- Department of Biology, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - France Dufresne
- Department of Biology, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - Frédérique Paquin
- Department of Biology, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - Felix Christen
- Department of Biology, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - Magella Guillemette
- Department of Biology, Université du Québec à Rimouski, Rimouski, Québec, Canada
| |
Collapse
|
8
|
Williams AM, Mandelblatt JS, Wang M, Dong Q, Armstrong GT, Bhakta N, Brinkman TM, Ehrhardt MJ, Mulrooney DA, Gilmore N, Robison LL, Yasui Y, Small BJ, Srivastava D, Hudson MM, Ness KK, Krull KR, Wang Z. Deficit Accumulation Index and Biological Markers of Aging in Survivors of Childhood Cancer. JAMA Netw Open 2023; 6:e2344015. [PMID: 37983031 PMCID: PMC10660189 DOI: 10.1001/jamanetworkopen.2023.44015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 11/21/2023] Open
Abstract
Importance Survivors of childhood cancer experience premature aging compared with community controls. The deficit accumulation index (DAI) uses readily available clinical data to measure physiological age in survivors; however, little data exist on how well deficit accumulation represents underlying biological aging among survivors of cancer. Objective To examine the associations between the DAI and epigenetic age acceleration (EAA) and mean leukocyte telomere length (LTL). Design, Setting, and Participants This cross-sectional study analyzed data from the St Jude Lifetime Cohort, an assessment of survivors of childhood cancer who were treated at St Jude Children's Research Hospital in Memphis, Tennessee. Data were collected between 2007 and 2016, assayed between 2014 and 2019, and analyzed between 2022 and 2023. Participants were adult survivors who were diagnosed between 1962 and 2012 and who survived 5 years or more from time of diagnosis. The analyses were restricted to survivors with European ancestry, as there were too few survivors with non-European ancestry. Exposures The DAI included 44 aging-related items, such as chronic health conditions and functional, psychosocial, and mental well-being. Item responses were summed and divided by the total number of items, resulting in a ratio ranging from 0 to 1. These DAI results were categorized based on reported associations with hospitalization and mortality: low, defined as a DAI less than 0.2; medium, defined as a DAI of 0.2 to less than 0.35; and high, defined as a DAI of 0.35 or higher. Main Outcomes and Measures Genome-wide DNA methylation was generated from peripheral blood mononuclear cell-derived DNA. The EAA was calculated as the residuals from regressing the Levine epigenetic age on chronological age. The mean LTL was estimated using whole-genome sequencing data. Results This study included 2101 survivors of childhood cancer (1122 males [53.4%]; mean [SD] age, 33.9 [9.1] years; median [IQR] time since diagnosis, 25.1 [18.7-31.9] years) with European ancestry. Compared with survivors in the low DAI group, those in the high DAI group experienced 3.7 more years of EAA (β = 3.66; 95% CI, 2.47-4.85; P < .001), whereas those in the medium DAI group experienced 1.8 more years of EAA (β = 1.77; 95% CI, 0.84-2.69; P < .001), independent of treatment exposures. The EAA and DAI association was consistent across 3 common diagnoses (acute lymphoblastic leukemia, Hodgkin lymphoma, and central nervous system tumors) and across chronological age groups. For example, among acute lymphoblastic leukemia survivors, those in the medium DAI group (β = 2.27; 95% CI, 0.78-3.76; P = .001) experienced greater EAA vs those in the low DAI group. Similarly, among survivors younger than 30 years, the high DAI group experienced 4.9 more years of EAA vs the low DAI group (β = 4.95; 95% CI, 2.14-7.75; P < .001). There were no associations between mean LTL residual and the DAI. Conclusions and Relevance This cross-sectional study of survivors of childhood cancer showed that the DAI was associated with EAA, suggesting an underlying biological process to the accumulation of deficits. Both the DAI and EAA were effective at identifying aging phenotypes, and either may be used to measure aging and response to interventions targeting aging pathways.
Collapse
Affiliation(s)
- AnnaLynn M. Williams
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
- Now with Department of Surgery, Division of Supportive Care in Cancer, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | | | - Mingjuan Wang
- Department of Biostatistics, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Qian Dong
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Gregory T. Armstrong
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Nickhill Bhakta
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Global Pediatric Medicine, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Tara M. Brinkman
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Psychology and Biobehavioral Sciences, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Matthew J. Ehrhardt
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Daniel A. Mulrooney
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Nikesha Gilmore
- Now with Department of Surgery, Division of Supportive Care in Cancer, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Leslie L. Robison
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Yutaka Yasui
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Brent J. Small
- School of Aging Studies, University of South Florida, Tampa
| | - Deokumar Srivastava
- Department of Biostatistics, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Melissa M. Hudson
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Kirsten K. Ness
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Kevin R. Krull
- Department of Psychology and Biobehavioral Sciences, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Zhaoming Wang
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
| |
Collapse
|
9
|
Han MH, Lee EH, Park HH, Choi SH, Koh SH. Relationship between telomere shortening and early subjective depressive symptoms and cognitive complaints in older adults. Aging (Albany NY) 2023; 15:914-931. [PMID: 36805537 PMCID: PMC10008503 DOI: 10.18632/aging.204533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
Telomere length (TL) has been reported to be associated with depression and cognitive impairment in elderly. Early detection of depression and cognitive impairment is important to delay disease progression. Therefore, we aimed to identify whether TL is associated with early subjective depressive symptoms and cognitive complaints among healthy elderly subjects. This study was a multicenter, outcome assessor-blinded, 24-week, randomized controlled trial (RCT). Measurement of questionnaire and physical activity scores and blood sample analyses were performed at baseline and after six months of follow-up in all study participants. Linear regression analyses were performed to identify whether early subjective depressive symptoms, cognitive complaints, and several blood biomarkers are associated with TL. Altogether, 137 relatively healthy elderly individuals (60-79 years old) were enrolled in this prospective RCT. We observed an approximate decrease of 0.06 and 0.11-0.14 kbps of TL per one point increase in the geriatric depression scale and cognitive complaint interview scores, respectively, at baseline and after six months of follow-up. We also found an approximate decrease of 0.08-0.09 kbps of TL per one point increase in interleukin (IL)-6 levels at baseline and after six months of follow-up. Our study showed that both early subjective depressive symptoms and cognitive complaints were associated with a relatively shorter TL in relatively healthy elderly individuals. In addition, based on our findings, we believe that IL-6 plays an important role in the relationship between shortening TL and early subjective depressive symptoms and cognitive complaints.
Collapse
Affiliation(s)
- Myung-Hoon Han
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri 11923, South Korea
| | - Eun-Hye Lee
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, South Korea
| | - Hyun-Hee Park
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, South Korea
| | - Seong Hye Choi
- Department of Neurology, Inha University College of Medicine, Incheon 22332, South Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, South Korea
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul 04763, South Korea
| |
Collapse
|
10
|
Hernández-Álvarez D, Rosado-Pérez J, Gavia-García G, Arista-Ugalde TL, Aguiñiga-Sánchez I, Santiago-Osorio E, Mendoza-Núñez VM. Aging, Physical Exercise, Telomeres, and Sarcopenia: A Narrative Review. Biomedicines 2023; 11:598. [PMID: 36831134 PMCID: PMC9952920 DOI: 10.3390/biomedicines11020598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Human aging is a gradual and adaptive process characterized by a decrease in the homeostatic response, leading to biochemical and molecular changes that are driven by hallmarks of aging, such as oxidative stress (OxS), chronic inflammation, and telomere shortening. One of the diseases associated with the hallmarks of aging, which has a great impact on functionality and quality of life, is sarcopenia. However, the relationship between telomere length, sarcopenia, and age-related mortality has not been extensively studied. Moderate physical exercise has been shown to have a positive effect on sarcopenia, decreasing OxS and inflammation, and inducing protective effects on telomeric DNA. This results in decreased DNA strand breaks, reduced OxS and IA, and activation of repair pathways. Higher levels of physical activity are associated with an apparent increase in telomere length. This review aims to present the current state of the art of knowledge on the effect of physical exercise on telomeric maintenance and activation of repair mechanisms in sarcopenia.
Collapse
Affiliation(s)
- David Hernández-Álvarez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Juana Rosado-Pérez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Graciela Gavia-García
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Taide Laurita Arista-Ugalde
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Itzen Aguiñiga-Sánchez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Edelmiro Santiago-Osorio
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Víctor Manuel Mendoza-Núñez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| |
Collapse
|
11
|
Miclau K, Hambright WS, Huard J, Stoddart MJ, Bahney CS. Cellular expansion of MSCs: Shifting the regenerative potential. Aging Cell 2023; 22:e13759. [PMID: 36536521 PMCID: PMC9835588 DOI: 10.1111/acel.13759] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/14/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal-derived stromal or progenitor cells, commonly called "MSCs," have attracted significant clinical interest for their remarkable abilities to promote tissue regeneration and reduce inflammation. Recent studies have shown that MSCs' therapeutic effects, originally attributed to the cells' direct differentiation capacity into the tissue of interest, are largely driven by the biomolecules the cells secrete, including cytokines, chemokines, growth factors, and extracellular vesicles containing miRNA. This secretome coordinates upregulation of endogenous repair and immunomodulation in the local microenvironment through crosstalk of MSCs with host tissue cells. Therapeutic applications for MSCs and their secretome-derived products often involve in vitro monolayer expansion. However, consecutive passaging of MSCs significantly alters their therapeutic potential, inducing a broad shift from a pro-regenerative to a pro-inflammatory phenotype. A consistent by-product of in vitro expansion of MSCs is the onset of replicative senescence, a state of cell arrest characterized by an increased release of proinflammatory cytokines and growth factors. However, little is known about changes in the secretome profile at different stages of in vitro expansion. Some culture conditions and bioprocessing techniques have shown promise in more effectively retaining the pro-regenerative and anti-inflammatory MSC phenotype throughout expansion. Understanding how in vitro expansion conditions influence the nature and function of MSCs, and their associated secretome, may provide key insights into the underlying mechanisms driving these alterations. Elucidating the dynamic and diverse changes in the MSC secretome at each stage of in vitro expansion is a critical next step in the development of standardized, safe, and effective MSC-based therapies.
Collapse
Affiliation(s)
- Katherine Miclau
- Center for Regenerative and Personalized Medicine (CRPM)Steadman Philippon Research InstituteVailColoradoUSA
- Orthopaedic Trauma Institute (OTI)University of California San FranciscoSan FranciscoCaliforniaUSA
| | - William S. Hambright
- Center for Regenerative and Personalized Medicine (CRPM)Steadman Philippon Research InstituteVailColoradoUSA
| | - Johnny Huard
- Center for Regenerative and Personalized Medicine (CRPM)Steadman Philippon Research InstituteVailColoradoUSA
| | - Martin J. Stoddart
- Orthopaedic Trauma Institute (OTI)University of California San FranciscoSan FranciscoCaliforniaUSA
| | - Chelsea S. Bahney
- Center for Regenerative and Personalized Medicine (CRPM)Steadman Philippon Research InstituteVailColoradoUSA
- AO Research Institute DavosDavosSwitzerland
| |
Collapse
|
12
|
Varghese LN, Schwenke DO, Katare R. Role of noncoding RNAs in cardiac ageing. Front Cardiovasc Med 2023; 10:1142575. [PMID: 37034355 PMCID: PMC10073704 DOI: 10.3389/fcvm.2023.1142575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
The global population is estimated to reach 9.8 billion by 2050, of which 2.1 billion will comprise individuals above 60 years of age. As the number of elderly is estimated to double from 2017, it is a victory of the modern healthcare system but also worrisome as ageing, and the onset of chronic disease are correlated. Among other chronic conditions, cardiovascular diseases (CVDs) are the leading cause of death in the aged population. While the underlying cause of the age-associated development of CVDs is not fully understood, studies indicate the role of non-coding RNAs such as microRNAs (miRNAs) and long noncoding RNAs (lnc-RNAs) in the development of age-associated CVDs. miRNAs and lnc-RNAs are non-coding RNAs which control gene expression at the post-transcriptional level. The expression of specific miRNAs and lnc-RNAs are reportedly dysregulated with age, leading to cardiovascular system changes and ultimately causing CVDs. Since miRNAs and lnc-RNAs play several vital roles in maintaining the normal functioning of the cardiovascular system, they are also being explored for their therapeutic potential as a treatment for CVDs. This review will first explore the pathophysiological changes associated with ageing. Next, we will review the known mechanisms underlying the development of CVD in ageing with a specific focus on miRNA and lnc-RNAs. Finally, we will discuss the therapeutic options and future challenges towards healthy cardiac ageing. With the global ageing population on the rise, this review will provide a fundamental understanding of some of the underlying molecular mechanisms of cardiac ageing.
Collapse
|
13
|
In Vitro Determination of the Skin Anti-Aging Potential of Four-Component Plant-Based Ingredient. Molecules 2022; 27:molecules27228101. [PMID: 36432202 PMCID: PMC9697998 DOI: 10.3390/molecules27228101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
The beauty industry is actively searching for solutions to prevent skin aging. Some of the crucial elements protecting cells from the aging process are telomere shortening, telomerase expression, cell senescence, and homeostasis of the redox system. Modification of these factors using natural antioxidants is an appealing way to support healthy skin aging. Therefore, in this study, we sought to investigate the antiaging efficacy of a specific combination of four botanical extracts (pomegranate, sweet orange, Cistanche and Centella asiatica) with proven antioxidant properties. To this end, normal human dermal fibroblasts were used as a cell model and the following studies were performed: cell proliferation was established by means of the MTT assay and the intracellular ROS levels in stress-induced premature senescence fibroblasts; telomere length measurement was performed under standard cell culture conditions using qPCR and under oxidative stress conditions using a variation of the Q-FISH technique; telomerase activity was examined by means of Q-TRAP; and AGE quantification was completed by means of ELISA assay in UV-irradiated fibroblasts. As a result, the botanical blend significantly reversed the H2O2-induced decrease in cell viability and reduced H2O2-induced ROS. Additionally, the presence of the botanical ingredient reduced the telomere shortening rate in both stressed and non-stressed replicating fibroblasts, and under oxidative stress conditions, the fibroblasts presented a higher median and 20th percentile telomere length, as well as a lower percentage of short telomeres (<3 Kbp) compared with untreated fibroblasts. Furthermore, the ingredient transiently increased relative telomerase activity after 24 h and prevented the accumulation of UVR-induced glycated species. The results support the potential use of this four-component plant-based ingredient as an antiaging agent.
Collapse
|
14
|
Posttransplant Complications and Genetic Loci Involved in Telomere Maintenance in Heart Transplant Patients. Genes (Basel) 2022; 13:genes13101855. [PMID: 36292740 PMCID: PMC9601297 DOI: 10.3390/genes13101855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/04/2022] Open
Abstract
Reaching critically short telomeres induces cellular senescence and ultimately cell death. Cellular senescence contributes to the loss of tissue function. We aimed to determine the association between variants within genes involved in telomere length maintenance, posttransplant events, and aortic telomere length in heart transplant patients. DNA was isolated from paired aortic samples of 383 heart recipients (age 50.7 ± 11.9 years) and corresponding donors (age 38.7 ± 12.0 years). Variants within the TERC (rs12696304), TERF2IP (rs3784929 and rs8053257), and OBCF1 (rs4387287) genes were genotyped, and telomere length was measured using qPCR. We identified similar frequencies of genotypes in heart donors and recipients. Antibody-mediated rejection (AMR) was more common (p < 0.05) in carriers of at least one G allele within the TERF2IP locus (rs3784929). Chronic graft dysfunction (CGD) was associated with the TERC (rs12696304) GG donor genotype (p = 0.05). The genetic risk score did not determine posttransplant complication risk prediction. No associations between the analyzed polymorphisms and telomere length were detected in either donor or recipient DNA. In conclusion, possible associations between donor TERF2IP (rs3784929) and AMR and between TERC (rs12696304) and CGD were found. SNPs within the examined genes were not associated with telomere length in transplanted patients.
Collapse
|
15
|
Likonen D, Pinchasi M, Beery E, Sarsor Z, Signorini LF, Gervits A, Sharan R, Lahav M, Raanani P, Uziel O. Exosomal telomerase transcripts reprogram the microRNA transcriptome profile of fibroblasts and partially contribute to CAF formation. Sci Rep 2022; 12:16415. [PMID: 36180493 PMCID: PMC9525320 DOI: 10.1038/s41598-022-20186-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
It is now well accepted that cancer cells change their microenvironment from normal to tumor-supportive state to provide sustained tumor growth, metastasis and drug resistance. These processes are partially carried out by exosomes, nano-sized vesicles secreted from cells, shuttled from donor to recipient cells containing a cargo of nucleic acids, proteins and lipids. By transferring biologically active molecules, cancer-derived exosomes may transform microenvironmental cells to become tumor supportive. Telomerase activity is regarded as a hallmark of cancer. We have recently shown that the transcript of human telomerase reverse transcriptase (hTERT), is packaged in cancer cells derived- exosomes. Following the engulfment of the hTERT transcript into fibroblasts, it is translated into a fully active enzyme [after assembly with its RNA component (hTERC) subunit]. Telomerase activity in the recipient, otherwise telomerase negative cells, provides them with a survival advantage. Here we show that exosomal telomerase might play a role in modifying normal fibroblasts into cancer associated fibroblasts (CAFs) by upregulating \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm{\alpha }$$\end{document}αSMA and Vimentin, two CAF markers. We also show that telomerase activity changes the transcriptome of microRNA in these fibroblasts. By ectopically expressing microRNA 342, one of the top identified microRNAs, we show that it may mediate the proliferative phenotype that these cells acquire upon taking-up exosomal hTERT, providing them with a survival advantage.
Collapse
Affiliation(s)
- Daniela Likonen
- The Felsenstein Medical Research Center, Petah-Tikva, Israel
| | - Maria Pinchasi
- The Felsenstein Medical Research Center, Petah-Tikva, Israel
| | - Einat Beery
- The Felsenstein Medical Research Center, Petah-Tikva, Israel
| | - Zinab Sarsor
- The Felsenstein Medical Research Center, Petah-Tikva, Israel
| | | | - Asia Gervits
- School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel
| | - Roded Sharan
- School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel
| | - Meir Lahav
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Pia Raanani
- The Felsenstein Medical Research Center, Petah-Tikva, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah-Tikva, Israel
| | - Orit Uziel
- The Felsenstein Medical Research Center, Petah-Tikva, Israel. .,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel. .,Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah-Tikva, Israel.
| |
Collapse
|
16
|
Shokr H, Lush V, Dias IH, Ekárt A, De Moraes G, Gherghel D. The Use of Retinal Microvascular Function and Telomere Length in Age and Blood Pressure Prediction in Individuals with Low Cardiovascular Risk. Cells 2022; 11:3037. [PMID: 36230999 PMCID: PMC9563868 DOI: 10.3390/cells11193037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 12/16/2022] Open
Abstract
Ageing represents a major risk factor for many pathologies that limit human lifespan, including cardiovascular diseases. Biological ageing is a good biomarker to assess early individual risk for CVD. However, finding good measurements of biological ageing is an ongoing quest. This study aims to assess the use retinal microvascular function, separate or in combination with telomere length, as a predictor for age and systemic blood pressure in individuals with low cardiovascular risk. In all, 123 healthy participants with low cardiovascular risk were recruited and divided into three groups: group 1 (less than 30 years old), group 2 (31-50 years old) and group 3 (over 50 years old). Relative telomere length (RTL), parameters of retinal microvascular function, CVD circulatory markers and blood pressure (BP) were measured in all individuals. Symbolic regression- analysis was used to infer chronological age and systemic BP measurements using either RTL or a combination of RTL and parameters for retinal microvascular function. RTL decreased significantly with age (p = 0.010). There were also age-related differences between the study groups in retinal arterial time to maximum dilation (p = 0.005), maximum constriction (p = 0.007) and maximum constriction percentage (p = 0.010). In the youngest participants, the error between predicted versus actual values for the chronological age were smallest in the case of using both retinal vascular functions only (p = 0.039) or the combination of this parameter with RTL (p = 0.0045). Systolic BP was better predicted by RTL also only in younger individuals (p = 0.043). The assessment of retinal arterial vascular function is a better predictor than RTL for non-modifiable variables such as age, and only in younger individuals. In the same age group, RTL is better than microvascular function when inferring modifiable risk factors for CVDs. In older individuals, the accumulation of physiological and structural biological changes makes such predictions unreliable.
Collapse
Affiliation(s)
- Hala Shokr
- Vascular Research Laboratory, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- Pharmacy Division, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Victoria Lush
- Computer Science, School of Informatics and Digital Engineering, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK
| | - Irundika Hk Dias
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Anikó Ekárt
- Computer Science, School of Informatics and Digital Engineering, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK
| | - Gustavo De Moraes
- Bernard and Shirlee Brown Glaucoma Research Laboratory, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Doina Gherghel
- Vascular Research Laboratory, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- Division of Cardiovascular Sciences, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
17
|
Taheri M, Ghafouri-Fard S, Najafi S, Kallenbach J, Keramatfar E, Atri Roozbahani G, Heidari Horestani M, Hussen BM, Baniahmad A. Hormonal regulation of telomerase activity and hTERT expression in steroid-regulated tissues and cancer. Cancer Cell Int 2022; 22:258. [PMID: 35974340 PMCID: PMC9380309 DOI: 10.1186/s12935-022-02678-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
Naturally, in somatic cells chromosome ends (telomeres) shorten during each cell division. This process ensures to limit proliferation of somatic cells to avoid malignant proliferation; however, it leads to proliferative senescence. Telomerase contains the reverse transcriptase TERT, which together with the TERC component, is responsible for protection of genome integrity by preventing shortening of telomeres through adding repetitive sequences. In addition, telomerase has non-telomeric function and supports growth factor independent growth. Unlike somatic cells, telomerase is detectable in stem cells, germ line cells, and cancer cells to support self-renewal and expansion. Elevated telomerase activity is reported in almost all of human cancers. Increased expression of hTERT gene or its reactivation is required for limitless cellular proliferation in immortal malignant cells. In hormonally regulated tissues as well as in prostate, breast and endometrial cancers, telomerase activity and hTERT expression are under control of steroid sex hormones and growth factors. Also, a number of hormones and growth factors are known to play a role in the carcinogenesis via regulation of hTERT levels or telomerase activity. Understanding the role of hormones in interaction with telomerase may help finding therapeutical targets for anticancer strategies. In this review, we outline the roles and functions of several steroid hormones and growth factors in telomerase regulation, particularly in hormone regulated cancers such as prostate, breast and endometrial cancer.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Julia Kallenbach
- Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany
| | - Elmira Keramatfar
- Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany
| | | | | | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany.
| |
Collapse
|
18
|
Zorina A, Zorin V, Kudlay D, Kopnin P. Age-Related Changes in the Fibroblastic Differon of the Dermis: Role in Skin Aging. Int J Mol Sci 2022; 23:ijms23116135. [PMID: 35682813 PMCID: PMC9181700 DOI: 10.3390/ijms23116135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023] Open
Abstract
Skin aging is a multi-factorial process that affects nearly every aspect of skin biology and function. The processes developing in the skin during aging are based on fundamental molecular mechanisms associated with fibroblasts, the main cellular population of the dermis. It has been revealed that the amount of fibroblasts decreases markedly with age and their functional activity is also reduced. This inevitably leads to a decrease in the regenerative abilities of the skin and the progression of its aging. In this review we consider the mechanisms underlying these processes, mainly the changes observed with age in the stem/progenitor cells that constitute the fibroblastic differon of the dermis and form their microenvironment (niches). These changes lead to the depletion of stem cells, which, in turn, leads to a decrease in the number of differentiated (mature) dermal fibroblasts responsible for the production of the dermal extracellular matrix and its remodeling. We also describe in detail DNA damages, their cellular and systemic consequences, molecular mechanisms of DNA damage response, and also the role of fibroblast senescence in skin aging.
Collapse
Affiliation(s)
- Alla Zorina
- Human Stem Cells Institute, 119333 Moscow, Russia; (A.Z.); (V.Z.)
| | - Vadim Zorin
- Human Stem Cells Institute, 119333 Moscow, Russia; (A.Z.); (V.Z.)
| | - Dmitry Kudlay
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Pavel Kopnin
- N. N. Blokhin National Medical Research Oncology Center, Ministry of Health of Russia, 115478 Moscow, Russia
- Correspondence: ; Tel.: +7-49-9324-1739
| |
Collapse
|
19
|
Pan HY, Ye ZW, Zheng QW, Yun F, Tu MZ, Hong WG, Chen BX, Guo LQ, Lin JF. Ergothioneine exhibits longevity-extension effect in Drosophila melanogaster via regulation of cholinergic neurotransmission, tyrosine metabolism, and fatty acid oxidation. Food Funct 2022; 13:227-241. [PMID: 34877949 DOI: 10.1039/d1fo02758a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many studies have demonstrated the protective effect of ergothioneine (EGT), the unique sulfur-containing antioxidant found in mushrooms, on several aging-related diseases. Nevertheless, to date, no single study has explored the potential role of EGT in the lifespan of animal models. We show here that EGT consistently extends fly lifespan in diverse genetic backgrounds and both sexes, as well as in a dose and gender-dependent manner. Additionally, EGT is shown to increases the climbing activity of flies, enhance acetylcholinesterase (AchE) activity, and maintain the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG)of aged flies. The increase in lifespan by EGT is gut microorganism dependent. We proposed potential mechanisms of lifespan extension in Drosophila by EGT through RNA-seq analysis: preservation of the normal status of the central nervous system via the coordination of cholinergic neurotransmission, tyrosine metabolism, and peroxisomal proteins, regulation of autophagic activity by altering the lysosomal protein CTSD, and the preservation of normal mitochondrial function through controlled substrate feeding into the tricarboxylic acid (TCA) cycle, the major energy-yielding metabolic process in cells.
Collapse
Affiliation(s)
- Hong-Yu Pan
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China. .,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Zhi-Wei Ye
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China. .,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Qian-Wang Zheng
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China. .,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Fan Yun
- Guangzhou Alchemy Biotechnology Co., Guangzhou 510760, China
| | - Ming-Zhen Tu
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China.
| | - Wei-Guo Hong
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China.
| | - Bai-Xiong Chen
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China. .,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Li-Qiong Guo
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China. .,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Jun-Fang Lin
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China. .,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| |
Collapse
|
20
|
Lee RS, Zandi PP, Santos A, Aulinas A, Carey JL, Webb SM, McCaul ME, Resmini E, Wand GS. Cross-species Association Between Telomere Length and Glucocorticoid Exposure. J Clin Endocrinol Metab 2021; 106:e5124-e5135. [PMID: 34265046 PMCID: PMC8787853 DOI: 10.1210/clinem/dgab519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Indexed: 12/12/2022]
Abstract
CONTEXT Chronic exposure to glucocorticoids (GCs) or stress increases the risk of medical disorders, including cardiovascular and neuropsychiatric disorders. GCs contribute to accelerated aging; however, while the link between chronic GC exposure and disease onset is well established, the underpinning mechanisms are not clear. OBJECTIVE We explored the potential nexus between GCs or stress exposure and telomere length. METHODS In addition to rats exposed to 3 weeks of chronic stress, an iatrogenic mouse model of Cushing syndrome (CS), and a mouse neuronal cell line, we studied 32 patients with CS and age-matched controls and another cohort of 75 healthy humans. RESULTS (1) Exposure to stress in rats was associated with a 54.5% (P = 0.036) reduction in telomere length in T cells. Genomic DNA (gDNA) extracted from the dentate gyrus of stressed and unstressed rats showed 43.2% reduction in telomere length (P = 0.006). (2) Mice exposed to corticosterone had a 61.4% reduction in telomere length in blood gDNA (P = 5.75 × 10-5) and 58.8% reduction in telomere length in the dentate gyrus (P = 0.002). (3) We observed a 40.8% reduction in the telomere length in patients with active CS compared to healthy controls (P = 0.006). There was a 17.8% reduction in telomere length in cured CS patients, which was not different from that of healthy controls (P = 0.08). For both cured and active CS, telomere length correlated significantly with duration of hypercortisolism (R2 = 0.22, P = 0.007). (4) There was a 27.6% reduction in telomere length between low and high tertiles in bedtime cortisol levels of healthy participants (P = 0.019). CONCLUSION Our findings demonstrate that exposure to stress and/or GCs is associated with shortened telomeres, which may be partially reversible.
Collapse
Affiliation(s)
- Richard S Lee
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Peter P Zandi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Mental Health, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA
| | - Alicia Santos
- Endocrinology/Medicine Department, Hospital Sant Pau, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER, Unit747), IIB-Sant Pau, ISCIII and Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Anna Aulinas
- Endocrinology/Medicine Department, Hospital Sant Pau, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER, Unit747), IIB-Sant Pau, ISCIII and Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Jenny L Carey
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Susan M Webb
- Endocrinology/Medicine Department, Hospital Sant Pau, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER, Unit747), IIB-Sant Pau, ISCIII and Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Mary E McCaul
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Eugenia Resmini
- Correspondence: Eugenia Resmini, MD, PhD, Endocrinology/Medicine Department, Hospital Sant Pau, CIBER-ER, Unit747, IIB-Sant Pau, ISCIII, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.
| | - Gary S Wand
- Gary S. Wand, MD, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
21
|
Kordowitzki P. Oxidative Stress Induces Telomere Dysfunction and Shortening in Human Oocytes of Advanced Age Donors. Cells 2021; 10:cells10081866. [PMID: 34440635 PMCID: PMC8391391 DOI: 10.3390/cells10081866] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Research from the past decades provided strong evidence that in humans the pool of oocytes starts to decline already before the birth of a female individual, and from menarche to menopause the oocyte is exposed to different environmental stimuli. Since more and more women of the 21st century in developed countries wish to postpone the first pregnancy to their thirties, higher rates of miscarriage and chromosomal non-disjunction might occur. In oocytes of advanced maternal age, meaning above 35 years of age, characteristics such as chromosomal instabilities/abnormalities, spindle defects, decreased mitochondrial function and telomere shortening become more prevalent than in younger counterparts. Telomere attrition belongs to the so-called “hallmarks of aging” which are also relevant for the female germ-line cells. In oocytes, telomeres shorten with advancing maternal age due to the effects of reactive oxygen species and not upon replicative senescence, similar to how it is common in dividing cells.
Collapse
Affiliation(s)
- Paweł Kordowitzki
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima Street 10, 10-243 Olsztyn, Poland
| |
Collapse
|
22
|
Pathak GA, Wendt FR, Levey DF, Mecca AP, van Dyck CH, Gelernter J, Polimanti R. Pleiotropic effects of telomere length loci with brain morphology and brain tissue expression. Hum Mol Genet 2021; 30:1360-1370. [PMID: 33831179 PMCID: PMC8255129 DOI: 10.1093/hmg/ddab102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/09/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022] Open
Abstract
Several studies have reported association between leukocyte telomere length (LTL) and neuropsychiatric disorders. Although telomere length is affected by environmental factors, genetic variants in certain loci are strongly associated with LTL. Thus, we aimed to identify the genomic relationship between genetic variants of LTL with brain-based regulatory changes and brain volume. We tested genetic colocalization of seven and nine LTL loci in two ancestry groups, European (EUR) and East-Asian (EAS), respectively, with brain morphology measures for 101 T1-magnetic resonance imaging-based region of interests (n = 21 821). The posterior probability (>90%) was observed for 'fourth ventricle', 'gray matter' and 'cerebellar vermal lobules I-IV' volumes. We then tested causal relationship using LTL loci for gene and methylation expression. We found causal pleiotropy for gene (EAS = four genes; EUR = five genes) and methylation expression (EUR = 17 probes; EAS = 4 probes) of brain tissues (P ≤ 2.47 × 10-6). Integrating chromatin profiles with LTL-single nucleotide polymorphisms identified 45 genes (EUR) and 79 genes (EAS) (P ≤ 9.78×10-7). We found additional 38 LTL-genes using chromatin-based gene mapping for EUR ancestry population. Gene variants in three LTL-genes-GPR37, OBFC1 and RTEL1/RTEL1-TNFRSF6B-show convergent evidence of pleiotropy with brain morphology, gene and methylation expression and chromatin association. Mapping gene functions to drug-gene interactions, we identified process 'transmission across chemical synapses' (P < 2.78 × 10-4). This study provides evidence that genetic variants of LTL have pleiotropic roles with brain-based effects that could explain the phenotypic association of LTL with several neuropsychiatric traits.
Collapse
Affiliation(s)
- Gita A Pathak
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06551, USA,Veteran Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Frank R Wendt
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06551, USA,Veteran Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Daniel F Levey
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06551, USA,Veteran Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Adam P Mecca
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06551, USA,Alzheimer’s Disease Research Unit, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Christopher H van Dyck
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06551, USA,Alzheimer’s Disease Research Unit, Yale University School of Medicine, New Haven, CT 06511, USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06511, USA,Department of Neurology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06551, USA,Veteran Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Renato Polimanti
- To whom correspondence should be addressed at: VA CT 116A2, 950 Campbell Avenue, West Haven, CT 06516, USA. Tel: +1 2039375711 ext. 5745; Fax: +1 2039373897;
| |
Collapse
|
23
|
|
24
|
Vaiserman A, Krasnienkov D. Telomere Length as a Marker of Biological Age: State-of-the-Art, Open Issues, and Future Perspectives. Front Genet 2021; 11:630186. [PMID: 33552142 PMCID: PMC7859450 DOI: 10.3389/fgene.2020.630186] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022] Open
Abstract
Telomere shortening is a well-known hallmark of both cellular senescence and organismal aging. An accelerated rate of telomere attrition is also a common feature of age-related diseases. Therefore, telomere length (TL) has been recognized for a long time as one of the best biomarkers of aging. Recent research findings, however, indicate that TL per se can only allow a rough estimate of aging rate and can hardly be regarded as a clinically important risk marker for age-related pathologies and mortality. Evidence is obtained that other indicators such as certain immune parameters, indices of epigenetic age, etc., could be stronger predictors of the health status and the risk of chronic disease. However, despite these issues and limitations, TL remains to be very informative marker in accessing the biological age when used along with other markers such as indices of homeostatic dysregulation, frailty index, epigenetic clock, etc. This review article is aimed at describing the current state of the art in the field and at discussing recent research findings and divergent viewpoints regarding the usefulness of leukocyte TL for estimating the human biological age.
Collapse
Affiliation(s)
- Alexander Vaiserman
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, Kyiv, Ukraine
| | - Dmytro Krasnienkov
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, Kyiv, Ukraine
| |
Collapse
|
25
|
Vaiserman A, Cuttler JM, Socol Y. Low-dose ionizing radiation as a hormetin: experimental observations and therapeutic perspective for age-related disorders. Biogerontology 2021; 22:145-164. [PMID: 33420860 PMCID: PMC7794644 DOI: 10.1007/s10522-020-09908-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/24/2020] [Indexed: 01/31/2023]
Abstract
Hormesis is any kind of biphasic dose-response when low doses of some agents are beneficial while higher doses are detrimental. Radiation hormesis is the most thoroughly investigated among all hormesis-like phenomena, in particular in biogerontology. In this review, we aimed to summarize research evidence supporting hormesis through exposure to low-dose ionizing radiation (LDIR). Radiation-induced longevity hormesis has been repeatedly reported in invertebrate models such as C. elegans, Drosophila and flour beetles and in vertebrate models including guinea pigs, mice and rabbits. On the contrary, suppressing natural background radiation was repeatedly found to cause detrimental effects in protozoa, bacteria and flies. We also discussed here the possibility of clinical use of LDIR, predominantly for age-related disorders, e.g., Alzheimer's disease, for which no remedies are available. There is accumulating evidence that LDIR, such as those commonly used in X-ray imaging including computer tomography, might act as a hormetin. Of course, caution should be exercised when introducing new medical practices, and LDIR therapy is no exception. However, due to the low average residual life expectancy in old patients, the short-term benefits of such interventions (e.g., potential therapeutic effect against dementia) may outweigh their hypothetical delayed risks (e.g., cancer). We argue here that assessment and clinical trials of LDIR treatments should be given priority bearing in mind the enormous economic, social and ethical implications of potentially-treatable, age-related disorders.
Collapse
|
26
|
Vaiserman A, Koliada A, Zayachkivska A, Lushchak O. Curcumin: A therapeutic potential in ageing-related disorders. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Kamal S, Junaid M, Ejaz A, Bibi I, Akash MSH, Rehman K. The secrets of telomerase: Retrospective analysis and future prospects. Life Sci 2020; 257:118115. [PMID: 32698073 DOI: 10.1016/j.lfs.2020.118115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
Abstract
Telomerase plays a significant role to maintain and regulate the telomere length, cellular immortality and senescence by the addition of guanine-rich repetitive sequences. Chronic inflammation or oxidative stress-induced infection downregulates TERT gene modifying telomerase activity thus contributing to the early steps of gastric carcinogenesis process. Furthermore, telomere-telomerase system performs fundamental role in the pathogenesis and progression of diabetes mellitus as well as in its vascular intricacy. The cessation of cell proliferation in cultured cells by inhibiting the telomerase activity of transformed cells renders the rationale for culling of telomerase as a target therapy for the treatment of metabolic disorders and various types of cancers. In this article, we have briefly described the role of immune system and malignant cells in the expression of telomerase with critical analysis on the gaps and potential for future studies. The key findings regarding the secrets of the telomerase summarized in this article will help in future treatment modalities for the prevention of various types of cancers and metabolic disorders notably diabetes mellitus.
Collapse
Affiliation(s)
- Shagufta Kamal
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| | - Muhammad Junaid
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| | - Arslan Ejaz
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| | - Ismat Bibi
- Department of Chemistry, Islamia University, Bahawalpur, Pakistan
| | | | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
28
|
Sameri S, Samadi P, Dehghan R, Salem E, Fayazi N, Amini R. Stem Cell Aging in Lifespan and Disease: A State-of-the-Art Review. Curr Stem Cell Res Ther 2020; 15:362-378. [DOI: 10.2174/1574888x15666200213105155] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/09/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022]
Abstract
Aging is considered as inevitable changes at different levels of genome, cell, and organism.
From the accumulation of DNA damages to imperfect protein homeostasis, altered cellular communication
and exhaustion of stem cells, aging is a major risk factor for many prevalent diseases, such as
cancer, cardiovascular disease, pulmonary disease, diabetes, and neurological disorders. The cells are
dynamic systems, which, through a cycle of processes such as replication, growth, and death, could
replenish the bodies’ organs and tissues, keeping an entire organism in optimal working order. In many
different tissues, adult stem cells are behind these processes, replenishing dying cells to maintain normal
tissue function and regenerating injured tissues. Therefore, adult stem cells play a vital role in preventing
the aging of organs and tissues, and can delay aging. However, during aging, these cells also
undergo some detrimental changes such as alterations in the microenvironment, a decline in the regenerative
capacity, and loss of function. This review aimed to discuss age-related changes of stem cells in
different tissues and cells, including skin, muscles, brain, heart, hair follicles, liver, and lung.
Collapse
Affiliation(s)
- Saba Sameri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pouria Samadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Dehghan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Elham Salem
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nashmin Fayazi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
29
|
Khalangot M, Krasnienkov D, Vaiserman A. Telomere length in different metabolic categories: Clinical associations and modification potential. Exp Biol Med (Maywood) 2020; 245:1115-1121. [PMID: 32515222 DOI: 10.1177/1535370220931509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
IMPACT STATEMENT Metabolic disorders are known to be associated with accelerated telomere attrition. Their pathophysiological heterogeneity suggests the importance of multiple tests in examining these associations. However, oral glucose tolerance test (OGTT) has rarely been performed in such studies to date. There are few studies aimed at determining leukocyte telomere length (LTL) in different categories of impaired glucose tolerance (IGT), and those that do exist do not take into account the impaired fasting glucose (IFG)/IGT categorization. Therefore, we believe our study, when the OGTT was used, is important to the field. This testing made it possible to determine whether LTLs are associated with glucose levels in different hyperglycemic categories. Our data indicate that relationships between LTLs and IFG/IGT levels are not the same. This distinction can potentially be used in categorization of metabolic disorders and in determining the effectiveness of interventions aimed at treating diabetes and other metabolic abnormalities.
Collapse
Affiliation(s)
- Mykola Khalangot
- Epidemiology Department, Komisarenko Institute of Endocrinology and Metabolism, Kyiv 04114, Ukraine.,Endocrinology Department, Shupyk National Medical Academy of Postgraduate Education, Kyiv 04112, Ukraine
| | - Dmytro Krasnienkov
- Laboratory of Epigenetics, Chebotariov Institute of Gerontology, Kyiv 04114, Ukraine
| | - Alexander Vaiserman
- Laboratory of Epigenetics, Chebotariov Institute of Gerontology, Kyiv 04114, Ukraine
| |
Collapse
|
30
|
Fazeli Z, Rajabibazl M, Faramarzi S, Omrani MD, Ghaderian SMH, Safavi Naini N. Correlation of TCF4, GSK, TERT and TERC Expressions with Proliferation Potential of Early and Late Culture of Human Peripheral Blood Mesenchymal Stem Cells. CELL JOURNAL 2020; 22:431-436. [PMID: 32347036 PMCID: PMC7211286 DOI: 10.22074/cellj.2021.6920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/22/2019] [Indexed: 11/23/2022]
Abstract
Objective In the recent years, mesenchymal stem cells (MSCs) were considered as the suitable source of cells for
transplantation into the damaged tissues in regenerative medicine. There was low number of these cells in different
organs and this characteristic was the main drawback to use them in treatment of diseases. Cellular senescence of the
stem cells has been demonstrated to be dependent to the telomerase activity. The aim of present experimental study
was to evaluate correlation of the expression of telomerase components and WNT signaling pathway in MSCs derived
from human peripheral blood (PB-MSCs).
Materials and Methods In this experimental study, following the isolation of MSCs from peripheral blood mononuclear
cells, RNA was extracted from these cells in the early culture (8-9th days) and late culture (14-17th days). Then, expression
of TERT, TERC, TCF4, GSK and CTNNB1 was determined by quantitative reverse transcription polymerase chain
reaction (qRT-PCR) based on SYBR Green.
Results Our data indicated that there was a significantly reduced expression of TERT in the late culture of human
MSCs derived from peripheral blood (P<0.05). Although a negative correlation was observed between GSK and TERC
expression levels in the early culture of MSCs, spearman analysis showed that there was no significant correlation
between the expression of telomerase components (TERC and TERT) and WNT signaling pathway (P>0.05).
Conclusion The obtained results suggested that WNT signaling pathway likely plays a minor role in the maintenance
of telomere length and proliferation potential of MSCs.
Collapse
Affiliation(s)
- Zahra Fazeli
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Electronic Address:
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Faramarzi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Niloufar Safavi Naini
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Vaiserman A, Koliada A, Zayachkivska A, Lushchak O. Nanodelivery of Natural Antioxidants: An Anti-aging Perspective. Front Bioeng Biotechnol 2020; 7:447. [PMID: 31998711 PMCID: PMC6965023 DOI: 10.3389/fbioe.2019.00447] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022] Open
Abstract
The aging process is known to be associated with heightened oxidative stress and related systemic inflammation. Therefore, antioxidant supplementation is regarded as a promising strategy to combat aging and associated pathological conditions. Food-grade antioxidants from plant-derived extracts are the most common ingredients of these supplements. Phyto-bioactive compounds such as curcumin, resveratrol, catechins, quercetin are among the most commonly applied natural compounds used as potential modulators of the free radical-induced cellular damages. The therapeutic potential of these compounds is, however, restricted by their low bioavailability related to poor solubility, stability, and absorbance in gastrointestinal tract. Recently, novel nanotechnology-based systems were developed for therapeutic delivery of natural antioxidants with improved bioavailability and, consequently, efficacy in clinical practice. Such systems have provided many benefits in preclinical research over the conventional preparations, including superior solubility and stability, extended half-life, improved epithelium permeability and bioavailability, enhanced tissue targeting, and minimized side effects. The present review summarizes recent developments in nanodelivery of natural antioxidants and its application to combat pathological conditions associated with oxidative stress.
Collapse
Affiliation(s)
- Alexander Vaiserman
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, NAMS, Kyiv, Ukraine
| | - Alexander Koliada
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, NAMS, Kyiv, Ukraine
| | - Alina Zayachkivska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
32
|
Ackermann S, Fischer M. Telomere Maintenance in Pediatric Cancer. Int J Mol Sci 2019; 20:E5836. [PMID: 31757062 PMCID: PMC6928840 DOI: 10.3390/ijms20235836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
Telomere length has been proposed as a biomarker of biological age and a risk factor for age-related diseases and cancer. Substantial progress has been made in recent decades in understanding the complex molecular relationships in this research field. However, the majority of telomere studies have been conducted in adults. The data on telomere dynamics in pediatric cancers is limited, and interpretation can be challenging, especially in cases where results are contrasting to those in adult entities. This review describes recent advances in the molecular characterization of structure and function of telomeres, regulation of telomerase activity in cancer pathogenesis in general, and highlights the key advances that have expanded our views on telomere biology in pediatric cancer, with special emphasis on the central role of telomere maintenance in neuroblastoma. Furthermore, open questions in the field of telomere maintenance research are discussed in the context of recently published literature.
Collapse
Affiliation(s)
- Sandra Ackermann
- Department of Experimental Pediatric Oncology, University Children’s Hospital of Cologne, Faculty of Medicine and University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Straße 21, 50931 Cologne, Germany
| | - Matthias Fischer
- Department of Experimental Pediatric Oncology, University Children’s Hospital of Cologne, Faculty of Medicine and University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Straße 21, 50931 Cologne, Germany
| |
Collapse
|
33
|
Vetter VM, Meyer A, Karbasiyan M, Steinhagen-Thiessen E, Hopfenmüller W, Demuth I. Epigenetic Clock and Relative Telomere Length Represent Largely Different Aspects of Aging in the Berlin Aging Study II (BASE-II). J Gerontol A Biol Sci Med Sci 2019; 74:27-32. [PMID: 30137208 DOI: 10.1093/gerona/gly184] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Indexed: 01/25/2023] Open
Abstract
DNA methylation age (DNAm age; "epigenetic clock") has recently been described as highly correlated with chronological age. Several studies suggest that DNAm age reflects, at least in part, biological age. Here, we adapted a recently published methylation-sensitive single nucleotide primer extension method for epigenetic age estimation and calculated the DNAm age based on only seven cytosine-phosphate-guanine sites in 1,895 DNA samples of the Berlin Aging Study II. In a second step, we explored the relationship between this new potential measure of biological age with an established marker of biological age, relative leukocyte telomere length (rLTL), in the same cohort. Our results showed a positive and significant correlation between DNAm age estimation and chronological age (N = 1,895, Rs2 = .47), which persisted after adjustment for covariates (sex, leukocyte distribution, alcohol and smoking). We found a significant but weak negative association between DNAm age acceleration and rLTL in linear regression analysis adjusted for age, sex, alcohol and smoking (β = -0.002, p = .007). Therefore, DNAm age appears to be a promising biomarker in the analysis of phenotypes of aging, which are not (only) related to pathways associated with mitotic age as measured by rLTL.
Collapse
Affiliation(s)
- Valentin Max Vetter
- Lipid Clinic at the Interdisciplinary Metabolism Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Antje Meyer
- Center of Stroke Research Berlin (CSB), Charité Universitätsmedizin Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), at Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Germany
| | - Mohsen Karbasiyan
- Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Germany
| | - Elisabeth Steinhagen-Thiessen
- Lipid Clinic at the Interdisciplinary Metabolism Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Werner Hopfenmüller
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany, Institute of Medical Biometrics and Clinical Epidemiology, Charité-Universitätsmedizin Berlin, Germany
| | - Ilja Demuth
- Lipid Clinic at the Interdisciplinary Metabolism Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), at Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Germany
| |
Collapse
|
34
|
de Souza Santos V, Peters B, Côco LZ, Alves GM, de Assis ALEM, Nogueira BV, Meyrelles SS, Porto ML, Vasquez EC, Campagnaro BP, Pereira TMC. Silymarin protects against radiocontrast-induced nephropathy in mice. Life Sci 2019; 228:305-315. [PMID: 31047898 DOI: 10.1016/j.lfs.2019.04.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Silymarin, an extract from Silybum marianum (milk thistle) containing a standardized mixture of flavonolignans that ameliorates some types of liver disease and, more recently, kidney damage, could be used for the ROS-scavenging effect of these antioxidants. Furthermore, contrast-induced nephropathy (CIN) is an iatrogenic impairment of renal function in patients subjected to angiographic procedures for which there is not yet a successful preventative treatment. Recent evidence has shown that this event is related to tubular/vascular injury activated mainly by oxidative stress. However, whether this bioavailable and pharmacologically safe extract protects against CIN is not clear. We proposed to evaluate the possible protective role of the antioxidant silymarin in an experimental model of CIN. Adult male Swiss mice were separated into 6 groups and pretreated orally with silymarin (50, 200 and 300 mg/kg), N-acetylcysteine (200 mg/kg) or vehicle for 5 days before the CIN and control groups. Renal function was analyzed by plasma creatinine, urea and cystatin C levels. Additionally, blood reactive oxygen species (ROS) were evaluated using ROS bioavailability, protein oxidation and DNA damage. Renal oxidative damage was evaluated using apoptosis/cell viability assays and histological analysis. We showed that silymarin preserved renal function and decreased systemic and renal oxidative damage (antigenotoxic and antiapoptotic properties, respectively) in a dose-dependent manner and was superior to conventional treatment with N-acetylcysteine. Histologically, silymarin treatment also had beneficial effects on renal glomerular and tubular injuries. Therefore, silymarin prophylaxis may be an interesting strategy for the prevention of CIN.
Collapse
Affiliation(s)
| | - Beatriz Peters
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil
| | - Larissa Zambom Côco
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil
| | - Gisele Maziero Alves
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil
| | | | - Breno Valentim Nogueira
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Vitoria, Brazil
| | - Silvana Santos Meyrelles
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo, Vitoria, Brazil
| | - Marcella Leite Porto
- Federal Institute of Education, Science and Technology (IFES), Vila Velha, ES, Brazil
| | - Elisardo Corral Vasquez
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil; Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo, Vitoria, Brazil
| | | | - Thiago Melo Costa Pereira
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil; Federal Institute of Education, Science and Technology (IFES), Vila Velha, ES, Brazil.
| |
Collapse
|
35
|
Khalangot MD, Krasnienkov DS, Chizhova VP, Korkushko OV, Shatilo VB, Kukharsky VM, Kravchenko VI, Kovtun VA, Guryanov VG, Vaiserman AM. Additional Impact of Glucose Tolerance on Telomere Length in Persons With and Without Metabolic Syndrome in the Elderly Ukraine Population. Front Endocrinol (Lausanne) 2019; 10:128. [PMID: 30873125 PMCID: PMC6404635 DOI: 10.3389/fendo.2019.00128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/11/2019] [Indexed: 12/30/2022] Open
Abstract
Rationale: Association between different components of metabolic syndrome and the rate of age-related telomere shortening was reported repeatedly, although some findings are inconsistent across studies, suggesting the need for further research on the topic. In the present study, we examined relationships between different components of metabolic syndrome (MetS); glucose tolerance reflected in 2-h post-load plasma glucose (2hPG) levels and age on the leukocyte telomere length (LTL) in Ukraine population. Methods: The study was conducted on the 115 adult individuals residing in the Kyiv region (Ukraine). Among them, 79 were diagnosed with MetS according to the International Diabetes Federation definition. LTL were determined by a qPCR-based method. Multivariate logistic regression (MLR) and artificial neural networks (ANN) modeling were used for the analysis of the results. ROC-analysis was also performed to compare the predictively values of this models. Results: MetS was associated with a high (OR = 3.0 CI 1.3-6.7; p = 0.01) risk of having shorter telomeres that remained significant after adjusting for age, gender and 2hPG levels. Fasting plasma glucose (FPG) levels and other MetS components did not affect the magnitude of the relationship and did not reveal the independent influence of these factors. The level of 2hPG in turn, demonstrated a significant relationship (OR = 1.3 CI 1.0-1.6 per 1 mmol/l; p = 0.04) with LTL regardless of the presence of MetS. The non-linearity of the interactions between age, gender and 2hPG level was revealed by neural network modeling (AUC = 0.76 CI 0.68-0.84). Conclusion: Our study found that impaired glucose tolerance, but not FPG levels, affected the association between LTL and MetS, which may be also indicative for pathophysiological differences in these hyperglycemia categories. 2hPG levels can provide an opportunity for a more accurate diagnostics of MetS and for evaluating the rate of aging in patients with MetS. Further research, however, is needed to verify this assumption.
Collapse
Affiliation(s)
- Mykola D. Khalangot
- Epidemiology Department, Komisarenko Institute of Endocrinology and Metabolism, Kyiv, Ukraine
- Endocrinology Department, Shupyk National Medical Academy of Postgraduate Education, Kyiv, Ukraine
- *Correspondence: Mykola D. Khalangot
| | | | | | - Oleg V. Korkushko
- Laboratory of Epigenetics, Chebotariov Institute of Gerontology, Kyiv, Ukraine
| | - Valery B. Shatilo
- Laboratory of Epigenetics, Chebotariov Institute of Gerontology, Kyiv, Ukraine
| | - Vitaly M. Kukharsky
- Laboratory of Epigenetics, Chebotariov Institute of Gerontology, Kyiv, Ukraine
| | - Victor I. Kravchenko
- Epidemiology Department, Komisarenko Institute of Endocrinology and Metabolism, Kyiv, Ukraine
| | - Volodymyr A. Kovtun
- Epidemiology Department, Komisarenko Institute of Endocrinology and Metabolism, Kyiv, Ukraine
| | - Vitaly G. Guryanov
- Public Health Management Department, Bogomolets National Medical University, Kyiv, Ukraine
| | | |
Collapse
|
36
|
Vaiserman A, Koliada A, Lushchak O. Developmental programming of aging trajectory. Ageing Res Rev 2018; 47:105-122. [PMID: 30059788 DOI: 10.1016/j.arr.2018.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/12/2022]
Abstract
There is accumulating evidence that aging phenotype and longevity may be developmentally programmed. Main mechanisms linking developmental conditions to later-life health outcomes include persistent changes in epigenetic regulation, (re)programming of major endocrine axes such as growth hormone/insulin-like growth factor axis and hypothalamic-pituitary-adrenal axis and also early-life immune maturation. Recently, evidence has also been generated on the role of telomere biology in developmental programming of aging trajectory. In addition, persisting changes of intestinal microbiota appears to be crucially involved in these processes. In this review, experimental and epidemiological evidence on the role of early-life conditions in programming of aging phenotypes are presented and mechanisms potentially underlying these associations are discussed.
Collapse
|
37
|
Metallic Nanoantioxidants as Potential Therapeutics for Type 2 Diabetes: A Hypothetical Background and Translational Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3407375. [PMID: 30050652 PMCID: PMC6040303 DOI: 10.1155/2018/3407375] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/04/2018] [Accepted: 05/20/2018] [Indexed: 02/06/2023]
Abstract
Hyperglycemia-induced overproduction of reactive oxygen species (ROS) is an important contributor to type 2 diabetes (T2D) pathogenesis. The conventional antioxidant therapy, however, proved to be ineffective for its treatment. This may likely be due to limited absorption profiles and low bioavailability of orally administered antioxidants. Therefore, novel antioxidant agents that may be delivered to specific target organs are actively developed now. Metallic nanoparticles (NPs), nanosized materials with a dimension of 1–100 nm, appear very promising for the treatment of T2D due to their tuned physicochemical properties and ability to modulate the level of oxidative stress. An excessive generation of ROS is considered to be the most common negative outcome related to the application of NPs. Several nanomaterials, however, were shown to exhibit enzyme-like antioxidant properties in animal models. Such NPs are commonly referred to as “nanoantioxidants.” Since NPs can provide specifically targeted or localized therapy, their use is a promising therapeutic option in addition to conventional therapy for T2D. NP-based therapies should certainly be used with caution given their potential toxicity and risk of adverse health outcomes. However, despite these challenges, NP-based therapeutic approaches have a great clinical potential and further translational studies are needed to confirm their safety and efficacy.
Collapse
|
38
|
Krasnienkov DS, Khalangot MD, Kravchenko VI, Kovtun VA, Guryanov VG, Chizhova VP, Korkushko OV, Shatilo VB, Kukharsky VM, Vaiserman AM. Hyperglycemia attenuates the association between telomere length and age in Ukrainian population. Exp Gerontol 2018; 110:247-252. [PMID: 29958997 DOI: 10.1016/j.exger.2018.06.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022]
Abstract
Diabetes-related conditions such as chronic hyperglycemia and related oxidative stress and inflammation were repeatedly associated with accelerated telomere shortening in epidemiological studies, although some findings are inconsistent. In present study, we aimed to assess the impact of disturbances in glucose metabolism on association between age and leukocyte telomere length (LTL) in the Ukrainian population. The study was conducted on the 119 adult subjects aged between 43 and 87 years residing in the Kyiv region, Ukraine. LTL was determined by a quantitative PCR-based method. LTL was negatively correlated with the measure of abdominal obesity such as waist-hip ratio, as well as with both fasting plasma glucose (FPG) and two-hour post-load glucose (2hPG) levels. Consistently with previous studies, a significant negative association between LTL and age was observed in individuals with normal (<5.6 mmol/L) FPG levels. Unexpectedly, however, no association was found in subjects with impaired glucose metabolism assessed by abnormal FPG or/and 2hPG levels. No association between LTL and age was observed in a logistic regression model; the association between LTL and age became significant after adjusting for FPG level. In the FPG-adjusted model, 1.6-time lower odds to have long telomere length were indicated for each 10 years increase in age. We hypothesize that the attenuation of association between LTL and age in hyperglycemic persons can likely be attributed to the interaction of multidirectional processes determining this relationship.
Collapse
Affiliation(s)
| | - Mykola D Khalangot
- Komisarenko Institute of Endocrinology and Metabolism NAMS of Ukraine, Kyiv 04114, Ukraine; Department of Endocrinology, Shupyk National Medical Academy of Postgraduate Education, Kyiv 04112, Ukraine
| | - Victor I Kravchenko
- Komisarenko Institute of Endocrinology and Metabolism NAMS of Ukraine, Kyiv 04114, Ukraine
| | - Volodymyr A Kovtun
- Komisarenko Institute of Endocrinology and Metabolism NAMS of Ukraine, Kyiv 04114, Ukraine
| | - Vitaly G Guryanov
- Department of Medical and Biological Physics and Informatics, Bogomolets National Medical University, Kyiv 02000, Ukraine
| | | | - Oleg V Korkushko
- Chebotariov Institute of Gerontology NAMS of Ukraine, Kyiv 04114, Ukraine
| | - Valery B Shatilo
- Chebotariov Institute of Gerontology NAMS of Ukraine, Kyiv 04114, Ukraine
| | - Vitaly M Kukharsky
- Chebotariov Institute of Gerontology NAMS of Ukraine, Kyiv 04114, Ukraine
| | | |
Collapse
|
39
|
Vaiserman AM. Birth weight predicts aging trajectory: A hypothesis. Mech Ageing Dev 2018; 173:61-70. [PMID: 29626501 DOI: 10.1016/j.mad.2018.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/10/2018] [Accepted: 04/03/2018] [Indexed: 01/26/2023]
Abstract
Increasing evidence suggests that risk for age-related disease and longevity can be programmed early in life. In human populations, convincing evidence has been accumulated indicating that intrauterine growth restriction (IUGR) resulting in low birth weight (<2.5 kg) followed by postnatal catch-up growth is associated with various aspects of metabolic syndrome, type 2 diabetes and cardiovascular disease in adulthood. Fetal macrosomia (birth weight > 4.5 kg), by contrast, is associated with high risk of non-diabetic obesity and cancers in later life. Developmental modification of epigenetic patterns is considered to be a central mechanism in determining such developmentally programmed phenotypes. Growth hormone/insulin-like growth factor (GH/IGF) axis is likely a key driver of these processes. In this review, evidence is discussed that suggests that different aging trajectories can be realized depending on developmentally programmed life-course dynamics of IGF-1. In this hypothetical scenario, IUGR-induced deficit of IGF-1 causes "diabetic" aging trajectory associated with various metabolic disorders in adulthood, while fetal macrosomia-induced excessive levels of IGF-1 lead to "cancerous" aging trajectory. If the above reasoning is correct, then both low and high birth weights are predictors of short life expectancy, while the normal birth weight is a predictor of "normal" aging and maximum longevity.
Collapse
Affiliation(s)
- Alexander M Vaiserman
- Institute of Gerontology NAMS of Ukraine, Vyshgorodskaya st. 67, Kiev 04114, Ukraine.
| |
Collapse
|
40
|
Provenzi L, Scotto di Minico G, Giorda R, Montirosso R. Telomere Length in Preterm Infants: A Promising Biomarker of Early Adversity and Care in the Neonatal Intensive Care Unit? Front Endocrinol (Lausanne) 2017; 8:295. [PMID: 29163364 PMCID: PMC5671586 DOI: 10.3389/fendo.2017.00295] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/16/2017] [Indexed: 11/13/2022] Open
Abstract
Preterm infants present an immature neurobehavioral profile at birth, even in absence of severe brain injuries and perinatal complications. As such, they require a long-lasting hospitalization in the Neonatal Intensive Care Unit (NICU), which is thought to grant at-risk newborns' survival, but still entails a number of physical, painful, and socio-emotional stressors. Hence, preterm birth and NICU stay represent an early adverse experience, which has been linked to detrimental consequences for neurological, neuro-endocrinal, behavioral, and socio-emotional development, as well as to disease later in life. Recent advances in the behavioral epigenetic field are helping us to unveil the potential mechanisms through which early NICU-related stress may lead to negative developmental outcomes. From this perspective, telomere regulation might be a key programming mechanism. Telomeres are the terminal portion of chromosomes and are known to get shorter with age. Moreover, telomere length (TL) is affected by the exposure to stress during early development. As such, TL might be an innovative biomarker of early adverse exposures in young infants and children. Unfortunately, there is paucity of studies investigating TL in populations of preterm infants and its association with known NICU-related stressors remains unexplored. In the present paper, the potential relevance of TL for research and clinical work with preterm infants will be underlined in the light of recent contributions linking progressive telomere shortening and early exposure to adverse experiences and stressful environments in humans. Finally, insights will be provided to guide clinically relevant translational research on TL in the field of VPT birth and NICU stay.
Collapse
Affiliation(s)
- Livio Provenzi
- 0–3 Center for the At-Risk Infant, Scientific Institute IRCCS Eugenio Medea, Lecco, Italy
| | | | - Roberto Giorda
- Molecular Biology Laboratory, Scientific Institute, IRCCS Eugenio Medea, Lecco, Italy
| | - Rosario Montirosso
- 0–3 Center for the At-Risk Infant, Scientific Institute IRCCS Eugenio Medea, Lecco, Italy
| |
Collapse
|
41
|
Coimbra BM, Carvalho CM, Moretti PN, Mello MF, Belangero SI. Stress-related telomere length in children: A systematic review. J Psychiatr Res 2017; 92:47-54. [PMID: 28407508 DOI: 10.1016/j.jpsychires.2017.03.023] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/24/2017] [Accepted: 03/31/2017] [Indexed: 01/29/2023]
Abstract
Telomeres are repetitive DNA sequences at the ends of chromatids that shorten following each cell replication. Once telomeres reach a critical length, DNA defense mechanisms can direct cells to either a state of arrest (senescence) or apoptosis. Stress induced by adversity is a probable cause of accelerated telomere shortening from an early age. However, few studies have examined the association between stress and telomere length in children, and it remains unclear whether young individuals may show signs of cellular aging early in life. Our aim was to examine whether adversity in childhood is associated with shortening of telomere length. We conducted a systematic review of studies that investigated the association between stress and telomere length in children from 3 to 15 years of age. Eleven studies met our selection criteria. We concluded that adversity in childhood (such as violence, low socioeconomic status, maternal depression, family disruption, and institutionalization) have an impact on telomere length. This suggests that exposed individuals show signs of accelerated erosion of telomeric ends from an early age. We discuss whether telomere shortening is related to negative health outcomes later in life or could be a biomarker predicting health outcomes. We believe that further large-scale longitudinal studies that repeatedly monitor telomere length are very important for providing a better assessment of telomere trajectory in psychologically stressed children. This will verify the extent to which adversity impacts upon the biological development of cell aging in childhood.
Collapse
Affiliation(s)
- Bruno Messina Coimbra
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Carolina Muniz Carvalho
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; LINC, Interdisciplinary Laboratory of Clinical Neurosciences, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Patricia Natalia Moretti
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Department of Morphology and Genetics, Universidade de Brasília, Brasilia, Brazil
| | - Marcelo Feijó Mello
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Sintia I Belangero
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; LINC, Interdisciplinary Laboratory of Clinical Neurosciences, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
| |
Collapse
|
42
|
Aoki Y, Aoki M, Yamada K. Leukocyte Telomere Length and Serum Levels of High-Molecular-Weight Adiponectin and Dehydroepiandrosterone-Sulfate Could Reflect Distinct Aspects of Longevity in Japanese Centenarians. Gerontol Geriatr Med 2017; 3:2333721417696672. [PMID: 28540339 PMCID: PMC5433671 DOI: 10.1177/2333721417696672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 01/19/2017] [Accepted: 01/31/2017] [Indexed: 11/17/2022] Open
Abstract
Leukocyte telomere length and serum levels of high-molecular-weight adiponectin and dehydroepiandrosterone-sulfate (DHEA-S) were assessed in association with nutrition and performance status (PS) in Japanese centenarians. Twenty-three centenarians (five men, 18 women) were classified according to their PS 1 (nearly fully ambulatory, n = 2), 2 (in bed less than 50% of daytime, n = 10), 3 (in bed greater than 50%, n = 6), and 4 (completely bedridden, n = 5). Leukocyte telomere length was determined by the hybridization protection assay, and the adiponectin and DHEA-S levels were measured by chemiluminescent enzyme immunoassay. Among variables of PS, body mass index (BMI), albumin, adiponectin, DHEA-S, and telomere length, there were significant correlations between PS and albumin (r = −.694, p < .01), between telomere length and BMI (r = .522, p < .05), between adiponectin and BMI (r = −.574, p < .01), and between DHEA-S and albumin (r = .530, p < .01). When excluding two cancer-bearing centenarians with short telomere, telomere length significantly correlated with PS (r = −.632, p < .01). It was indicated that the short leukocyte telomere was associated with poor PS and cancer development and that the adiponectin or DHEA-S was associated with adiposity or nutritional status. Despite a small number of subjects, these biomarkers seemed to reflect distinct aspects of longevity in Japanese centenarians.
Collapse
Affiliation(s)
- Yuji Aoki
- Matsumoto Hospital, Matsumoto, Japan
| | | | | |
Collapse
|
43
|
Gao X, Mons U, Zhang Y, Breitling LP, Brenner H. DNA methylation changes in response to active smoking exposure are associated with leukocyte telomere length among older adults. Eur J Epidemiol 2016; 31:1231-1241. [PMID: 27832427 DOI: 10.1007/s10654-016-0210-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/04/2016] [Indexed: 12/19/2022]
Abstract
Telomere length (TL) is associated with an increased risk of aging-related diseases. As a preventable environmental hazard of morbidity and mortality, smoking has been reported to promote TL attrition by producing a variety of oxidants and free radicals. Since DNA methylation has been demonstrated to play an important role in the pathways of smoking and smoking-induced diseases, this study aimed to address whether the smoking-associated DNA methylation changes could be associated with accelerated TL shortening. We obtained DNA methylation profiles in whole blood samples by Illumina Infinium Human Methylation 450 Beadchip array in two independent subsamples of the ESTHER study and measured their relative TL by quantitative PCR. Terminal Restriction Fragment analysis was additionally performed in a subsample to obtain absolute TL in base pairs. TL measurements across panels were standardized by z-transformation. After correction for multiple testing, we successfully confirmed that seven out of 151 smoking-related CpG sites were associated with TL (FDR <0.05). A smoking index based on the seven loci showed monotonic associations with TL, cumulative smoking exposure and time after smoking cessation. In conclusion, our study supports suggestions that epigenetic alterations could play a role in smoking-associated disproportionate aging as reflected by TL. Further research is required to examine whether the identified epigenetic signatures of smoking can be of value in clinical practice to assess individual aging across the lifespan.
Collapse
Affiliation(s)
- Xu Gao
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Ute Mons
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Yan Zhang
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Lutz Philipp Breitling
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.,Pneumology and Respiratory Critical Care Medicine, Thoraxklinik, University of Heidelberg, Röntgenstraße 1, 69126, Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany. .,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany. .,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
44
|
Vaiserman AM, Lushchak OV, Koliada AK. Anti-aging pharmacology: Promises and pitfalls. Ageing Res Rev 2016; 31:9-35. [PMID: 27524412 DOI: 10.1016/j.arr.2016.08.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 08/06/2016] [Accepted: 08/09/2016] [Indexed: 12/12/2022]
Abstract
Life expectancy has grown dramatically in modern times. This increase, however, is not accompanied by the same increase in healthspan. Efforts to extend healthspan through pharmacological agents targeting aging-related pathological changes are now in the spotlight of geroscience, the main idea of which is that delaying of aging is far more effective than preventing the particular chronic disorders. Currently, anti-aging pharmacology is a rapidly developing discipline. It is a preventive field of health care, as opposed to conventional medicine which focuses on treating symptoms rather than root causes of illness. A number of pharmacological agents targeting basic aging pathways (i.e., calorie restriction mimetics, autophagy inducers, senolytics etc.) are now under investigation. This review summarizes the literature related to advances, perspectives and challenges in the field of anti-aging pharmacology.
Collapse
Affiliation(s)
| | - Oleh V Lushchak
- Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | | |
Collapse
|
45
|
Breitling LP, Saum KU, Perna L, Schöttker B, Holleczek B, Brenner H. Frailty is associated with the epigenetic clock but not with telomere length in a German cohort. Clin Epigenetics 2016; 8:21. [PMID: 26925173 PMCID: PMC4768341 DOI: 10.1186/s13148-016-0186-5] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/11/2016] [Indexed: 12/15/2022] Open
Abstract
Background The epigenetic clock, in particular epigenetic pre-aging quantified by the so-called DNA methylation age acceleration, has recently been suggested to closely correlate with a variety of disease phenotypes. There remains a dearth of data, however, on its association with telomere length and frailty, which can be considered major correlates of age on the genomic and clinical level, respectively. Results In this cross-sectional observational study on altogether 1820 subjects from two subsets (n = 969 and n = 851; mean ± standard deviation age 62.1 ± 6.5 and 63.0 ± 6.7 years, respectively) of the ESTHER cohort study of the elderly general population in Germany, DNA methylation age was calculated based on a 353 loci predictor previously developed in a large meta-study, and the difference-based epigenetic age acceleration was calculated as predicted methylation age minus chronological age. No correlation of epigenetic age acceleration with telomere length was found in our study (p = 0.63). However, there was an association of DNA methylation age acceleration with a comprehensive frailty measure, such that the accumulated deficits significantly increased with increasing age acceleration. Quantitatively, about half an additional deficit was added per 6 years of methylation age acceleration (p = 0.0004). This association was independent from age, sex, and estimated leukocyte distribution, as well as from a variety of other confounding variables considered. Conclusions The results of the present study suggest that epigenetic age acceleration is correlated with clinically relevant aging-related phenotypes through pathways unrelated to cellular senescence as assessed by telomere length. Innovative approaches like Mendelian randomization will be needed to elucidate whether epigenetic age acceleration indeed plays a causal role for the development of clinical phenotypes. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0186-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lutz Philipp Breitling
- German Cancer Research Center (DKFZ), Division of Clinical Epidemiology and Aging Research, 69120 Heidelberg, Germany
| | - Kai-Uwe Saum
- German Cancer Research Center (DKFZ), Division of Clinical Epidemiology and Aging Research, 69120 Heidelberg, Germany
| | - Laura Perna
- German Cancer Research Center (DKFZ), Division of Clinical Epidemiology and Aging Research, 69120 Heidelberg, Germany
| | - Ben Schöttker
- German Cancer Research Center (DKFZ), Division of Clinical Epidemiology and Aging Research, 69120 Heidelberg, Germany ; Network Aging Research, University of Heidelberg, Heidelberg, Germany
| | - Bernd Holleczek
- Epidemiological Cancer Registry of Saarland, Saarbrücken, Germany
| | - Hermann Brenner
- German Cancer Research Center (DKFZ), Division of Clinical Epidemiology and Aging Research, 69120 Heidelberg, Germany ; Network Aging Research, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
46
|
Comparative cellular biogerontology: Where do we stand? Exp Gerontol 2015; 71:109-17. [PMID: 26343259 DOI: 10.1016/j.exger.2015.08.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/24/2015] [Accepted: 08/29/2015] [Indexed: 02/06/2023]
Abstract
Due to the extreme variation in life spans among species, using a comparative approach to address fundamental questions about the aging process has much to offer. For example, maximum life span can vary by as much as several orders of magnitude among taxa. In recent years, using primary cell lines cultured from species with disparate life spans and aging rates has gained considerable momentum as a means to dissect the mechanisms underlying the variation in aging rates among animals. In this review, we reiterate the strengths of comparative cellular biogerontology, as well as provide a survey of the current state of the field. By and large this work sprang from early studies using cell lines derived from long-lived mutant mice. Specifically, they suggested that an enhanced resistance to cellular stress was strongly associated with increased longevity of select laboratory models. Since then, we and others have shown that the degree of stress resistance and species longevity is also correlated among cell lines derived from free-living populations of both mammals and birds, and more recent studies have begun to reveal the biochemical and physiological underpinnings to these differences. The continued study of cultured cell lines from vertebrates with disparate life spans is likely to provide considerable insight toward unifying mechanisms of longevity assurance.
Collapse
|