1
|
Christian T, Maharjan S, Yin S, Yamaki Y, Masuda I, Li F, Muraresku C, Clever S, Ganetzky RD, Hou YM. A kinetic model for compound heterozygous pathogenic variants in Tyrosyl-tRNA synthetase gene YARS2-Associated neonatal phenotype. J Biol Chem 2025; 301:108092. [PMID: 39675712 PMCID: PMC11758952 DOI: 10.1016/j.jbc.2024.108092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024] Open
Abstract
Human genetic disorders are often caused by mutations of compound heterozygosity, where each allele of the mutant gene harbors a different genetic lesion. However, studies of such mutations are hampered due to the lack of an appropriate model. Here we describe a kinetic model of compound heterozygous variants in an obligate enzyme dimer that contains one mutation in one monomer and the other mutation in the second monomer. This enzyme is encoded by human YARS2 for mitochondrial tyrosyl-tRNA synthetase (mt-TyrRS), which aminoacylates tyrosine to mt-tRNATyr. YARS2 is a member of the genes for mt-aminoacyl-tRNA synthetases, where pathogenic mutations present limited correlation between disease severity and enzyme activity. We identify a pair of compound heterozygous variants in YARS2 that is associated with neonatal fatality. We show that, while each mutation causes a minor-to-modest defect in aminoacylation in the homodimer of mt-TyrRS, the two mutations in trans synergistically reduce the enzyme activity to a greater effect. This kinetic model thus accurately recapitulates the disease severity, emphasizing its utility to study YARS2 mutations and its potential for generalization to other diseases with compound heterozygous mutations.
Collapse
Affiliation(s)
- Thomas Christian
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, USA
| | - Sunita Maharjan
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, USA
| | - Sitao Yin
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, USA
| | - Yuka Yamaki
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, USA
| | - Isao Masuda
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, USA
| | - Fenglin Li
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, USA
| | - Colleen Muraresku
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sheila Clever
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Rebecca D Ganetzky
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Mitochondrial Medicine Frontier Program, Human Genetics Division, CHOP, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, USA.
| |
Collapse
|
2
|
Sinnott-Armstrong N, Fields S, Roth F, Starita LM, Trapnell C, Villen J, Fowler DM, Queitsch C. Understanding genetic variants in context. eLife 2024; 13:e88231. [PMID: 39625477 PMCID: PMC11614383 DOI: 10.7554/elife.88231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/15/2024] [Indexed: 12/06/2024] Open
Abstract
Over the last three decades, human genetics has gone from dissecting high-penetrance Mendelian diseases to discovering the vast and complex genetic etiology of common human diseases. In tackling this complexity, scientists have discovered the importance of numerous genetic processes - most notably functional regulatory elements - in the development and progression of these diseases. Simultaneously, scientists have increasingly used multiplex assays of variant effect to systematically phenotype the cellular consequences of millions of genetic variants. In this article, we argue that the context of genetic variants - at all scales, from other genetic variants and gene regulation to cell biology to organismal environment - are critical components of how we can employ genomics to interpret these variants, and ultimately treat these diseases. We describe approaches to extend existing experimental assays and computational approaches to examine and quantify the importance of this context, including through causal analytic approaches. Having a unified understanding of the molecular, physiological, and environmental processes governing the interpretation of genetic variants is sorely needed for the field, and this perspective argues for feasible approaches by which the combined interpretation of cellular, animal, and epidemiological data can yield that knowledge.
Collapse
Affiliation(s)
- Nasa Sinnott-Armstrong
- Herbold Computational Biology Program, Fred Hutchinson Cancer CenterSeattleUnited States
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Brotman Baty Institute for Precision MedicineSeattleUnited States
| | - Stanley Fields
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Department of Medicine, University of WashingtonSeattleUnited States
| | - Frederick Roth
- Donnelly Centre and Departments of Molecular Genetics and Computer Science, University of TorontoTorontoCanada
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai HospitalTorontoCanada
- Department of Computational and Systems Biology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Lea M Starita
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Brotman Baty Institute for Precision MedicineSeattleUnited States
| | - Cole Trapnell
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Brotman Baty Institute for Precision MedicineSeattleUnited States
| | - Judit Villen
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Brotman Baty Institute for Precision MedicineSeattleUnited States
| | - Douglas M Fowler
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Brotman Baty Institute for Precision MedicineSeattleUnited States
- Department of Bioengineering, University of WashingtonSeattleUnited States
| | - Christine Queitsch
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Brotman Baty Institute for Precision MedicineSeattleUnited States
| |
Collapse
|
3
|
Hussain T, Badshah Y, Shabbir M, Abid F, Kamal GM, Fayyaz A, Trembley JH, Afsar T, Husain FM, Razak S. Pathogenic nsSNPs of protein kinase C-eta with hepatocellular carcinoma susceptibility. Cancer Cell Int 2024; 24:346. [PMID: 39448958 PMCID: PMC11515447 DOI: 10.1186/s12935-024-03536-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a global health concern. Due to late diagnosis and limited therapeutic strategies, HCC based mortality rate is exponentially increasing globally. Genetic predisposition is a non-avoidable intrinsic factor that could alter the genome sequence, ultimately leading to HCC. Protein kinase C eta (PKCη) is involved in key physiological roles, hence alteration in PKCη could aid in cancer progression. Research indicates association between non-synonymous (ns) SNPs and HCC onset. However, effect of nsSNP variants of PKCη on HCC development has not been explored yet. Hence, this study aimed to investigate the association between pathogenic nsSNPs of PKCη with HCC. METHODS Non-synonymous (missense) variants of PKCη were obtained from Ensembl genome browser. These variants were filtered out to obtain pathogenic nsSNPs of PKCη. Genotyping of nsSNPs was done through Tetra ARMS PCR. For that, blood samples of 348 HCC patients and 337 controls were collected. The clinical factors that influence HCC were studied. Relative risk (RR) and Odds Ratio (OR) with 95% confidence interval was calculated by Chi-square test and P-value < 0.05 was deemed significant. RESULTS Five nsSNP variants of PKCη including rs1162102190 (T/C), rs868127012 (G/T), rs750830348 (G/T), rs768619375 (T/C), and rs752329416 (T/C) were identified. The retrieved nsSNPs were frequently identified in HCC patients. However, rs752329416 T/C was significantly prevalent in patients having HCC family history. Moreover, all the variants were found in HCC patients manifesting the stage II than the advance stages of HCC. CONCLUSION This study can be utilized to identify potential genetic markers for early screening of HCC. Moreover, consideration of further clinical factors, and mechanistic approach would enhance the understanding that how alteration in nsSNPs could impact the HCC onset.
Collapse
Affiliation(s)
- Tayyaba Hussain
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Yasmin Badshah
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.
| | - Maria Shabbir
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Fizzah Abid
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Ghulam Murtaza Kamal
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Amna Fayyaz
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Janeen H Trembley
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Minneapolis VA Health Care System Research Service, Minneapolis, MN, USA
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
4
|
Lorig-Roach R, Meredith M, Monlong J, Jain M, Olsen HE, McNulty B, Porubsky D, Montague TG, Lucas JK, Condon C, Eizenga JM, Juul S, McKenzie SK, Simmonds SE, Park J, Asri M, Koren S, Eichler EE, Axel R, Martin B, Carnevali P, Miga KH, Paten B. Phased nanopore assembly with Shasta and modular graph phasing with GFAse. Genome Res 2024; 34:454-468. [PMID: 38627094 PMCID: PMC11067879 DOI: 10.1101/gr.278268.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/19/2024] [Indexed: 04/30/2024]
Abstract
Reference-free genome phasing is vital for understanding allele inheritance and the impact of single-molecule DNA variation on phenotypes. To achieve thorough phasing across homozygous or repetitive regions of the genome, long-read sequencing technologies are often used to perform phased de novo assembly. As a step toward reducing the cost and complexity of this type of analysis, we describe new methods for accurately phasing Oxford Nanopore Technologies (ONT) sequence data with the Shasta genome assembler and a modular tool for extending phasing to the chromosome scale called GFAse. We test using new variants of ONT PromethION sequencing, including those using proximity ligation, and show that newer, higher accuracy ONT reads substantially improve assembly quality.
Collapse
Affiliation(s)
- Ryan Lorig-Roach
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, California 95060, USA;
| | - Melissa Meredith
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, California 95060, USA
| | - Jean Monlong
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, California 95060, USA
| | - Miten Jain
- Department of Bioengineering, Department of Physics, Northeastern University, Boston, Massachusetts 02120, USA
| | - Hugh E Olsen
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, California 95060, USA
| | - Brandy McNulty
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, California 95060, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Tessa G Montague
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, New York 10027, USA
- Howard Hughes Medical Institute, Columbia University, New York, New York 10032, USA
| | - Julian K Lucas
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, California 95060, USA
| | - Chris Condon
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, California 95060, USA
| | - Jordan M Eizenga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, California 95060, USA
| | - Sissel Juul
- Oxford Nanopore Technologies Incorporated, New York, New York 10013, USA
| | - Sean K McKenzie
- Oxford Nanopore Technologies Incorporated, New York, New York 10013, USA
| | - Sara E Simmonds
- Chan Zuckerberg Initiative Foundation, Redwood City, California 94063, USA
| | - Jimin Park
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, California 95060, USA
| | - Mobin Asri
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, California 95060, USA
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | - Richard Axel
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, New York 10027, USA
- Howard Hughes Medical Institute, Columbia University, New York, New York 10032, USA
| | - Bruce Martin
- Chan Zuckerberg Initiative Foundation, Redwood City, California 94063, USA
| | - Paolo Carnevali
- Chan Zuckerberg Initiative Foundation, Redwood City, California 94063, USA;
| | - Karen H Miga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, California 95060, USA
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, California 95060, USA;
| |
Collapse
|
5
|
Hofmeister RJ, Ribeiro DM, Rubinacci S, Delaneau O. Accurate rare variant phasing of whole-genome and whole-exome sequencing data in the UK Biobank. Nat Genet 2023:10.1038/s41588-023-01415-w. [PMID: 37386248 DOI: 10.1038/s41588-023-01415-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/04/2023] [Indexed: 07/01/2023]
Abstract
Phasing involves distinguishing the two parentally inherited copies of each chromosome into haplotypes. Here, we introduce SHAPEIT5, a new phasing method that quickly and accurately processes large sequencing datasets and applied it to UK Biobank (UKB) whole-genome and whole-exome sequencing data. We demonstrate that SHAPEIT5 phases rare variants with low switch error rates of below 5% for variants present in just 1 sample out of 100,000. Furthermore, we outline a method for phasing singletons, which, although less precise, constitutes an important step towards future developments. We then demonstrate that the use of UKB as a reference panel improves the accuracy of genotype imputation, which is even more pronounced when phased with SHAPEIT5 compared with other methods. Finally, we screen the UKB data for loss-of-function compound heterozygous events and identify 549 genes where both gene copies are knocked out. These genes complement current knowledge of gene essentiality in the human genome.
Collapse
Affiliation(s)
- Robin J Hofmeister
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Diogo M Ribeiro
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Simone Rubinacci
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Olivier Delaneau
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
6
|
Lorig-Roach R, Meredith M, Monlong J, Jain M, Olsen H, McNulty B, Porubsky D, Montague T, Lucas J, Condon C, Eizenga J, Juul S, McKenzie S, Simmonds SE, Park J, Asri M, Koren S, Eichler E, Axel R, Martin B, Carnevali P, Miga K, Paten B. Phased nanopore assembly with Shasta and modular graph phasing with GFAse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529152. [PMID: 36865218 PMCID: PMC9980101 DOI: 10.1101/2023.02.21.529152] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
As a step towards simplifying and reducing the cost of haplotype resolved de novo assembly, we describe new methods for accurately phasing nanopore data with the Shasta genome assembler and a modular tool for extending phasing to the chromosome scale called GFAse. We test using new variants of Oxford Nanopore Technologies' (ONT) PromethION sequencing, including those using proximity ligation and show that newer, higher accuracy ONT reads substantially improve assembly quality.
Collapse
Affiliation(s)
- Ryan Lorig-Roach
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Melissa Meredith
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Jean Monlong
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Miten Jain
- Department of Bioengineering, Department of Physics, Northeastern University, Boston, MA, USA
| | - Hugh Olsen
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Brandy McNulty
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Tessa Montague
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA & Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Julian Lucas
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Chris Condon
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Jordan Eizenga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | | | | | | | - Jimin Park
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Mobin Asri
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome & Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Evan Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA & Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Richard Axel
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA & Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Bruce Martin
- Chan Zuckerberg Initiative Foundation, Redwood City, CA, USA
| | - Paolo Carnevali
- Chan Zuckerberg Initiative Foundation, Redwood City, CA, USA
| | - Karen Miga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
7
|
Collen LV, Kim DY, Field M, Okoroafor I, Saccocia G, Whitcomb SD, Green J, Dong MD, Barends J, Carey B, Weatherly ME, Rockowitz S, Sliz P, Liu E, Eran A, Grushkin-Lerner L, Bousvaros A, Muise AM, Klein C, Mitsialis V, Ouahed J, Snapper SB. Clinical Phenotypes and Outcomes in Monogenic Versus Non-monogenic Very Early Onset Inflammatory Bowel Disease. J Crohns Colitis 2022; 16:1380-1396. [PMID: 35366317 PMCID: PMC9455789 DOI: 10.1093/ecco-jcc/jjac045] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/31/2022] [Accepted: 03/31/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Over 80 monogenic causes of very early onset inflammatory bowel disease [VEOIBD] have been identified. Prior reports of the natural history of VEOIBD have not considered monogenic disease status. The objective of this study is to describe clinical phenotypes and outcomes in a large single-centre cohort of patients with VEOIBD and universal access to whole exome sequencing [WES]. METHODS Patients receiving IBD care at a single centre were prospectively enrolled in a longitudinal data repository starting in 2012. WES was offered with enrollment. Enrolled patients were filtered by age of diagnosis <6 years to comprise a VEOIBD cohort. Monogenic disease was identified by filtering proband variants for rare, loss-of-function, or missense variants in known VEOIBD genes inherited according to standard Mendelian inheritance patterns. RESULTS This analysis included 216 VEOIBD patients, followed for a median of 5.8 years. Seventeen patients [7.9%] had monogenic disease. Patients with monogenic IBD were younger at diagnosis and were more likely to have Crohn's disease phenotype with higher rates of stricturing and penetrating disease and extraintestinal manifestations. Patients with monogenic disease were also more likely to experience outcomes of intensive care unit [ICU] hospitalisation, gastrostomy tube, total parenteral nutrition use, stunting at 3-year follow-up, haematopoietic stem cell transplant, and death. A total of 41 patients [19.0%] had infantile-onset disease. After controlling for monogenic disease, patients with infantile-onset IBD did not have increased risk for most severity outcomes. CONCLUSIONS Monogenic disease is an important driver of disease severity in VEOIBD. WES is a valuable tool in prognostication and management of VEOIBD.
Collapse
Affiliation(s)
- Lauren V Collen
- Corresponding authors: Lauren V. Collen, 300 Longwood Avenue, Enders 670, Boston, MA 02115, USA. Tel.: 617-919-4973; fax: 617-730-0498;
| | - David Y Kim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael Field
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Ibeawuchi Okoroafor
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Gwen Saccocia
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Sydney Driscoll Whitcomb
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Julia Green
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Michelle Dao Dong
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jared Barends
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Bridget Carey
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Madison E Weatherly
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Shira Rockowitz
- Manton centre for Orphan Disease Research, Boston Children’s Hospital, Boston, MA, USA
| | - Piotr Sliz
- Manton centre for Orphan Disease Research, Boston Children’s Hospital, Boston, MA, USA,Division of Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Enju Liu
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA,Institutional centres for Clinical and Translational Research, Boston Children’s Hospital, Boston, MA, USA
| | - Alal Eran
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA, USA,Harvard Medical School, Department of Biomedical Informatics, Boston, MA, USA,Department of Life Sciences and Zlotowski centre for Neuroscience, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Leslie Grushkin-Lerner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Athos Bousvaros
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease centre, Research Institute, Hospital for Sick Children, Toronto, ON, Canada,Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Toronto, Toronto, ON, Canada,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, LMU Klinikum, and Gene centre, Ludwig Maximilians Universität München, München,Germany
| | - Vanessa Mitsialis
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA,Division of Gastroenterology, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Scott B Snapper
- Scott B. Snapper, 300 Longwood Avenue, Enders 670, Boston, MA 02115, USA. Tel: 617-919-4973; fax: 617-730-0498;
| |
Collapse
|
8
|
McEachron TA, Helman LJ. Recent Advances in Pediatric Cancer Research. Cancer Res 2021; 81:5783-5799. [PMID: 34561271 DOI: 10.1158/0008-5472.can-21-1191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/05/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022]
Abstract
Over the past few years, the field of pediatric cancer has experienced a shift in momentum, and this has led to new and exciting findings that have relevance beyond pediatric malignancies. Here we present the current status of key aspects of pediatric cancer research. We have focused on genetic and epigenetic drivers of disease, cellular origins of different pediatric cancers, disease models, the tumor microenvironment, and cellular immunotherapies.
Collapse
Affiliation(s)
| | - Lee J Helman
- Osteosarcoma Institute, Dallas, Texas
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, California
| |
Collapse
|
9
|
Miller DB, Piccolo SR. trioPhaser: using Mendelian inheritance logic to improve genomic phasing of trios. BMC Bioinformatics 2021; 22:559. [PMID: 34809557 PMCID: PMC8607709 DOI: 10.1186/s12859-021-04470-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND When analyzing DNA sequence data of an individual, knowing which nucleotide was inherited from each parent can be beneficial when trying to identify certain types of DNA variants. Mendelian inheritance logic can be used to accurately phase (haplotype) the majority (67-83%) of an individual's heterozygous nucleotide positions when genotypes are available for both parents (trio). However, when all members of a trio are heterozygous at a position, Mendelian inheritance logic cannot be used to phase. For such positions, a computational phasing algorithm can be used. Existing phasing algorithms use a haplotype reference panel, sequencing reads, and/or parental genotypes to phase an individual; however, they are limited in that they can only phase certain types of variants, require a specific genotype build, require large amounts of storage capacity, and/or require long run times. We created trioPhaser to address these challenges. RESULTS trioPhaser uses gVCF files from an individual and their parents as initial input, and then outputs a phased VCF file. Input trio data are first phased using Mendelian inheritance logic. Then, the positions that cannot be phased using inheritance information alone are phased by the SHAPEIT4 phasing algorithm. Using whole-genome sequencing data of 52 trios, we show that trioPhaser, on average, increases the total number of phased positions by 21.0% and 10.5%, respectively, when compared to the number of positions that SHAPEIT4 or Mendelian inheritance logic can phase when either is used alone. In addition, we show that the accuracy of the phased calls output by trioPhaser are similar to linked-read and read-backed phasing. CONCLUSION trioPhaser is a containerized software tool that uses both Mendelian inheritance logic and SHAPEIT4 to phase trios when gVCF files are available. By implementing both phasing methods, more variant positions are phased compared to what either method is able to phase alone.
Collapse
Affiliation(s)
- Dustin B Miller
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Stephen R Piccolo
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA.
| |
Collapse
|
10
|
Miller DB, Robison R, Piccolo SR. Toward a methodology for evaluating DNA variants in nuclear families. PLoS One 2021; 16:e0258375. [PMID: 34624066 PMCID: PMC8500447 DOI: 10.1371/journal.pone.0258375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 11/22/2022] Open
Abstract
The genetic underpinnings of most pediatric-cancer cases are unknown. Population-based studies use large sample sizes but have accounted for only a small proportion of the estimated heritability of pediatric cancers. Pedigree-based studies are infeasible for most human populations. One alternative is to collect genetic data from a single nuclear family and use inheritance patterns within the family to filter candidate variants. This approach can be applied to common and rare variants, including those that are private to a given family or to an affected individual. We evaluated this approach using genetic data from three nuclear families with 5, 4, and 7 children, respectively. Only one child in each nuclear family had been diagnosed with cancer, and neither parent had been affected. Diagnoses for the affected children were benign low-grade astrocytoma, Wilms tumor (stage 2), and Burkitt's lymphoma, respectively. We used whole-genome sequencing to profile normal cells from each family member and a linked-read technology for genomic phasing. For initial variant filtering, we used global minor allele frequencies, deleteriousness scores, and functional-impact annotations. Next, we used genetic variation in the unaffected siblings as a guide to filter the remaining variants. As a way to evaluate our ability to detect variant(s) that may be relevant to disease status, the corresponding author blinded the primary author to affected status; the primary author then assigned a risk score to each child. Based on this evidence, the primary author predicted which child had been affected in each family. The primary author's prediction was correct for the child who had been diagnosed with a Wilms tumor; the child with Burkitt's lymphoma had the second-highest risk score among the seven children in that family. This study demonstrates a methodology for filtering and evaluating candidate genomic variants and genes within nuclear families that may merit further exploration.
Collapse
Affiliation(s)
- Dustin B. Miller
- Department of Biology, Brigham Young University, Provo, UT, United States of America
| | - Reid Robison
- Department of Biology, Brigham Young University, Provo, UT, United States of America
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States of America
| | - Stephen R. Piccolo
- Department of Biology, Brigham Young University, Provo, UT, United States of America
| |
Collapse
|
11
|
Brandes N, Linial N, Linial M. Genetic association studies of alterations in protein function expose recessive effects on cancer predisposition. Sci Rep 2021; 11:14901. [PMID: 34290314 PMCID: PMC8295298 DOI: 10.1038/s41598-021-94252-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
The characterization of germline genetic variation affecting cancer risk, known as cancer predisposition, is fundamental to preventive and personalized medicine. Studies of genetic cancer predisposition typically identify significant genomic regions based on family-based cohorts or genome-wide association studies (GWAS). However, the results of such studies rarely provide biological insight or functional interpretation. In this study, we conducted a comprehensive analysis of cancer predisposition in the UK Biobank cohort using a new gene-based method for detecting protein-coding genes that are functionally interpretable. Specifically, we conducted proteome-wide association studies (PWAS) to identify genetic associations mediated by alterations to protein function. With PWAS, we identified 110 significant gene-cancer associations in 70 unique genomic regions across nine cancer types and pan-cancer. In 48 of the 110 PWAS associations (44%), estimated gene damage is associated with reduced rather than elevated cancer risk, suggesting a protective effect. Together with standard GWAS, we implicated 145 unique genomic loci with cancer risk. While most of these genomic regions are supported by external evidence, our results also highlight many novel loci. Based on the capacity of PWAS to detect non-additive genetic effects, we found that 46% of the PWAS-significant cancer regions exhibited exclusive recessive inheritance. These results highlight the importance of recessive genetic effects, without relying on familial studies. Finally, we show that many of the detected genes exert substantial cancer risk in the studied cohort determined by a quantitative functional description, suggesting their relevance for diagnosis and genetic consulting.
Collapse
Affiliation(s)
- Nadav Brandes
- grid.9619.70000 0004 1937 0538The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nathan Linial
- grid.9619.70000 0004 1937 0538The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Linial
- grid.9619.70000 0004 1937 0538Department of Biological Chemistry, The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
12
|
Miller DB, Piccolo SR. A Survey of Compound Heterozygous Variants in Pediatric Cancers and Structural Birth Defects. Front Genet 2021; 12:640242. [PMID: 33828584 PMCID: PMC8019969 DOI: 10.3389/fgene.2021.640242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/24/2021] [Indexed: 11/13/2022] Open
Abstract
Compound heterozygous (CH) variants occur when two recessive alleles are inherited and the variants are located at different loci within the same gene in a given individual. CH variants are important contributors to many different types of recessively inherited diseases. However, many studies overlook CH variants because identification of this type of variant requires knowing the parent of origin for each nucleotide. Using computational methods, haplotypes can be inferred using a process called "phasing," which estimates the chromosomal origin of most nucleotides. In this paper, we used germline, phased, whole-genome sequencing (WGS) data to identify CH variants across seven pediatric diseases (adolescent idiopathic scoliosis: n = 16, congenital heart defects: n = 709, disorders of sex development: n = 79, ewing sarcoma: n = 287, neuroblastoma: n = 259, orofacial cleft: n = 107, and syndromic cranial dysinnervation: n = 172), available as parent-child trios in the Gabriella Miller Kids First Data Resource Center. Relatively little is understood about the genetic underpinnings of these diseases. We classified CH variants as "potentially damaging" based on minor allele frequencies (MAF), Combined Annotation Dependent Depletion scores, variant impact on transcription or translation, and gene-level frequencies in the disease group compared to a healthy population. For comparison, we also identified homozygous alternate (HA) variants, which affect both gene copies at a single locus; HA variants represent an alternative mechanism of recessive disease development and do not require phasing. Across all diseases, 2.6% of the samples had a potentially damaging CH variant and 16.2% had a potentially damaging HA variant. Of these samples with potentially damaging variants, the average number of genes per sample was 1 with a CH variant and 1.25 with a HA variant. Across all samples, 5.1 genes per disease had a CH variant, while 35.6 genes per disease had a HA variant; on average, only 4.3% of these variants affected common genes. Therefore, when seeking to identify potentially damaging variants of a putatively recessive disease, CH variants should be considered as potential contributors to disease development. If CH variants are excluded from analysis, important candidate genes may be overlooked.
Collapse
Affiliation(s)
| | - Stephen R. Piccolo
- Department of Biology, Brigham Young University, Provo, UT, United States
| |
Collapse
|
13
|
Abstract
Compound Heterozygous (
CH)
variant identification requires distinguishing maternally from paternally derived nucleotides, a process that requires numerous computational tools. Using such tools often introduces unforeseen challenges such as installation procedures that are operating-system specific, software dependencies that must be installed, and formatting requirements for input files. To overcome these challenges, we developed Compound Heterozygous Variant Identification Pipeline (CompoundHetVIP), which uses a single Docker image to encapsulate commonly used software tools for file aggregation (
BCFtools or
GATK4), VCF liftover (
Picard Tools), joint-genotyping (
GATK4), file conversion (
Plink2), phasing (
SHAPEIT2,
Beagle, and/or
Eagle2), variant normalization (
vt tools), annotation (
SnpEff), relational database generation (
GEMINI), and identification of
CH, homozygous alternate, and
de novo variants in a series of 13 steps. To begin using our tool, researchers need only install the Docker engine and download the CompoundHetVIP Docker image. The tools provided in CompoundHetVIP, subject to the limitations of the underlying software, can be applied to whole-genome, whole-exome, or targeted exome sequencing data of individual samples or trios (a child and both parents), using VCF or gVCF files as initial input. Each step of the pipeline produces an analysis-ready output file that can be further evaluated. To illustrate its use, we applied CompoundHetVIP to data from a publicly available Ashkenazim trio and identified two genes with a candidate
CH variant and two genes with a candidate homozygous alternate variant after filtering based on user-set thresholds for global minor allele frequency, Combined Annotation Dependent Depletion, and Gene Damage Index. While this example uses genomic data from a healthy child, we anticipate that most researchers will use CompoundHetVIP to uncover missing heritability in human diseases and other phenotypes. CompoundHetVIP is open-source software and can be found at
https://github.com/dmiller903/CompoundHetVIP; this repository also provides detailed, step-by-step examples.
Collapse
Affiliation(s)
- Dustin B Miller
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Stephen R Piccolo
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA
| |
Collapse
|