1
|
Gay L, Desquiret-Dumas V, Nagot N, Rapenne C, Van de Perre P, Reynier P, Molès JP. Long-term persistence of mitochondrial dysfunctions after viral infections and antiviral therapies: A review of mechanisms involved. J Med Virol 2024; 96:e29886. [PMID: 39246064 DOI: 10.1002/jmv.29886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
Mitochondria are vital for most cells' functions. Viruses hijack mitochondria machinery for misappropriation of energy supply or to bypass defense mechanisms. Many of these mitochondrial dysfunctions persist after recovery from treated or untreated viral infections, particularly when mitochondrial DNA is permanently damaged. Quantitative defects and structural rearrangements of mitochondrial DNA accumulate in post-mitotic tissues as recently reported long after SARS-CoV-2 or HIV infection, or following antiviral therapy. These observations are consistent with the "hit-and-run" concept proposed decades ago to explain viro-induced cell transformation and it could apply to delayed post-viral onsets of symptoms and advocate for complementary supportive care. Thus, according to this concept, following exposure to viruses or antiviral agents, mitochondrial damage could evolve into an autonomous clinical condition. It also establishes a pathogenic link between communicable and non-communicable chronic diseases.
Collapse
Affiliation(s)
- Laetitia Gay
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| | - Valérie Desquiret-Dumas
- Department of Biochemistry and Molecular Biology, University Hospital of Angers, Angers, France
- MITOVASC Research Unit, CNRS 6015, INSERM U1083, University of Angers, Angers, France
| | - Nicolas Nagot
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| | - Clara Rapenne
- Department of Biochemistry and Molecular Biology, University Hospital of Angers, Angers, France
- MITOVASC Research Unit, CNRS 6015, INSERM U1083, University of Angers, Angers, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| | - Pascal Reynier
- Department of Biochemistry and Molecular Biology, University Hospital of Angers, Angers, France
- MITOVASC Research Unit, CNRS 6015, INSERM U1083, University of Angers, Angers, France
| | - Jean-Pierre Molès
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| |
Collapse
|
2
|
Barroso S, Guitart-Mampel M, García-García FJ, Cantó-Santos J, Valls-Roca L, Andújar-Sánchez F, Vilaseca-Capel A, Tobías E, Arias-Dimas A, Quesada-López T, Artuch R, Villarroya F, Giralt M, Martínez E, Lozano E, Garrabou G. Metabolic, Mitochondrial, and Inflammatory Effects of Efavirenz, Emtricitabine, and Tenofovir Disoproxil Fumarate in Asymptomatic Antiretroviral-Naïve People with HIV. Int J Mol Sci 2024; 25:8418. [PMID: 39125986 PMCID: PMC11313075 DOI: 10.3390/ijms25158418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
This study aimed to comprehensively assess the metabolic, mitochondrial, and inflammatory effects of first-line efavirenz, emtricitabine, and tenofovir disoproxil fumarate (EFV/FTC/TDF) single-tablet regimen (STR) relative to untreated asymptomatic HIV infection. To this end, we analyzed 29 people with HIV (PWH) treated for at least one year with this regimen vs. 33 antiretroviral-naïve PWH. Excellent therapeutic activity was accompanied by significant alterations in metabolic parameters. The treatment group showed increased plasmatic levels of glucose, total cholesterol and its fractions (LDL and HDL), triglycerides, and hepatic enzymes (GGT, ALP); conversely, bilirubin levels (total and indirect fraction) decreased in the treated cohort. Mitochondrial performance was preserved overall and treatment administration even promoted the recovery of mitochondrial DNA (mtDNA) content depleted by the virus, although this was not accompanied by the recovery in some of their encoded proteins (since cytochrome c oxidase II was significantly decreased). Inflammatory profile (TNFα, IL-6), ameliorated after treatment in accordance with viral reduction and the recovery of TNFα levels correlated to mtDNA cell restoration. Thus, although this regimen causes subclinical metabolic alterations, its antiviral and anti-inflammatory properties may be associated with partial improvement in mitochondrial function.
Collapse
Affiliation(s)
- Sergio Barroso
- Inherited Metabolic Diseases and Muscular Disorders Research Lab, Cellex-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), 08036 Barcelona, Spain; (S.B.); (M.G.-M.); (F.J.G.-G.); (J.C.-S.); (L.V.-R.); (F.A.-S.); (A.V.-C.); (E.T.)
- Department of Internal Medicine, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Carlos III Health Institute, 28029 Madrid, Spain;
| | - Mariona Guitart-Mampel
- Inherited Metabolic Diseases and Muscular Disorders Research Lab, Cellex-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), 08036 Barcelona, Spain; (S.B.); (M.G.-M.); (F.J.G.-G.); (J.C.-S.); (L.V.-R.); (F.A.-S.); (A.V.-C.); (E.T.)
- Department of Internal Medicine, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Carlos III Health Institute, 28029 Madrid, Spain;
| | - Francesc Josep García-García
- Inherited Metabolic Diseases and Muscular Disorders Research Lab, Cellex-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), 08036 Barcelona, Spain; (S.B.); (M.G.-M.); (F.J.G.-G.); (J.C.-S.); (L.V.-R.); (F.A.-S.); (A.V.-C.); (E.T.)
- Department of Internal Medicine, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Carlos III Health Institute, 28029 Madrid, Spain;
| | - Judith Cantó-Santos
- Inherited Metabolic Diseases and Muscular Disorders Research Lab, Cellex-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), 08036 Barcelona, Spain; (S.B.); (M.G.-M.); (F.J.G.-G.); (J.C.-S.); (L.V.-R.); (F.A.-S.); (A.V.-C.); (E.T.)
- Department of Internal Medicine, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Carlos III Health Institute, 28029 Madrid, Spain;
| | - Laura Valls-Roca
- Inherited Metabolic Diseases and Muscular Disorders Research Lab, Cellex-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), 08036 Barcelona, Spain; (S.B.); (M.G.-M.); (F.J.G.-G.); (J.C.-S.); (L.V.-R.); (F.A.-S.); (A.V.-C.); (E.T.)
- Department of Internal Medicine, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Carlos III Health Institute, 28029 Madrid, Spain;
| | - Félix Andújar-Sánchez
- Inherited Metabolic Diseases and Muscular Disorders Research Lab, Cellex-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), 08036 Barcelona, Spain; (S.B.); (M.G.-M.); (F.J.G.-G.); (J.C.-S.); (L.V.-R.); (F.A.-S.); (A.V.-C.); (E.T.)
- Department of Internal Medicine, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Carlos III Health Institute, 28029 Madrid, Spain;
| | - Adrià Vilaseca-Capel
- Inherited Metabolic Diseases and Muscular Disorders Research Lab, Cellex-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), 08036 Barcelona, Spain; (S.B.); (M.G.-M.); (F.J.G.-G.); (J.C.-S.); (L.V.-R.); (F.A.-S.); (A.V.-C.); (E.T.)
- Department of Internal Medicine, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Carlos III Health Institute, 28029 Madrid, Spain;
| | - Ester Tobías
- Inherited Metabolic Diseases and Muscular Disorders Research Lab, Cellex-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), 08036 Barcelona, Spain; (S.B.); (M.G.-M.); (F.J.G.-G.); (J.C.-S.); (L.V.-R.); (F.A.-S.); (A.V.-C.); (E.T.)
- Department of Internal Medicine, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Carlos III Health Institute, 28029 Madrid, Spain;
| | - Angela Arias-Dimas
- Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain;
| | - Tania Quesada-López
- Biochemistry and Molecular Biomedicine Department, Biomedicine Institute (IBUB), University of Barcelona (UB), 08014 Barcelona, Spain; (T.Q.-L.); (F.V.); (M.G.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
| | - Rafael Artuch
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Carlos III Health Institute, 28029 Madrid, Spain;
- Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain;
| | - Francesc Villarroya
- Biochemistry and Molecular Biomedicine Department, Biomedicine Institute (IBUB), University of Barcelona (UB), 08014 Barcelona, Spain; (T.Q.-L.); (F.V.); (M.G.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
| | - Marta Giralt
- Biochemistry and Molecular Biomedicine Department, Biomedicine Institute (IBUB), University of Barcelona (UB), 08014 Barcelona, Spain; (T.Q.-L.); (F.V.); (M.G.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
| | - Esteban Martínez
- Infectious Diseases Department, Hospital Clinic of Barcelona, 08036 Barcelona, Spain;
- CIBER of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, 28029 Madrid, Spain
| | - Ester Lozano
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
| | - Glòria Garrabou
- Inherited Metabolic Diseases and Muscular Disorders Research Lab, Cellex-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), 08036 Barcelona, Spain; (S.B.); (M.G.-M.); (F.J.G.-G.); (J.C.-S.); (L.V.-R.); (F.A.-S.); (A.V.-C.); (E.T.)
- Department of Internal Medicine, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Carlos III Health Institute, 28029 Madrid, Spain;
| |
Collapse
|
3
|
Pokryszka J, Wichlas M, Vogelsang H, Trauner M, Herac-Kornauth M, Kazemi-Shirazi L. Preexposition Prophylaxis With Truvada (Tenofovir/Emtricitabine) as Potential Cause of Celiac Disease-Like Enteropathy. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:404-406. [PMID: 37187186 PMCID: PMC10914564 DOI: 10.1055/a-2079-6445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Indexed: 05/17/2023]
Abstract
We present here a case of a 39-year-old patient who presented with celiac-disease-like symptoms and MARSH 3a histology in duodenal biopsies under normal diet. Interestingly, HLA genotyping and celiac-specific serology were negative, primarily leading to exclusion of celiac disease. However, biopsies from a second endoscopy a couple of months later (still under normal diet) showed histologic progression of the disease to MARSH 3b and led to the re-evaluation of the out-of-hospital-obtained histological samples by a pathologist experienced in celiac disease. The second biopsy described previously as MARSH 3b turned out to be non-specific and was therefore re-classified as MARSH 0. After all known causes of duodenal villous atrophy were excluded by a thorough evaluation, a correlation between the first biopsy (MARSH 3a) and Truvada intake could be established. After Truvada discontinuation and under normal diet, normalisation of duodenal mucosa was observed, leading to the assumption that Truvada could lead to celiac-like enteropathy.
Collapse
Affiliation(s)
- Jagoda Pokryszka
- Department of Gastroenterology and Hepatology, Medical University of Vienna, Wien, Austria
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Harald Vogelsang
- Department of Gastroenterology and Hepatology, Medical University of Vienna, Wien, Austria
| | - Michael Trauner
- Department of Gastroenterology and Hepatology, Medical University of Vienna, Wien, Austria
| | | | - Lili Kazemi-Shirazi
- Department of Gastroenterology and Hepatology, Medical University of Vienna, Wien, Austria
| |
Collapse
|
4
|
Herbert C, Luies L, Loots DT, Williams AA. The metabolic consequences of HIV/TB co-infection. BMC Infect Dis 2023; 23:536. [PMID: 37592227 PMCID: PMC10436461 DOI: 10.1186/s12879-023-08505-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND The synergy between the human immunodeficiency virus (HIV) and Mycobacterium tuberculosis during co-infection of a host is well known. While this synergy is known to be driven by immunological deterioration, the metabolic mechanisms that contribute to the associated disease burden experienced during HIV/tuberculosis (TB) co-infection remain poorly understood. Furthermore, while anti-HIV treatments suppress viral replication, these therapeutics give rise to host metabolic disruption and adaptations beyond that induced by only infection or disease. METHODS In this study, the serum metabolic profiles of healthy controls, untreated HIV-negative TB-positive patients, untreated HIV/TB co-infected patients, and HIV/TB co-infected patients on antiretroviral therapy (ART), were measured using two-dimensional gas chromatography time-of-flight mass spectrometry. Since no global metabolic profile for HIV/TB co-infection and the effect of ART has been published to date, this pilot study aimed to elucidate the general areas of metabolism affected during such conditions. RESULTS HIV/TB co-infection induced significant changes to the host's lipid and protein metabolism, with additional microbial product translocation from the gut to the blood. The results suggest that HIV augments TB synergistically, at least in part, contributing to increased inflammation, oxidative stress, ART-induced mitochondrial damage, and its detrimental effects on gut health, which in turn, affects energy availability. ART reverses these trends to some extent in HIV/TB co-infected patients but not to that of healthy controls. CONCLUSION This study generated several new hypotheses that could direct future metabolic studies, which could be combined with other research techniques or methodologies to further elucidate the underlying mechanisms of these changes.
Collapse
Affiliation(s)
- Chandré Herbert
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Laneke Luies
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Du Toit Loots
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | | |
Collapse
|
5
|
HIV Replication Increases the Mitochondrial DNA Content of Plasma Extracellular Vesicles. Int J Mol Sci 2023; 24:ijms24031924. [PMID: 36768245 PMCID: PMC9916095 DOI: 10.3390/ijms24031924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Extracellular vesicles (EVs) and their cargo have been studied intensively as potential sources of biomarkers in HIV infection; however, their DNA content, particularly the mitochondrial portion (mtDNA), remains largely unexplored. It is well known that human immunodeficiency virus (HIV) infection and prolonged antiretroviral therapy (ART) lead to mitochondrial dysfunction and reduced mtDNA copy in cells and tissues. Moreover, mtDNA is a well-known damage-associated molecular pattern molecule that could potentially contribute to increased immune activation, oxidative stress, and inflammatory response. We investigated the mtDNA content of large and small plasma EVs in persons living with HIV (PLWH) and its implications for viral replication, ART use, and immune status. Venous blood was collected from 196 PLWH, ART-treated or ART-naïve (66 with ongoing viral replication, ≥20 copies/mL), and from 53 HIV-negative persons, all recruited at five HIV testing or treatment centers in Burkina Faso. Large and small plasma EVs were purified and counted, and mtDNA level was measured by RT-qPCR. Regardless of HIV status, mtDNA was more abundant in large than small EVs. It was more abundant in EVs of viremic than aviremic and control participants and tended to be more abundant in participants treated with Tenofovir compared with Zidovudine. When ART treatment was longer than six months and viremia was undetectable, no variation in EV mtDNA content versus CD4 and CD8 count or CD4/CD8 ratio was observed. However, mtDNA in large and small EVs decreased with years of HIV infection and ART. Our results highlight the impact of viral replication and ART on large and small EVs' mtDNA content. The mechanisms underlying the differential incorporation of mtDNA into EVs and their effects on the surrounding cells warrant further investigation.
Collapse
|
6
|
Durand M, Nagot N, Nhu QBT, Vizeneux A, Thuy LLT, Duong HT, Thanh BN, Rapoud D, Vallo R, Quillet C, Tran HT, Michel L, Tuyet TNT, Hai OKT, Hai VV, Feelemyer J, Vande Perre P, Des Jarlais D, Minh KP, Laureillard D, Molès JP. Long-Term Persistence of Mitochondrial DNA Instability among HCV-Cured People Who Inject Drugs. Biomedicines 2022; 10:2541. [PMID: 36289803 PMCID: PMC9599189 DOI: 10.3390/biomedicines10102541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
People who inject drugs (PWID) are a population exposed to many genotoxicants and with a high prevalence of HCV infection. Direct-acting antiviral (DAA) regimens are now widely used to treat chronic HCV infection. Although side effects to treatment are currently rare, the long-term effects such as suspicions of de novo hepatocellular carcinoma (HCC) occurrence or HCC recurrence and cardiac defects are still up for debate. Given the structure of DAAs, the molecules have a potential mitochondrial DNA (mtDNA) genotoxicity. We have previously reported acute mtDNA toxicity of three DAA regimens among PWID with a strong impact on the rate of mtDNA deletion, less on the quantity of mtDNA copy per cell at sustained viral response at 12 weeks (SVR12). Herein, we report the mtDNA parameters nine months after drug discontinuation. We observed that the percentage of the deleted mtDNA genome increased over time. No exposure to any other genotoxicants during this period was associated with a high deletion percentage, suggesting that the replicative advantage of the deleted molecules outweighed their elimination processes. Such observation calls for longer-term follow-up and may contribute to the molecular basis of subclinical side effects of DAA treatments.
Collapse
Affiliation(s)
- Mélusine Durand
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, 34000 Montpellier, France
| | - Nicolas Nagot
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, 34000 Montpellier, France
| | - Quynh Bach Thi Nhu
- Faculty of Public Health, Hai Phong University of Medicine and Pharmacy, Hai Phong 180000, Vietnam
| | - Amélie Vizeneux
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, 34000 Montpellier, France
| | - Linh Le Thi Thuy
- Faculty of Public Health, Hai Phong University of Medicine and Pharmacy, Hai Phong 180000, Vietnam
| | - Huong Thi Duong
- Faculty of Public Health, Hai Phong University of Medicine and Pharmacy, Hai Phong 180000, Vietnam
| | - Binh Nguyen Thanh
- Faculty of Public Health, Hai Phong University of Medicine and Pharmacy, Hai Phong 180000, Vietnam
| | - Delphine Rapoud
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, 34000 Montpellier, France
| | - Roselyne Vallo
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, 34000 Montpellier, France
| | - Catherine Quillet
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, 34000 Montpellier, France
| | - Hong Thi Tran
- Faculty of Public Health, Hai Phong University of Medicine and Pharmacy, Hai Phong 180000, Vietnam
| | - Laurent Michel
- Pierre Nicole Center, French Red Cross, 75005 Paris, France
| | | | | | - Vinh Vu Hai
- Infectious Diseases Department, Viet Tiep Hospital, Hai Phong 180000, Vietnam
| | - Jonathan Feelemyer
- College of Global Public Health, New York University, New York, NY 10012, USA
| | - Philippe Vande Perre
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, 34000 Montpellier, France
| | - Don Des Jarlais
- College of Global Public Health, New York University, New York, NY 10012, USA
| | - Khue Pham Minh
- Faculty of Public Health, Hai Phong University of Medicine and Pharmacy, Hai Phong 180000, Vietnam
| | - Didier Laureillard
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, 34000 Montpellier, France
- Infectious Diseases Department, Caremeau University Hospital, 30029 Nîmes, France
| | - Jean-Pierre Molès
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, 34000 Montpellier, France
| |
Collapse
|
7
|
Pashkov EA, Pak AV, Pashkov EP, Bykov AS, Budanova EV, Poddubikov AV, Svitich OA, Zverev VV. [The prospects for the use of drugs based on the phenomenon of RNA interference against HIV infection]. Vopr Virusol 2022; 67:278-289. [PMID: 36097709 DOI: 10.36233/0507-4088-124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
The human immunodeficiency virus (HIV) is currently one of the most pressing global health problems. Since its discovery in 1978, HIV has claimed the lives of more than 35 million people, and the number of people infected today reaches 37 million. In the absence of highly active antiretroviral therapy (HAART), HIV infection is characterized by a steady decrease in the number of CD4+ T-lymphocytes, but its manifestations can affect the central nervous, cardiovascular, digestive, endocrine and genitourinary systems. At the same time, complications induced by representatives of pathogenic and opportunistic microflora, which can lead to the development of bacterial, fungal and viral concomitant infections, are of particular danger. It should be borne in mind that an important problem is the emergence of viruses resistant to standard therapy, as well as the toxicity of the drugs themselves for the body. In the context of this review, of particular interest is the assessment of the prospects for the creation and clinical use of drugs based on small interfering RNAs aimed at suppressing the reproduction of HIV, taking into account the experience of similar studies conducted earlier. RNA interference is a cascade of regulatory reactions in eukaryotic cells, which results in the degradation of foreign messenger RNA. The development of drugs based on the mechanism of RNA interference will overcome the problem of viral resistance. Along with this, this technology makes it possible to quickly respond to outbreaks of new viral diseases.
Collapse
Affiliation(s)
- E A Pashkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University); Federal State Budgetary Scientific Institution "I. Mechnikov Research Institute of Vaccines and Sera"
| | - A V Pak
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - E P Pashkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A S Bykov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - E V Budanova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A V Poddubikov
- Federal State Budgetary Scientific Institution "I. Mechnikov Research Institute of Vaccines and Sera"
| | - O A Svitich
- I.M. Sechenov First Moscow State Medical University (Sechenov University); Federal State Budgetary Scientific Institution "I. Mechnikov Research Institute of Vaccines and Sera"
| | - V V Zverev
- I.M. Sechenov First Moscow State Medical University (Sechenov University); Federal State Budgetary Scientific Institution "I. Mechnikov Research Institute of Vaccines and Sera"
| |
Collapse
|
8
|
Fotooh Abadi L, Damiri F, Zehravi M, Joshi R, Pai R, Berrada M, Massoud EES, Rahman MH, Rojekar S, Cavalu S. Novel Nanotechnology-Based Approaches for Targeting HIV Reservoirs. Polymers (Basel) 2022; 14:3090. [PMID: 35956604 PMCID: PMC9370744 DOI: 10.3390/polym14153090] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
Highly active anti-retroviral therapy (HAART) is prescribed for HIV infection and, to a certain extent, limits the infection's spread. However, it cannot completely eradicate the latent virus in remote and cellular reservoir areas, and due to the complex nature of the infection, the total eradication of HIV is difficult to achieve. Furthermore, monotherapy and multiple therapies are not of much help. Hence, there is a dire need for novel drug delivery strategies that may improve efficacy, decrease side effects, reduce dosing frequency, and improve patient adherence to therapy. Such a novel strategy could help to target the reservoir sites and eradicate HIV from different biological sanctuaries. In the current review, we have described HIV pathogenesis, the mechanism of HIV replication, and different biological reservoir sites to better understand the underlying mechanisms of HIV spread. Further, the review deliberates on the challenges faced by the current conventional drug delivery systems and introduces some novel drug delivery strategies that have been explored to overcome conventional drug delivery limitations. In addition, the review also summarizes several nanotechnology-based approaches that are being explored to resolve the challenges of HIV treatment by the virtue of delivering a variety of anti-HIV agents, either as combination therapies or by actively targeting HIV reservoir sites.
Collapse
Affiliation(s)
- Leila Fotooh Abadi
- Department of Virology, Indian Council of Medical Research, National AIDS Research Institute, Pune 411026, Maharashtra, India;
| | - Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco;
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Alkharj 11942, Saudi Arabia;
| | - Rohit Joshi
- Precision NanoSystem Inc., Vancouver, BC V6P 6T7, Canada;
| | - Rohan Pai
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India;
| | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco;
| | - Ehab El Sayed Massoud
- Biology Department, Faculty of Science and Arts in Dahran Aljnoub, King Khalid University, Abha 62529, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
- Agriculture Research Centre, Soil, Water and Environment Research Institute, Giza 3725004, Egypt
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju 26426, Korea;
| | - Satish Rojekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, Maharashtra, India
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
9
|
Desquiret-Dumas V, D’Ottavi M, Monnin A, Goudenège D, Méda N, Vizeneux A, Kankasa C, Tylleskar T, Bris C, Procaccio V, Nagot N, Van de Perre P, Reynier P, Molès JP. Long-Term Persistence of Mitochondrial DNA Instability in HIV-Exposed Uninfected Children during and after Exposure to Antiretroviral Drugs and HIV. Biomedicines 2022; 10:biomedicines10081786. [PMID: 35892686 PMCID: PMC9331317 DOI: 10.3390/biomedicines10081786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
HIV-exposed uninfected (HEU) children show impaired health outcomes during childhood. A high rate of mitochondrial DNA (mtDNA) instability was reported in the blood of HEU at birth. We aimed to explore the relationship between these health outcomes and mtDNA deletions over time in a case series of 24 HEU children. MtDNA instability was assessed by deep sequencing and analyzed by eKLIPse-v2 algorithm at three time points, namely birth, 1 year, and 6 years of age. Association between mtDNA deletion and health outcomes, including growth, clinical, and neurodevelopmental parameters, were explored using univariate statistical analyses and after stratification with relevant variables. HEU children were selected with an equal male:female ratio. An elevated number of mtDNA deletions and duplications events was observed at 7 days’ post-partum. Median heteroplasmy increased at one year of life and then returned to baseline by six years of age. The mtDNA instability was acquired and was not transmitted by the mother. No risk factors were significantly associated with mtDNA instability. In this small case series, we did not detect any association between any health outcome at 6 years and mtDNA instability measures. A significant effect modification of the association between the duration of maternal prophylaxis and child growth was observed after stratification with heteroplasmy rate. Genomic instability persists over time among HEU children but, despite its extension, stays subclinical at six years.
Collapse
Affiliation(s)
- Valérie Desquiret-Dumas
- Department of Biochemistry and Genetics, University Hospital of Angers, F-49000 Angers, France; (V.D.-D.); (D.G.); (C.B.); (V.P.); (P.R.)
- UMR MITOVASC, CNRS 6015, INSERM U1083, University of Angers, F-49000 Angers, France
| | - Morgana D’Ottavi
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, Etablissement Français du Sang, University of Montpellier, University of Antilles, F-34394 Montpellier, France; (M.D.); (A.M.); (A.V.); (N.N.); (P.V.d.P.)
| | - Audrey Monnin
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, Etablissement Français du Sang, University of Montpellier, University of Antilles, F-34394 Montpellier, France; (M.D.); (A.M.); (A.V.); (N.N.); (P.V.d.P.)
| | - David Goudenège
- Department of Biochemistry and Genetics, University Hospital of Angers, F-49000 Angers, France; (V.D.-D.); (D.G.); (C.B.); (V.P.); (P.R.)
- UMR MITOVASC, CNRS 6015, INSERM U1083, University of Angers, F-49000 Angers, France
| | - Nicolas Méda
- Centre MURAZ, Bobo-Dioulasso 01 B.P. 390, Burkina Faso;
| | - Amélie Vizeneux
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, Etablissement Français du Sang, University of Montpellier, University of Antilles, F-34394 Montpellier, France; (M.D.); (A.M.); (A.V.); (N.N.); (P.V.d.P.)
| | - Chipepo Kankasa
- Department of Paediatrics and Child Health, University Teaching Hospital, Lusaka P.O. Box 50001, Zambia;
| | - Thorkild Tylleskar
- Centre for International Health, University of Bergen, N-5020 Bergen, Norway;
| | - Céline Bris
- Department of Biochemistry and Genetics, University Hospital of Angers, F-49000 Angers, France; (V.D.-D.); (D.G.); (C.B.); (V.P.); (P.R.)
- UMR MITOVASC, CNRS 6015, INSERM U1083, University of Angers, F-49000 Angers, France
| | - Vincent Procaccio
- Department of Biochemistry and Genetics, University Hospital of Angers, F-49000 Angers, France; (V.D.-D.); (D.G.); (C.B.); (V.P.); (P.R.)
- UMR MITOVASC, CNRS 6015, INSERM U1083, University of Angers, F-49000 Angers, France
| | - Nicolas Nagot
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, Etablissement Français du Sang, University of Montpellier, University of Antilles, F-34394 Montpellier, France; (M.D.); (A.M.); (A.V.); (N.N.); (P.V.d.P.)
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, Etablissement Français du Sang, University of Montpellier, University of Antilles, F-34394 Montpellier, France; (M.D.); (A.M.); (A.V.); (N.N.); (P.V.d.P.)
| | - Pascal Reynier
- Department of Biochemistry and Genetics, University Hospital of Angers, F-49000 Angers, France; (V.D.-D.); (D.G.); (C.B.); (V.P.); (P.R.)
- UMR MITOVASC, CNRS 6015, INSERM U1083, University of Angers, F-49000 Angers, France
| | - Jean-Pierre Molès
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, Etablissement Français du Sang, University of Montpellier, University of Antilles, F-34394 Montpellier, France; (M.D.); (A.M.); (A.V.); (N.N.); (P.V.d.P.)
- Correspondence: ; Tel.: +33-434-35-91-07
| |
Collapse
|
10
|
Ortiz-Gracia A, Ríos M, Tobías E, Noguera-Julian A, García-García FJ, Cantó-Santos J, Valls-Roca L, Garrabou G, Grau JM, Cardellach F, Sánchez E, Morén C, Fortuny C. Assessment of mitochondrial toxicity in newborns and infants with congenital cytomegalovirus infection treated with valganciclovir. Arch Dis Child 2022; 107:686-691. [PMID: 35288419 PMCID: PMC9209682 DOI: 10.1136/archdischild-2021-322996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/17/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Ganciclovir/valganciclovir is currently indicated during the first 6 months of life in symptomatic children with congenital cytomegalovirus (CMV) infection. However, this treatment may have the potential to induce mitochondrial toxicity due to off-target inhibition of DNA-polymerases. Similar anti-HIV drugs have been associated with mitochondrial toxicity but this has never been explored in CMV. OBJECTIVE To determine the potential mitochondrial toxicity profile at the genetic, functional and biogenesis level in peripheral blood mononuclear cells from a cohort of newborns and infants with symptomatic congenital CMV infection (treated with valganciclovir, untreated and uninfected controls). DESIGN Longitudinal, observational and controlled study. SETTING AND PATIENTS Subjects were recruited at the tertiary referral Hospital Sant Joan de Déu and experiments were conducted at IDIBAPS-Hospital Clínic of Barcelona, Spain. CMV-infected newborns underwent comprehensive monthly clinical follow-up. METHODS Mitochondrial parameters, audiometry and neurological assessment were measured at baseline, 3-6 and 12 months after inclusion in the study. The Kruskal-Wallis test for k-independent samples and Friedman tests for repeated measurements were applied. RESULTS Complex IV, citrate synthase enzymatic activities and mtDNA remained preserved in congenital CMV-infected infants treated with valganciclovir compared with controls (p>0.05 in all cases). CONCLUSIONS No evidence of mitochondrial toxicity was found in infants treated with valganciclovir for congenital CMV.
Collapse
Affiliation(s)
- Alba Ortiz-Gracia
- Pompeu Fabra University, Barcelona, Spain,Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María Ríos
- Malalties Infeccioses i Resposta Inflamatòria Sistèmica en Pediatria, Unitat d’Infeccions, Servei de Pediatria, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Ester Tobías
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain,Cellex, Institut d’Investigacions Biomèdiques August Pi i Sunyer, IDIBAPS, Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Madrid, Spain,Internal Medicine Department, Hospital Clínic of Barcelona HCB, Barcelona, Spain
| | - Antoni Noguera-Julian
- Malalties Infeccioses i Resposta Inflamatòria Sistèmica en Pediatria, Unitat d’Infeccions, Servei de Pediatria, Institut de Recerca Sant Joan de Déu, Barcelona, Spain,Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, CIBERESP, Madrid, Spain,Red de Investigación Translacional en Infectología Pediátrica RITIP, Madrid, Spain
| | - Francesc Josep García-García
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain,Cellex, Institut d’Investigacions Biomèdiques August Pi i Sunyer, IDIBAPS, Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Madrid, Spain,Internal Medicine Department, Hospital Clínic of Barcelona HCB, Barcelona, Spain
| | - Judith Cantó-Santos
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain,Cellex, Institut d’Investigacions Biomèdiques August Pi i Sunyer, IDIBAPS, Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Madrid, Spain,Internal Medicine Department, Hospital Clínic of Barcelona HCB, Barcelona, Spain
| | - Laura Valls-Roca
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain,Cellex, Institut d’Investigacions Biomèdiques August Pi i Sunyer, IDIBAPS, Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Madrid, Spain,Internal Medicine Department, Hospital Clínic of Barcelona HCB, Barcelona, Spain
| | - Glòria Garrabou
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain,Cellex, Institut d’Investigacions Biomèdiques August Pi i Sunyer, IDIBAPS, Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Madrid, Spain,Internal Medicine Department, Hospital Clínic of Barcelona HCB, Barcelona, Spain
| | - Josep Maria Grau
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain,Cellex, Institut d’Investigacions Biomèdiques August Pi i Sunyer, IDIBAPS, Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Madrid, Spain,Internal Medicine Department, Hospital Clínic of Barcelona HCB, Barcelona, Spain
| | - Francesc Cardellach
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain,Cellex, Institut d’Investigacions Biomèdiques August Pi i Sunyer, IDIBAPS, Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Madrid, Spain,Internal Medicine Department, Hospital Clínic of Barcelona HCB, Barcelona, Spain
| | - Emilia Sánchez
- Blanquerna School of Health Science, Ramon Llull University, Barcelona, Spain
| | - Constanza Morén
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain .,Cellex, Institut d'Investigacions Biomèdiques August Pi i Sunyer, IDIBAPS, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Madrid, Spain.,Internal Medicine Department, Hospital Clínic of Barcelona HCB, Barcelona, Spain
| | - Clàudia Fortuny
- Malalties Infeccioses i Resposta Inflamatòria Sistèmica en Pediatria, Unitat d’Infeccions, Servei de Pediatria, Institut de Recerca Sant Joan de Déu, Barcelona, Spain,Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, CIBERESP, Madrid, Spain,Red de Investigación Translacional en Infectología Pediátrica RITIP, Madrid, Spain
| |
Collapse
|
11
|
Rudd H, Toborek M. Pitfalls of Antiretroviral Therapy: Current Status and Long-Term CNS Toxicity. Biomolecules 2022; 12:biom12070894. [PMID: 35883450 PMCID: PMC9312798 DOI: 10.3390/biom12070894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
HIV can traverse the BBB using a Trojan horse-like mechanism. Hidden within infected immune cells, HIV can infiltrate the highly safeguarded CNS and propagate disease. Once integrated within the host genome, HIV becomes a stable provirus, which can remain dormant, evade detection by the immune system or antiretroviral therapy (ART), and result in rebound viraemia. As ART targets actively replicating HIV, has low BBB penetrance, and exposes patients to long-term toxicity, further investigation into novel therapeutic approaches is required. Viral proteins can be produced by latent HIV, which may play a synergistic role alongside ART in promoting neuroinflammatory pathophysiology. It is believed that the ability to specifically target these proviral reservoirs would be a vital driving force towards a cure for HIV infection. A novel drug design platform, using the in-tandem administration of several therapeutic approaches, can be used to precisely target the various components of HIV infection, ultimately leading to the eradication of active and latent HIV and a functional cure for HIV. The aim of this review is to explore the pitfalls of ART and potential novel therapeutic alternatives.
Collapse
Affiliation(s)
- Harrison Rudd
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland
- Correspondence: ; Tel.: +1-(305)-243-0230
| |
Collapse
|
12
|
Casas-Recasens S, Mendoza N, López-Giraldo A, Garcia T, Cosio BG, Pascual-Guardia S, Acosta-Castro A, Borras-Santos A, Gea J, Garrabou G, Agusti A, Faner R. Telomere Length but Not Mitochondrial DNA Copy Number Is Altered in Both Young and Old COPD. Front Med (Lausanne) 2021; 8:761767. [PMID: 34901077 PMCID: PMC8652089 DOI: 10.3389/fmed.2021.761767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Accelerated ageing is implicated in the pathogenesis of respiratory diseases as chronic obstructive pulmonary disease (COPD), but recent evidence indicates that the COPD can have roots early in life. Here we hypothesise that the accelerated ageing markers might have a role in the pathobiology of young COPD. The objective of this study was to compare two hallmarks of ageing, telomere length (TL), and mitochondrial DNA copy number (mtDNA-CN, as a surrogate marker of mitochondrial dysfunction) in young (≤ 50 years) and old (>50 years) smokers, with and without COPD. Both, TL and mtDNA-CN were measured in whole blood DNA by quantitative PCR [qPCR] in: (1) young ever smokers with (n = 81) or without (n = 166) COPD; and (2) old ever smokers with (n = 159) or without (n = 29) COPD. A multivariable linear regression was used to assess the association of TL and mtDNA-CN with lung function. We observed that in the entire study population, TL and mtDNA-CN decreased with age, and the former but not the latter related to FEV1/FVC (%), FEV1 (% ref.), and DLCO (% ref.). The short telomeres were found both in the young and old patients with severe COPD (FEV1 <50% ref.). In addition, we found that TL and mtDNA-CN were significantly correlated, but their relationship was positive in younger while negative in the older patients with COPD, suggesting a mitochondrial dysfunction. We conclude that TL, but not mtDNA-CN, is associated with the lung function impairment. Both young and old patients with severe COPD have evidence of accelerated ageing (shorter TL) but differ in the direction of the correlation between TL and mtDNA-CN in relation to age.
Collapse
Affiliation(s)
- Sandra Casas-Recasens
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Nuria Mendoza
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alejandra López-Giraldo
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Respiratory Institute, Hospital Clinic, Barcelona, Spain
| | - Tamara Garcia
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Borja G Cosio
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Pneumology, University Hospital Son Espases, Palma de Mallorca, Spain.,Institut d'Investigació Sanitària Illes Balears (IdISBa), University Hospital Son Espases, Palma de Mallorca, Spain
| | - Sergi Pascual-Guardia
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Servei de Pneumologia, Hospital del Mar - IMIM, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Ady Acosta-Castro
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Pulmonary Service and Research Institute, Doce de Octubre University Hospital, Madrid, Spain
| | - Alicia Borras-Santos
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,ISGlobal, Barcelona, Spain
| | - Joaquim Gea
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Servei de Pneumologia, Hospital del Mar - IMIM, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Gloria Garrabou
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Muscle Research and Mitochondrial Function Laboratory, Internal Medicine Service, Hospital Clinic of Barcelona, Barcelona, Spain.,CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain
| | - Alvar Agusti
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Respiratory Institute, Hospital Clinic, Barcelona, Spain.,Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Rosa Faner
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
13
|
In Vitro Exposure of Leukocytes to HIV Preexposure Prophylaxis Decreases Mitochondrial Function and Alters Gene Expression Profiles. Antimicrob Agents Chemother 2020; 65:AAC.01755-20. [PMID: 33020165 PMCID: PMC7927818 DOI: 10.1128/aac.01755-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/01/2020] [Indexed: 12/21/2022] Open
Abstract
The use of antiretroviral therapy (ART) as preexposure prophylaxis (PrEP) is an effective strategy for preventing HIV acquisition. The cellular consequences of PrEP exposure, however, have not been sufficiently explored to determine potential effects on health in individuals without HIV. In this study, peripheral blood mononuclear cells (PBMCs) from people without HIV were exposed to tenofovir disoproxil fumarate (TDF) or emtricitabine (FTC) overnight. Mitochondrial mass and function were measured by flow cytometry and an Agilent XFp analyzer. The use of antiretroviral therapy (ART) as preexposure prophylaxis (PrEP) is an effective strategy for preventing HIV acquisition. The cellular consequences of PrEP exposure, however, have not been sufficiently explored to determine potential effects on health in individuals without HIV. In this study, peripheral blood mononuclear cells (PBMCs) from people without HIV were exposed to tenofovir disoproxil fumarate (TDF) or emtricitabine (FTC) overnight. Mitochondrial mass and function were measured by flow cytometry and an Agilent XFp analyzer. Monocyte-derived macrophages (MDMs) were differentiated in 20% autologous serum for 5 days in the presence or absence of TDF or FTC, and surface markers, lipid uptake, and efferocytosis were measured by flow cytometry. MDM gene expression was measured using transcriptome sequencing (RNA-seq). Plasma lipids were measured using mass spectrometry. PBMCs exposed to TDF or FTC had decreased maximal oxygen consumption rate (OCR) and reduced mitochondrial mass. Exposure to PrEP also increased reactive oxygen species (ROS) production from monocyte subsets. Compared to MDMs cultured in medium alone, cells differentiated in the presence of TDF (829 genes) or FTC (888 genes) had significant changes in gene expression. Further, PrEP-exposed MDMs had decreased mitochondrial mass and displayed increased lipid uptake and reduced efferocytosis. Plasma biomarkers and lipid levels were also altered in vivo in individuals receiving a PrEP regimen. In conclusion, exposure of leukocytes to TDF or FTC resulted in decreased mitochondrial function and altered functional and transcriptional profiles. These findings may have important implications for the metabolic and immunologic consequences of PrEP in populations at risk for HIV acquisition.
Collapse
|