1
|
Gao L, Gao J, He J, Fan W, Che X, Wang X, Wang T, Han C. Identification of m6A methyltransferase-related WTAP and ZC3H13 predicts immune infiltrates in glioblastoma. Sci Rep 2025; 15:4412. [PMID: 39910141 PMCID: PMC11799344 DOI: 10.1038/s41598-025-88671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/29/2025] [Indexed: 02/07/2025] Open
Abstract
Glioblastoma (GBM) is a prevalent and highly fatal primary malignant brain tumor. N6-methyladenosine (m6A) modification plays a critical role in the development of brain tumor. WTAP and ZC3H13 have been identified across various species. Immune contexture, which includes the tumor microenvironment (TME), plays a significant role in cancer progression and treatment. This study aimed to explore the potential impact between WTAP and ZC3H13 on the immunological characteristics of GBM. We utilized data from TCGA-GBM, GEO and CGGA datasets to obtain platform and probe data. Patients with GBM were stratified into two clusters based on the expression of WTAP and ZC3H13 using consensus clustering approach. Immune infiltration within the tumor microenvironment was assessed using ESTIMATE, CIBERSORT and ssGSEA methodologies. Functional disparities were determined through gene set enrichment analysis (GSEA). Tumor mutation burden (TMB) and immune checkpoint inhibitors (ICIs) were also analyzed. Co-expression network analysis (WGCNA) was used to identify genes associated with WTAP/ZC3H13 and immunity. Validation was performed using GEO and CGGA datasets. Our analysis revealed that cluster1 exhibited higher WTAP expression but lower ZC3H13 expression compared to cluster2. Cluster1 showed higher levels of immune infiltration and TMB compared to cluster2. WGCNA identified 15 genes closely associated with WTAP/ZC3H13 expression and immune scores, notably CTLA4, CD27, ICOS, and LAG3. Our results suggested that WTAP and ZC3H13 influence on immune contexture of GBM, providing new insights into tumor immunity in GBM.
Collapse
Affiliation(s)
- Liyun Gao
- Center for Cognitive Science and Transdisciplinary Studies, Jiujiang University, Jiujiang, China.
- Department of Preventive Medicine, School of Basic Medicine, Jiujiang University, Jiujiang, China.
- Laboratory of of Precision Preventive Medicine, School of Medicine, Jiujiang University, 55 Qianjin Road, Jiujiang, 332005, China.
| | - Jiaxin Gao
- School of Nursing and Health Management, Wuhan Donghu University, Wuhan, China
| | - Jiayin He
- School of Literature and Journalism, South-central Minzu University, Wuhan, China
| | - Wenyan Fan
- Department of Preventive Medicine, School of Basic Medicine, Jiujiang University, Jiujiang, China
| | - Xiangxin Che
- Department of Preventive Medicine, School of Basic Medicine, Jiujiang University, Jiujiang, China
| | - Xin Wang
- Department of Preventive Medicine, School of Basic Medicine, Jiujiang University, Jiujiang, China
| | - Tao Wang
- Department of Preventive Medicine, School of Basic Medicine, Jiujiang University, Jiujiang, China
| | - Chunhua Han
- Care Medicine, Jiujiang First People's Hospital, 48 South Taring Road, Jiujiang, 332005, China.
| |
Collapse
|
2
|
Wang M, Han Z, Wang X, Cheng Y, Cao Z, Zhang Y, Zhang Y. lncRNA TMEM161B-AS1 screened the onset of oral squamous cell carcinoma in HPV-infected patients, predicted poor prognosis, and regulated cell progression via modulating the miR-651-5p/BDNF axis. Odontology 2024; 112:1010-1022. [PMID: 38376795 DOI: 10.1007/s10266-024-00899-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/04/2024] [Indexed: 02/21/2024]
Abstract
Oral squamous cell carcinoma (OSCC) has become the most common HPV-related cancer with high invasion and metastasis. Exploring biomarkers for the screening and monitoring of OSCC, especially for the HPV-OSCC, would benefit patients' diagnosis and prognosis. This study evaluated the significance and mechanism of TMEM161B-AS1 and miR-651-5p in HPV-OSCC aiming to provide novel insight into the mechanism of HPV-OSCC development. Expression of TMEM161B-AS1 and miR-561-5p was analyzed in healthy individuals, HPV-infected non-OSCC patients, and HPV-OSCC patients using PCR. Their significance in HPV-OSCC occurrence and prognosis was evaluated by logistic regression, ROC, Kaplan-Meier, and Cox regression analysis. In OSCC cells, CCK8 and Transwell assays were employed for assessing cell growth and metastasis. The luciferase reporter assay and cell transfection were performed to evaluate the regulatory association between TMEM161B-AS1, miR-561-5p, and BDNF. Significant upregulation of TMEM161B-AS1 and downregulation of miR-561-5p were observed in oral HPV-infected patients. Both TMEM161B-AS1 and miR-651-5p served as risk factors for the occurrence of OSCC in oral HPV-infected patients and could distinguish HPV-OSCC patients from HPV-infected non-OSCC patients. Increased TMEM161B-AS1 and reduced miR-561-5p indicated severe development and adverse prognosis of HPV-OSCC patients. In OSCC cells, silencing TMEM161-AS1 suppressed cell proliferation and motility via negatively modulating miR-561-5p. miR-561-5p negatively regulated BDNF, which was considered the underlying mechanism of TMEM161B-AS1. Increasing TMEM161B-AS expression and decreasing miR-561-5p showed the occurrence of OSCC in HPV-infected patients and predicted malignant development and adverse prognosis. TMEME161B-AS1 served as a tumor promoter via regulating the miR-561-5p/BDNF axis.
Collapse
Affiliation(s)
- Mian Wang
- Department of Stomatology, Xuzhou Municipal Hospital Affiliated With Xuzhou Medical University, No. 269, Daxue Road, Xuzhou, 221000, Jiangsu Province, China
| | - Zhengjie Han
- Department of Pathology, Xuzhou Municipal Hospital Affiliated With Xuzhou Medical University, Xuzhou, China
| | - Xuewei Wang
- Department of Stomatology, Xuzhou Municipal Hospital Affiliated With Xuzhou Medical University, No. 269, Daxue Road, Xuzhou, 221000, Jiangsu Province, China
| | - Yusheng Cheng
- Department of Stomatology, Xuzhou Municipal Hospital Affiliated With Xuzhou Medical University, No. 269, Daxue Road, Xuzhou, 221000, Jiangsu Province, China
| | - Ziqiang Cao
- Department of Stomatology, Xuzhou Municipal Hospital Affiliated With Xuzhou Medical University, No. 269, Daxue Road, Xuzhou, 221000, Jiangsu Province, China
| | - Yang Zhang
- Department of Stomatology, Xuzhou Municipal Hospital Affiliated With Xuzhou Medical University, No. 269, Daxue Road, Xuzhou, 221000, Jiangsu Province, China.
| | - Yang Zhang
- Department of Stomatology, Xuzhou Municipal Hospital Affiliated With Xuzhou Medical University, No. 269, Daxue Road, Xuzhou, 221000, Jiangsu Province, China.
| |
Collapse
|
3
|
Jin S, Liu PS, Zheng D, Xie X. The interplay of miRNAs and ferroptosis in diseases related to iron overload. Apoptosis 2024; 29:45-65. [PMID: 37758940 DOI: 10.1007/s10495-023-01890-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
Ferroptosis has been conceptualized as a novel cell death modality distinct from apoptosis, necroptosis, pyroptosis and autophagic cell death. The sensitivity of cellular ferroptosis is regulated at multiple layers, including polyunsaturated fatty acid metabolism, glutathione-GPX4 axis, iron homeostasis, mitochondria and other parallel pathways. In addition, microRNAs (miRNAs) have been implicated in modulating ferroptosis susceptibility through targeting different players involved in the execution or avoidance of ferroptosis. A growing body of evidence pinpoints the deregulation of miRNA-regulated ferroptosis as a critical factor in the development and progression of various pathophysiological conditions related to iron overload. The revelation of mechanisms of miRNA-dependent ferroptosis provides novel insights into the etiology of diseases and offers opportunities for therapeutic intervention. In this review, we discuss the interplay of emerging miRNA regulators and ferroptosis players under different pathological conditions, such as cancers, ischemia/reperfusion, neurodegenerative diseases, acute kidney injury and cardiomyopathy. We emphasize on the relevance of miRNA-regulated ferroptosis to disease progression and the targetability for therapeutic interventions.
Collapse
Affiliation(s)
- Shikai Jin
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China
| | - Pu-Ste Liu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan, ROC
| | - Daheng Zheng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China.
| | - Xin Xie
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China.
| |
Collapse
|
4
|
Lee J, Roh JL. Epigenetic modulation of ferroptosis in cancer: Identifying epigenetic targets for novel anticancer therapy. Cell Oncol (Dordr) 2023; 46:1605-1623. [PMID: 37438601 DOI: 10.1007/s13402-023-00840-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
Ferroptosis is a newly recognized form of oxidative-regulated cell death resulting from iron-mediated lipid peroxidation accumulation. Radical-trapping antioxidant systems can eliminate these oxidized lipids and prevent disrupting the integrity of cell membranes. Epigenetic modifications can regulate ferroptosis by altering gene expression or cell phenotype without permanent sequence changes. These mechanisms include DNA methylation, histone modifications, RNA modifications, and noncoding RNAs. Epigenetic alterations in cancer can control the expression of ferroptosis regulators or related pathways, leading to changes in cell sensitivity to ferroptosis inducers or cancer progression. Epigenetic alterations in cancer are influenced by a wide range of cancer hallmarks, contributing to therapeutic resistance. Targeting epigenetic alterations is a promising approach to overcoming cancer resilience. However, the exact mechanisms involved in different types of cancer remain unresolved. Discovering more ferroptosis-associated epigenetic targets and interventions can help overcome current barriers in anticancer therapy. Many papers on epigenetic modifications of ferroptosis have been continuously published, making it essential to summarize the current state-of-the-art in the epigenetic regulation of ferroptosis in human cancer.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, 13496, Republic of Korea
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, 13496, Republic of Korea.
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
5
|
Wu J, Li Y, Nabi G, Huang X, Zhang X, Wang Y, Huang L. Exosome and lipid metabolism-related genes in pancreatic adenocarcinoma: a prognosis analysis. Aging (Albany NY) 2023; 15:11331-11368. [PMID: 37857015 PMCID: PMC10637811 DOI: 10.18632/aging.205130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVE The purpose of the study was to investigate the role of exosome and lipid metabolism-related genes (EALMRGs) mRNA levels in the diagnosis and prognosis of Pancreatic Adenocarcinoma (PAAD). METHODS The mRNA expression pattern of PAAD and pan-cancers with prognostic data were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. EALMRGs were acquired from GeneCards and MSigDB database after merging and deduplication. Prognostic EALMRGs were screened through univariate COX regression analysis, and a prognostic model was constructed based on these genes by least absolute shrinkage and selection operator (LASSO) regression. The prognostic value of EALMRGs was then validated in pan-cancer data. The time characteristics ROC curve analysis was performed to evaluate the effectiveness of the prognostic genes. RESULTS We identified 5 hub genes (ABCB1, CAP1, EGFR, PPARG, SNCA) according to high and low-risk groups of prognoses. The risk formula was verified in three other cohort of pancreatic cancer patients and was explored in pan-cancer data. Additionally, T cell and dendritic cell infiltration was significantly increased in low-risk group. The expression of the 5 hub genes was also identified in single-cell sequencing data of pancreatic cancer with pivotal pathways. Additionally, functional enrichment analysis based on pancreatic cancer data in pancreatic cancer showed that protein serine/threonine kinase activity, focal adhesion, actin binding, cell-substrate junction, organic acid transport, and regulation of transporter activity were significant related to the expression of genes in EALMRGs. CONCLUSIONS Our risk formula shows potential prognostic value in multiple cancers and manifest pivotal alterations in immune infiltration and biological pathway in pancreatic cancer.
Collapse
Affiliation(s)
- Jia Wu
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yajun Li
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ghulam Nabi
- Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
| | - Xin Huang
- Department of Gastroenterology, Traditional Chinese Medicine Hospital of Yinchuan, Yinchuan, Ningxia, China
| | - Xu Zhang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuanzhen Wang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Liya Huang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
6
|
Fan X, Fan YT, Zeng H, Dong XQ, Lu M, Zhang ZY. Role of ferroptosis in esophageal cancer and corresponding immunotherapy. World J Gastrointest Oncol 2023; 15:1105-1118. [PMID: 37546564 PMCID: PMC10401468 DOI: 10.4251/wjgo.v15.i7.1105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/28/2023] [Accepted: 04/24/2023] [Indexed: 07/12/2023] Open
Abstract
Esophageal cancer (EC) is one of the most common digestive system malignancies in the world. The combined modality treatment of EC is usually surgery and radiation therapy, however, its clinical efficacy for advanced patients is relatively limited. Ferroptosis, a new type of iron-dependent programmed cell death, is different from apoptosis, necrosis and autophagy. In recent years, many studies have further enlightened that ferroptosis plays an essential role in the occurrence, development and metastasis of tumors. Targeting ferroptosis stimulates a new direction for further exploration of oncologic treatment regimens. Furthermore, ferroptosis has a critical role in the immune microenvironment of tumors. This paper reviews the mechanism of ferroptosis and the ferroptosis research progress in the treatment of EC. We further elaborate the interaction between ferroptosis and immunotherapy, and the related mechanisms of ferroptosis participation in the immunotherapy of EC, so as to provide new directions and ideas for the treatment of EC.
Collapse
Affiliation(s)
- Xin Fan
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Yan-Ting Fan
- The First Clinical Medical College, Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Hui Zeng
- Department of Stomatology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Xi-Qi Dong
- The First Clinical Medical College, Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Min Lu
- Department of Emergency Medicine, Shangrao Hospital Affiliated to Nanchang University, Shangrao 334000, Jiangxi Province, China
| | - Zhi-Yuan Zhang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| |
Collapse
|
7
|
Zeng T, Jiang S, Wang Y, Sun G, Cao J, Hu D, Wang G, Liang X, Ding J, Du J. Identification and validation of a cellular senescence-related lncRNA signature for prognostic prediction in patients with multiple myeloma. Cell Cycle 2023; 22:1434-1449. [PMID: 37227248 PMCID: PMC10281485 DOI: 10.1080/15384101.2023.2213926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/01/2023] [Accepted: 04/21/2023] [Indexed: 05/26/2023] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy, which primarily occurs in the elderly. Cellular senescence is considered to be closely associated with the occurrence and progression of malignant tumors including MM, and lncRNA can mediate the process of cellular senescence by regulating key signaling pathways such as p53/p21 and p16/RB. However, the role of cellular senescence related lncRNAs (CSRLs) in MM development has never been reported. Herein, we identified 11 CSRLs (AC004918.5, AC103858.1, AC245100.4, ACBD3-AS1, AL441992.2, ATP2A1-AS1, CCDC18-AS1, LINC00996, TMEM161B-AS1, RP11-706O15.1, and SMURF2P1) to build the CSRLs risk model, which was confirmed to be highly associated with overall survival (OS) of MM patients. We further demonstrated the strong prognostic value of the risk model in MM patients receiving different regimens, especially for those with three-drug combination of bortezomib, lenalidomide, and dexamethasone (VRd) as first-line therapy. Not only that, our risk model also excels in predicting the OS of MM patients at 1, 2, and 3 years. In order to verify the function of these CSRLs in MM, we selected the lncRNA ATP2A1-AS1 which presented the largest expression difference between high-risk groups and low-risk groups for subsequent analysis and validation. Finally, we found that down-regulation of ATP2A1-AS1 can promote cellular senescence in MM cell lines. In conclusion, the CSRLs risk model established in present study provides a novel and more accurate method for predicting MM patients' prognosis and identifies a new target for MM therapeutic intervention.
Collapse
Affiliation(s)
- Tanlun Zeng
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Sihan Jiang
- Department of Hematology, Myeloma & Lymphoma Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yichuan Wang
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Guanqun Sun
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Jinjin Cao
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Dingtao Hu
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Guang Wang
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Xijun Liang
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Jin Ding
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Juan Du
- Department of Hematology, Myeloma & Lymphoma Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
8
|
Mori Y, Ueno K, Chiba D, Hashimoto K, Kawai Y, Baba K, Tanaka H, Aki T, Ogasawara M, Shibasaki N, Tokunaga K, Aizawa T, Nagasaki M. Genome-Wide Association Study and Transcriptome of Japanese Patients with Developmental Dysplasia of the Hip Demonstrates an Association with the Ferroptosis Signaling Pathway. Int J Mol Sci 2023; 24:ijms24055019. [PMID: 36902448 PMCID: PMC10003185 DOI: 10.3390/ijms24055019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
This study examined the association between developmental dysplasia of the hip (DDH) and disease-associated loci in a Japanese cohort. A genome-wide association study (GWAS) of 238 Japanese patients with DDH and 2044 healthy individuals was performed. As a replicate, GWAS was also conducted on the UK Biobank data with 3315 cases and matched 74,038 controls. Gene set enrichment analyses (GSEAs) of both the genetics and transcriptome of DDH were performed. Transcriptome analysis of cartilage specimens from DDH-associated osteoarthritis and femoral neck fractures was performed as a control. Most of the lead variants were very low-frequency ones in the UK, and variants in the Japanese GWAS could not be replicated with the UK GWAS. We assigned DDH-related candidate variants to 42 and 81 genes from the Japanese and UK GWASs, respectively, using functional mapping and annotation. GSEA of gene ontology, disease ontology, and canonical pathways identified the most enriched pathway to be the ferroptosis signaling pathway, both in the Japanese gene set as well as the Japanese and UK merged set. Transcriptome GSEA also identified significant downregulation of genes in the ferroptosis signaling pathway. Thus, the ferroptosis signaling pathway may be associated with the pathogenic mechanism of DDH.
Collapse
Affiliation(s)
- Yu Mori
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Kazuko Ueno
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Daisuke Chiba
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Ko Hashimoto
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Kazuyoshi Baba
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hidetatsu Tanaka
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takashi Aki
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masanori Ogasawara
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Naoto Shibasaki
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Toshimi Aizawa
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masao Nagasaki
- Human Biosciences Unit for the Top Global Course Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8507, Japan
- Correspondence:
| |
Collapse
|
9
|
Dai SM, Li FJ, Long HZ, Zhou ZW, Luo HY, Xu SG, Gao LC. Relationship between miRNA and ferroptosis in tumors. Front Pharmacol 2022; 13:977062. [PMID: 36408273 PMCID: PMC9672467 DOI: 10.3389/fphar.2022.977062] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/21/2022] [Indexed: 07/20/2023] Open
Abstract
Malignant tumor is a major killer that seriously endangers human health. At present, the methods of treating tumors include surgical resection, chemotherapy, radiotherapy and immunotherapy. However, the survival rate of patients is still very low due to the complicated mechanism of tumor occurrence and development and high recurrence rate. Individualized treatment will be the main direction of tumor treatment in the future. Because only by understanding the molecular mechanism of tumor development and differentially expressed genes can we carry out accurate treatment and improve the therapeutic effect. MicroRNA (miRNA) is a kind of small non coding RNA, which regulates gene expression at mRNA level and plays a key role in tumor regulation. Ferroptosis is a kind of programmed death caused by iron dependent lipid peroxidation, which is different from apoptosis, necrosis and other cell death modes. Now it has been found that ferroptosis plays an important role in the occurrence and development of tumors and drug resistance. More and more studies have found that miRNAs can regulate tumor development and drug resistance through ferroptosis. Therefore, in this review, the mechanism of ferroptosis is briefly outlined, and the relationship between miRNAs and ferroptosis in tumors is reviewed.
Collapse
Affiliation(s)
- Shang-Ming Dai
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Feng-Jiao Li
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hui-Zhi Long
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Zi-Wei Zhou
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hong-Yu Luo
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Shuo-Guo Xu
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Li-Chen Gao
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| |
Collapse
|
10
|
Fan X, Nie X, Huang J, Zhang L, Wang X, Lu M. A Composite Bioinformatic Analysis to Explore Endoplasmic Reticulum Stress-Related Prognostic Marker and Potential Pathogenic Mechanisms in Glioma by Integrating Multiomics Data. JOURNAL OF ONCOLOGY 2022; 2022:9886044. [PMID: 36245971 PMCID: PMC9553508 DOI: 10.1155/2022/9886044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/18/2022] [Accepted: 08/14/2022] [Indexed: 11/18/2022]
Abstract
In recent years, abnormal endoplasmic reticulum stress (ERS) response, as an important regulator of immunity, may play a vital role in the occurrence, development, and treatment of glioma. Weighted correlation network analysis (WGCNA) based on six glioma datasets was used to screen eight prognostic-related differentially expressed ERS-related genes (PR-DE-ERSGs) and to construct a prognostic model. BMP2 and HEY2 were identified as protective factors (HR < 1), and NUP107, DRAM1, F2R, PXDN, RNF19A, and SCG5 were identified as risk factors for glioma (HR > 1). QRT-PCR further supported significantly higher DRAM1 and lower SCG5 relative mRNA expression in gliomas. Our model has demonstrated excellent performance in predicting the prognosis of glioma patients from numerous datasets. In addition, the model shows good stability in multiple tests. Our model also shows broad clinical promise in predicting drug treatment effects. More immune cells/processes in the high-risk population with poor prognosis illustrate the importance of the tumor immunosuppressive environment in glioma. The potential role of the HEY2-based competitive endogenous RNA (ceRNA) regulatory network in glioma was validated and revealed the possible important role of glycolysis in glioma ERS. IDH1 and TP53 mutations with better prognosis were strongly associated with the risk score and PR-DE-ERSGs expression in the model. mDNAsi was also closely related to the risk score and clinical characteristics.
Collapse
Affiliation(s)
- Xin Fan
- Department of Emergency, Shangrao Hospital Affiliated to Nanchang University, Shangrao People's Hospital, Shangrao 334000, China
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Xiyi Nie
- Department of Neurosurgery, Yichun Hospital Affiliated to Nanchang University, Yichun People's Hospital, Yichun 334000, China
| | - Junwen Huang
- The First Clinical Medical College of Nanchang University, Nanchang 330000, China
| | - Lingling Zhang
- School of Stomatology, Nanchang University, Nanchang 330000, China
| | - Xifu Wang
- Department of Emergency, Shangrao Hospital Affiliated to Nanchang University, Shangrao People's Hospital, Shangrao 334000, China
| | - Min Lu
- Department of Emergency, Shangrao Hospital Affiliated to Nanchang University, Shangrao People's Hospital, Shangrao 334000, China
| |
Collapse
|
11
|
Fan X, Nie X, Huang J, Zhang L, Wang X, Lu M. A Composite Bioinformatic Analysis to Explore Endoplasmic Reticulum Stress-Related Prognostic Marker and Potential Pathogenic Mechanisms in Glioma by Integrating Multiomics Data. JOURNAL OF ONCOLOGY 2022. [DOI: https:/doi.org/10.1155/2022/9886044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
In recent years, abnormal endoplasmic reticulum stress (ERS) response, as an important regulator of immunity, may play a vital role in the occurrence, development, and treatment of glioma. Weighted correlation network analysis (WGCNA) based on six glioma datasets was used to screen eight prognostic-related differentially expressed ERS-related genes (PR-DE-ERSGs) and to construct a prognostic model. BMP2 and HEY2 were identified as protective factors (HR < 1), and NUP107, DRAM1, F2R, PXDN, RNF19A, and SCG5 were identified as risk factors for glioma (HR > 1). QRT-PCR further supported significantly higher DRAM1 and lower SCG5 relative mRNA expression in gliomas. Our model has demonstrated excellent performance in predicting the prognosis of glioma patients from numerous datasets. In addition, the model shows good stability in multiple tests. Our model also shows broad clinical promise in predicting drug treatment effects. More immune cells/processes in the high-risk population with poor prognosis illustrate the importance of the tumor immunosuppressive environment in glioma. The potential role of the HEY2-based competitive endogenous RNA (ceRNA) regulatory network in glioma was validated and revealed the possible important role of glycolysis in glioma ERS. IDH1 and TP53 mutations with better prognosis were strongly associated with the risk score and PR-DE-ERSGs expression in the model. mDNAsi was also closely related to the risk score and clinical characteristics.
Collapse
Affiliation(s)
- Xin Fan
- Department of Emergency, Shangrao Hospital Affiliated to Nanchang University, Shangrao People’s Hospital, Shangrao 334000, China
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Xiyi Nie
- Department of Neurosurgery, Yichun Hospital Affiliated to Nanchang University, Yichun People’s Hospital, Yichun 334000, China
| | - Junwen Huang
- The First Clinical Medical College of Nanchang University, Nanchang 330000, China
| | - Lingling Zhang
- School of Stomatology, Nanchang University, Nanchang 330000, China
| | - Xifu Wang
- Department of Emergency, Shangrao Hospital Affiliated to Nanchang University, Shangrao People’s Hospital, Shangrao 334000, China
| | - Min Lu
- Department of Emergency, Shangrao Hospital Affiliated to Nanchang University, Shangrao People’s Hospital, Shangrao 334000, China
| |
Collapse
|
12
|
Fan X, Nie X, Huang J, Zhang L, Wang X, Lu M. A Composite Bioinformatic Analysis to Explore Endoplasmic Reticulum Stress-Related Prognostic Marker and Potential Pathogenic Mechanisms in Glioma by Integrating Multiomics Data. JOURNAL OF ONCOLOGY 2022. [DOI: doi.org/10.1155/2022/9886044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
In recent years, abnormal endoplasmic reticulum stress (ERS) response, as an important regulator of immunity, may play a vital role in the occurrence, development, and treatment of glioma. Weighted correlation network analysis (WGCNA) based on six glioma datasets was used to screen eight prognostic-related differentially expressed ERS-related genes (PR-DE-ERSGs) and to construct a prognostic model. BMP2 and HEY2 were identified as protective factors (HR < 1), and NUP107, DRAM1, F2R, PXDN, RNF19A, and SCG5 were identified as risk factors for glioma (HR > 1). QRT-PCR further supported significantly higher DRAM1 and lower SCG5 relative mRNA expression in gliomas. Our model has demonstrated excellent performance in predicting the prognosis of glioma patients from numerous datasets. In addition, the model shows good stability in multiple tests. Our model also shows broad clinical promise in predicting drug treatment effects. More immune cells/processes in the high-risk population with poor prognosis illustrate the importance of the tumor immunosuppressive environment in glioma. The potential role of the HEY2-based competitive endogenous RNA (ceRNA) regulatory network in glioma was validated and revealed the possible important role of glycolysis in glioma ERS. IDH1 and TP53 mutations with better prognosis were strongly associated with the risk score and PR-DE-ERSGs expression in the model. mDNAsi was also closely related to the risk score and clinical characteristics.
Collapse
Affiliation(s)
- Xin Fan
- Department of Emergency, Shangrao Hospital Affiliated to Nanchang University, Shangrao People’s Hospital, Shangrao 334000, China
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Xiyi Nie
- Department of Neurosurgery, Yichun Hospital Affiliated to Nanchang University, Yichun People’s Hospital, Yichun 334000, China
| | - Junwen Huang
- The First Clinical Medical College of Nanchang University, Nanchang 330000, China
| | - Lingling Zhang
- School of Stomatology, Nanchang University, Nanchang 330000, China
| | - Xifu Wang
- Department of Emergency, Shangrao Hospital Affiliated to Nanchang University, Shangrao People’s Hospital, Shangrao 334000, China
| | - Min Lu
- Department of Emergency, Shangrao Hospital Affiliated to Nanchang University, Shangrao People’s Hospital, Shangrao 334000, China
| |
Collapse
|
13
|
Lu L, Liu LP, Gui R, Dong H, Su YR, Zhou XH, Liu FX. Discovering common pathogenetic processes between COVID-19 and sepsis by bioinformatics and system biology approach. Front Immunol 2022; 13:975848. [PMID: 36119022 PMCID: PMC9471316 DOI: 10.3389/fimmu.2022.975848] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Corona Virus Disease 2019 (COVID-19), an acute respiratory infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has spread rapidly worldwide, resulting in a pandemic with a high mortality rate. In clinical practice, we have noted that many critically ill or critically ill patients with COVID-19 present with typical sepsis-related clinical manifestations, including multiple organ dysfunction syndrome, coagulopathy, and septic shock. In addition, it has been demonstrated that severe COVID-19 has some pathological similarities with sepsis, such as cytokine storm, hypercoagulable state after blood balance is disrupted and neutrophil dysfunction. Considering the parallels between COVID-19 and non-SARS-CoV-2 induced sepsis (hereafter referred to as sepsis), the aim of this study was to analyze the underlying molecular mechanisms between these two diseases by bioinformatics and a systems biology approach, providing new insights into the pathogenesis of COVID-19 and the development of new treatments. Specifically, the gene expression profiles of COVID-19 and sepsis patients were obtained from the Gene Expression Omnibus (GEO) database and compared to extract common differentially expressed genes (DEGs). Subsequently, common DEGs were used to investigate the genetic links between COVID-19 and sepsis. Based on enrichment analysis of common DEGs, many pathways closely related to inflammatory response were observed, such as Cytokine-cytokine receptor interaction pathway and NF-kappa B signaling pathway. In addition, protein-protein interaction networks and gene regulatory networks of common DEGs were constructed, and the analysis results showed that ITGAM may be a potential key biomarker base on regulatory analysis. Furthermore, a disease diagnostic model and risk prediction nomogram for COVID-19 were constructed using machine learning methods. Finally, potential therapeutic agents, including progesterone and emetine, were screened through drug-protein interaction networks and molecular docking simulations. We hope to provide new strategies for future research and treatment related to COVID-19 by elucidating the pathogenesis and genetic mechanisms between COVID-19 and sepsis.
Collapse
Affiliation(s)
- Lu Lu
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Le-Ping Liu
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hang Dong
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yan-Rong Su
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiong-Hui Zhou
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Feng-Xia Liu
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Feng-Xia Liu,
| |
Collapse
|
14
|
Cui Z, Mo J, Wang L, Wang R, Cheng F, Wang L, Yang X, Wang W. Integrated Bioinformatics Analysis of Serine Racemase as an Independent Prognostic Biomarker in Endometrial Cancer. Front Genet 2022; 13:906291. [PMID: 35923695 PMCID: PMC9340001 DOI: 10.3389/fgene.2022.906291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Endometrial cancer (EC) kills about 76,000 women worldwide, with the highest incidence in industrialized countries. Because of the rise in disease mortality and new diagnoses, EC is now a top priority for women’s health. Serine racemase (SRR) is thought to play a role in the central nervous system, but its role in cancers, particularly in EC, is largely unknown. The current study starts with a pan-cancer examination of SRR’s expression and prognostic value before delving into SRR’s potential cancer-suppressing effect in patients with EC. SRR may affect the endometrial tumor immune microenvironment, according to subsequent immune-related analysis. SRR expression is also linked to several genes involved in specific pathways such as ferroptosis, N6-methyladenosine methylation, and DNA damage repair. Finally, we used the expression, correlation, and survival analyses to investigate the upstream potential regulatory non-coding RNAs of SRR. Overall, our findings highlight the prognostic significance of SRR in patients with EC, and we can formulate a reasonable hypothesis that SRR influences metabolism and obstructs key carcinogenic processes in EC.
Collapse
Affiliation(s)
- Zhiwei Cui
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiantao Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lijun Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rongli Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Feiyan Cheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lihui Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xinyuan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Xinyuan Yang, ; Wei Wang,
| | - Wei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Xinyuan Yang, ; Wei Wang,
| |
Collapse
|
15
|
Sun K, Hong JJ, Chen DM, Luo ZX, Li JZ. Identification and validation of necroptosis-related prognostic gene signature and tumor immune microenvironment infiltration characterization in esophageal carcinoma. BMC Gastroenterol 2022; 22:344. [PMID: 35840882 PMCID: PMC9284853 DOI: 10.1186/s12876-022-02423-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/11/2022] [Indexed: 12/16/2022] Open
Abstract
Background Esophageal carcinoma (ESCA) is a common malignancy with a poor prognosis. Previous research has suggested that necroptosis is involved in anti-tumor immunity and promotes oncogenesis and cancer metastasis, which in turn affects tumor prognosis. However, the role of necroptosis in ESCA is unclear. This study aimed to investigate the relationships between necroptosis-related genes (NRGs) and ESCA. Methods and results The clinical data and gene expression profiles of ESCA patients were extracted from The Cancer Genome Atlas (TCGA), and 159 NRGs were screened from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. We then identified 52 differentially expressed NRGs associated with ESCA and used them for further analysis. Gene ontology (GO) and KEGG functional enrichment analyses showed that these NRGs were mostly associated with the regulation of necroptosis, Influenza A, apoptosis, NOD-like receptor, and NF-Kappa B signaling pathway. Next, univariate and multivariate Cox regression and LASSO analysis were used to identify the correlation between NRGs and the prognosis of ESCA. We constructed a prognostic model to predict the prognosis of ESCA based on SLC25A5, PPIA, and TNFRSF10B; the model classified patients into high- and low-risk subgroups based on the patient’s risk score. Furthermore, the receiver operating characteristic (ROC) curve was plotted, and the model was affirmed to perform moderately well for prognostic predictions. In addition, Gene Expression Omnibus (GEO) datasets were selected to validate the applicability and prognostic value of our predictive model. Based on different clinical variables, we compared the risk scores between the subgroups of different clinical features. We also analyzed the predictive value of this model for drug sensitivity. Moreover, Immunohistochemical (IHC) validation experiments explored that these three NRGs were expressed significantly higher in ESCA tissues than in adjacent non-tumor tissues. In addition, a significant correlation was observed between the three NRGs and immune-cell infiltration and immune checkpoints in ESCA. Conclusions In summary, we successfully constructed and validated a novel necroptosis-related signature containing three genes (SLC25A5, PPIA, and TNFRSF10B) for predicting prognosis in patients with ESCA; these three genes might also play a crucial role in the progression and immune microenvironment of ESCA. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-022-02423-6.
Collapse
Affiliation(s)
- Kai Sun
- Department of Oncology, Liuzhou People's Hospital, Liuzhou, 545001, Guangxi Zhuang Autonomous Region, China.
| | - Juan-Juan Hong
- Department of Oncology, Liuzhou People's Hospital, Liuzhou, 545001, Guangxi Zhuang Autonomous Region, China
| | - Dong-Mei Chen
- Department of Oncology, Liuzhou People's Hospital, Liuzhou, 545001, Guangxi Zhuang Autonomous Region, China.,Guilin Medical University, Guilin, 541010, Guangxi Zhuang Autonomous Region, China
| | - Zhan-Xiong Luo
- Department of Oncology, Liuzhou People's Hospital, Liuzhou, 545001, Guangxi Zhuang Autonomous Region, China.
| | - Jing-Zhang Li
- Department of Oncology, Liuzhou People's Hospital, Liuzhou, 545001, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
16
|
Fan X, Zhang L, Huang J, Zhong Y, Fan Y, Zhou T, Lu M. An Integrated Immune-Related Bioinformatics Analysis in Glioma: Prognostic Signature's Identification and Multi-Omics Mechanisms' Exploration. Front Genet 2022; 13:889629. [PMID: 35601497 PMCID: PMC9114310 DOI: 10.3389/fgene.2022.889629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/18/2022] [Indexed: 12/05/2022] Open
Abstract
As the traditional treatment for glioma, the most common central nervous system malignancy with poor prognosis, the efficacy of high-intensity surgery combined with radiotherapy and chemotherapy is not satisfactory. The development of individualized scientific treatment strategy urgently requires the guidance of signature with clinical predictive value. In this study, five prognosis-related differentially expressed immune-related genes (PR-DE-IRGs) (CCNA2, HMGB2, CASP3, APOBEC3C, and BMP2) highly associated with glioma were identified for a prognostic model through weighted gene co-expression network analysis, univariate Cox and lasso regression. Kaplan-Meier survival curves, receiver operating characteristic curves and other methods have shown that the model has good performance in predicting the glioma patients' prognosis. Further combined nomogram provided better predictive performance. The signature's guiding value in clinical treatment has also been verified by multiple analysis results. We also constructed a comprehensive competing endogenous RNA (ceRNA) regulatory network based on the protective factor BMP2 to further explore its potential role in glioma progression. Numerous immune-related biological functions and pathways were enriched in a high-risk population. Further multi-omics integrative analysis revealed a strong correlation between tumor immunosuppressive environment/IDH1 mutation and signature, suggesting that their cooperation plays an important role in glioma progression.
Collapse
Affiliation(s)
- Xin Fan
- Department of Emergency Medicine, Shangrao Hospital Affiliated to Nanchang University, Shangrao People’s Hospital, Shangrao, China
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lingling Zhang
- School of Stomatology, Nanchang University, Nanchang, China
| | - Junwen Huang
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Yun Zhong
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Yanting Fan
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Tong Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Lu
- Department of Emergency Medicine, Shangrao Hospital Affiliated to Nanchang University, Shangrao People’s Hospital, Shangrao, China
| |
Collapse
|