1
|
Rong Y, Li B, Hou Y, Zhang L, Jia R, Zhu J. Influences of Stocking Density on Antioxidant Status, Nutrients Composition, and Lipid Metabolism in the Muscles of Cyprinus carpio under Rice-Fish Co-Culture. Antioxidants (Basel) 2024; 13:849. [PMID: 39061917 PMCID: PMC11274104 DOI: 10.3390/antiox13070849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Cyprinus carpio is a significant freshwater species with substantial nutritional and economic value. Rice-carp co-culture represents one of its principal cultivation methods. However, in the system, the optimal farming density for carp and the impact of high stocking density on their muscle nutritional composition have yet to be explored. Thus, the objective of the current study was to investigate the influences of stocking density on the muscle nutrient profiles and metabolism of C. carpio in rice-fish co-culture systems. Common carp were cultured at three stocking densities, low density (LD), medium density (MD), and high density (HD), over a period of 60 days. Following this, comprehensive analyses incorporating physiological, biochemical, and multi-omics sequencing were conducted on the muscle tissue of C. carpio. The results demonstrated that HD treatment led to a reduction in the antioxidant capacity of C. carpio, while resulting in elevated levels of various fatty acids in muscle tissue, including saturated fatty acids (SFAs), omega-3 polyunsaturated fatty acids (n-3 PUFAs), and omega-6 polyunsaturated fatty acids (n-6 PUFAs). The metabolome analysis showed that HD treatment caused a marked reduction in 43 metabolites and a significant elevation in 30 metabolites, primarily linked to lipid and amino acid metabolism. Additionally, transcriptomic analysis revealed that the abnormalities in lipid metabolism induced by high-stocking-density treatment may be associated with significant alterations in the PPAR signaling pathway and adipokine signaling pathway. Overall, our findings indicate that in rice-fish co-culture systems, high stocking density disrupted the balance of antioxidant status and lipid metabolism in the muscles of C. carpio.
Collapse
Affiliation(s)
- Yongrong Rong
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (Y.R.); (B.L.); (Y.H.); (L.Z.)
| | - Bing Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (Y.R.); (B.L.); (Y.H.); (L.Z.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yiran Hou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (Y.R.); (B.L.); (Y.H.); (L.Z.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Liqiang Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (Y.R.); (B.L.); (Y.H.); (L.Z.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Rui Jia
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (Y.R.); (B.L.); (Y.H.); (L.Z.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jian Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (Y.R.); (B.L.); (Y.H.); (L.Z.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
2
|
Gandhi S, Sweeney G, Perry CGR. Recent Advances in Pre-Clinical Development of Adiponectin Receptor Agonist Therapies for Duchenne Muscular Dystrophy. Biomedicines 2024; 12:1407. [PMID: 39061981 PMCID: PMC11274162 DOI: 10.3390/biomedicines12071407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by genetic mutations in the cytoskeletal-sarcolemmal anchor protein dystrophin. Repeated cycles of sarcolemmal tearing and repair lead to a variety of secondary cellular and physiological stressors that are thought to contribute to weakness, atrophy, and fibrosis. Collectively, these stressors can contribute to a pro-inflammatory milieu in locomotor, cardiac, and respiratory muscles. Given the many unwanted side effects that accompany current anti-inflammatory steroid-based approaches for treating DMD (e.g., glucocorticoids), there is a need to develop new therapies that address inflammation and other cellular dysfunctions. Adiponectin receptor (AdipoR) agonists, which stimulate AdipoR1 and R2 isoforms on various cell types, have emerged as therapeutic candidates for DMD due to their anti-inflammatory, anti-fibrotic, and pro-myogenic properties in pre-clinical human and rodent DMD models. Although these molecules represent a new direction for therapeutic intervention, the mechanisms through which they elicit their beneficial effects are not yet fully understood, and DMD-specific data is limited. The overarching goal of this review is to investigate how adiponectin signaling may ameliorate pathology associated with dystrophin deficiency through inflammatory-dependent and -independent mechanisms and to determine if current data supports their future progression to clinical trials.
Collapse
Affiliation(s)
- Shivam Gandhi
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada;
| | - Gary Sweeney
- Department of Biology and Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada;
| | - Christopher G. R. Perry
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada;
| |
Collapse
|
3
|
Li Y, Long J, Zhang Z, Yin W. Insights into the unique roles of dermal white adipose tissue (dWAT) in wound healing. Front Physiol 2024; 15:1346612. [PMID: 38465261 PMCID: PMC10920283 DOI: 10.3389/fphys.2024.1346612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/31/2024] [Indexed: 03/12/2024] Open
Abstract
Dermal white adipose tissue (dWAT) is a newly recognized layer of adipocytes within the reticular dermis of the skin. In many mammals, this layer is clearly separated by panniculus carnosus from subcutaneous adipose tissue (sWAT). While, they concentrated around the hair shaft and follicle, sebaceous gland, and arrector pili muscle, and forms a very specific cone geometry in human. Both the anatomy and the histology indicate that dWAT has distinct development and functions. Different from sWAT, the developmental origin of dWAT shares a common precursor with dermal fibroblasts during embryogenesis. Therefore, when skin injury happens and mature adipocytes in dWAT are exposed, they may undergo lipolysis and dedifferentiate into fibroblasts to participate in wound healing as embryogenetic stage. Studies using genetic strategies to selectively ablate dermal adipocytes observed delayed revascularization and re-epithelialization in wound healing. This review specifically summarizes the hypotheses of the functions of dWAT in wound healing. First, lipolysis of dermal adipocytes could contribute to wound healing by regulating inflammatory macrophage infiltration. Second, loss of dermal adipocytes occurs at the wound edge, and adipocyte-derived cells then become ECM-producing wound bed myofibroblasts during the proliferative phase of repair. Third, mature dermal adipocytes are rich resources for adipokines and cytokines and could release them in response to injury. In addition, the dedifferentiated dermal adipocytes are more sensitive to redifferentiation protocol and could undergo expansion in infected wound. We then briefly introduce the roles of dWAT in protecting the skin from environmental challenges: production of an antimicrobial peptide against infection. In the future, we believe there may be great potential for research in these areas: (1) taking advantage of the plasticity of dermal adipocytes and manipulating them in wound healing; (2) investigating the precise mechanism of dWAT expansion in infected wound healing.
Collapse
Affiliation(s)
| | | | | | - Wen Yin
- *Correspondence: Ziang Zhang, ; Wen Yin,
| |
Collapse
|
4
|
Ansarin A, Mahdavi AM, Javadivala Z, Shanehbandi D, Zarredar H, Ansarin K. The cross-talk between leptin and circadian rhythm signaling proteins in physiological processes: a systematic review. Mol Biol Rep 2023; 50:10427-10443. [PMID: 37874505 DOI: 10.1007/s11033-023-08887-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Today, modern lifestyles and disrupted sleep patterns cause circadian clock rhythm impairments that are associated with altered leptin levels, which subsequently affect a wide range of physiological processes and have significant health burdens on societies. Nevertheless, there has been no systematic review of circadian clock genes and proteins, leptin, and related signaling pathways. METHODS Accordingly, we systematically reviewed circadian clock proteins, leptin, and molecular mechanisms between them by searching Pubmed, Scopus, ProQuest, Web of Sciences, and Google Scholar until September 2022. After considering the inclusion and exclusion criteria, 20 animal studies were selected. The risk of bias was assessed in each study. RESULTS The results clarified the reciprocal interconnected relationship between circadian clock genes and leptin. Circadian clock genes regulate leptin expression and signaling via different mechanisms, such as CLOCK-BMAL1 heterodimers, which increase the expression of PPARs. PPARs induce the expression of C/EBPα, a key factor in upregulating leptin expression. CLOCK-BMAL1 also induces the expression of Per1 and Rev-erb genes. PER1 activates mTORC1 and mTORC1 enhances the expression of C/EBPα. In addition, REV-ERBs activate the leptin signaling pathway. Also, leptin controls the expression of circadian clock genes by triggering the AMPK and ERK/MAPK signaling pathways, which regulate the activity of PPARs. Moreover, the roles of these molecular mechanisms are elucidated in different physiological processes and organs. CONCLUSIONS Crosstalk between circadian clock genes and leptin and their affecting elements should be considered in the selection of new therapeutic targets for related disorders, especially obesity and metabolic impairments.
Collapse
Affiliation(s)
- Atefeh Ansarin
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Pashmineh Research Complex, Daneshgah Street, P.O. Box: 5448151429, Tabriz, Iran
| | - Aida Malek Mahdavi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Pashmineh Research Complex, Daneshgah Street, P.O. Box: 5448151429, Tabriz, Iran
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Javadivala
- Department of Health Education & Promotion, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Zarredar
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Pashmineh Research Complex, Daneshgah Street, P.O. Box: 5448151429, Tabriz, Iran
| | - Khalil Ansarin
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Pashmineh Research Complex, Daneshgah Street, P.O. Box: 5448151429, Tabriz, Iran.
| |
Collapse
|
5
|
Chen J, Cai B, Tian C, Jiang D, Shi H, Huang Y, Zhu C, Li G, Deng S. RNA Sequencing (RNA-Seq) Analysis Reveals Liver Lipid Metabolism Divergent Adaptive Response to Low- and High-Salinity Stress in Spotted Scat ( Scatophagus argus). Animals (Basel) 2023; 13:ani13091503. [PMID: 37174540 PMCID: PMC10177406 DOI: 10.3390/ani13091503] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Spotted scat (Scatophagus argus) can tolerate a wide range of salinity fluctuations. It is a good model for studying environmental salinity adaptation. Lipid metabolism plays an important role in salinity adaptation in fish. To elucidate the mechanism of lipid metabolism in the osmoregulation, the liver transcriptome was analyzed after 22 d culture with a salinity of 5 ppt (Low-salinity group: LS), 25 ppt (Control group: Ctrl), and 35 ppt (High-salinity group: HS) water by using RNA sequencing (RNA-seq) in spotted scat. RNA-seq analysis showed that 1276 and 2768 differentially expressed genes (DEGs) were identified in the LS vs. Ctrl and HS vs. Ctrl, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the pathways of steroid hormone biosynthesis, steroid biosynthesis, glycerophospholipid metabolism, glycerolipid metabolism, and lipid metabolism were significantly enriched in the LS vs. Ctrl. The genes of steroid biosynthesis (sqle, dhcr7, and cyp51a1), steroid hormone biosynthesis (ugt2a1, ugt2a2, ugt2b20, and ugt2b31), and glycerophospholipid metabolism (cept1, pla2g4a, and ptdss2) were significantly down-regulated in the LS vs. Ctrl. The pathways related to lipid metabolisms, such as fatty acid metabolism, fatty acid biosynthesis, peroxisome proliferator-activated receptor (PPAR) signaling pathway, adipocytokine signaling pathway, fatty acid degradation, and unsaturated fatty acid biosynthesis, were significantly enriched in the HS vs. Ctrl. The genes of unsaturated fatty acid biosynthesis (scd1, hacd3, fads2, pecr, and elovl1) and adipocytokine signaling pathway (g6pc1, socs1, socs3, adipor2, pck1, and pparα) were significantly up-regulated in the HS vs. Ctrl. These results suggest that the difference in liver lipid metabolism is important to adapt to low- and high-salinity stress in spotted scat, which clarifies the molecular regulatory mechanisms of salinity adaptation in euryhaline fish.
Collapse
Affiliation(s)
- Jieqing Chen
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Bosheng Cai
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Changxu Tian
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Dongneng Jiang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| | - Hongjuan Shi
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| | - Yang Huang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| | - Chunhua Zhu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| | - Guangli Li
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Siping Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| |
Collapse
|
6
|
Shirakawa K, Sano M. Drastic transformation of visceral adipose tissue and peripheral CD4 T cells in obesity. Front Immunol 2023; 13:1044737. [PMID: 36685567 PMCID: PMC9846168 DOI: 10.3389/fimmu.2022.1044737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Obesity has a pronounced effect on the immune response in systemic organs that results in not only insulin resistance but also altered immune responses to infectious diseases and malignant tumors. Obesity-associated microenvironmental changes alter transcriptional expression and metabolism in T cells, leading to alterations in T-cell differentiation, proliferation, function, and survival. Adipokines, cytokines, and lipids derived from obese visceral adipose tissue (VAT) may also contribute to the systemic T-cell phenotype, resulting in obesity-specific pathogenesis. VAT T cells, which have multiple roles in regulating homeostasis and energy utilization and defending against pathogens, are most susceptible to obesity. In particular, many studies have shown that CD4 T cells are deeply involved in the homeostasis of VAT endocrine and metabolic functions and in obesity-related chronic inflammation. In obesity, macrophages and adipocytes in VAT function as antigen-presenting cells and contribute to the obesity-specific CD4 T-cell response by inducing CD4 T-cell proliferation and differentiation into inflammatory effectors via interactions between major histocompatibility complex class II and T-cell receptors. When obesity persists, prolonged stimulation by leptin and circulating free fatty acids, repetitive antigen stimulation, activating stress responses, and hypoxia induce exhaustion of CD4 T cells in VAT. T-cell exhaustion is characterized by restricted effector function, persistent expression of inhibitory receptors, and a transcriptional state distinct from functional effector and memory T cells. Moreover, obesity causes thymic regression, which may result in homeostatic proliferation of obesity-specific T-cell subsets due to changes in T-cell metabolism and gene expression in VAT. In addition to causing T-cell exhaustion, obesity also accelerates cellular senescence of CD4 T cells. Senescent CD4 T cells secrete osteopontin, which causes further VAT inflammation. The obesity-associated transformation of CD4 T cells remains a negative legacy even after weight loss, causing treatment resistance of obesity-related conditions. This review discusses the marked transformation of CD4 T cells in VAT and systemic organs as a consequence of obesity-related microenvironmental changes.
Collapse
Affiliation(s)
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
7
|
Mihajlović M, Ninić A, Ostojić M, Sopić M, Stefanović A, Vekić J, Antonić T, Zeljković D, Trifunović B, Spasojević-Kalimanovska V, Bogavac Stanojević N, Jančić I, Zeljković A. Association of Adiponectin Receptors with Metabolic and Immune Homeostasis Parameters in Colorectal Cancer: In Silico Analysis and Observational Findings. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14995. [PMID: 36429712 PMCID: PMC9691131 DOI: 10.3390/ijerph192214995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Adiponectin (ADIPOQ) as both a regulator of metabolic homeostasis and a protein involved in immune response might be of particular interest to contemporary laboratory medicine, especially in terms of minimally invasive diagnostics. The diverse roles of ADIPOQ with regard to the immune and metabolic aspects of colorectal carcinogenesis have been proposed. However, the expression of its receptors ADIPOR1 and ADIPOR2 is scarcely explored in peripheral blood mononuclear cells (PBMCs). Moreover, ADIPORs' relationships with the immune response mediator TNF-α have not been previously investigated in the PBMCs of CRC patients. This study used both in silico and observational case-control analyses with the aim of exploring the association of ADIPOR gene expression and ADIPOQ single nucleotide polymorphisms (SNPs) with the inflammatory marker TNF-α and lipid status parameters in patients with CRC. Publicly available transcriptomic datasets (GSE47756, GSE44076) obtained from analyses of monocytes and CRC tissue samples were employed for the in silico evaluation of ADIPORs' specific genetic traits. GSE47756 and GSE44076 datasets were processed with GSEA software to provide a genetic fingertip of different signaling pathways associated with ADIPORs' mRNA levels. The case-control aspect of the study included the PBMC samples of 73 patients diagnosed with CRC and 80 healthy volunteers. The PCR method was carried out for the PBMC gene expression analysis (ADIPOR1, ADIPOR2, TNF-α mRNA levels) and for the subjects' genotyping (ADIPOQ rs266729, ADIPOR1 rs7539542). GSEA showed significant associations of ADIPOR mRNA expression with gene sets related to metabolic and immune homeostasis in both datasets. The case-control study revealed the association of ADIPOR1 rs7539542 with reduced lipid status parameters in CRC. In addition, PBMC ADIPOR1 mRNA levels decreased in CRC (p < 0.001), whereas ADIPOR2 mRNA did not differ between the groups (p = 0.442). A reduction in PBMC TNF-α mRNA levels was noted in CRC (p < 0.05). Our results indicate that ADIPOR1 and ADIPOR2 play a significant role in the alteration of both metabolic and immune homeostasis during the progression of CRC. For the first time, ADIPOR1 is shown to be a specific receptor for mediating ADIPOQ's effects in the PBMCs of CRC patients.
Collapse
Affiliation(s)
- Marija Mihajlović
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Ana Ninić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Marija Ostojić
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Serbia
| | - Miron Sopić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandra Stefanović
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Vekić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Tamara Antonić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Dejan Zeljković
- Clinic of General Surgery, Military Medical Academy, 11000 Belgrade, Serbia
| | - Bratislav Trifunović
- Clinic of General Surgery, Military Medical Academy, 11000 Belgrade, Serbia
- Faculty of Medicine, Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | | | - Nataša Bogavac Stanojević
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Ivan Jančić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandra Zeljković
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
8
|
Liu J, Lai F, Hou Y, Zheng R. Leptin signaling and leptin resistance. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:363-384. [PMID: 37724323 PMCID: PMC10388810 DOI: 10.1515/mr-2022-0017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/12/2022] [Indexed: 09/20/2023]
Abstract
With the prevalence of obesity and associated comorbidities, studies aimed at revealing mechanisms that regulate energy homeostasis have gained increasing interest. In 1994, the cloning of leptin was a milestone in metabolic research. As an adipocytokine, leptin governs food intake and energy homeostasis through leptin receptors (LepR) in the brain. The failure of increased leptin levels to suppress feeding and elevate energy expenditure is referred to as leptin resistance, which encompasses complex pathophysiological processes. Within the brain, LepR-expressing neurons are distributed in hypothalamus and other brain areas, and each population of the LepR-expressing neurons may mediate particular aspects of leptin effects. In LepR-expressing neurons, the binding of leptin to LepR initiates multiple signaling cascades including janus kinase (JAK)-signal transducers and activators of transcription (STAT) phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT), extracellular regulated protein kinase (ERK), and AMP-activated protein kinase (AMPK) signaling, etc., mediating leptin actions. These findings place leptin at the intersection of metabolic and neuroendocrine regulations, and render leptin a key target for treating obesity and associated comorbidities. This review highlights the main discoveries that shaped the field of leptin for better understanding of the mechanism governing metabolic homeostasis, and guides the development of safe and effective interventions to treat obesity and associated diseases.
Collapse
Affiliation(s)
- Jiarui Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Futing Lai
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Yujia Hou
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience of Ministry of Education, Peking University, Beijing, China
- Key Laboratory for Neuroscience of National Health Commission, Peking University, Beijing 100191, China
| |
Collapse
|
9
|
Oh KK, Adnan M. Revealing Potential Bioactive Compounds and Mechanisms of Lithospermum erythrorhizon against COVID-19 via Network Pharmacology Study. Curr Issues Mol Biol 2022; 44:1788-1809. [PMID: 35678652 PMCID: PMC9164027 DOI: 10.3390/cimb44050123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
Lithospermum erythrorhizon (LE) is known in Korean traditional medicine for its potent therapeutic effect and antiviral activity. Currently, coronavirus (COVID-19) disease is a developing global pandemic that can cause pneumonia. A precise study of the infection and molecular pathway of COVID-19 is therefore obviously important. The compounds of LE were identified from the Natural Product Activity and Species Source (NPASS) database and screened by SwissADME. The targets interacted with the compounds and were selected using the Similarity Ensemble Approach (SEA) and Swiss Target Prediction (STP) methods. PubChem was used to classify targets linked to COVID-19. The protein-protein interaction (PPI) networks and signaling pathways-targets-bioactive compounds (STB) networks were constructed by RPackage. Lastly, we performed the molecular docking test (MDT) to verify the binding affinity between significant complexes through AutoDock 1.5.6. The Natural Product Activity and Species Source (NPASS) revealed a total of 82 compounds from LE, which interacted with 1262 targets (SEA and STP), and 249 overlapping targets were identified. The 19 final overlapping targets from the 249 targets and 356 COVID-19 targets were ultimately selected. A bubble chart exhibited that inhibition of the MAPK signaling pathway could be a key mechanism of LE on COVID-19. The three key targets (RELA, TNF, and VEGFA) directly related to the MAPK signaling pathway, and methyl 4-prenyloxycinnamate, tormentic acid, and eugenol were related to each target and had the most stable binding affinity. The three bioactive effects on the three key targets might be synergistic effects to alleviate symptoms of COVID-19 infection. Overall, this study shows that LE can play a role in alleviating COVID-19 symptoms, revealing that the three components (bioactive compounds, targets, and mechanism) are the most significant elements of LE against COVID-19. However, the promising mechanism of LE on COVID-19 is only predicted on the basis of mining data; the efficacy of the chemical compounds and the affinity between compounds and the targets in experiment was ignored, which should be further substantiated through clinical trials.
Collapse
Affiliation(s)
- Ki-Kwang Oh
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea;
| | | |
Collapse
|
10
|
Hepatic transcriptome analysis identifies genes, polymorphisms and pathways involved in the fatty acids metabolism in sheep. PLoS One 2021; 16:e0260514. [PMID: 34941886 PMCID: PMC8699643 DOI: 10.1371/journal.pone.0260514] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/12/2021] [Indexed: 12/02/2022] Open
Abstract
Fatty acids (FA) in ruminants, especially unsaturated FA (USFA) have important impact in meat quality, nutritional value, and flavour quality of meat, and on consumer’s health. Identification of the genetic factors controlling the FA composition and metabolism is pivotal to select sheep that produce higher USFA and lower saturated (SFA) for the benefit of sheep industry and consumers. Therefore, this study was aimed to investigate the transcriptome profiling in the liver tissues collected from sheep with divergent USFA content in longissimus muscle using RNA deep-sequencing. From sheep (n = 100) population, liver tissues with higher (n = 3) and lower (n = 3) USFA content were analysed using Illumina HiSeq 2500. The total number of reads produced for each liver sample were ranged from 21.28 to 28.51 million with a median of 23.90 million. Approximately, 198 genes were differentially regulated with significance level of p-adjusted value <0.05. Among them, 100 genes were up-regulated, and 98 were down-regulated (p<0.01, FC>1.5) in the higher USFA group. A large proportion of key genes involved in FA biosynthesis, adipogenesis, fat deposition, and lipid metabolism were identified, such as APOA5, SLC25A30, GFPT1, LEPR, TGFBR2, FABP7, GSTCD, and CYP17A. Pathway analysis revealed that glycosaminoglycan biosynthesis- keratan sulfate, adipokine signaling, galactose metabolism, endocrine and other factors-regulating calcium metabolism, mineral metabolism, and PPAR signaling pathway were playing important regulatory roles in FA metabolism. Importantly, polymorphism and association analyses showed that mutation in APOA5, CFHR5, TGFBR2 and LEPR genes could be potential markers for the FA composition in sheep. These polymorphisms and transcriptome networks controlling the FA variation could be used as genetic markers for FA composition-related traits improvement. However, functional validation is required to confirm the effect of these SNPs in other sheep population in order to incorporate them in the sheep breeding program.
Collapse
|
11
|
Petrelli A, Giovenzana A, Insalaco V, Phillips BE, Pietropaolo M, Giannoukakis N. Autoimmune Inflammation and Insulin Resistance: Hallmarks So Far and Yet So Close to Explain Diabetes Endotypes. Curr Diab Rep 2021; 21:54. [PMID: 34902055 PMCID: PMC8668851 DOI: 10.1007/s11892-021-01430-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2021] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW Diabetes mellitus can be categorized into two major variants, type 1 and type 2. A number of traits such as clinical phenotype, age at disease onset, genetic background, and underlying pathogenesis distinguish the two forms. RECENT FINDINGS Recent evidence indicates that type 1 diabetes can be accompanied by insulin resistance and type 2 diabetes exhibits self-reactivity. These two previously unknown conditions can influence the progression and outcome of the disease. Unlike most conventional considerations, diabetes appears to consist of a spectrum of intermediate phenotypes that includes monogenic and polygenic loci linked to inflammatory processes including autoimmunity, beta cell impairment, and insulin resistance. Here we discuss why a shift of the classical bi-modal view of diabetes (autoimmune vs. non-autoimmune) is necessary in favor of a model of an immunological continuum of endotypes lying between the two extreme "insulin-resistant" and "autoimmune beta cell targeting," shaped by environmental and genetic factors which contribute to determine specific immune-conditioned outcomes.
Collapse
Affiliation(s)
- Alessandra Petrelli
- grid.18887.3e0000000417581884San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Anna Giovenzana
- grid.18887.3e0000000417581884San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- grid.15496.3f0000 0001 0439 0892Vita-Salute San Raffaele University, Milan, Italy
| | - Vittoria Insalaco
- grid.18887.3e0000000417581884San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Brett E. Phillips
- grid.417046.00000 0004 0454 5075Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA USA
| | - Massimo Pietropaolo
- grid.39382.330000 0001 2160 926XDivision of Diabetes Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX USA
| | - Nick Giannoukakis
- grid.417046.00000 0004 0454 5075Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA USA
| |
Collapse
|
12
|
Carbone F, Bonaventura A, Liberale L, Paolino S, Torre F, Dallegri F, Montecucco F, Cutolo M. Atherosclerosis in Rheumatoid Arthritis: Promoters and Opponents. Clin Rev Allergy Immunol 2020; 58:1-14. [PMID: 30259381 DOI: 10.1007/s12016-018-8714-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Substantial epidemiological data identified cardiovascular (CV) diseases as a main cause of mortality in patients with rheumatoid arthritis (RA). In light of this, RA patients may benefit from additional CV risk screening and more intensive prevention strategies. Nevertheless, current algorithms for CV risk stratification still remain tailored on general population and are burdened by a significant underestimation of CV risk in RA patients. Acute CV events in patients with RA are largely related to an accelerated atherosclerosis. As pathophysiological features of atherosclerosis overlap those occurring in the inflamed RA synovium, the understanding of those common pathways represents an urgent need and a leading challenge for CV prevention in patients with RA. Genetic background, metabolic status, gut microbiome, and systemic inflammation have been also suggested as additional key pro-atherosclerotic factors. The aim of this narrative review is to update the current knowledge about pathophysiology of atherogenesis in RA patients and potential anti-atherosclerotic effects of disease-modifying anti-rheumatic drugs.
Collapse
Affiliation(s)
- Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.,Center for Molecular Cardiology, University of Zürich, 12 Wagistrasse, 8952, Schlieren, Switzerland
| | - Sabrina Paolino
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, San Martino Polyclinic Hospital, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino Genoa, 10 Largo Benzi, 16132, Genoa, Italy
| | - Francesco Torre
- IRCCS Ospedale Policlinico San Martino Genoa, 10 Largo Benzi, 16132, Genoa, Italy.,Clinic of Emergency Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132, Genoa, Italy
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132, Genoa, Italy.,First Clinic of Internal Medicine, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Maurizio Cutolo
- IRCCS Ospedale Policlinico San Martino Genoa, 10 Largo Benzi, 16132, Genoa, Italy. .,Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, San Martino Polyclinic Hospital, Genoa, Italy.
| |
Collapse
|
13
|
Vendramini THA, Macedo HT, Amaral AR, Rentas MF, Macegoza MV, Zafalon RVA, Pedrinelli V, Mesquita LG, de Carvalho Balieiro JC, Pfrimer K, Pedreira RS, Nowosh V, Pontieri CFF, Massoco CDO, Brunetto MA. Gene expression of the immunoinflammatory and immunological status of obese dogs before and after weight loss. PLoS One 2020; 15:e0238638. [PMID: 32966299 PMCID: PMC7510989 DOI: 10.1371/journal.pone.0238638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022] Open
Abstract
Obesity is characterized by a low degree of chronic inflammation state that, along with metabolic modifications, promotes important changes in the animal's organism. Adipose tissue actively participates in inflammation and immunity, and several defense cells of the organism may, therefore, be involved in the diversity found between obese and ideal weight individuals. Studies regarding this subject have shown immune cell changes in humans and rats, however, the literature is scarce in relation to dogs. Thus, the present study aimed to evaluate the gene expression profile of immunoinflammatory response and the lymphoproliferation of obese dogs before and after weight loss. Eight female dogs, neutered, of different breeds, aged between 1 and 8 years (4.74±3.19), obese, with body condition score (BCS) of 9 out of a 9-point scale and body composition determined by the deuterium isotope dilution method were included. The obese dogs were enrolled in a weight loss program and after losing 20% of their initial weight became a second experimental group. A third experimental group consisted of eight female dogs, neutered, aged between 1 and 8 years (3.11±0.78) and with ideal BCS (5 out of a 9-point scale). Gene expression of immunoinflammatory cytokines (resistin, leptin, adiponectin, TNF-α, IL-6, IL-8, and IL-10) was assessed by qRT-PCR and immunity was assessed by lymphoproliferative response using the flow cytometry technique. The data that presented normal distribution was evaluated by analysis of variance by the PROC MIXED of the SAS and when differences were detected, these were compared by the Tukey test. Regarding the gene expression data, the procedure PROC GLIMMIX was adopted and the methodology of generalized linear model was used, in which the Gama distribution proved to be adequate. Values of p<0.05 were considered significant. The mean weight loss period of the animals included in the study was 194.25 ± 28.31 days and the mean weekly weight loss rate was 1.02 ± 0.82%. The average fat mass, both in percentage (P<0.001) and in kilograms (P = 0.012), was higher in the obese group (40.88%; 8.91kg), returning to normal and without difference between the control group (19.16%; 3.01kg) and after weight loss (22.10%; 4.11kg). The weight loss program resulted in an increase in percentage of lean body mass (P = 0.001), 55.50% in obese animals vs 77.90% in obese dogs after weight loss, the latter with no difference when compared to the control group (80.84%). The obese group presented increased gene expression of resistin and IL-8 in relation to the weight loss group (P = 0.002). In adiponectin, the obese group presented increased mRNA gene expression when compared to the weight loss group (P = 0.003). The evaluation of lymphocyte proliferation showed differences between the group of obese animals before and after weight loss (P = 0.004). Weight loss resulted in an increase in the lymphoproliferation rate (18.48%) compared to obese dogs at the beginning of the study (10.71%). These results indicate that weight loss modulates the immunoinflammatory response of obese dogs and may present important benefits to health and longevity of dogs.
Collapse
Affiliation(s)
- Thiago Henrique Annibale Vendramini
- Pet Nutrology Research Center, Nutrition and Production Department, School of Veterinary Medicine and Animal Science, University of Sao Paulo—USP, Pirassununga, São Paulo, Brazil
| | - Henrique Tobaro Macedo
- Pet Nutrology Research Center, Nutrition and Production Department, School of Veterinary Medicine and Animal Science, University of Sao Paulo—USP, Pirassununga, São Paulo, Brazil
| | - Andressa Rodrigues Amaral
- Veterinary Nutrology Service, Teaching Veterinary Hospital, School of Veterinary Medicine and Animal Science, University of Sao Paulo—USP, São Paulo, São Paulo, Brazil
| | - Mariana Fragoso Rentas
- Pet Nutrology Research Center, Nutrition and Production Department, School of Veterinary Medicine and Animal Science, University of Sao Paulo—USP, Pirassununga, São Paulo, Brazil
| | - Matheus Vinícius Macegoza
- Pet Nutrology Research Center, Nutrition and Production Department, School of Veterinary Medicine and Animal Science, University of Sao Paulo—USP, Pirassununga, São Paulo, Brazil
| | - Rafael Vessecchi Amorim Zafalon
- Pet Nutrology Research Center, Nutrition and Production Department, School of Veterinary Medicine and Animal Science, University of Sao Paulo—USP, Pirassununga, São Paulo, Brazil
| | - Vivian Pedrinelli
- Veterinary Nutrology Service, Teaching Veterinary Hospital, School of Veterinary Medicine and Animal Science, University of Sao Paulo—USP, São Paulo, São Paulo, Brazil
| | - Lígia Garcia Mesquita
- Pet Nutrology Research Center, Nutrition and Production Department, School of Veterinary Medicine and Animal Science, University of Sao Paulo—USP, Pirassununga, São Paulo, Brazil
| | - Júlio César de Carvalho Balieiro
- Pet Nutrology Research Center, Nutrition and Production Department, School of Veterinary Medicine and Animal Science, University of Sao Paulo—USP, Pirassununga, São Paulo, Brazil
| | - Karina Pfrimer
- Medical School of Ribeirão Preto, University of São Paulo—USP, Ribeirão Preto, São Paulo, Brazil
| | | | - Victor Nowosh
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo–USP, São Paulo, São Paulo, Brazil
| | | | - Cristina de Oliveira Massoco
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo–USP, São Paulo, São Paulo, Brazil
| | - Marcio Antonio Brunetto
- Pet Nutrology Research Center, Nutrition and Production Department, School of Veterinary Medicine and Animal Science, University of Sao Paulo—USP, Pirassununga, São Paulo, Brazil
- Veterinary Nutrology Service, Teaching Veterinary Hospital, School of Veterinary Medicine and Animal Science, University of Sao Paulo—USP, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
14
|
Schäfer M, Meißner Y, Kekow J, Berger S, Remstedt S, Manger B, Listing J, Strangfeld A, Zink A. Obesity reduces the real-world effectiveness of cytokine-targeted but not cell-targeted disease-modifying agents in rheumatoid arthritis. Rheumatology (Oxford) 2020; 59:1916-1926. [PMID: 31745566 PMCID: PMC7382601 DOI: 10.1093/rheumatology/kez535] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 09/30/2019] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES The effectiveness of TNF inhibitors in RA has been shown to be affected by obesity. No such effect has been found for abatacept and rituximab, while for tocilizumab results are ambiguous. Additionally, it remains unresolved whether sex is an effect modifier for obesity. We investigated the impact of obesity on the drug effectiveness of conventional synthetic or biologic DMARDs, taking into account potential sex-specific differences. METHODS Data from 10 593 RA patients included in the German observational cohort study Rheumatoid Arthritis: oBservation of BIologic Therapy (RABBIT) since 2009 were analysed. Patients had to have a BMI ≥18.5 kg/m2, at least one follow-up and 6 months of observation time. The influence of obesity on drug effectiveness was investigated by regression analysis, adjusting for potential confounders. RESULTS Obesity had a negative impact on improvement in the DAS with 28 joints using ESR as an inflammation marker of -0.15 (95% CI: -0.26; -0.04) units for women receiving conventional synthetic DMARDs, -0.22 (95% CI: -0.31; -0.12) units for women receiving TNF inhibitors, -0.22 (95% CI: -0.42; -0.03) units for women receiving tocilizumab and -0.41 (95% CI: -0.74; -0.07) units for men receiving tocilizumab. Overall, no negative obesity effects on the effectiveness of rituximab and abatacept were found. CONCLUSION Obesity has a negative impact on the effectiveness of cytokine-targeted but not cell-targeted therapies in daily practice, affecting more outcomes and therapies in women than in men. Overall, no effects of obesity on treatment effectiveness were found for rituximab and abatacept.
Collapse
Affiliation(s)
- Martin Schäfer
- Epidemiology Unit, German Rheumatism Research Centre, Berlin
| | - Yvette Meißner
- Epidemiology Unit, German Rheumatism Research Centre, Berlin
| | - Jörn Kekow
- Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg
- Rheumatology Department, Helios Clinic Vogelsang-Gommern, Vogelsang-Gommern
| | | | | | - Bernhard Manger
- Department of Medicine 3 – Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Joachim Listing
- Epidemiology Unit, German Rheumatism Research Centre, Berlin
| | - Anja Strangfeld
- Epidemiology Unit, German Rheumatism Research Centre, Berlin
| | - Angela Zink
- Epidemiology Unit, German Rheumatism Research Centre, Berlin
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
15
|
Bovo S, Martelli PL, Di Lena P, Casadio R. NETGE-PLUS: Standard and Network-Based Gene Enrichment Analysis in Human and Model Organisms. J Proteome Res 2020; 19:2873-2878. [PMID: 31971806 DOI: 10.1021/acs.jproteome.9b00749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Omics techniques provide a spectrum of information at the genomic level, whose analysis can characterize complex traits at a molecular level. The relationship among genotype and phenotype implies that from genome information the molecular pathways and biological processes underlying a given phenotype are discovered. In dealing with this problem, gene enrichment analysis has become the most widely adopted strategy. Here we present NETGE-PLUS, a Web server for standard and network-based functional interpretation of gene sets of human and of model organisms, including Sus scrofa, Saccharomyces cerevisiae, Escherichia coli, and Arabidopsis thaliana. NETGE-PLUS enables the functional enrichment of both simple and ranked lists of genes, introducing also the possibility of exploring relationships among KEGG pathways. A Web interface makes data retrieval complete and user-friendly. NETGE-PLUS is publicly available at http://net-ge2.biocomp.unibo.it.
Collapse
Affiliation(s)
- Samuele Bovo
- Biocomputing Group, Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Via San Giacomo 9/2, 40126 Bologna, Italy.,Department of Agricultural and Food Sciences (DISTAL), Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | - Pier Luigi Martelli
- Biocomputing Group, Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Via San Giacomo 9/2, 40126 Bologna, Italy
| | - Pietro Di Lena
- Department of Computer Science and Engineering (DISI), University of Bologna, Mura Anteo Zamboni 7, 40126 Bologna, Italy
| | - Rita Casadio
- Biocomputing Group, Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Via San Giacomo 9/2, 40126 Bologna, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Italian National Research Council (CNR), 70126 Bari, Italy
| |
Collapse
|
16
|
Coleman MF, Cozzo AJ, Pfeil AJ, Etigunta SK, Hursting SD. Cell Intrinsic and Systemic Metabolism in Tumor Immunity and Immunotherapy. Cancers (Basel) 2020; 12:cancers12040852. [PMID: 32244756 PMCID: PMC7225951 DOI: 10.3390/cancers12040852] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has shown extraordinary promise at treating cancers otherwise resistant to treatment. However, for ICI therapy to be effective, it must overcome the metabolic limitations of the tumor microenvironment. Tumor metabolism has long been understood to be highly dysregulated, with potent immunosuppressive effects. Moreover, T cell activation and longevity within the tumor microenvironment are intimately tied to T cell metabolism and are required for the long-term efficacy of ICI therapy. We discuss in this review the intersection of metabolic competition in the tumor microenvironment, T cell activation and metabolism, the roles of tumor cell metabolism in immune evasion, and the impact of host metabolism in determining immune surveillance and ICI therapy outcomes. We also discussed the effects of obesity and calorie restriction—two important systemic metabolic perturbations that impact intrinsic metabolic pathways in T cells as well as cancer cells.
Collapse
Affiliation(s)
- Michael F. Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27516, USA; (M.F.C.); (A.J.C.); (A.J.P.); (S.K.E.)
| | - Alyssa J. Cozzo
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27516, USA; (M.F.C.); (A.J.C.); (A.J.P.); (S.K.E.)
- Department of Medicine, Duke University, Durham, NC 27705, USA
| | - Alexander J. Pfeil
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27516, USA; (M.F.C.); (A.J.C.); (A.J.P.); (S.K.E.)
| | - Suhas K. Etigunta
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27516, USA; (M.F.C.); (A.J.C.); (A.J.P.); (S.K.E.)
| | - Stephen D. Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27516, USA; (M.F.C.); (A.J.C.); (A.J.P.); (S.K.E.)
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27516, USA
- Correspondence:
| |
Collapse
|
17
|
Wu B, Sun X, Yuan B, Ge F, Gupta HB, Chiang HC, Li J, Hu Y, Curiel TJ, Li R. PPARγ inhibition boosts efficacy of PD-L1 Checkpoint Blockade Immunotherapy against Murine Melanoma in a sexually dimorphic manner. Int J Biol Sci 2020; 16:1526-1535. [PMID: 32226299 PMCID: PMC7097912 DOI: 10.7150/ijbs.42966] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/19/2020] [Indexed: 01/08/2023] Open
Abstract
Immune checkpoint blockade-based immunotherapy has become standard of care for multiple cancer types. However, the overall response rates among various cancer types still remain unsatisfactory. There is a pressing clinical need to identify combination therapies to improve efficacy of anticancer immunotherapy. We previously showed that pharmacologic inhibition of PPARγ by GW9662 boosts αPD-L1 and αPD-1 antibody efficacy in treating murine mammary tumors. In addition, we defined sexually dimorphic αPD-L1 efficacy in B16 melanoma. Here, we show a sexually dimorphic response to the combination of GW9662 and αPD-L1 immunotherapy in B16 melanoma. Combination effects were observed in female, but not male hosts. Neither female oöphorectomy impairs, nor does male castration rescue the combination effects, suggesting a sex hormone-independent response to this combination therapy. In diet-induced obese females, melanoma growth remained responsive to the combination treatment, albeit less robustly than lean females. These findings are informative for future design and application of immunotherapy-related combination therapy for treating human melanoma patients by taking gender and obesity status into consideration.
Collapse
Affiliation(s)
- Bogang Wu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Xiujie Sun
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Bin Yuan
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Fei Ge
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Harshita B Gupta
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Huai-Chin Chiang
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Jingwei Li
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Yanfen Hu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Tyler J Curiel
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Rong Li
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| |
Collapse
|
18
|
|
19
|
Baranowska-Bik A, Bik W. The Association of Obesity with Autoimmune Thyroiditis and Thyroid Function-Possible Mechanisms of Bilateral Interaction. Int J Endocrinol 2020; 2020:8894792. [PMID: 33381173 PMCID: PMC7755496 DOI: 10.1155/2020/8894792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/28/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
A growing number of patients suffer from autoimmune diseases, including autoimmune thyroid disease. There has simultaneously been a significant increase in the prevalence of obesity worldwide. It is still an open question whether adiposity can directly influence activation of inflammatory processes affecting the thyroid in genetically predisposed individuals. Adipokines, biologically active substances derived from the adipocytes, belong to a heterogenic group of compounds involved in numerous physiological functions, including the maintenance of metabolism, hormonal balance, and immune response. Notably, the presence of obesity worsens the course of selected autoimmune diseases and impairs response to treatment. Moreover, the excess of body fat may result in the progression of autoimmune diseases. Nutritional status, body weight, and energy expenditure may influence thyroid hormone secretion. Interestingly, thyroid hormones might influence the activity of adipose tissue as metabolic alterations related to fat tissue are observed under pathological conditions in which there are deficits or overproduction of thyroid hormones. Functioning TSH receptors are expressed on adipocytes. Thermogenesis may presumably be stimulated by TSH binding to its receptor on brown adipocytes. There could be a bilateral interaction between the thyroid and adipose. Obesity may influence the onset and course of autoimmune disease.
Collapse
Affiliation(s)
- Agnieszka Baranowska-Bik
- Department of Endocrinology, Centre of Postgraduate Medical Education, Ceglowska 80, Warsaw 01-809, Poland
| | - Wojciech Bik
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, Warsaw 01-813, Poland
| |
Collapse
|
20
|
Surendar J, Frohberger SJ, Karunakaran I, Schmitt V, Stamminger W, Neumann AL, Wilhelm C, Hoerauf A, Hübner MP. Adiponectin Limits IFN-γ and IL-17 Producing CD4 T Cells in Obesity by Restraining Cell Intrinsic Glycolysis. Front Immunol 2019; 10:2555. [PMID: 31736971 PMCID: PMC6828851 DOI: 10.3389/fimmu.2019.02555] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
Compared to the innate immune system, the contribution of the adaptive immune response during obesity and insulin resistance is still not completely understood. Here we demonstrate that high fat diet (HFD) increases the frequencies of activated CD4+ and CD8+ T cells and frequencies of T cells positive for IFN-γ and IL-17 in the adipose tissue. The adipocyte-derived soluble factor adiponectin reduces IFN-γ and IL-17 positive CD4+ T cells from HFD mice and dampens the differentiation of naïve T cells into Th1 cells and Th17 cells. Adiponectin reduces Th17 cell differentiation and restrains glycolysis in an AMPK dependent fashion. Treatment with adult worm extracts of the rodent filarial nematode Litomosoides sigmodontis (LsAg) reduces adipose tissue Th1 and Th17 cell frequencies during HFD and increases adiponectin levels. Stimulation of T cells in the presence of adipocyte-conditioned media (ACM) from LsAg-treated mice reduces Th1 and Th17 frequencies and this effect was abolished when ACM was treated with an adiponectin neutralizing antibody. Collectively, these data reveal a novel role of adiponectin in controlling pro-inflammatory CD4+ T cells during obesity and suggest that the beneficial role of helminth infections and helminth-derived products on obesity and insulin resistance may be in part mediated by adiponectin.
Collapse
Affiliation(s)
- Jayagopi Surendar
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany.,Unit for Immunopathology, Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Stefan J Frohberger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Indulekha Karunakaran
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Vanessa Schmitt
- Unit for Immunopathology, Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Wiebke Stamminger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Anna-Lena Neumann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Christoph Wilhelm
- Unit for Immunopathology, Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
21
|
Nyambuya TM, Dludla PV, Mxinwa V, Nkambule BB. Obesity-induced inflammation and insulin resistance: A mini-review on T-cells. Metabol Open 2019; 3:100015. [PMID: 32812921 PMCID: PMC7424835 DOI: 10.1016/j.metop.2019.100015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/29/2019] [Accepted: 08/08/2019] [Indexed: 12/21/2022] Open
Abstract
Excessive lipid accumulation in an obese state is linked with activation and release of detrimental cytokines and chemokines that promote metabolic dysregulation. In fact, emerging experimental evidence shows that abnormal modulation of T-cells in an obese state correlates with the development and progression of insulin resistance. Importantly, the evolving concept linking insulin resistance with impaired immunological mechanisms such as T-cell responses provides new prospects for understanding the role of inflammation in moderating metabolic complications.
Collapse
Affiliation(s)
- Tawanda Maurice Nyambuya
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Health Sciences, Faculty of Health and Applied Sciences, Namibia University of Science and Technology, Windhoek, Namibia
| | - Phiwayinkosi Vusi Dludla
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, South Africa
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Vuyolwethu Mxinwa
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Bongani Brian Nkambule
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
22
|
Miggitsch C, Meryk A, Naismith E, Pangrazzi L, Ejaz A, Jenewein B, Wagner S, Nägele F, Fenkart G, Trieb K, Zwerschke W, Grubeck-Loebenstein B. Human bone marrow adipocytes display distinct immune regulatory properties. EBioMedicine 2019; 46:387-398. [PMID: 31327694 PMCID: PMC6711052 DOI: 10.1016/j.ebiom.2019.07.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 01/14/2023] Open
Abstract
Background The bone marrow (BM) is a major reservoir of resting memory T cells and long-lived plasma cells, capable of providing protection against recurrent infections. Whether the age-related accumulation of adipose tissue in the BM affects the functionality and maintenance of memory cells is not well understood. Methods For the first time, we compare human femur marrow adipose tissue (fMAT) and subcutaneous white adipose tissue of the thigh (tsWAT) obtained from the same donors. Therefore, we used microarrays for comparative global gene expression analysis, and employed assays to analyse parameters of adipocyte biology, inflammation and oxidative stress. Findings We show that fMAT adipocytes differ significantly from tsWAT adipocytes regarding specific gene expression profiles including inflammatory responses and adipogenesis/adipocyte phenotype. Concomitant with considerably lower levels of CD36, a membrane-associated protein important for long-chain fatty acid uptake that is used as maturation marker, fMAT adipocytes are smaller and contain less triglycerides. fMAT adipocytes secrete similar levels of adiponectin and leptin as tsWAT adipocytes, and express increased levels of pro-inflammatory molecules concomitant with an elevated generation of reactive oxygen species (ROS) and impaired function of plasma cells in the BM. Interpretation Our findings suggest that fMAT is a unique type of adipose tissue containing small adipocytes with lower CD36 protein and triglyceride levels than tsWAT but high adipokine secretion. Moreover, fMAT adipocytes secrete high levels of pro-inflammatory cytokines, contributing to inflammation and impairment of plasma cell function in the BM, suggesting that fMAT has more immune regulatory functions than tsWAT.
Collapse
Affiliation(s)
- Carina Miggitsch
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria
| | - Andreas Meryk
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria.
| | - Erin Naismith
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria
| | - Luca Pangrazzi
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria
| | - Asim Ejaz
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria; Department of Plastic Surgery, University of Pittsburgh, 3550 Terrace Street 6B Scaife Hall, Pittsburgh, PA 15261, United States
| | - Brigitte Jenewein
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria
| | - Sonja Wagner
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria; Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria
| | - Fabiana Nägele
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria
| | - Gabriella Fenkart
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria; Department for Genomics, Stem Cell Biology and Regenerative Medicine, Institute of Molecular Biology, University of Innsbruck, Technikerstraße 25, Innsbruck, Tyrol 6020, Austria
| | - Klemens Trieb
- Department of Orthopedic Surgery, Klinikum Wels, Grieskirchner Str. 42, Wels, Upper Austria 4600, Austria; Computed Tomography Research Group, University of Applied Sciences Upper Austria, Stelzhamerstr. 23, 4600 Wels, Austria
| | - Werner Zwerschke
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria
| | - Beatrix Grubeck-Loebenstein
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Tyrol 6020, Austria
| |
Collapse
|
23
|
Abstract
Chronic obstructive pulmonary disease (COPD) is an inflammatory disease characterized by limitation of expiratory airflow. Cellular and molecular pathways involved in disease pathogenesis are not completely defined. Our study reveals that metabolism and immune response cooperate in COPD pathogenesis and progression. COPD subjects with different disease stages showed progressive increase of systemic leptin, an adipose tissue-derived proinflammatory molecule, that, at high concentrations, impaired the capacity of T cells to engage in glycolysis and to generate regulatory T cells. Thus, the loss of these immunoregulatory circuits during COPD determined the hyperactivation of effector T cells that amplified inflammation, leading to progressive decline of lung function. Understanding these immunometabolic mechanisms can have important implications for monitoring COPD progression and for disease treatment. Chronic obstructive pulmonary disease (COPD) is an inflammatory condition associated with abnormal immune responses, leading to airflow obstruction. Lungs of COPD subjects show accumulation of proinflammatory T helper (Th) 1 and Th17 cells resembling that of autoreactive immune responses. As regulatory T (Treg) cells play a central role in the control of autoimmune responses and their generation and function are controlled by the adipocytokine leptin, we herein investigated the association among systemic leptin overproduction, reduced engagement of glycolysis in T cells, and reduced peripheral frequency of Treg cells in different COPD stages. These phenomena were also associated with an impaired capacity to generate inducible Treg (iTreg) cells from conventional T (Tconv) cells. At the molecular level, we found that leptin inhibited the expression of forkhead-boxP3 (FoxP3) and its splicing variants containing the exon 2 (FoxP3-E2) that correlated inversely with inflammation and weakened lung function during COPD progression. Our data reveal that the immunometabolic pathomechanism leading to COPD progression is characterized by leptin overproduction, a decline in the expression of FoxP3 splicing forms, and an impairment in Treg cell generation and function. These results have potential implications for better understanding the autoimmune-like nature of COPD and the pathogenic events leading to lung damage.
Collapse
|
24
|
Francisco V, Ruiz-Fernández C, Pino J, Mera A, González-Gay MA, Gómez R, Lago F, Mobasheri A, Gualillo O. Adipokines: Linking metabolic syndrome, the immune system, and arthritic diseases. Biochem Pharmacol 2019; 165:196-206. [DOI: 10.1016/j.bcp.2019.03.030] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022]
|
25
|
Dermal White Adipose Tissue: A Newly Recognized Layer of Skin Innate Defense. J Invest Dermatol 2019; 139:1002-1009. [DOI: 10.1016/j.jid.2018.12.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022]
|
26
|
Amaruddin AI, Wahyuni S, Hamid F, Chalid MT, Yazdanbakhsh M, Sartono E. BCG scar, socioeconomic and nutritional status: a study of newborns in urban area of Makassar, Indonesia. Trop Med Int Health 2019; 24:736-746. [PMID: 30884012 PMCID: PMC6849812 DOI: 10.1111/tmi.13232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Objective To investigate factors that determine the response to Bacille Calmette–Guérin (BCG) vaccination in urban environments with respect to socioeconomic status (SES), prenatal exposure to infections or newborn's nutritional status. Methods The study was conducted in an urban area, in Makassar, Indonesia. At baseline, 100 mother and newborns pair from high and low SES communities were included. Intestinal protozoa, soil transmitted helminths, total IgE, anti‐Hepatitis A Virus IgG and anti‐Toxoplasma IgG were measured to determine exposure to infections. Information on gestational age, birth weight/height and delivery status were collected. Weight‐for‐length z‐score, a proxy for newborns adiposity, was calculated. Leptin and adiponectin from cord sera were also measured. At 10 months of age, BCG scar size was measured from 59 infants. Statistical modelling was performed using multiple linear regression. Results Both SES and birth nutritional status shape the response towards BCG vaccination at 10 months of age. Infants born to low SES families have smaller BCG scar size compared to infants born from high SES families and total IgE contributed to the reduced scar size. On the other hand, infants born with better nutritional status were found to have bigger BCG scar size but this association was abolished by leptin levels at birth. Conclusion This study provides new insights into the importance of SES and leptin levels at birth on the development of BCG scar in 10 months old infants.
Collapse
Affiliation(s)
- Aldian Irma Amaruddin
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia.,Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sitti Wahyuni
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Firdaus Hamid
- Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Maisuri T Chalid
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Erliyani Sartono
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
27
|
Watts MR, Hegedus OC, Eades SC, Belknap JK, Burns TA. Association of sustained supraphysiologic hyperinsulinemia and inflammatory signaling within the digital lamellae in light-breed horses. J Vet Intern Med 2019; 33:1483-1492. [PMID: 30912229 PMCID: PMC6524466 DOI: 10.1111/jvim.15480] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 03/05/2019] [Indexed: 12/24/2022] Open
Abstract
Background Hyperinsulinemia is associated with equine laminitis, and digital lamellar inflammation in equine metabolic syndrome‐associated laminitis (EMSAL) is modest when compared with sepsis‐associated laminitis. Objectives To characterize digital lamellar inflammation in horses in a euglycemic‐hyperinsulinemic clamp (EHC) model of laminitis. Animals Sixteen healthy adult Standardbred horses. Methods Prospective experimental study. Horses underwent EHC or saline infusion (CON) for 48 hours or until the onset of Obel grade 1 laminitis. Horses were euthanized, and digital lamellar tissue was collected and analyzed via polymerase chain reaction (pro‐inflammatory cytokine and chemokine genes—CXCL1, CXCL6, CXCL8, IL‐6, MCP‐1, MCP‐2, IL‐1β, IL11, cyclooxygenases 1 and 2, tumor necrosis factor alpha [TNF‐α], E‐selectin, and ICAM‐1), immunoblotting (phosphorylated and total signal transducer and activator of transcription 1 [STAT1], STAT3, and p38MAPK), and immunohistochemistry (markers of leukocyte infiltration: CD163, MAC387). Results Lamellar mRNA concentrations of IL‐1β, IL‐6, IL‐11, COX‐2, and E‐selectin were increased; the concentration of COX‐1 was decreased; and concentrations of CXCL1, CXCL6, MCP‐1, MCP‐2, IL‐8, TNF‐α and ICAM‐1 were not significantly different in the EHC group compared to the CON group (P ≤ .003). Lamellar concentrations of phosphorylated STAT proteins (P‐STAT1 [S727], P‐STAT1 [Y701], P‐STAT3 [S727], and P‐STAT3 [Y705]) were increased in the EHC group compared to the CON group, with phosphorylated STAT3 localizing to nuclei of lamellar basal epithelial cells. There was no change in the lamellar concentration of P‐p38 MAPK (T180/Y182), but the concentration of total p38 MAPK was decreased in the EHC samples. There was no evidence of notable lamellar leukocyte emigration. Conclusions and Clinical Importance These results establish a role for lamellar inflammatory signaling under conditions associated with EMSAL.
Collapse
Affiliation(s)
- Mauria R Watts
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, Ohio
| | - Olivia C Hegedus
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, Ohio
| | - Susan C Eades
- Department of Large Animal Clinical Sciences, Texas A&M University College of Veterinary Medicine and Biomedical Sciences, College Station, Texas
| | - James K Belknap
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, Ohio
| | - Teresa A Burns
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, Ohio
| |
Collapse
|
28
|
Leptin and adiponectin supplementation modifies mesenteric lymph node lymphocyte composition and functionality in suckling rats. Br J Nutr 2019; 119:486-495. [PMID: 29508690 DOI: 10.1017/s0007114517003786] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
At birth, when immune responses are insufficient, there begins the development of the defence capability against pathogens. Leptin and adiponectin, adipokines that are present in breast milk, have been shown to play a role in the regulation of immune responses. We report here, for the first time, the influence of in vivo adipokine supplementation on the intestinal immune system in early life. Suckling Wistar rats were daily supplemented with leptin (0·7 μg/kg per d, n 36) or adiponectin (35 μg/kg per d, n 36) during the suckling period. The lymphocyte composition, proliferation and cytokine secretion from mesenteric lymph node lymphocytes (on days 14 and 21), as well as intestinal IgA and IgM concentration (day 21), were evaluated. At day 14, leptin supplementation significantly increased the TCRαβ + cell proportion in mesenteric lymph nodes, in particular owing to an increase in the TCRαβ + CD8+ cell population. Moreover, the leptin or adiponectin supplementation promoted the early development CD8+ cells, with adiponectin being the only adipokine capable of enhancing the lymphoproliferative ability at the end of the suckling period. Although leptin decreased intestinal IgA concentration, it had a trophic effect on the intestine in early life. Supplementation of both adipokines modulated the cytokine profile during (day 14) and at the end (day 21) of the suckling period. These results suggest that leptin and adiponectin during suckling play a role in the development of mucosal immunity in early life.
Collapse
|
29
|
Jones KL, Van de Water J. Maternal autoantibody related autism: mechanisms and pathways. Mol Psychiatry 2019; 24:252-265. [PMID: 29934547 PMCID: PMC6784837 DOI: 10.1038/s41380-018-0099-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 04/12/2018] [Accepted: 04/23/2018] [Indexed: 12/16/2022]
Abstract
It has been estimated that autism spectrum disorder (ASD) now affects 1 in 59 children in the United States. Although the cause(s) of ASD remain largely unknown, it is becoming increasingly apparent that ASD can no longer be defined simply as a behavioral disorder, but is in effect a rather complex and highly heterogeneous biological disorder. Up until recently the brain was thought to be "immune privileged." However, it is now known that the immune system plays critical roles in the development and functioning of the brain throughout life. Recent evidence from multiple investigators has illustrated the deleterious role that dysregulation of the maternal immune system during gestation can play in the manifestation of changes in neurodevelopment, resulting in the development of neurobehavioral disorders such as ASD. One potential etiologic pathway through which the maternal immune system can interfere with neurodevelopment is through maternal autoantibodies that recognize proteins in the developing fetal brain. This mechanism of pathogenesis is now thought to lead to a subphenotype of ASD that has been termed maternal autoantibody related (MAR) ASD. This review provides an overview of the current research implicating the presence of brain-reactive maternal autoantibodies as a risk factor for MAR ASD.
Collapse
Affiliation(s)
- Karen L. Jones
- Rheumatology/Allergy and Clinical Immunology, University of California, 451 E. Health Sciences Drive, Suite 6510 GBSF, Davis, CA 95616, USA,The M.I.N.D. Institute, University of California, Davis, CA 95616, USA
| | - Judy Van de Water
- Rheumatology/Allergy and Clinical Immunology, University of California, 451 E. Health Sciences Drive, Suite 6510 GBSF, Davis, CA, 95616, USA. .,The M.I.N.D. Institute, University of California, Davis, CA, 95616, USA. .,NIEHS Center for Children's Environmental Health, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
30
|
Zalocusky KA, Kan MJ, Hu Z, Dunn P, Thomson E, Wiser J, Bhattacharya S, Butte AJ. The 10,000 Immunomes Project: Building a Resource for Human Immunology. Cell Rep 2018; 25:513-522.e3. [PMID: 30304689 PMCID: PMC6263160 DOI: 10.1016/j.celrep.2018.09.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/01/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023] Open
Abstract
There is increasing appreciation that the immune system plays critical roles not only in the traditional domains of infection and inflammation but also in many areas of biology, including tumorigenesis, metabolism, and even neurobiology. However, one of the major barriers for understanding human immunological mechanisms is that immune assays have not been reproducibly characterized for a sufficiently large and diverse healthy human cohort. Here, we present the 10,000 Immunomes Project (10KIP), a framework for growing a diverse human immunology reference, from ImmPort, a publicly available resource of subject-level immunology data. Although some measurement types are sparse in the presently deposited ImmPort database, the extant data allow for a diversity of robust comparisons. Using 10KIP, we describe variations in serum cytokines and leukocytes by age, race, and sex; define a baseline cell-cytokine network; and describe immunologic changes in pregnancy. All data in the resource are available for visualization and download at http://10kimmunomes.org/.
Collapse
Affiliation(s)
- Kelly A Zalocusky
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Matthew J Kan
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zicheng Hu
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Patrick Dunn
- Information Systems Health IT, Northrop Grumman, Rockville, MD 20850, USA
| | - Elizabeth Thomson
- Information Systems Health IT, Northrop Grumman, Rockville, MD 20850, USA
| | - Jeffrey Wiser
- Information Systems Health IT, Northrop Grumman, Rockville, MD 20850, USA
| | - Sanchita Bhattacharya
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Atul J Butte
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
31
|
Wang B, Song R, He W, Yao Q, Li Q, Jia X, Zhang JA. Sex Differences in the Associations of Obesity With Hypothyroidism and Thyroid Autoimmunity Among Chinese Adults. Front Physiol 2018; 9:1397. [PMID: 30337885 PMCID: PMC6180185 DOI: 10.3389/fphys.2018.01397] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/13/2018] [Indexed: 12/16/2022] Open
Abstract
There is an intensive link between obesity and thyroid dysfunction, but this relationship in Asians is still unclear. This study was conducted to define the impact of obesity on risk of hypothyroidism and thyroid autoimmunity among Chinese adults. A population-based, cross-sectional study was carried out, which enrolled a total of 2,808 Chinese adults. To assess the associations of obesity with hypothyroidism and thyroid autoimmunity, odds ratio (ORs) with 95% confidence intervals (95%CIs) were calculated through logistic regression model, and the correlations of body mass index (BMI) with TPOAb and TGAb were also analyzed. Obese females had higher risk of hypothyroidism (22.7 vs. 15.0%; OR = 1.66, 95%CI 1.10–2.53; P = 0.02) and higher risk of subclinical hypothyroidism (22.1 vs. 13.4%; OR = 1.83, 95%CI 1.20–2.80; P = 0.005) than non-obese females. Multivariate logistic regression analysis found significant associations of obesity with hypothyroidism (Adjusted OR = 1.54, 95%CI 1.00–2.38; P = 0.05) and subclinical hypothyroidism (Adjusted OR = 1.69, 95%CI 1.09–2.63; P = 0.02) in females after adjustment for confounding factors. No association between obesity and hypothyroidism was observed in male participants. Spearman's correlation analysis suggested BMI was significantly and positively correlated with TPOAb (Spearman's r = 0.062, P = 0.022) in men but not in women. Linear regression analysis suggested an obviously positive correlation of BMI with TPOAb in men (β = 0.018, P = 0.015) and an obviously negative correlation of BMI with TGAb in women (β = −0.025, P = 0.012), respectively. The study suggests sex differences in the associations of obesity with hypothyroidism and thyroid autoimmunity among Chinese adults. Further studies are needed to better understand the exact mechanism of sex difference in the obesity-thyroid relationship.
Collapse
Affiliation(s)
- Bin Wang
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Ronghua Song
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Weiwei He
- Department of Endocrinology, Affiliated Hospital of Yanan Medical University, Shaanxi, China
| | - Qiuming Yao
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Qian Li
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Xi Jia
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Jin-An Zhang
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
32
|
Zhang Z, Ma P, Li Q, Xiao Q, Sun H, Olasege BS, Wang Q, Pan Y. Exploring the Genetic Correlation Between Growth and Immunity Based on Summary Statistics of Genome-Wide Association Studies. Front Genet 2018; 9:393. [PMID: 30271426 PMCID: PMC6149433 DOI: 10.3389/fgene.2018.00393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/29/2018] [Indexed: 01/09/2023] Open
Abstract
The relationship between growth and immune phenotypes has been presented in the context of physiology and energy allocation theory, but has rarely been explained genetically in humans. As more summary statistics of genome-wide association studies (GWAS) become available, it is increasingly possible to explore the genetic relationship between traits at the level of genome-wide summary statistics. In this study, publicly available summary statistics of growth and immune related traits were used to evaluate the genetic correlation coefficients between immune and growth traits, as well as the cause and effect relationship between them. In addition, pleiotropic variants and KEGG pathways were identified. As a result, we found negative correlations between birthweight and immune cell count phenotypes, a positive correlation between childhood head circumference and eosinophil counts (EO), and positive or negative correlations between childhood body mass index and immune phenotypes. Statistically significant negative effects of immune cell count phenotypes on human height, and a slight but significant negative influence of human height on allergic disease were also observed. A total of 98 genomic regions were identified as containing variants potentially related to both immunity and growth. Some variants, such as rs3184504 located in SH2B3, rs13107325 in SLC39A8, and rs1260326 located in GCKR, which have been identified to be pleiotropic SNPs among other traits, were found to also be related to growth and immune traits in this study. Meanwhile, the most frequent overlapping KEGG pathways between growth and immune phenotypes were autoimmune related pathways. Pleiotropic pathways such as the adipocytokine signaling pathway and JAK-STAT signaling pathway were also identified to be significant. The results of this study indicate the complex genetic relationship between growth and immune phenotypes, and reveal the genetic background of their correlation in the context of pleiotropy.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Peipei Ma
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Qiumeng Li
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Qian Xiao
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Hao Sun
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Babatunde Shittu Olasege
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Qishan Wang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Yuchun Pan
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| |
Collapse
|
33
|
Fuggle NR, Westbury LD, Syddall HE, Duggal NA, Shaw SC, Maslin K, Dennison EM, Lord J, Cooper C. Relationships between markers of inflammation and bone density: findings from the Hertfordshire Cohort Study. Osteoporos Int 2018; 29:1581-1589. [PMID: 29808230 PMCID: PMC6093277 DOI: 10.1007/s00198-018-4503-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
UNLABELLED Among 365 Hertfordshire Cohort Study participants (aged 59-71 years at baseline), higher adiponectin and adiponectin to leptin ratios were associated with lower baseline lumbar spine and femoral neck bone mineral density (BMD). Lower IL-10 was associated with accelerated decline in lumbar spine BMD. This suggests that bone health can be influenced by changes in immune phenotype and alterations in adipokine homeostasis. INTRODUCTION The aim of this study was to examine the association between indices of inflammation and BMD in a population-based cohort of older adults in the UK. METHODS Analyses were based on a sample of 194 men and 171 women of the Hertfordshire Cohort Study (community-living, older adults). Dual energy X-ray absorptiometry (DXA) was performed at the lumbar spine and proximal femur at baseline and repeated at a median of 4.5 years (inter-quartile range 3.6 to 5.2). Inflammatory markers (CRP, TNF, IL-1β, IL-6, IL-8, IL-10, adiponectin and leptin) were ascertained at baseline using enzyme-linked immunosorbent assay (ELISA) techniques and Bio-Plex Pro Assays. Gender-adjusted linear regression was used to examine the associations between markers of inflammation and outcomes with and without adjustment for anthropometric and lifestyle factors. RESULTS The mean (SD) ages at baseline were 64.4 (2.5) and 66.5 (2.7) years for men and women respectively. Higher levels of adiponectin and adiponectin to leptin ratios were each associated with lower baseline lumbar spine and femoral neck BMD in gender-adjusted (p < 0.01) and fully adjusted (p < 0.05) analyses. Lower levels of IL-10 and TNF were each associated with accelerated decline in lumbar spine BMD in both gender-adjusted (p ≤ 0.05) and fully adjusted (p < 0.05) analyses. CONCLUSIONS In a cohort of older adults, high levels of adiponectin and adiponectin to leptin ratios were both associated with lower BMD at the lumbar spine and femoral neck at baseline, and lower IL-10 was associated with accelerated decline in BMD at the lumbar spine. This adds weight to the theory that bone health can be influenced by changes in immune phenotype and alterations in adipokine homeostasis.
Collapse
Affiliation(s)
- N R Fuggle
- MRC Lifecourse Epidemiology Unit, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - L D Westbury
- MRC Lifecourse Epidemiology Unit, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - H E Syddall
- MRC Lifecourse Epidemiology Unit, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - N A Duggal
- MRC-ARUK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - S C Shaw
- MRC Lifecourse Epidemiology Unit, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - K Maslin
- MRC Lifecourse Epidemiology Unit, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - E M Dennison
- MRC Lifecourse Epidemiology Unit, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
- Victoria University of Wellington, Wellington, New Zealand
| | - J Lord
- MRC-ARUK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - C Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK.
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.
- NIHR Musculoskeletal Biomedical Research Unit, University of Oxford, Oxford, UK.
| |
Collapse
|
34
|
Francisco V, Pino J, Gonzalez‐Gay MA, Mera A, Lago F, Gómez R, Mobasheri A, Gualillo O. Adipokines and inflammation: is it a question of weight? Br J Pharmacol 2018; 175:1569-1579. [PMID: 29486050 PMCID: PMC5913397 DOI: 10.1111/bph.14181] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/09/2018] [Accepted: 02/16/2018] [Indexed: 12/25/2022] Open
Abstract
Obesity has reached epidemic proportions in the Western society and is increasing in the developing world. It is considered as one of the major contributors to the global burden of disability and chronic diseases, including autoimmune, inflammatory and degenerative diseases. Research conducted on obesity and its complications over the last two decades has transformed the outdated concept of white adipose tissue (WAT) merely serving as an energy depot. WAT is now recognized as an active and inflammatory organ capable of producing a wide variety of factors known as adipokines. These molecules participate through endocrine, paracrine, autocrine or juxtacrine crosstalk mechanisms in a great variety of physiological or pathophysiological processes, regulating food intake, insulin sensitivity, immunity and inflammation. Although initially restricted to metabolic activities (regulation of glucose and lipid metabolism), adipokines currently represent a new family of proteins that can be considered key players in the complex network of soluble mediators involved in the pathophysiology of immune/inflammatory diseases. However, the complexity of the adipokine network in the pathogenesis and progression of inflammatory diseases has posed, since the beginning, the important question of whether it may be possible to target the mechanism(s) by which adipokines contribute to disease selectively without suppressing their physiological functions. Here, we explore in depth the most recent findings concerning the involvement of adipokines in inflammation and immune responses, in particular in rheumatic, inflammatory and degenerative diseases. We also highlight several possible strategies for therapeutic development and propose that adipokines and their signalling pathways may represent innovative therapeutic strategies for inflammatory disorders.
Collapse
Affiliation(s)
- Vera Francisco
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases)Santiago University Clinical HospitalBuilding C, Travesía da Choupana S/NSantiago de Compostela15706Spain
| | - Jesus Pino
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases)Santiago University Clinical HospitalBuilding C, Travesía da Choupana S/NSantiago de Compostela15706Spain
| | - Miguel Angel Gonzalez‐Gay
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory DiseasesUniversidad de Cantabria and IDIVAL, Hospital Universitario Marqués de ValdecillaAv. ValdecillaSantander39008Spain
| | - Antonio Mera
- SERGAS (Servizo Galego de Saude), Division of RheumatologySantiago University Clinical HospitalTravesía da Choupana S/NSantiago de Compostela15706Spain
| | - Francisca Lago
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Department of Cellular and Molecular CardiologyCIBERCV (Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares), Building CTravesía da Choupana S/NSantiago de Compostela15706Spain
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group. SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 9Santiago University Clinical HospitalSantiago de CompostelaSpain
| | - Ali Mobasheri
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyGU2 7XHUK
- School of Veterinary MedicineUniversity of SurreyGuildfordGU2 7ALUK
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Centre for Musculoskeletal Ageing ResearchQueen's Medical CentreNottinghamNG7 2UHUK
- State Research Institute Centre for Innovative MedicineSantariskiu 5Vilnius0866Republic of Lithuania
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases)Santiago University Clinical HospitalBuilding C, Travesía da Choupana S/NSantiago de Compostela15706Spain
| |
Collapse
|
35
|
Westbury LD, Fuggle NR, Syddall HE, Duggal NA, Shaw SC, Maslin K, Dennison EM, Lord JM, Cooper C. Relationships Between Markers of Inflammation and Muscle Mass, Strength and Function: Findings from the Hertfordshire Cohort Study. Calcif Tissue Int 2018; 102:287-295. [PMID: 29101476 PMCID: PMC5818589 DOI: 10.1007/s00223-017-0354-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/19/2017] [Indexed: 12/16/2022]
Abstract
We investigated the longitudinal relationships between inflammation markers and the following outcomes in a UK cohort study: appendicular lean mass (ALM); walking speed; level and change in grip strength; and sarcopenia defined by the European Working Group on Sarcopenia in Older People. Analyses were based on 336 community-dwelling older men and women (aged 59-70 years) who participated in the Hertfordshire Cohort Study (HCS). Inflammation markers were ascertained at baseline using enzyme-linked immunosorbent assay techniques and Bio-Plex Pro Assays. Grip strength was measured at baseline and follow-up [median follow-up time: 10.8 years (inter-quartile range 10.2-11.6)] and change in grip strength was ascertained using a residual change approach. At follow-up, ALM was ascertained using dual-energy X-ray absorptiometry, customary walking speed was measured and sarcopenia status was ascertained. Gender-adjusted linear and Poisson regression was used to examine the associations between inflammation markers and outcomes with and without adjustment for anthropometric and lifestyle factors. Higher C-reactive protein was associated (p < 0.04) with lower grip strength and accelerated decline in grip strength from baseline to follow-up. Higher cortisol was associated with lower ALM (p < 0.05). Higher interleukin-8 (IL-8) was associated with lower ALM (p < 0.05) and increased risk of sarcopenia [fully-adjusted relative risk per SD increase in IL-8: 1.37 (95% CI 1.10, 1.71), p = 0.005]. All associations were robust in fully-adjusted analyses. Inflammation markers were associated with measures of muscle mass, strength and function in HCS. Further work is required to replicate these associations and to delineate the underlying mechanisms.
Collapse
Affiliation(s)
- L D Westbury
- MRC Lifecourse Epidemiology Unit, Southampton General Hospital, University of Southampton, Southampton, SO16 6YD, UK
| | - N R Fuggle
- MRC Lifecourse Epidemiology Unit, Southampton General Hospital, University of Southampton, Southampton, SO16 6YD, UK
| | - H E Syddall
- MRC Lifecourse Epidemiology Unit, Southampton General Hospital, University of Southampton, Southampton, SO16 6YD, UK
| | - N A Duggal
- MRC-ARUK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - S C Shaw
- MRC Lifecourse Epidemiology Unit, Southampton General Hospital, University of Southampton, Southampton, SO16 6YD, UK
| | - K Maslin
- MRC Lifecourse Epidemiology Unit, Southampton General Hospital, University of Southampton, Southampton, SO16 6YD, UK
| | - E M Dennison
- MRC Lifecourse Epidemiology Unit, Southampton General Hospital, University of Southampton, Southampton, SO16 6YD, UK
- Victoria University of Wellington, Wellington, New Zealand
| | - J M Lord
- MRC-ARUK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - C Cooper
- MRC Lifecourse Epidemiology Unit, Southampton General Hospital, University of Southampton, Southampton, SO16 6YD, UK.
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.
- NIHR Musculoskeletal Biomedical Research Unit, University of Oxford, Oxford, UK.
| |
Collapse
|
36
|
Abstract
Leptin is an adipocyte-derived hormone, which contributes to the homeostatic regulation of energy balance and metabolism through humoral and neural pathways. Leptin acts on the neurons in certain brain areas such as the hypothalamus, hippocampus, and brain stem to regulate food intake, thermogenesis, energy expenditure, and homeostasis of glucose/lipid metabolism. The pathologically increased circulating leptin is a biomarker of leptin resistance, which is common in obese individuals. Leptin resistance is defined by a reduced sensitivity or a failure in response of the brain to leptin, showing a decrease in the ability of leptin to suppress appetite or enhance energy expenditure, which causes an increased food intake and finally leads to overweight, obesity, cardiovascular diseases, and other metabolic disorders. Leptin resistance is a challenge for clinical treatment or drug discovery of obesity. Until recently, emerging evidence has been showing novel mechanisms of the leptin resistance. Here, we summarized the advances and controversy of leptin resistance and associated diseases, for better understanding the physiology and pathophysiology of leptin as well as the new strategies for treating obesity and metabolic disorders.
Collapse
|
37
|
Molloy CT, Adkins LJ, Griffin C, Singer K, Weinberg JB. Mouse adenovirus type 1 infection of adipose tissue. Virus Res 2017; 244:90-98. [PMID: 29141203 DOI: 10.1016/j.virusres.2017.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 01/13/2023]
Abstract
Human adenovirus (HAdV) type 36 seropositivity has been linked to obesity in humans. That link is supported by a small number of studies using HAdV-36 infection of animals that are not natural hosts for HAdVs. In this study, we infected mice with mouse adenovirus type 1 (MAV-1), a mouse pathogen, to determine whether MAV-1 infected adipose tissue and was associated with adipose tissue inflammation and obesity. We detected MAV-1 in adipose tissue during acute MAV-1 infection, but we did not detect virus-induced increases in adipose tissue cytokine expression or histological evidence of adipose tissue inflammation during acute infection. MAV-1 did not persist in adipose tissue at later times, and we did not detect long-term adipose inflammation, increased adipose tissue mass, or body weight in infected mice. Our data indicate that MAV-1 is not associated with obesity in infected mice.
Collapse
Affiliation(s)
- Caitlyn T Molloy
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States
| | - Laura J Adkins
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States
| | - Cameron Griffin
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States
| | - Kanakadurga Singer
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States
| | - Jason B Weinberg
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
38
|
Keustermans G, van der Heijden LB, Boer B, Scholman R, Nuboer R, Pasterkamp G, Prakken B, de Jager W, Kalkhoven E, Janse AJ, Schipper HS. Differential adipokine receptor expression on circulating leukocyte subsets in lean and obese children. PLoS One 2017; 12:e0187068. [PMID: 29073286 PMCID: PMC5658151 DOI: 10.1371/journal.pone.0187068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/12/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Childhood obesity prevalence has increased worldwide and is an important risk factor for type 2 diabetes (T2D) and cardiovascular disease (CVD). The production of inflammatory adipokines by obese adipose tissue contributes to the development of T2D and CVD. While levels of circulating adipokines such as adiponectin and leptin have been established in obese children and adults, the expression of adiponectin and leptin receptors on circulating immune cells can modulate adipokine signalling, but has not been studied so far. Here, we aim to establish the expression of adiponectin and leptin receptors on circulating immune cells in obese children pre and post-lifestyle intervention compared to normal weight control children. METHODS 13 obese children before and after a 1-year lifestyle intervention were compared with an age and sex-matched normal weight control group of 15 children. Next to routine clinical and biochemical parameters, circulating adipokines were measured, and flow cytometric analysis of adiponectin receptor 1 and 2 (AdipoR1, AdipoR2) and leptin receptor expression on peripheral blood mononuclear cell subsets was performed. RESULTS Obese children exhibited typical clinical and biochemical characteristics compared to controls, including a higher BMI-SD, blood pressure and circulating leptin levels, combined with a lower insulin sensitivity index (QUICKI). The 1-year lifestyle intervention resulted in stabilization of their BMI-SD. Overall, circulating leukocyte subsets showed distinct adipokine receptor expression profiles. While monocytes expressed high levels of all adipokine receptors, NK and iNKT cells predominantly expressed AdipoR2, and B-lymphocytes and CD4+ and CD8+ T-lymphocyte subsets expressed AdipoR2 as well as leptin receptor. Strikingly though, leukocyte subset numbers and adipokine receptor expression profiles were largely similar in obese children and controls. Obese children showed higher naïve B-cell numbers, and pre-intervention also higher numbers of immature transition B-cells and intermediate CD14++CD16+ monocytes combined with lower total monocyte numbers, compared to controls. Furthermore, adiponectin receptor 1 expression on nonclassical CD14+CD16++ monocytes was consistently upregulated in obese children pre-intervention, compared to controls. However, none of the differences in leukocyte subset numbers and adipokine receptor expression profiles between obese children and controls remained significant after multiple testing correction. CONCLUSIONS First, the distinct adipokine receptor profiles of circulating leukocyte subsets may partly explain the differential impact of adipokines on leukocyte subsets. Second, the similarities in adipokine receptor expression profiles between obese children and normal weight controls suggest that adipokine signaling in childhood obesity is primarily modulated by circulating adipokine levels, instead of adipokine receptor expression.
Collapse
Affiliation(s)
- Genoveva Keustermans
- Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Berlinda Boer
- Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rianne Scholman
- Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roos Nuboer
- Division of Pediatrics, Meander Medical Centre, Amersfoort, The Netherlands
| | - Gerard Pasterkamp
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Berent Prakken
- Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Division of Pediatrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wilco de Jager
- Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eric Kalkhoven
- Molecular Cancer Research and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Arieke J. Janse
- Division of Pediatrics, Hospital Gelderse Vallei, Ede, The Netherlands
| | - Henk S. Schipper
- Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Division of Pediatrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Pediatric Cardiology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
39
|
Li Z, Gu J, Zhu Q, Liu J, Lu H, Lu Y, Wang X. Obese donor mice splenocytes aggravated the pathogenesis of acute graft-versus-host disease via regulating differentiation of Tregs and CD4 + T cell induced-type I inflammation. Oncotarget 2017; 8:74880-74896. [PMID: 29088831 PMCID: PMC5650386 DOI: 10.18632/oncotarget.20425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/04/2017] [Indexed: 02/07/2023] Open
Abstract
Acute graft-versus-host disease (aGVHD) remains one of the most severe complications in organ and bone marrow transplantation, leading to much morbidity and mortality. Obesity has been associated with increased risk of development of various inflammatory diseases. Here, we investigated the in vitro and in vivo effects of obese donor splenocytes on the development of acute graft-versus-host disease (aGVHD). In this study, mixed lymphocyte reactions (MLR) in vitro showed that obese donor mouse CD4+ T cell promoted the production of interleukin-2 (IL-2), interferon (IFN)-γ and tumor necrosis factor (TNF)-α. Meanwhile, the inducible Tregs population decreased greatly in obese donor mouse CD4+ T cells' induction group, compared with normal group. Then in the murine aGVHD model, we found that obese donor splenocytes dramatically increased the severity of aGVHD through down-regulating immune tolerance while enhancing systemic and local immunity. Moreover, we showed that aGVHD induced by obese donors resulted in massive expansion of donor CD3+ T cells, release of Th1-related cytokines, interleukin-17 (IL-17) and chemokines, significant increase of Th17 cells and inhibition of CD4+CD25+Foxp3+ regulatory T cells (Tregs) and impaired suppressive ability of donor Tregs. Expression of sphingosine-1-phosphate receptor 1 (S1PR1), phosphorylated Akt, mammalian target of rapamycin (mTOR) and Raptor increased, while the phosphorylation level of SMAD3 was decreased in the skin, intestine, lung and liver from obese donor splenocytes-treated aGVHD mice. Furthermore, at mRNA and protein levels, we defined several molecules that may account for the enhanced ability of obese donor splenocytes to migrate into target organs, such as IL-2, IL-17, IFN-γ, TNF-α, CXCR3, CXCL9, CXCL10, CXCL11 and CCL3. Therefore, these results imply that obese donor cells may be related to the risk of aGVHD and helping obese donor individuals lose weight represent a compulsory clinical strategy before implementing transplantation to control aGVHD of recipients.
Collapse
Affiliation(s)
- Zengyao Li
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Jian Gu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Qin Zhu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Jing Liu
- Department of Radiotherapy, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Hao Lu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yunjie Lu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Xuehao Wang
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
40
|
Pecoraro A, Nigro E, Polito R, Monaco ML, Scudiero O, Mormile I, Cesoni Marcelli A, Capasso M, Habetswallner F, Genovese A, Daniele A, Spadaro G. Total and High Molecular Weight Adiponectin Expression Is Decreased in Patients with Common Variable Immunodeficiency: Correlation with Ig Replacement Therapy. Front Immunol 2017; 8:895. [PMID: 28824624 PMCID: PMC5534466 DOI: 10.3389/fimmu.2017.00895] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/13/2017] [Indexed: 12/21/2022] Open
Abstract
Adiponectin (Acrp30) is an adipokine widely studied for its beneficial metabolic properties. It circulates as low molecular weight (LMW), medium molecular weight (MMW), and high molecular weight (HMW) oligomers. The latter exerts the most potent biological effects. Acrp30 attracted renewed interest with the finding that it was associated with the development and progression of immune disorders. The mechanisms underlying this association and the role of Acrp30 in the pathophysiology of immune-mediated conditions remain unknown. Common variable immunodeficiency (CVID) is a primary immunodeficiency characterized by chronic activation of the immune system, impaired antibody production, and imbalanced cytokine production. In the attempt to shed light on the expression of Acrp30 in CVID, we: (a) investigated total Acrp30 and its oligomerization state in CVID patients undergoing maintenance Ig replacement therapy; (b) assessed the effects of Ig replacement therapy on Acrp30 expression in treatment-naïve CVID patients, namely, patients not treated before diagnosis, before and after the first Ig administration; and (c) evaluated the correlation between Acrp30 levels and clinical phenotypes of the disease. As controls, we analyzed healthy subjects and patients affected by a non-immunodeficiency chronic inflammatory demyelinating polyneuropathy (CIDP), before and after Ig infusion. We found that total Acrp30 and HMW oligomers were decreased in CVID but not in CIDP patients versus controls. Moreover, Acrp30 levels were correlated with IgA levels and were associated with two CVID phenotypes, namely, autoimmune cytopenia and enteropathy. Receiver operating characteristic curve analysis indicated that Acrp30 modulation is specific for CVID patients. Acrp30 and HMW levels quickly and dramatically increased after Ig infusion only in eight treatment-naïve CVID patients but not in five CIDP patients. This finding indicates that Ig administration per se is not able to induce an increase of Acrp30, but the specific cellular and/or molecular background proper of CVID seems to be essential. In conclusion, our data indicate that Acrp30 is specifically related to CVID activity. Further studies are required to understand the biological role of Acrp30 and its possible use as disease biomarker in CVID.
Collapse
Affiliation(s)
- Antonio Pecoraro
- Department of Translational Medical Sciences, Allergy and Clinical Immunology, University of Naples Federico II, Naples, Italy
| | - Ersilia Nigro
- CEINGE-Biotecnologie Avanzate Scarl, Napoli, Italy.,Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Rita Polito
- CEINGE-Biotecnologie Avanzate Scarl, Napoli, Italy.,Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | | | - Olga Scudiero
- CEINGE-Biotecnologie Avanzate Scarl, Napoli, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Napoli, Italy
| | - Ilaria Mormile
- Department of Translational Medical Sciences, Allergy and Clinical Immunology, University of Naples Federico II, Naples, Italy
| | - Azzurra Cesoni Marcelli
- Department of Translational Medical Sciences, Allergy and Clinical Immunology, University of Naples Federico II, Naples, Italy
| | - Mario Capasso
- CEINGE-Biotecnologie Avanzate Scarl, Napoli, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Napoli, Italy
| | - Francesco Habetswallner
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Napoli, Italy
| | - Arturo Genovese
- Department of Translational Medical Sciences, Allergy and Clinical Immunology, University of Naples Federico II, Naples, Italy
| | - Aurora Daniele
- CEINGE-Biotecnologie Avanzate Scarl, Napoli, Italy.,Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, Allergy and Clinical Immunology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
41
|
Cucu A, Shreder K, Kraft D, Rühle PF, Klein G, Thiel G, Frey B, Gaipl US, Fournier C. Decrease of Markers Related to Bone Erosion in Serum of Patients with Musculoskeletal Disorders after Serial Low-Dose Radon Spa Therapy. Front Immunol 2017; 8:882. [PMID: 28791026 PMCID: PMC5524779 DOI: 10.3389/fimmu.2017.00882] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 07/11/2017] [Indexed: 12/29/2022] Open
Abstract
Musculoskeletal disorders (MSDs) are the most frequent cause of disability in Europe. Reduced mobility and quality of life of the patients are often associated with pain due to chronic inflammation. The inflammatory process, accompanied by a destruction of the cartilage and bone tissue, is discussed as a result of (A) the infiltration of immune cells into the joints, (B) an altered homeostasis of the joint cavity (synovium) with a critical role of bone remodeling cells, and (C) release of inflammatory factors including adipokines in the arthritic joint. In addition to the classical medication, low-dose radiation therapy using photons or radon spa treatments has shown to reduce pain and improve the mobility of the patients. However, the cellular and molecular mechanisms of anti-inflammatory effects of radon are yet poorly understood. We analyzed blood and serum samples from 32 patients, suffering from MSDs, who had been treated in the radon spa in Bad Steben (Germany). Before and after therapy, we measured the levels of markers related to bone metabolism (collagen fragments type-1, cartilage oligomeric matrix protein, receptor activator of NFκB ligand, and osteoprotegerin) in the serum of patients. In addition, adipokines related to inflammation (visfatin, leptin, resistin, and adiponectin) were analyzed. Some of these factors are known to correlate with disease activity. Since T cells play an important role in the progression of the disease, we further analyzed in blood samples the frequency of pro- and anti-inflammatory T cell subpopulations (CD4+IL17+ T cells and CD4+FoxP3+ regulatory T cells). Overall, we found a decrease of collagen fragments (CTX-I), indicating decreased bone resorption, presumably by osteoclasts, in the serum of MSD patients. We also observed reduced levels of visfatin and a consistent trend toward an increase of regulatory T cells in the peripheral blood, both indicating attenuation of inflammation. However, key proteins of bone metabolism were unchanged on a systemic level, suggesting that these factors act locally after radon spa therapy of patients with MSDs.
Collapse
Affiliation(s)
- Aljona Cucu
- GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Darmstadt, Germany
| | - Kateryna Shreder
- GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Darmstadt, Germany
| | - Daniela Kraft
- GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Darmstadt, Germany
| | - Paul Friedrich Rühle
- Department of Radiation Oncology, Universitätklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Gerhart Klein
- Association for Spa Research and Medical Practice for Cardiology, Bad Steben, Germany
| | - Gerhard Thiel
- Membrane Biophysics Group, Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Claudia Fournier
- GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Darmstadt, Germany
| |
Collapse
|
42
|
Lower SHBG level is associated with higher leptin and lower adiponectin levels as well as metabolic syndrome, independent of testosterone. Sci Rep 2017; 7:2727. [PMID: 28577342 PMCID: PMC5457423 DOI: 10.1038/s41598-017-03078-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 04/21/2017] [Indexed: 01/26/2023] Open
Abstract
In addition to testosterone (T), the emerging role of sex hormone-binding globulin (SHBG) in pathogenesis of metabolic syndrome (MetS) has been noted recently. However, reports of associations with serum adipocytokine levels are still limited. Therefore, we conducted this study to evaluate whether serum T and SHBG levels are independent predictors for the risk of MetS that are associated with adiponectin and leptin levels in 614 Taiwanese men over 40 years old collected from a free health screening. Subjects in the lowest quartile of TT and SHBG levels are exposed to a 1.58 and 3.22 times risk of developing MetS, as compared to those in the highest quartile of TT and SHBG levels. However, SHBG retains its significance independent of TT as a MetS risk predictor, but not vice versa. In addition, SHBG was significantly correlated with both adiponectin and leptin levels even after adjusting for TT levels. In conclusion, SHBG served as a major predictor for the risk of MetS and was correlated with serum adiponectin and leptin levels that are independent of T. Further studies are needed to elucidate the true role of SHBG in the pathogenesis of MetS and possible mechanisms associated with serum adiponectin and leptin levels.
Collapse
|
43
|
Ruscica M, Baragetti A, Catapano AL, Norata GD. Translating the biology of adipokines in atherosclerosis and cardiovascular diseases: Gaps and open questions. Nutr Metab Cardiovasc Dis 2017; 27:379-395. [PMID: 28237179 DOI: 10.1016/j.numecd.2016.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 01/10/2023]
Abstract
AIM Critically discuss the available data, to identify the current gaps and to provide key concepts that will help clinicians in translating the biology of adipokines in the context of atherosclerosis and cardio-metabolic diseases. DATA SYNTHESIS Adipose tissue is nowadays recognized as an active endocrine organ, a function related to the ability to secrete adipokines (such as leptin and adiponectin) and pro-inflammatory cytokines (tumor necrosis factor alpha and resistin). Studies in vitro and in animal models have observed that obesity status presents a chronic low-grade inflammation as the consequence of the immune cells infiltrating the adipose tissue as well as adipocytes. This inflammatory signature is often related to the presence of cardiovascular diseases, including atherosclerosis and thrombosis. These links are less clear in humans, where the role of adipokines as prognostic marker and/or player in cardiovascular diseases is not as clear as that observed in experimental models. Moreover, plasma adipokine levels might reflect a condition of adipokine-resistance in which adipokine redundancy occurs. The investigation of the cardio-metabolic phenotype of carriers of single nucleotide polymorphisms affecting the levels or function of a specific adipokine might help determine their relevance in humans. Thus, the aim of the present review is to critically discuss the available data, identify the current gaps and provide key concepts that will help clinicians translate the biology of adipokines in the context of atherosclerosis and cardio-metabolic diseases.
Collapse
Affiliation(s)
- M Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - A Baragetti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; SISA Center for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo, Italy
| | - A L Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; IRCCS Multimedica Hospital, Sesto San Giovanni, Milan, Italy
| | - G D Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; SISA Center for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo, Italy; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia.
| |
Collapse
|
44
|
Morin SO, Poggi M, Alessi MC, Landrier JF, Nunès JA. Modulation of T Cell Activation in Obesity. Antioxid Redox Signal 2017; 26:489-500. [PMID: 27225042 DOI: 10.1089/ars.2016.6746] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE Immune T cells are present in adipose tissues (AT), and the stoichiometry of the different T cell subsets is altered during diet-induced obesity (DIO). T cells contribute to the early steps of AT inflammation during DIO. Recent Advances: Many factors could potentially be responsible for this altered pro-inflammatory versus anti-inflammatory T cell balance. CRITICAL ISSUES T cells are potentially activated in AT, which vitamin D might contribute to, as will be discussed in this article. In addition, we will review the different possible contributors to T cell activation in AT, such as the CD28 and CD154 T cell costimulatory molecules in AT. FUTURE DIRECTIONS The potential antigen presentation capacities of adipocytes should be further investigated. Moreover, the properties of these AT resident (or migrating to AT) T cells must be further assessed. Antioxid. Redox Signal. 26, 489-500.
Collapse
Affiliation(s)
- Stéphanie O Morin
- 1 Inserm, U1068, Centre de Recherche en Cancérologie de Marseille , Marseille, France .,2 Institut Paoli-Calmettes , Marseille, France .,3 CNRS, UMR7258, Centre de Recherche en Cancérologie de Marseille , Marseille, France .,4 Aix-Marseille Université , UM105, Marseille, France
| | - Marjorie Poggi
- 5 Inserm U1062 , Marseille, France .,6 Inra , UMR1260, Marseille, France .,7 Aix-Marseille Université , Nutrition Obésité Risques Thrombotiques, Marseille, France
| | - Marie-Christine Alessi
- 5 Inserm U1062 , Marseille, France .,6 Inra , UMR1260, Marseille, France .,7 Aix-Marseille Université , Nutrition Obésité Risques Thrombotiques, Marseille, France
| | - Jean-François Landrier
- 5 Inserm U1062 , Marseille, France .,6 Inra , UMR1260, Marseille, France .,7 Aix-Marseille Université , Nutrition Obésité Risques Thrombotiques, Marseille, France
| | - Jacques A Nunès
- 1 Inserm, U1068, Centre de Recherche en Cancérologie de Marseille , Marseille, France .,2 Institut Paoli-Calmettes , Marseille, France .,3 CNRS, UMR7258, Centre de Recherche en Cancérologie de Marseille , Marseille, France .,4 Aix-Marseille Université , UM105, Marseille, France
| |
Collapse
|
45
|
Sustained High Levels of Both Total and High Molecular Weight Adiponectin in Plasma during the Convalescent Phase of Haemorrhagic Fever with Renal Syndrome Are Associated with Disease Severity. J Immunol Res 2017; 2017:6468097. [PMID: 28424792 PMCID: PMC5382360 DOI: 10.1155/2017/6468097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/12/2017] [Indexed: 01/18/2023] Open
Abstract
Haemorrhagic fever with renal syndrome (HFRS) is characterised by an uncontrolled immune response that causes vascular leakage. Adiponectin (APN) is an adipocytokine involved in prorevascularisation and immunomodulation. To investigate the possible effects of APN in the pathogenesis of HFRS, total and high molecular weight (HMW) APN levels in the plasma of patients with HFRS were quantified using enzyme-linked immunosorbent assay (ELISA). Compared with those in healthy controls, the plasma total and HMW APN levels in patients were elevated to different degrees from the fever onset and remained high at the convalescent phase. Consistent with these results, western blot analysis additionally showed that low molecular weight (LMW), middle molecular weight (MMW), and HMW APN levels were all elevated and contributed to the elevation of the total APN level. Importantly, sustained high levels of total and HMW APN at the convalescent phase were significantly higher in patients with critical disease than those in patients with mild or moderate disease. Moreover, total and HMW APN levels negatively correlated with white blood cell count and positively correlated with platelet count and serum albumin level. These results may provide insights into understanding the roles of total and HMW APN in the pathogenesis of HFRS.
Collapse
|
46
|
Hsieh CC, Chou MJ, Wang CH. Lunasin attenuates obesity-related inflammation in RAW264.7 cells and 3T3-L1 adipocytes by inhibiting inflammatory cytokine production. PLoS One 2017; 12:e0171969. [PMID: 28182687 PMCID: PMC5300240 DOI: 10.1371/journal.pone.0171969] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/27/2017] [Indexed: 01/04/2023] Open
Abstract
Obesity has become a major threat to public health and is accompanied by chronic low-grade inflammation, which leads to various pathological developments. Lunasin, a natural seed peptide, exhibits several biological activities, such as anti-carcinogenesis, anti-inflammatory, and antioxidant activities. However, the mechanism of action of lunasin in obesity-related inflammation has not been investigated. The aim of this study was to explore whether lunasin could reduce the inflammation induced by obesity-related mediators in RAW264.7 cells and 3T3-L1 adipocytes and whether it could attenuate the crosstalk between the two cell lines. RAW264.7 cells were cultured in leptin-containing medium, adipocyte-conditioned medium (Ad-CM), or co-cultured with 3T3-L1 cells to mimic the physiology of obesity. The data showed that the secretion of pro-inflammatory cytokine interleukin-1β (IL-1β) was inhibited by lunasin after leptin activation of RAW264.7 cells. In addition, lunasin decreased monocyte chemoattractant protein-1 (MCP-1) and IL-1β secretions in the Ad-CM model. Cytokine MCP-1, IL-6, tumor necrosis factor (TNF)-α, and IL-1β secretions were significantly decreased by leptin or Ad-CM plus lipopolysaccharide stimulation. Subsequently, the co-culture of the two cells refined the direct relation between them, resulting in apparently increased MCP-1, and decreased IL-6 levels after lunasin treatment. In 3T3-L1 adipocytes, lunasin also exhibited anti-inflammatory property by inhibiting MCP-1, plasminogen activator inhibitor-1, and leptin productions stimulated by (TNF)-α, lipopolysaccharide, or RAW264.7 cell-conditioned medium. This result revealed that lunasin acts as a potential anti-inflammatory agent not only in macrophages but also in adipocytes, disrupting the crosstalk between these two cells. Therefore, this study suggests the intake of lunasin from diet or as a supplement, for auxiliary prevention or therapy in obesity-related inflammatory applications.
Collapse
Affiliation(s)
- Chia-Chien Hsieh
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei, Taiwan
- * E-mail:
| | - Mei-Jia Chou
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei, Taiwan
| | - Chih-Hsuan Wang
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
47
|
Golladay GJ, Satpathy J, Jiranek WA. Patient Optimization-Strategies That Work: Malnutrition. J Arthroplasty 2016; 31:1631-4. [PMID: 27118349 DOI: 10.1016/j.arth.2016.03.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 03/14/2016] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Patient optimization is receiving increasing attention as outcomes monitoring and bundled payments have been introduced in joint arthroplasty. Optimization of nutrition is an important aspect of perioperative management. METHODS This manuscript is a review of previously published material related to nutrition and the impact of malnutrition on surgical outcomes, with guidance for surgeons preparing patients for elective joint arthroplasty. RESULTS Patients with optimized nutritional parameters have fewer complications, especially related to wound healing and infection. CONCLUSION Nutritional assessment and optimization should be a part of the perioperative management of patients undergoing lower extremity arthroplasty.
Collapse
|
48
|
Krakowiak P, Walker CK, Tancredi D, Hertz-Picciotto I, Van de Water J. Autism-specific maternal anti-fetal brain autoantibodies are associated with metabolic conditions. Autism Res 2016; 10:89-98. [PMID: 27312731 DOI: 10.1002/aur.1657] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/18/2016] [Accepted: 05/17/2016] [Indexed: 01/05/2023]
Abstract
Approximately 23% of mothers of children with autism spectrum disorder (ASD) produce specific patterns of autoantibodies to fetal brain proteins that have been detected in only 1% of mothers of typically developing children. The biological mechanisms underlying the development of ASD-specific maternal autoantibodies are poorly understood. We sought to determine whether ASD-specific maternal autoantibodies identified postnatally were associated with metabolic conditions (MCs) during gestation. Participants were 227 mothers of 2-5 year old children with confirmed ASD, enrolled in CHARGE (Childhood Autism Risk from Genetics and the Environment) between January 2003 and April 2008, and from whom blood samples were collected and analyzed for anti-fetal brain autoantibodies (Ab+). MCs included diabetes, hypertensive disorders, and prepregnancy obesity or overweight, ascertained from medical records or structured telephone interviews. Log-linear regression models were performed to estimate prevalence ratios and 95% confidence intervals (CI) based on robust standard errors. Fifty-six (25%) mothers were Ab+. Ab+ prevalence was higher among mothers with diabetes, hypertensive disorders, or overweight compared to healthy mothers, but differences were not statistically significant. In a subset of 145 mothers whose children exhibited severe ASD (31 Ab+), those diagnosed with type 2 or gestational diabetes were 2.7-fold more likely to be Ab+ (95% CI 1.1, 6.6), controlling for delivery payer and smoking. Gestational diabetes specifically was associated with a 3.2-fold increased Ab+ prevalence (95% CI 1.2, 8.6). In this exploratory study, mothers whose children had severe ASD and who experienced diabetes were more likely to have anti-fetal brain autoantibodies 2-5 years later. Autism Res 2017, 10: 89-98. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paula Krakowiak
- Divisions of Epidemiology and of Environmental and Occupational Health, Department of Public Health Sciences, School of Medicine, University of California, Davis, California.,Medical Investigations of Neurodevelopmental Disorders Institute (MIND), University of California, Davis, California
| | - Cheryl K Walker
- Medical Investigations of Neurodevelopmental Disorders Institute (MIND), University of California, Davis, California.,Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, School of Medicine, University of California, Davis, California
| | - Daniel Tancredi
- Department of Pediatrics, School of Medicine, University of California, Davis, California
| | - Irva Hertz-Picciotto
- Divisions of Epidemiology and of Environmental and Occupational Health, Department of Public Health Sciences, School of Medicine, University of California, Davis, California.,Medical Investigations of Neurodevelopmental Disorders Institute (MIND), University of California, Davis, California
| | - Judy Van de Water
- Medical Investigations of Neurodevelopmental Disorders Institute (MIND), University of California, Davis, California.,Division of Rheumatology, Allergy and Clinical Immunology, Department of Internal Medicine, School of Medicine, University of California, Davis, California
| |
Collapse
|
49
|
Gerriets VA, Danzaki K, Kishton RJ, Eisner W, Nichols AG, Saucillo DC, Shinohara ML, MacIver NJ. Leptin directly promotes T-cell glycolytic metabolism to drive effector T-cell differentiation in a mouse model of autoimmunity. Eur J Immunol 2016; 46:1970-83. [PMID: 27222115 DOI: 10.1002/eji.201545861] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 04/18/2016] [Accepted: 05/20/2016] [Indexed: 12/14/2022]
Abstract
Upon activation, T cells require energy for growth, proliferation, and function. Effector T (Teff) cells, such as Th1 and Th17 cells, utilize high levels of glycolytic metabolism to fuel proliferation and function. In contrast, Treg cells require oxidative metabolism to fuel suppressive function. It remains unknown how Teff/Treg-cell metabolism is altered when nutrients are limited and leptin levels are low. We therefore examined the role of malnutrition and associated hypoleptinemia on Teff versus Treg cells. We found that both malnutrition-associated hypoleptinemia and T cell-specific leptin receptor knockout suppressed Teff-cell number, function, and glucose metabolism, but did not alter Treg-cell metabolism or suppressive function. Using the autoimmune mouse model EAE, we confirmed that fasting-induced hypoleptinemia altered Teff-cell, but not Treg-cell, glucose metabolism, and function in vivo, leading to decreased disease severity. To explore potential mechanisms, we examined HIF-1α, a key regulator of Th17 differentiation and Teff-cell glucose metabolism, and found HIF-1α expression was decreased in T cell-specific leptin receptor knockout Th17 cells, and in Teff cells from fasted EAE mice, but was unchanged in Treg cells. Altogether, these data demonstrate a selective, cell-intrinsic requirement for leptin to upregulate glucose metabolism and maintain function in Teff, but not Treg cells.
Collapse
Affiliation(s)
- Valerie A Gerriets
- Department of Pediatrics, Division of Pediatric Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - Keiko Danzaki
- Department of Pediatrics, Division of Pediatric Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - Rigel J Kishton
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - William Eisner
- Department of Pediatrics, Division of Pediatric Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - Amanda G Nichols
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Donte C Saucillo
- Department of Pediatrics, Division of Pediatric Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - Mari L Shinohara
- Department of Immunology, Duke University Medical Center, Durham, NC, USA.,Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Nancie J MacIver
- Department of Pediatrics, Division of Pediatric Endocrinology, Duke University Medical Center, Durham, NC, USA.,Department of Immunology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
50
|
Fülöp P, Harangi M, Seres I, Paragh G. Paraoxonase-1 and adipokines: Potential links between obesity and atherosclerosis. Chem Biol Interact 2016; 259:388-393. [PMID: 27062889 DOI: 10.1016/j.cbi.2016.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/25/2016] [Accepted: 04/04/2016] [Indexed: 11/24/2022]
Abstract
Oxidative stress and chronic low-grade inflammation are major characteristics of obesity-related disorders. The dominance of pro-oxidant and pro-inflammatory mechanisms triggers insulin resistance and enhances the progression of atherosclerosis. Discovered first as an esterase that hydrolyze organophosphates, human paraoxonase-1 is bound to high-density lipoprotein and inhibits the oxidation of lipoproteins and reduces the degree of inflammation, hence it is considered to act against atherosclerosis. In contrast, the majority of the adipokines secreted from the enlarged white adipose tissue promote the atherosclerotic process; and altered adipokine secretion is now regarded as one of the major contributors of increased cardiovascular morbidity and mortality in obesity. In this review, we detail the correlations between paraoxonase-1 and some selected adipokines, namely leptin, adiponectin and chemerin. Adipokine imbalance leads to decreased paraoxonase-1 activity that results in enhanced atherosclerosis; therefore, altered adipokine secretion may be predictive of cardiovascular complications in obesity. As an active organ secreting biological active substances, white adipose tissue may also act as a "fine-tuner" of immune and endocrine actions attenuating or enhancing reactions triggered by pathogens, inflammation and metabolic stimuli; and obesity, as a chronic noxious state may perturb the proper functioning of this fine-tuning process. Further investigations are of major importance to elucidate the associations between adipokines and paraoxonase-1 and to establish accurate interventions against obesity-related disorders.
Collapse
Affiliation(s)
- Péter Fülöp
- Division of Metabolic Diseases, Institute of Internal Medicine, University of Debrecen Faculty of Medicine, 4032 Debrecen, Nagyerdei Krt. 98, Hungary.
| | - Mariann Harangi
- Division of Metabolic Diseases, Institute of Internal Medicine, University of Debrecen Faculty of Medicine, 4032 Debrecen, Nagyerdei Krt. 98, Hungary.
| | - Ildikó Seres
- Division of Metabolic Diseases, Institute of Internal Medicine, University of Debrecen Faculty of Medicine, 4032 Debrecen, Nagyerdei Krt. 98, Hungary.
| | - György Paragh
- Division of Metabolic Diseases, Institute of Internal Medicine, University of Debrecen Faculty of Medicine, 4032 Debrecen, Nagyerdei Krt. 98, Hungary.
| |
Collapse
|