1
|
Park S, Yi E, Jeon J, Oh J, Xu Z, Park SH. The Role of Bone Marrow Stromal Cell Antigen 2 (BST2) in the Migration of Dendritic Cells to Lymph Nodes. Int J Mol Sci 2024; 26:149. [PMID: 39796009 PMCID: PMC11720714 DOI: 10.3390/ijms26010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/30/2025] Open
Abstract
Bone marrow stromal antigen 2 (BST2) is a host-restriction factor that plays multiple roles in the antiviral defense of innate immune responses, including the inhibition of viral particle release from virus-infected cells. BST2 may also be involved in the endothelial adhesion and migration of monocytes, but its importance in the immune system is still unclear. Immune cell adhesion and migration are closely related to the initiation of immune responses. In this study, we found that the expressions of the lymph node homing marker chemokine receptor 7 (CCR7) and an adhesion molecule intercellular adhesion molecule 1 (ICAM-1) in conventional dendritic cells (cDCs) were associated with BST2 expression. Interestingly, Bst2-/- cDCs showed lower chemotactic ability, including velocity and accumulative distance toward chemokine ligand 19 (CCL19) gradient in vitro, compared to wild-type cDCs. Bst2-/- cDCs also showed reduced migration and reduced retention capacity in draining lymph nodes in vivo. As a result, Bst2-/- cDCs as antigen-presenting cells induced lower antigen-specific B cell and T cell responses compared to Bst2+/+ cDCs. Notably, mice administered the influenza vaccine via Bst2-/- cDCs exhibited substantially inefficient virus clearance compared to mice administered the Bst2+/+ cDCs vaccine. Therefore, we propose that BST2, which plays a critical role in the effective migration and retention of cDCs, is involved in the development of optimal immunological effects in draining lymph nodes.
Collapse
Affiliation(s)
| | | | | | | | | | - Se-Ho Park
- College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; (S.P.); (E.Y.); (J.J.); (J.O.); (Z.X.)
| |
Collapse
|
2
|
Naidoo L, Arumugam T, Ramsuran V. Host Genetic Impact on Infectious Diseases among Different Ethnic Groups. ADVANCED GENETICS (HOBOKEN, N.J.) 2023; 4:2300181. [PMID: 38099246 PMCID: PMC10716055 DOI: 10.1002/ggn2.202300181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/11/2023] [Indexed: 12/17/2023]
Abstract
Infectious diseases such as malaria, tuberculosis (TB), human immunodeficiency virus (HIV), and the coronavirus disease of 2019 (COVID-19) are problematic globally, with high prevalence particularly in Africa, attributing to most of the death rates. There have been immense efforts toward developing effective preventative and therapeutic strategies for these pathogens globally, however, some remain uncured. Disease susceptibility and progression for malaria, TB, HIV, and COVID-19 vary among individuals and are attributed to precautionary measures, environment, host, and pathogen genetics. While studying individuals with similar attributes, it is suggested that host genetics contributes to most of an individual's susceptibility to disease. Several host genes are identified to associate with these pathogens. Interestingly, many of these genes and polymorphisms are common across diseases. This paper analyzes genes and genetic variations within host genes associated with HIV, TB, malaria, and COVID-19 among different ethnic groups. The differences in host-pathogen interaction among these groups, particularly of Caucasian and African descent, and which gene polymorphisms are prevalent in an African population that possesses protection or risk to disease are reviewed. The information in this review could potentially help develop personalized treatment that could effectively combat the high disease burden in Africa.
Collapse
Affiliation(s)
- Lisa Naidoo
- School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurban4041South Africa
| | - Thilona Arumugam
- School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurban4041South Africa
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurban4041South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)University of KwaZulu‐NatalDurban4041South Africa
| |
Collapse
|
3
|
Belbacha I, Azzouzi ME, Bensghir R, Marhoum KF, Hajjout K, Elharti EM, Sadki K, Oumzil H. The APOBEC3G gene rs2294367(C>G) variant is associated with HIV-1 infection in Moroccan subjects. Acta Trop 2023; 249:107045. [PMID: 39492490 DOI: 10.1016/j.actatropica.2023.107045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2024]
Abstract
The APOBEC3G gene is one of the most important host factors thathas beenfound previously associated withHIV infection and AIDS progression. The host's susceptibility to viral infectionmay be influenced by any APOBEC3G genetic variation.The main aim of thecurrent study was to investigate the association of three SNPs in the APOBEC3G gene (rs8177832, rs35228531, and rs2294367) respectively, with disease outcomes in Moroccan HIV-1 infected patients. A case-control study was conducted in 194 HIV-1 infected patients and 195 healthy controls and the three selected APOBEC3G SNPs were genotyped in all participants using TaqMan® allelic discrimination assays. The rs2294367 CG genotype was found strongly associated with the protection profile against the HIV-1 infection (OR=0.44, 95% CI=0.28-0.67, p=0.0002). The rs2294367 CG genotype (p=0.0009) was found as a protective element while the rs2294367 GG genotype (p=0.015) has shown susceptibility against HIV-1 infection among females. Furthermore, the rs2294367CG genotype seemed to protect older subjects (>50 years) from infection (p=0.001). Haplotype analysis demonstrated that the GCC haplotype from (rs8177832, rs35228531, and rs2294367) observed could be associated with a high risk of HIV-1 infection in Morocco, OR=2.25, 95% CI=1.12-4.49, p=0.022). This study demonstrates significant associations between the studied polymorphisms in APOBEC3G with pVL variations during treatment. Thus, our findings confirm that genetic variations in the APOBEC3G gene might modulate the susceptibility to HIV-1 infection and the response to antiviral drugs in Moroccan individuals. However, it should be noted that the main limitation of this study is the moderate sample size, thus a validation study with a larger sample is warranted.
Collapse
Affiliation(s)
- Imane Belbacha
- National Reference Laboratory for HIV, Virology Department, National Institute of Hygiene, Rabat, Morocco; Research Laboratory in Oral Biology and Biotechnology, Faculty of Dental Medicine, Mohamed V University, Rabat, Morocco.
| | - Meryem El Azzouzi
- Biology and Medical Research Unit, CNESTEN, Faculty of Medicine and Pharmacy of Rabat, Mohammed V University in Rabat, Rabat, Morocco
| | - Rajae Bensghir
- Infectious Diseases Service, the University Hospital IBN ROCHD, Casablanca, Morocco
| | - Kamal Filali Marhoum
- Infectious Diseases Service, the University Hospital IBN ROCHD, Casablanca, Morocco
| | - Khadija Hajjout
- National Center for Blood Transfusion, Immuno-hematology Unit, Rabat, Morocco
| | - El Mir Elharti
- National Reference Laboratory for HIV, Virology Department, National Institute of Hygiene, Rabat, Morocco
| | - Khalid Sadki
- Research Laboratory in Oral Biology and Biotechnology, Faculty of Dental Medicine, Mohamed V University, Rabat, Morocco.
| | - Hicham Oumzil
- National Reference Laboratory for HIV, Virology Department, National Institute of Hygiene, Rabat, Morocco; Microbiology RPU, Faculty of Medicine and Pharmacy, Mohamed V University, Rabat, Morocco.
| |
Collapse
|
4
|
Zu S, Li C, Li L, Deng YQ, Chen X, Luo D, Ye Q, Huang YJ, Li XF, Zhang RR, Sun N, Zhang X, Aliyari SR, Nielsen-Saines K, Jung JU, Yang H, Qin CF, Cheng G. TRIM22 suppresses Zika virus replication by targeting NS1 and NS3 for proteasomal degradation. Cell Biosci 2022; 12:139. [PMID: 36042495 PMCID: PMC9429444 DOI: 10.1186/s13578-022-00872-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Background Recognition of viral invasion by innate antiviral immune system triggers activation of the type I interferon (IFN-I) and proinflammatory signaling pathways. Subsequently, IFN-I induction regulates expression of a group of genes known as IFN-I-stimulated genes (ISGs) to block viral infection. The tripartite motif containing 22 (TRIM22) is an ISG with strong antiviral functions. Results Here we have shown that the TRIM22 has been strongly upregulated both transcriptionally and translationally upon Zika virus (ZIKV) infection. ZIKV infection is associated with a wide range of clinical manifestations in human from mild to severe symptoms including abnormal fetal brain development. We found that the antiviral function of TRIM22 plays a crucial role in counterattacking ZIKV infection. Overexpression of TRIM22 protein inhibited ZIKV growth whereas deletion of TRIM22 in host cells increased ZIKV infectivity. Mechanistically, TRIM22, as a functional E3 ubiquitin ligase, promoted the ubiquitination and degradation of ZIKV nonstructural protein 1 (NS1) and nonstructural protein 3 (NS3). Further studies showed that the SPRY domain and Ring domain of TRIM22 played important roles in protein interaction and degradation, respectively. In addition, we found that TRIM22 also inhibited other flaviviruses infection including dengue virus (DENV) and yellow fever virus (YFV). Conclusion Thus, TRIM22 is an ISG with important role in host defense against flaviviruses through binding and degradation of the NS1 and NS3 proteins. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00872-w.
Collapse
|
5
|
Cisneros WJ, Cornish D, Hultquist JF. Application of CRISPR-Cas9 Gene Editing for HIV Host Factor Discovery and Validation. Pathogens 2022; 11:891. [PMID: 36015010 PMCID: PMC9415735 DOI: 10.3390/pathogens11080891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 12/04/2022] Open
Abstract
Human Immunodeficiency Virus (HIV) interacts with a wide array of host factors at each stage of its lifecycle to facilitate replication and circumvent the immune response. Identification and characterization of these host factors is critical for elucidating the mechanism of viral replication and for developing next-generation HIV-1 therapeutic and curative strategies. Recent advances in CRISPR-Cas9-based genome engineering approaches have provided researchers with an assortment of new, valuable tools for host factor discovery and interrogation. Genome-wide screening in a variety of in vitro cell models has helped define the critical host factors that play a role in various cellular and biological contexts. Targeted manipulation of specific host factors by CRISPR-Cas9-mediated gene knock-out, overexpression, and/or directed repair have furthermore allowed for target validation in primary cell models and mechanistic inquiry through hypothesis-based testing. In this review, we summarize several CRISPR-based screening strategies for the identification of HIV-1 host factors and highlight how CRISPR-Cas9 approaches have been used to elucidate the molecular mechanisms of viral replication and host response. Finally, we examine promising new technologies in the CRISPR field and how these may be applied to address critical questions in HIV-1 biology going forward.
Collapse
Affiliation(s)
- William J. Cisneros
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Daphne Cornish
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| |
Collapse
|
6
|
Closing the Door with CRISPR: Genome Editing of CCR5 and CXCR4 as a Potential Curative Solution for HIV. BIOTECH 2022; 11:biotech11030025. [PMID: 35892930 PMCID: PMC9326690 DOI: 10.3390/biotech11030025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection can be controlled by anti-retroviral therapy. Suppressing viral replication relies on life-long medication, but anti-retroviral therapy is not without risks to the patient. Therefore, it is important that permanent cures for HIV infection are developed. Three patients have been described to be completely cured from HIV infection in recent years. In all cases, patients received a hematopoietic stem cell (HSC) transplantation due to a hematological malignancy. The HSCs were sourced from autologous donors that expressed a homozygous mutation in the CCR5 gene. This mutation results in a non-functional receptor, and confers resistance to CCR5-tropic HIV strains that rely on CCR5 to enter host cells. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas) system is one of the methods of choice for gene editing, and the CRISPR/Cas system has been employed to target loci of interest in the context of HIV. Here, the current literature regarding CRISPR-mediated genome editing to render cells resistant to HIV (re)-infection by knocking out the co-receptors CCR5 and CXCR4 is summarized, and an outlook is provided regarding future (research) directions.
Collapse
|
7
|
Singh H, Jadhav S, Arif Khan A, Aggarwal SK, Choudhari R, Verma S, Aggarwal S, Gupta V, Singh A, Nain S, Maan HS. APOBEC3, TRIM5α, and BST2 polymorphisms in healthy individuals of various populations with special references to its impact on HIV transmission. Microb Pathog 2022; 162:105326. [PMID: 34863878 DOI: 10.1016/j.micpath.2021.105326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 11/30/2022]
Abstract
AIDS restriction genes (ARGs) like APOBEC3, TRIM5α, and BST2 can act as immunological detectors of the innate protective mechanism of the body. ARGs influence the course of viral pathogenesis and progression of the disease. The infection caused by different viruses including HIV activates the innate immune receptors leading to production of proinflammatory cytokines, interferons and signals that recruit and activate cells involved in the process of inflammation following induction of adaptive immunity. Differential expression of genes involved in viral infection decide the fate and subsequent susceptibility to infection and its clinical outcome. Nevertheless, comprehensive reports on the incidence of genetic polymorphism of APOBEC3s, TRIM5α, and BST-2 in the general population and its association with pathological conditions have not been described well. Therefore, the occurrence of APOBEC3, TRIM5α, and BST2 polymorphism in healthy individuals and its impact on HIV transmission was analyzed. We conducted an extensive search using the several databases including, EMBASE, PubMed (Medline), and Google Scholar. APOBEC3-D, -F, -G, and -H out of the seven human APOBEC3s, help in the control of viral infection. Amongst various restriction factors, TRIM5α and BST-2 also restrict the viral infection followed by the development of the disease. In the current review, a brief account of the polymorphism in the APOBEC3G, TRIM5α, and BST2 genes are explored among different populations along with the interaction of APOBEC3G with Vif protein. Furthermore, this review specifically focus on ARGs polymorphism (APOBEC3G, TRIM5α, and BST2) associated with HIV transmission.
Collapse
Affiliation(s)
- HariOm Singh
- Department of Molecular Biology, ICMR-National AIDS Research Institute, Pune, India.
| | - Sushama Jadhav
- Department of Molecular Biology, ICMR-National AIDS Research Institute, Pune, India
| | - Abdul Arif Khan
- Department of Microbiology, ICMR-National AIDS Research Institute, Pune, India
| | - Shubham K Aggarwal
- Department of Molecular Biology, ICMR-National AIDS Research Institute, Pune, India
| | - Ranjana Choudhari
- Department of Molecular Biology, ICMR-National AIDS Research Institute, Pune, India
| | - Sheetal Verma
- Department of Microbiology, King George's Medical University, Lucknow, U.P, India
| | - Sumit Aggarwal
- Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | - Vivek Gupta
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Amita Singh
- District Women Hospital, Prayagraj, UP, 211003, India
| | - Sumitra Nain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali Newai, 304022, Rajasthan, India
| | - Harjeet Singh Maan
- State Virology Laboratory, Department of Microbiology Gandhi Medical College, Bhopal, 462001, India
| |
Collapse
|
8
|
Drug Repurposing Approaches to Combating Viral Infections. J Clin Med 2020; 9:jcm9113777. [PMID: 33238464 PMCID: PMC7700377 DOI: 10.3390/jcm9113777] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
Development of novel antiviral molecules from the beginning costs an average of $350 million to $2 billion per drug, and the journey from the laboratory to the clinic takes about 10–15 years. Utilization of drug repurposing approaches has generated substantial interest in order to overcome these drawbacks. A drastic reduction in the failure rate, which otherwise is ~92%, is achieved with the drug repurposing approach. The recent exploration of the drug repurposing approach to combat the COVID-19 pandemic has further validated the fact that it is more beneficial to reinvestigate the in-practice drugs for a new application instead of designing novel drugs. The first successful example of drug repurposing is zidovudine (AZT), which was developed as an anti-cancer agent in the 1960s and was later approved by the US FDA as an anti-HIV therapeutic drug in the late 1980s after fast track clinical trials. Since that time, the drug repurposing approach has been successfully utilized to develop effective therapeutic strategies against a plethora of diseases. Hence, an extensive application of the drug repurposing approach will not only help to fight the current pandemics more efficiently but also predict and prepare for newly emerging viral infections. In this review, we discuss in detail the drug repurposing approach and its advancements related to viral infections such as Human Immunodeficiency Virus (HIV) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).
Collapse
|
9
|
Budayanti NS, Merati TP, Bela B, Mahardika GN. Molecular Antiretroviral Resistance Markers of Human Immunodeficiency Virus-1 of CRF01_AE Subtype in Bali, Indonesia. Curr HIV Res 2019; 16:374-382. [PMID: 30714528 PMCID: PMC6446452 DOI: 10.2174/1570162x17666190204101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 11/22/2022]
Abstract
Background: Molecular epidemiological study of human immunodeficiency virus drug-resistant (HIVDR) markers is challenging in areas where the dominant subtype is non-B. Objective: Here we provide molecular data for HIVDR in the CRF01_AE subtype in Bali, Indonesia. Method: Seventy patients were enrolled in this study and grouped into treatment failure and treatment naïve groups. The full-length pol gene was amplified using nested reverse transcriptase polymerase chain reaction and the product was then sequenced. The readable sequence was then subjected to Stan-ford HIV Drug Resistance Database genotyping. Results: We found that clinical classification was in accordance with the presence of HIVDR markers in the pol gene. Independent of therapy history, the treatment failure group showed resistance markers against nucleoside reverse transcriptase inhibitors (NRTI) and non-nucleoside reverse transcriptase in-hibitors (NNRTI), ranging from 72%–100% of patients. Only a small proportion of naïve patients harbored HIV with drug resistance markers to NNRTI. No protease inhibitor-resistant marker was found in either patient group. Molecular marker mutations, which were found in more than 50% of treatment failure patients, were M184V (100%), T215A/Y/F (88.2%), D67N/G (76.5%), and M41L (58.8%). Conclusion: The protocol used in this study to determine genetic markers of HIVDR based on sub-type B can be applied for the rapid determination of resistance of the CRF01_AE subtype. All patients with progressive clinical signs and increased viral load should be recommended to undergo second-line treatment of the ARV regimen.
Collapse
Affiliation(s)
- Nyoman Sri Budayanti
- Microbiology Department, Faculty of Medicine, Udayana University, Jl. PB Sudirman, Denpasar, Bali, Indonesia
| | - Tuti Parwati Merati
- Internal Medicine Department, Faculty of Medicine, Udayana University, Jl. PB Sudirman, Denpasar, Bali, Indonesia
| | - Budiman Bela
- Microbiology Department, Faculty of Medicine, Indonesia University, Jakarta, Indonesia
| | - Gusti Ngurah Mahardika
- Animal Biomedical and Molecular Biology Laboratory, Faculty of Veterinary Medicine, Udayana University, Jl. Sesetan-Markisa 6, Denpasar 80226, Bali, Indonesia
| |
Collapse
|
10
|
Wu J, Hu Z, Yao H, Wang H, Lei Y, Zhong P, Feng Y, Xing H, Shen Y, Jin L, Liu A, Qin Y, Miao L, Su B, Zhang Y, Guo H. The inference of HIV-1 transmission direction between HIV-1 positive couples based on the sequences of HIV-1 quasi-species. BMC Infect Dis 2019; 19:566. [PMID: 31253127 PMCID: PMC6599307 DOI: 10.1186/s12879-019-4163-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 06/04/2019] [Indexed: 11/22/2022] Open
Abstract
Background To infer transmission direction of a HIV transmission chain is helpful not only in legal jurisdiction but also in precise intervention to prevent HIV spread. Recently, the direction of transmission is inferred by whether paraphyletic-monophyletic (PM) or a combination of paraphyletic and polyphyletic (PP) topologies is observed or not between the sequences of source and recipient in the phylogenetic tree. However, paraphyly between them often declines over time and may disappear between spouses due to bidirectional transmission after primary infection. In this study, our aim is to test the reliability of inferring HIV transmission direction between epidemiologically linked HIV-1 positive couples using whether or not paraphyly is observed in phylogenetic tree. Methods HIV quasi-species were sequenced using PCR product clones, and then Bayesian analysis of molecular sequences with MCMC was employed to construct phylogenetic relationship of env, gag, pol gene fragments of HIV-1 positive couples using BEAST software. Results Our results showed that all sequences of seven couples except pol sequences of couple 12 and 13 form their own monophyletic cluster in phylogenetic tree including the closest control sequences from GenBank or other studies on local samples, which are supported by significant Bayesian posterior probabilities more than 0.9932. Of seven couples, paraphyly is only observed in phylogenetic tree constructed with env and pol gene sequences of three couples and gag gene sequences of four couples. Paraphyly is not observed in half of HIV positive couples. Pol sequences of couple 13 is separated by Blast selected controls; pol sequences of couple 12 in phylogenetic tree is supported by a lower Bayesian posterior value. Conclusion Paraphyly relationship between sequences of donator and recipient is only observed among partial HIV-1 positive couples with epidemiological link. Phylogenetic relationship is not always the same when various gene regions of HIV are used to conduct phylogenetic analysis. The combination of phylogenetic analysis based on various gene regions of HIV and enough epidemiology investigation is essential when inferring transmission direction of HIV in a transmission chain or in one couple. However, while observed paraphyly can be used to infer transmission direction in HIV-1 positive couple, no observed paraphyly cannot deny it.
Collapse
Affiliation(s)
- Jianjun Wu
- Anhui Provincial Center for Disease Control and Prevention, 12560 Fanhuadadao, Hefei, China
| | - Zhongwang Hu
- Hefei Prefecture Center for Disease Control and Prevention, 86 Liu'an Road, Hefei, China
| | - Hui Yao
- Hefei Prefecture Center for Disease Control and Prevention, 86 Liu'an Road, Hefei, China
| | - Hai Wang
- Hefei Prefecture Center for Disease Control and Prevention, 86 Liu'an Road, Hefei, China
| | - Yanhua Lei
- Hefei Prefecture Center for Disease Control and Prevention, 86 Liu'an Road, Hefei, China
| | - Ping Zhong
- Shanghai Municipal Center for Disease Control and Prevention, 1380 Zhongshan West Road, Shanghai, China
| | - Yi Feng
- Chinese Center for Disease Control and Prevention, 155 Changbei Road, Beijing, China
| | - Hui Xing
- Chinese Center for Disease Control and Prevention, 155 Changbei Road, Beijing, China
| | - Yuelan Shen
- Anhui Provincial Center for Disease Control and Prevention, 12560 Fanhuadadao, Hefei, China
| | - Lin Jin
- Anhui Provincial Center for Disease Control and Prevention, 12560 Fanhuadadao, Hefei, China
| | - Aiwen Liu
- Anhui Provincial Center for Disease Control and Prevention, 12560 Fanhuadadao, Hefei, China
| | - Yizu Qin
- Anhui Provincial Center for Disease Control and Prevention, 12560 Fanhuadadao, Hefei, China
| | - Lifeng Miao
- Anhui Provincial Center for Disease Control and Prevention, 12560 Fanhuadadao, Hefei, China
| | - Bin Su
- Anhui Provincial Center for Disease Control and Prevention, 12560 Fanhuadadao, Hefei, China.
| | - Yibo Zhang
- Department of Hospital Infection Control, Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hongxiong Guo
- Jiangsu Provincial Center for Disease Control and Prevention, 172 Jiangsu Road, Nanjing, China.
| |
Collapse
|
11
|
Shaikh N, Nirmalkar A, Thakar M. Polymorphisms in Toll-Like Receptors (TLRs)-7 and 9 Genes in Indian Population with Progressive and Nonprogressive HIV-1 Infection. AIDS Res Hum Retroviruses 2019; 35:577-582. [PMID: 30793925 DOI: 10.1089/aid.2019.0004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The polymorphisms in Toll-like receptor (TLR) 7 and 9 genes are shown to influence HIV-1 infection. We studied HIV-1-infected Indian individuals for presence and association of TLR7 and 9 gene polymorphism with different disease outcomes. Genomic DNA from 65 HIV-infected individuals (35 long-term nonprogressors and 30 progressors) and 89 uninfected healthy donors was isolated, amplified, and sequenced for the reported polymorphisms in TLR7 [Gln11Leu (A/T); rs179008] and TLR9 (1635A/G; rs352140) genes. Of these, only the reported TLR9 single-nucleotide polymorphism [SNP; p = .017, odds ratio (OR) = 0.20] and its allele A frequency (p = .038, OR = 0.41) were found to be associated with slow disease progression. Of the new SNPs observed (three TLR7 and two TLR9), the TLR7 rs2074109 G allele showed less likely association with HIV-1 acquisition (p = .019, OR = 0.27). These findings indicate that TLR7 SNP (rs2074109) could be one of the factors for predisposition to HIV-1 and TLR9 1635A/G genotype and allele might have a role in HIV-1 disease progression in Indian population.
Collapse
Affiliation(s)
- Nawaj Shaikh
- Department of Immunology and Serology, National AIDS Research Institute, Pune, India
| | - Amit Nirmalkar
- Department of Epidemiology and Biostatistics, National AIDS Research Institute, Pune, India
| | - Madhuri Thakar
- Department of Immunology and Serology, National AIDS Research Institute, Pune, India
| |
Collapse
|
12
|
Koujah L, Shukla D, Naqvi AR. CRISPR-Cas based targeting of host and viral genes as an antiviral strategy. Semin Cell Dev Biol 2019; 96:53-64. [PMID: 30953741 DOI: 10.1016/j.semcdb.2019.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/23/2022]
Abstract
Viral infections in human are leading cause of mortality and morbidity across the globe. Several viruses (including HIV and Herpesvirus), have evolved ingenious strategies to evade host-immune system and persist life-long. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) is an ancient antiviral system recently discovered in bacteria that has shown tremendous potential as a precise, invariant genome editing tool. Using CRISPR-Cas based system to activate host defenses or genetic modification of viral genome can provide novel, exciting and successful antiviral mechanisms and treatment modalities. In this review, we will provide progress on the CRISPR-Cas based antiviral approaches that facilitate clearance of virus-infected cells and/or prohibit virus infection or replication. We will discuss on the possibilities of CRIPSR-Cas as prophylaxis and therapy in viral infections and review the challenges of this potent gene editing technology.
Collapse
Affiliation(s)
- Lulia Koujah
- Department of Microbiology and Immunology, University of Illinois at Chicago, IL, 60612, USA; Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL, 60612, USA
| | - Deepak Shukla
- Department of Microbiology and Immunology, University of Illinois at Chicago, IL, 60612, USA; Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL, 60612, USA.
| | - Afsar R Naqvi
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
13
|
Cellular Determinants of HIV Persistence on Antiretroviral Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1075:213-239. [PMID: 30030795 DOI: 10.1007/978-981-13-0484-2_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The era of antiretroviral therapy has made HIV-1 infection a manageable chronic disease for those with access to treatment. Despite treatment, virus persists in tissue reservoirs seeded with long-lived infected cells that are resistant to cell death and immune recognition. Which cells contribute to this reservoir and which factors determine their persistence are central questions that need to be answered to achieve viral eradication. In this chapter, we describe how cell susceptibility to infection, resistance to cell death, and immune-mediated killing as well as natural cell life span and turnover potential are central components that allow persistence of different lymphoid and myeloid cell subsets that were recently identified as key players in harboring latent and actively replicating virus. The relative contribution of these subsets to persistence of viral reservoir is described, and the open questions are highlighted.
Collapse
|
14
|
Colomer-Lluch M, Ruiz A, Moris A, Prado JG. Restriction Factors: From Intrinsic Viral Restriction to Shaping Cellular Immunity Against HIV-1. Front Immunol 2018; 9:2876. [PMID: 30574147 PMCID: PMC6291751 DOI: 10.3389/fimmu.2018.02876] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/22/2018] [Indexed: 01/20/2023] Open
Abstract
Antiviral restriction factors are host cellular proteins that constitute a first line of defense blocking viral replication and propagation. In addition to interfering at critical steps of the viral replication cycle, some restriction factors also act as innate sensors triggering innate responses against infections. Accumulating evidence suggests an additional role for restriction factors in promoting antiviral cellular immunity to combat viruses. Here, we review the recent progress in our understanding on how restriction factors, particularly APOBEC3G, SAMHD1, Tetherin, and TRIM5α have the cell-autonomous potential to induce cellular resistance against HIV-1 while promoting antiviral innate and adaptive immune responses. Also, we provide an overview of how these restriction factors may connect with protein degradation pathways to modulate anti-HIV-1 cellular immune responses, and we summarize the potential of restriction factors-based therapeutics. This review brings a global perspective on the influence of restrictions factors in intrinsic, innate, and also adaptive antiviral immunity opening up novel research avenues for therapeutic strategies in the fields of drug discovery, gene therapy, and vaccines to control viral infections.
Collapse
Affiliation(s)
- Marta Colomer-Lluch
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Alba Ruiz
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Arnaud Moris
- Sorbonne Université, INSERM U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Julia G Prado
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Universitat Autonoma de Barcelona, Badalona, Spain
| |
Collapse
|
15
|
Mobasheri S, Irani N, Sepahi AA, Sakhaee F, Jamnani FR, Vaziri F, Siadat SD, Fateh A. Evaluation of TRIM5 and TRIM22 polymorphisms on treatment responses in Iranian patients with chronic hepatitis C virus infection. Gene 2018; 676:95-100. [PMID: 30017737 DOI: 10.1016/j.gene.2018.07.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 12/15/2022]
Abstract
The tripartite motif (TRIM)-5 and TRIM22 are involved in innate immune response and show anti-viral activities. The current study aimed at evaluating the association of TRIM5 and TRIM22 polymorphisms with treatment outcomes in patients with chronic hepatitis C virus (CHC). TRIM5 rs3824949 and TRIM22 polymorphisms (rs7113258, rs7935564, and rs1063303) were genotyped using TaqMan polymerase chain reaction (PCR) assay in 425 treatment-naïve CHC patients. Rapid virological response (RVR), early virological response (EVR), and sustained virological response (SVR) were found in 54.1%, 74.8%, and 67.1% of the patients, respectively. RVR and SVR were associated with TRIM5 rs3824949 (GG), TRIM22 rs1063303 (GC), and TRIM22 rs7113258 (AA), while there was a relationship between TRIM5 rs3824949 (GG) and EVR. TRIM5 and TRIM22 single nucleotide polymorphisms (SNPs) were strongly associated with increased odds of RVR, EVR, and SVR after an interferon-based therapy in patients with CHC.
Collapse
Affiliation(s)
- Setareh Mobasheri
- Department of Microbiology, Faculty of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Nazanin Irani
- Department of Microbiology, Faculty of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Akhavan Sepahi
- Department of Microbiology, Faculty of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Sakhaee
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Rahimi Jamnani
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
16
|
The Biology of Monocytes and Dendritic Cells: Contribution to HIV Pathogenesis. Viruses 2018; 10:v10020065. [PMID: 29415518 PMCID: PMC5850372 DOI: 10.3390/v10020065] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 02/07/2023] Open
Abstract
Myeloid cells such as monocytes, dendritic cells (DC) and macrophages (MΦ) are key components of the innate immune system contributing to the maintenance of tissue homeostasis and the development/resolution of immune responses to pathogens. Monocytes and DC, circulating in the blood or infiltrating various lymphoid and non-lymphoid tissues, are derived from distinct bone marrow precursors and are typically short lived. Conversely, recent studies revealed that subsets of tissue resident MΦ are long-lived as they originate from embryonic/fetal precursors that have the ability to self-renew during the life of an individual. Pathogens such as the human immunodeficiency virus type 1 (HIV-1) highjack the functions of myeloid cells for viral replication (e.g., MΦ) or distal dissemination and cell-to-cell transmission (e.g., DC). Although the long-term persistence of HIV reservoirs in CD4+ T-cells during viral suppressive antiretroviral therapy (ART) is well documented, the ability of myeloid cells to harbor replication competent viral reservoirs is still a matter of debate. This review summarizes the current knowledge on the biology of monocytes and DC during homeostasis and in the context of HIV-1 infection and highlights the importance of future studies on long-lived resident MΦ to HIV persistence in ART-treated patients.
Collapse
|
17
|
Singh H, Samani D, Ghate MV, Gangakhedkar RR. Impact of cellular restriction gene (TRIM5α, BST-2) polymorphisms on the acquisition of HIV-1 and disease progression. J Gene Med 2018; 20:e3004. [PMID: 29282802 DOI: 10.1002/jgm.3004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 11/22/2017] [Accepted: 12/14/2017] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND TRIM5α and BST-2 are cellular restriction factors affecting the HIV-1 infection and its progression. Genetic variability in these genes alters the expression pattern. Hence, we aimed to examine the impact of the TRIM5α (rs10838525, rs7127617 and rs904375) and BST2 (rs3217318 and rs71694748) polymorphisms on the acquisition of HIV-1 and its progression. METHODS Genotyping of TRIM5α and BST-2 polymorphisms was performed in a total of 153 HIV-infected patients and 158 unrelated healthy individuals using a polymerase chain reaction-restriction fragment length polymorphism method. RESULTS No significant differences were found in the genotype frequencies of TRIM5α polymorphisms between HIV patients and healthy controls. BST-2 Δ19/i19 and i19/i19+ Δ19/i19 genotypes appeared more frequently in HIV patients compared to healthy controls (10.4% versus 7.0%, p = 0.20; 11.10% versus 7.6%, p = 0.16). The BST-2 i19 allele was associated with the acquisition of HIV-1 [odds ratio (OR) = 2.76, p = 0.030)]. TRIM5α haplotypes ATG and ACA elevated the risk, whereas haplotype ATA reduced the risk for the acquisition of HIV-1 (OR = 1.92, p = 0.026; OR = 4.88, p = 0.016; OR = 0.31, p = 0.014). BST-2 Δ19/i19 and i19/i19+ Δ19/i19 genotypes were more prevalent in patients with early HIV disease stage compared to healthy controls (15.9% versus 7.0%, p = 0.096; 15.9% versus 7.6%, p = 0.12). The prevalence of TRIM5α rs7127617 CC and BST-2 Δ19/i19 genotypes was observed to be higher in alcohol-using HIV patients compared to non-users (27.8% versus 20.0%, p = 0.35, 22.2% versus 10.0%, p = 0.24). CONCLUSIONS TRIM5α haplotypes and the BST-2 i19 allele may significantly affect the modulation of HIV-1 acquisition and its progression. TRIM5α rs7127617 CC and BST-2 Δ19/i19 genotypes in alcohol-using HIV patients elevated the risk of HIV disease progression.
Collapse
Affiliation(s)
- HariOm Singh
- Department of Molecular Biology, National AIDS Research Institute, Pune, India
| | - Dharmesh Samani
- Department of Molecular Biology, National AIDS Research Institute, Pune, India
| | - Manisha V Ghate
- Department of Clinical Sciences, National AIDS Research Institute, Pune, India
| | | |
Collapse
|
18
|
Multiple Inhibitory Factors Act in the Late Phase of HIV-1 Replication: a Systematic Review of the Literature. Microbiol Mol Biol Rev 2018; 82:82/1/e00051-17. [PMID: 29321222 DOI: 10.1128/mmbr.00051-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The use of lentiviral vectors for therapeutic purposes has shown promising results in clinical trials. The ability to produce a clinical-grade vector at high yields remains a critical issue. One possible obstacle could be cellular factors known to inhibit human immunodeficiency virus (HIV). To date, five HIV restriction factors have been identified, although it is likely that more factors are involved in the complex HIV-cell interaction. Inhibitory factors that have an adverse effect but do not abolish virus production are much less well described. Therefore, a gap exists in the knowledge of inhibitory factors acting late in the HIV life cycle (from transcription to infection of a new cell), which are relevant to the lentiviral vector production process. The objective was to review the HIV literature to identify cellular factors previously implicated as inhibitors of the late stages of lentivirus production. A search for publications was conducted on MEDLINE via the PubMed interface, using the keyword sequence "HIV restriction factor" or "HIV restriction" or "inhibit HIV" or "repress HIV" or "restrict HIV" or "suppress HIV" or "block HIV," with a publication date up to 31 December 2016. Cited papers from the identified records were investigated, and additional database searches were performed. A total of 260 candidate inhibitory factors were identified. These factors have been identified in the literature as having a negative impact on HIV replication. This study identified hundreds of candidate inhibitory factors for which the impact of modulating their expression in lentiviral vector production could be beneficial.
Collapse
|
19
|
Jobe O, Kim J, Tycksen E, Onkar S, Michael NL, Alving CR, Rao M. Human Primary Macrophages Derived In Vitro from Circulating Monocytes Comprise Adherent and Non-Adherent Subsets with Differential Expression of Siglec-1 and CD4 and Permissiveness to HIV-1 Infection. Front Immunol 2017; 8:1352. [PMID: 29123518 PMCID: PMC5662875 DOI: 10.3389/fimmu.2017.01352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/03/2017] [Indexed: 12/18/2022] Open
Abstract
Macrophages are a major target for human immunodeficiency virus type 1 (HIV-1) infection. However, macrophages are largely heterogeneous and may exhibit differences in permissiveness to HIV-1 infection. This study highlights the interplay of macrophage heterogeneity in HIV-1 pathogenesis. We show that monocyte-derived macrophages (MDMs) could be divided into two distinct subsets: CD14+Siglec-1hiCD4+ (non-adherent MDM) and CD14+Siglec-1LoCD4− (adherent MDM). The CD14+Siglec-1hiCD4+MDM subset represented the smaller proportion in the macrophage pool, and varied among different donors. Fractionation and subsequent exposure of the two MDM subsets to HIV-1 revealed opposite outcomes in terms of HIV-1 capture and infection. Although the CD14+Siglec-1hiCD4+MDM captured significantly more HIV-1, infection was significantly higher in the CD14+Siglec-1LoCD4−MDM subset. Thus, CD14+Siglec-1hiCD4+MDM were less permissive to infection. Depletion of CD14+Siglec-1hiCD4+MDM or a decrease in their percentage, resulted in increased infection of MDM, suggestive of a capacity of these cells to capture and sequester HIV-1 in an environment that hinders its infectivity. Increased expression of innate restriction factors and cytokine genes were observed in the non-adherent CD14+Siglec-1hiCD4+MDM, both before and after HIV-1 infection, compared to the adherent CD14+Siglec-1LoCD4−MDM. We speculate that the differential expression of gene expression profiles in the two macrophage subsets may provide an explanation for the differences observed in HIV-1 infectivity.
Collapse
Affiliation(s)
- Ousman Jobe
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States.,Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Jiae Kim
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States.,Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Eric Tycksen
- Genome Technology Access Center, Department of Genetics, Washington University in St. Louis, St. Louis, MO, United States
| | - Sayali Onkar
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States.,Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Nelson L Michael
- Laboratory of Molecular Virology and Pathogenesis, Host Genetics Section, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Carl R Alving
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Mangala Rao
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
20
|
Rogers GL, Cannon PM. Gene Therapy Approaches to Human Immunodeficiency Virus and Other Infectious Diseases. Hematol Oncol Clin North Am 2017; 31:883-895. [PMID: 28895854 DOI: 10.1016/j.hoc.2017.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Advances in gene therapy technologies, particularly in gene editing, are suggesting new avenues for the treatment of human immunodeficiency virus and other infectious diseases. This article outlines recent developments in antiviral gene therapies, including those based on the disruption of entry receptors or that target viral genomes using targeted nucleases, such as the CRISPR/Cas9 system. In addition, new ways to express circulating antiviral factors, such as antibodies, and approaches to harness and engineer the immune system to provide an antiviral effect that is not naturally achieved are described.
Collapse
Affiliation(s)
- Geoffrey L Rogers
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 413A, Los Angeles, CA 90033, USA
| | - Paula M Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 413A, Los Angeles, CA 90033, USA.
| |
Collapse
|
21
|
Martín-Vicente M, Medrano LM, Resino S, García-Sastre A, Martínez I. TRIM25 in the Regulation of the Antiviral Innate Immunity. Front Immunol 2017; 8:1187. [PMID: 29018447 PMCID: PMC5614919 DOI: 10.3389/fimmu.2017.01187] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/07/2017] [Indexed: 12/19/2022] Open
Abstract
TRIM25 is an E3 ubiquitin ligase enzyme that is involved in various cellular processes, including regulation of the innate immune response against viruses. TRIM25-mediated ubiquitination of the cytosolic pattern recognition receptor RIG-I is an essential step for initiation of the intracellular antiviral response and has been thoroughly documented. In recent years, however, additional roles of TRIM25 in early innate immunity are emerging, including negative regulation of RIG-I, activation of the melanoma differentiation-associated protein 5–mitochondrial antiviral signaling protein–TRAF6 antiviral axis and modulation of p53 levels and activity. In addition, the ability of TRIM25 to bind RNA may uncover new mechanisms by which this molecule regulates intracellular signaling and/or RNA virus replication.
Collapse
Affiliation(s)
- María Martín-Vicente
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Luz M Medrano
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Isidoro Martínez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
22
|
HIV-1 Env- and Vpu-Specific Antibody-Dependent Cellular Cytotoxicity Responses Associated with Elite Control of HIV. J Virol 2017; 91:JVI.00700-17. [PMID: 28701393 DOI: 10.1128/jvi.00700-17] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/19/2017] [Indexed: 12/20/2022] Open
Abstract
Studying HIV-infected individuals who control HIV replication (elite controllers [ECs]) enables exploration of effective anti-HIV immunity. HIV Env-specific and non-Env-specific antibody-dependent cellular cytotoxicity (ADCC) may contribute to protection from progressive HIV infection, but the evidence is limited. We recruited 22 ECs and matched them with 44 viremic subjects. HIV Env- and Vpu-specific ADCC responses in sera were studied using a novel enzyme-linked immunosorbent assay (ELISA)-based dimeric recombinant soluble FcγRIIIa (rsFcγRIIIa)-binding assay, surface plasmon resonance, antibody-dependent natural killer (NK) cell activation assays, and ADCC-mediated killing assays. ECs had higher levels of HIV Env-specific antibodies capable of binding FcγRIIIa, activating NK cells, and mediating granzyme B activity (all P < 0.01) than viremic subjects. ECs also had higher levels of antibodies against a C-terminal 13-mer Vpu peptide capable of mediating FcγRIIIa binding and NK cell activation than viremic subjects (both P < 0.05). Our data associate Env-specific and Vpu epitope-specific ADCC in effective immune responses against HIV among ECs. Our findings have implications for understanding the role of ADCC in HIV control.IMPORTANCE Understanding immune responses associated with elite control of HIV may aid the development of immunotherapeutic and vaccine strategies for controlling HIV infection. Env is a major HIV protein target of functional antibody responses that are heightened in ECs. Interestingly, EC antibodies also target Vpu, an accessory protein crucial to HIV, which degrades CD4 and antagonizes tetherin. Antibodies specific to Vpu are a common feature of the immune response of ECs that may prove to be of functional importance to the design of improved ADCC-based immunotherapy and preventative HIV vaccines.
Collapse
|
23
|
Li Z, Lu X, Hu Z, Luo Z, Jiang W, Wu H, Gao Y, Yan J, Zhang Q, Song A, Huang X, Mou D, Su B, Zhang T. Syphilis Infection Differentially Regulates the Phenotype and Function of γδ T Cells in HIV-1-Infected Patients Depends on the HIV-1 Disease Stage. Front Immunol 2017; 8:991. [PMID: 28871259 PMCID: PMC5566620 DOI: 10.3389/fimmu.2017.00991] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022] Open
Abstract
A rapidly escalating outbreak of syphilis infection has been affected men who have sex with men, particularly those with HIV-1 infection. γδ T cells are unconventional immune cells with two main subsets, Vδ1 T cells and Vδ2 T cells, which possess a combination of innate and adaptive immune features allowing them against HIV-1. However, whether syphilis infection affects the phenotype and function of γδ T cells in HIV-1-infected patients remains unclear, especially in acute HIV-1 infection (AHI). In this study, we enrolled 57 HIV-1-infected patients (24 with HIV-1 infection only and 33 coinfected with syphilis) from an acute HIV-1-infected cohort in Beijing (PRIMO). A comprehensive analysis of γδ T-cell phenotype and function was performed by flow cytometry. We found syphilis coinfection could reverse the imbalance of Vδ1/Vδ2 ratio in AHI. Syphilis infection results in decreased γδ T-cell activation in AHI, but increased γδ T-cell activation in chronic HIV-1 infection (CHI). Moreover, patients with CHI had larger numbers of IL-17-producing γδ T cells than those with AHI, regardless of syphilis status. Thus, syphilis affected the γδ T-cell immune response differently in patients depending on the stages of HIV-1 disease. In addition, the percentage of IL-17-producing γδ T cells was positively correlated with the percentage of neutrophils. These results suggest that the γδ T-cell/IL-17/neutrophil axis is involved in HIV-1 pathogenesis and disease progression. Taken together, our observations provide new insight into the roles of γδ T cells in immunopathogenesis of syphilis and HIV-1 coinfection, particularly during AHI, and our findings may be helpful for the prevention of syphilis and other sexually transmitted infections and highlight the great significance on the remedy of patients coinfected with HIV-1.
Collapse
Affiliation(s)
- Zhen Li
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Xiaofan Lu
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Zhiliang Hu
- Department of Infectious Diseases, The Second Affiliated Hospital, Southeast University, Nanjing, China
| | - Zhenwu Luo
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Yanqing Gao
- Department of Dermatology, Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Junling Yan
- Department of Dermatology, Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Qiuyue Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Aixin Song
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Xiaojie Huang
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Danlei Mou
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Nozuma S, Matsuura E, Kodama D, Tashiro Y, Matsuzaki T, Kubota R, Izumo S, Takashima H. Effects of host restriction factors and the HTLV-1 subtype on susceptibility to HTLV-1-associated myelopathy/tropical spastic paraparesis. Retrovirology 2017; 14:26. [PMID: 28420387 PMCID: PMC5395872 DOI: 10.1186/s12977-017-0350-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 04/10/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although human T-lymphotropic virus type 1 (HTLV-1) infection is a prerequisite for the development of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), specific provirus mutations in HAM/TSP have not yet been reported. In this study, we examined whether HAM/TSP patients had the disease-specific genomic variants of HTLV-1 by analyzing entire sequences of HTLV-1 proviruses in these patients, including familial cases. In addition, we investigated the genetic variants of host restriction factors conferring antiretroviral activity to determine which mutations may be related to resistance or susceptibility to HAM/TSP. RESULTS The subjects included 30 patients with familial HAM/TSP (f-HAM/TSP), 92 patients with sporadic HAM/TSP (s-HAM/TSP), and 89 asymptomatic HTLV-1 carriers (ACs). In all 211 samples, 37 samples (18%) were classified into transcontinental subtype and 174 samples (82%) were classified as Japanese subtype. Among three groups, the percentage of transcontinental subtype in f-HAM/TSP, s-HAM/TSP and ACs was 33, 23 and 7%, respectively. The frequency of transcontinental subtype was significantly higher in both f-HAM/TSP (p < 0.001) and s-HAM/TSP (p < 0.001) than in ACs. Fifty mutations in HTLV-1 sequences were significantly more frequent in HAM/TSP patients than in ACs, however, they were common only in transcontinental subtype. Among these mutations, ten common mutations causing amino acid changes in the HTLV-1 sequences were specific to the transcontinental subtype. We examined host restriction factors, and detected a rare variant in TRIM5α in HAM/TSP patients. The patients with TRIM5α 136Q showed lower proviral loads (PVLs) than those with 136R (354 vs. 654 copies/104 PBMC, p = 0.003). The patients with the 304L variant of TRIM5α had significantly higher PVLs than those with 304H (1669 vs. 595 copies/104 PBMC, p = 0.025). We could not find any HAM/TSP-specific mutations of host restriction factors. CONCLUSIONS Transcontinental subtype is susceptible to HAM/TSP, especially in familial cases. Ten common mutations causing amino acid changes in the HTLV-1 gene were specific to the transcontinental subtype. TRIM5α polymorphisms were associated with PVLs, indicating that TRIM5α could be implicated in HTLV-1 replication.
Collapse
Affiliation(s)
- Satoshi Nozuma
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Eiji Matsuura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan.
| | - Daisuke Kodama
- Division of Molecular Pathology, Center for Chronic Viral Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Yuichi Tashiro
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Toshio Matsuzaki
- Division of Molecular Pathology, Center for Chronic Viral Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Ryuji Kubota
- Division of Molecular Pathology, Center for Chronic Viral Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Shuji Izumo
- Division of Molecular Pathology, Center for Chronic Viral Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| |
Collapse
|
25
|
Weber J, Gibson RM, Sácká L, Strunin D, Hodek J, Weberová J, Pávová M, Alouani DJ, Asaad R, Rodriguez B, Lederman MM, Quiñones-Mateu ME. Impaired human immunodeficiency virus type 1 replicative fitness in atypical viremic non-progressor individuals. AIDS Res Ther 2017; 14:15. [PMID: 28331526 PMCID: PMC5359922 DOI: 10.1186/s12981-017-0144-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/15/2017] [Indexed: 01/15/2023] Open
Abstract
Background Progression rates from initial HIV-1 infection to advanced AIDS vary significantly among infected individuals. A distinct subgroup of HIV-1-infected individuals—termed viremic non-progressors (VNP) or controllers—do not seem to progress to AIDS, maintaining high CD4+ T cell counts despite high levels of viremia for many years. Several studies have evaluated multiple host factors, including immune activation, trying to elucidate the atypical HIV-1 disease progression in these patients; however, limited work has been done to characterize viral factors in viremic controllers. Methods We analyzed HIV-1 isolates from three VNP individuals and compared the replicative fitness, near full-length HIV-1 genomes and intra-patient HIV-1 genetic diversity with viruses from three typical (TP) and one rapid (RP) progressor individuals. Results Viremic non-progressors and typical patients were infected for >10 years (range 10–17 years), with a mean CD4+ T-cell count of 472 cells/mm3 (442–529) and 400 cells/mm3 (126–789), respectively. VNP individuals had a less marked decline in CD4+ cells (mean −0.56, range −0.4 to −0.7 CD4+/month) than TP patients (mean −10.3, −8.2 to −13.1 CD4+/month). Interestingly, VNP individuals carried viruses with impaired replicative fitness, compared to HIV-1 isolates from the TP and RP patients (p < 0.05, 95% CI). Although analyses of the near full-length HIV-1 genomes showed no clear patterns of single-nucleotide polymorphisms (SNP) that could explain the decrease in replicative fitness, both the number of SNPs and HIV-1 population diversity correlated inversely with the replication capacity of the viruses (r = −0.956 and r = −0.878, p < 0.01, respectively). Conclusion It is likely that complex multifactorial parameters govern HIV-1 disease progression in each individual, starting with the infecting virus (phenotype, load, and quasispecies diversity) and the intrinsic ability of the host to respond to the infection. Here we analyzed a subset of viremic controller patients and demonstrated that similar to the phenomenon observed in patients with a discordant response to antiretroviral therapy (i.e., high CD4+ cell counts with detectable plasma HIV-1 RNA load), reduced viral replicative fitness seems to be linked to slow disease progression in these antiretroviral-naïve individuals. Electronic supplementary material The online version of this article (doi:10.1186/s12981-017-0144-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jan Weber
- 0000 0001 1015 3316grid.418095.1Institute of Organic Chemistry and Biochemistry v.v.i., Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Richard M Gibson
- 0000 0000 9149 4843grid.443867.aUniversity Hospital Translational Laboratory, University Hospitals Cleveland Medical Center, Cleveland, OH USA
| | - Lenka Sácká
- 0000 0001 1015 3316grid.418095.1Institute of Organic Chemistry and Biochemistry v.v.i., Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Dmytro Strunin
- 0000 0001 1015 3316grid.418095.1Institute of Organic Chemistry and Biochemistry v.v.i., Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Jan Hodek
- 0000 0001 1015 3316grid.418095.1Institute of Organic Chemistry and Biochemistry v.v.i., Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Jitka Weberová
- 0000 0001 1015 3316grid.418095.1Institute of Organic Chemistry and Biochemistry v.v.i., Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Marcela Pávová
- 0000 0001 1015 3316grid.418095.1Institute of Organic Chemistry and Biochemistry v.v.i., Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - David J Alouani
- 0000 0000 9149 4843grid.443867.aUniversity Hospital Translational Laboratory, University Hospitals Cleveland Medical Center, Cleveland, OH USA
| | - Robert Asaad
- 0000 0001 2164 3847grid.67105.35Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, 10900 Euclid Avenue, Cleveland, OH 44106-7288 USA
| | - Benigno Rodriguez
- 0000 0001 2164 3847grid.67105.35Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, 10900 Euclid Avenue, Cleveland, OH 44106-7288 USA
| | - Michael M Lederman
- 0000 0001 2164 3847grid.67105.35Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, 10900 Euclid Avenue, Cleveland, OH 44106-7288 USA
| | - Miguel E Quiñones-Mateu
- 0000 0000 9149 4843grid.443867.aUniversity Hospital Translational Laboratory, University Hospitals Cleveland Medical Center, Cleveland, OH USA ; 0000 0001 2164 3847grid.67105.35Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, 10900 Euclid Avenue, Cleveland, OH 44106-7288 USA ; 0000 0001 2164 3847grid.67105.35Department of Pathology, Case Western Reserve University, Cleveland, OH USA
| |
Collapse
|
26
|
Heroin use is associated with lower levels of restriction factors and type I interferon expression and facilitates HIV-1 replication. Microbes Infect 2017; 19:288-294. [PMID: 28104465 DOI: 10.1016/j.micinf.2017.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/17/2016] [Accepted: 01/07/2017] [Indexed: 11/23/2022]
Abstract
Heroin use is associated with increased incidence of infectious diseases such as HIV-1 infection, as a result of immunosuppression to a certain extent. Host restriction factors are recently identified cellular proteins with potent antiviral activities. Whether heroin use impacts on the in vivo expression of restriction factors that result in facilitating HIV-1 replication is poorly understood. Here we recruited 432 intravenous drug users (IDUs) and 164 non-IDUs at high-risk behaviors. Based on serological tests, significantly higher prevalence of HIV-1 infection was observed among IDUs compared with non-IDUs. We included those IDUs and non-IDUs without HIV-1 infection, and found IDUs had significantly lower levels of TRIM5α, TRIM22, APOBEC3G, and IFN-α, -β expression than did non-IDUs. We also directly examined plasma viral load in HIV-1 mono-infected IDUs and non-IDUs and found HIV-1 mono-infected IDUs had significantly higher plasma viral load than did non-IDUs. Moreover, intrinsically positive correlation between type I interferon and TRIM5α or TRIM22 was observed, however, which was dysregulated following heroin use. Collectively, heroin use benefits HIV-1 replication that may be partly due to suppression of host restriction factors and type I interferon expression.
Collapse
|
27
|
Abstract
Despite significant advances in HIV drug treatment regimens, which grant near-normal life expectancies to infected individuals who have good virological control, HIV infection itself remains incurable. In recent years, novel gene- and cell-based therapies have gained increasing attention due to their potential to provide a functional or even sterilizing cure for HIV infection with a one-shot treatment. A functional cure would keep the infection in check and prevent progression to AIDS, while a sterilizing cure would eradicate all HIV viruses from the patient. Genome editing is the most precise form of gene therapy, able to achieve permanent genetic disruption, modification, or insertion at a predesignated genetic locus. The most well-studied candidate for anti-HIV genome editing is CCR5, an essential coreceptor for the majority of HIV strains, and the lack of which confers HIV resistance in naturally occurring homozygous individuals. Genetic disruption of CCR5 to treat HIV has undergone clinical testing, with seven completed or ongoing trials in T cells and hematopoietic stem and progenitor cells, and has shown promising safety and potential efficacy profiles. Here we summarize clinical findings of CCR5 editing for HIV therapy, as well as other genome editing-based approaches under pre-clinical development. The anticipated development of more sophisticated genome editing technologies should continue to benefit HIV cure efforts.
Collapse
Affiliation(s)
- Cathy X Wang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Paula M Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California , Los Angeles, California
| |
Collapse
|
28
|
Medrano LM, Rallón N, Berenguer J, Jiménez-Sousa MA, Soriano V, Aldámiz-Echevarria T, Fernández-Rodríguez A, García M, Tejerina F, Martínez I, Benito JM, Resino S. Relationship of TRIM5 and TRIM22 polymorphisms with liver disease and HCV clearance after antiviral therapy in HIV/HCV coinfected patients. J Transl Med 2016; 14:257. [PMID: 27590274 PMCID: PMC5010694 DOI: 10.1186/s12967-016-1005-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/16/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND AND AIMS TRIM5 and TRIM22 are restriction factors involved in innate immune response and exhibit anti-viral activity. Single nucleotide polymorphisms (SNPs) at TRIM5 and TRIM22 genes have shown to influence several viral infections such as human immunodeficiency virus (HIV), hepatitis B, as well as measles and rubella vaccination. The aim of this study is to analyze whether TRIM5 and TRIM22 polymorphisms are associated with liver fibrosis inflammation-related biomarkers and response to pegylated-interferon-alpha plus ribavirin (pegIFNα/RBV) therapy in HIV/hepatitis C virus (HCV) coinfected patients. METHODS A retrospective study was performed in 319 patients who started pegIFNα/RBV therapy. Liver fibrosis stage was characterized in 288 patients. TRIM5 rs3824949 and TRIM22 polymorphisms (rs1063303, rs7935564, and rs7113258) were genotyped using the GoldenGate assay. The primary outcomes were: a) significant liver fibrosis (≥F2) evaluated by liver biopsy or transient elastography (liver stiffness values ≥7.1 Kpa); b) sustained virological response (SVR) defined as no detectable HCV viral load (<10 IU/mL) at week 24 after the end of the treatment. The secondary outcome variable was plasma chemokine levels. RESULTS Patients with TRIM5 rs3824949 GG genotype had higher SVR rate than patients with TRIM5 rs3824949 CC/CG genotypes (p = 0.013), and they had increased odds of achieving SVR (adjusted odds ratio (aOR = 2.58; p = 0.012). Patients with TRIM22 rs1063303 GG genotype had higher proportion of significant liver fibrosis than patients with rs1063303 CC/CG genotypes (p = 0.021), and they had increased odds of having significant hepatic fibrosis (aOR = 2.19; p = 0.034). Patients with TRIM22 rs7113258 AT/AA genotype had higher SVR rate than patients with rs7113258 TT genotypes (p = 0.013), and they had increased odds of achieving SVR (aOR = 1.88; p = 0.041). The TRIM22 haplotype conformed by rs1063303_C and rs7113258_A was more frequent in patients with SVR (p = 0.018) and was significantly associated with achieving SVR (aOR = 2.80; p = 0.013). The TRIM5 rs3824949 GG genotype was significantly associated with higher levels of GRO-α (adjusted arithmetic mean ratio ((aAMR) = 1.40; p = 0.011) and MCP-1 (aAMR = 1.61; p = 0.003). CONCLUSIONS TRIM5 and TRIM22 SNPs are associated to increased odds of significant liver fibrosis and SVR after pegIFNα/RBV therapy in HIV/HCV coinfected patients. Besides, TRIM5 SNP was associated to higher baseline levels of circulating biomarkers GRO and MCP-1.
Collapse
Affiliation(s)
- Luz M. Medrano
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda- Pozuelo, Km 2.2, 28220 Majadahonda Madrid, Spain
| | - Norma Rallón
- Instituto de Investigación Sanitaria de La Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Juan Berenguer
- Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario “Gregorio Marañón”, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - María A. Jiménez-Sousa
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda- Pozuelo, Km 2.2, 28220 Majadahonda Madrid, Spain
| | - Vicente Soriano
- Unidad de Enfermedades Infecciosas, Hospital Universitario La Paz, Madrid, Spain
| | - Teresa Aldámiz-Echevarria
- Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario “Gregorio Marañón”, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Amanda Fernández-Rodríguez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda- Pozuelo, Km 2.2, 28220 Majadahonda Madrid, Spain
| | - Marcial García
- Instituto de Investigación Sanitaria de La Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Francisco Tejerina
- Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario “Gregorio Marañón”, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Isidoro Martínez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda- Pozuelo, Km 2.2, 28220 Majadahonda Madrid, Spain
| | - José M. Benito
- Instituto de Investigación Sanitaria de La Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda- Pozuelo, Km 2.2, 28220 Majadahonda Madrid, Spain
| |
Collapse
|
29
|
Identification of Vimentin as a Potential Therapeutic Target against HIV Infection. Viruses 2016; 8:v8060098. [PMID: 27314381 PMCID: PMC4926169 DOI: 10.3390/v8060098] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 04/01/2016] [Accepted: 04/06/2016] [Indexed: 12/22/2022] Open
Abstract
A combination of antiviral drugs known as antiretroviral therapy (ART) has shown effectiveness against the human immunodeficiency virus (HIV). ART has markedly decreased mortality and morbidity among HIV-infected patients, having even reduced HIV transmission. However, an important current disadvantage, resistance development, remains to be solved. Hope is focused on developing drugs against cellular targets. This strategy is expected to prevent the emergence of viral resistance. In this study, using a comparative proteomic approach in MT4 cells treated with an anti-HIV leukocyte extract, we identified vimentin, a molecule forming intermediate filaments in the cell, as a possible target against HIV infection. We demonstrated a strong reduction of an HIV-1 based lentivirus expressing the enhanced green fluorescent protein (eGFP) in vimentin knockdown cells, and a noteworthy decrease of HIV-1 capsid protein antigen (CAp24) in those cells using a multiround infectivity assay. Electron micrographs showed changes in the structure of intermediate filaments when MT4 cells were treated with an anti-HIV leukocyte extract. Changes in the structure of intermediate filaments were also observed in vimentin knockdown MT4 cells. A synthetic peptide derived from a cytoskeleton protein showed potent inhibitory activity on HIV-1 infection, and low cytotoxicity. Our data suggest that vimentin can be a suitable target to inhibit HIV-1.
Collapse
|
30
|
Cuevas JM, Combe M, Torres-Puente M, Garijo R, Guix S, Buesa J, Rodríguez-Díaz J, Sanjuán R. Human norovirus hyper-mutation revealed by ultra-deep sequencing. INFECTION GENETICS AND EVOLUTION 2016; 41:233-239. [PMID: 27094861 PMCID: PMC7172324 DOI: 10.1016/j.meegid.2016.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/11/2016] [Accepted: 04/15/2016] [Indexed: 02/02/2023]
Abstract
Human noroviruses (NoVs) are a major cause of gastroenteritis worldwide. It is thought that, similar to other RNA viruses, high mutation rates allow NoVs to evolve fast and to undergo rapid immune escape at the population level. However, the rate and spectrum of spontaneous mutations of human NoVs have not been quantified previously. Here, we analyzed the intra-patient diversity of the NoV capsid by carrying out RT-PCR and ultra-deep sequencing with 100,000-fold coverage of 16 stool samples from symptomatic patients. This revealed the presence of low-frequency sequences carrying large numbers of U-to-C or A-to-G base transitions, suggesting a role for hyper-mutation in NoV diversity. To more directly test for hyper-mutation, we performed transfection assays in which the production of mutations was restricted to a single cell infection cycle. This confirmed the presence of sequences with multiple U-to-C/A-to-G transitions, and suggested that hyper-mutation contributed a large fraction of the total NoV spontaneous mutation rate. The type of changes produced and their sequence context are compatible with ADAR-mediated editing of the viral RNA. Norovirus U-to-C hyper-mutants are present in patient samples. Analysis of hyper-mutants in cell culture suggests ADAR-mediated RNA edition. Hyper-mutation may contribute to norovirus diversity and evolution.
Collapse
Affiliation(s)
- José M Cuevas
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Valencia, Spain
| | - Marine Combe
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Valencia, Spain
| | - Manoli Torres-Puente
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia, Spain
| | - Raquel Garijo
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Valencia, Spain
| | - Susana Guix
- Departament de Microbiologia, Universitat de Barcelona, Barcelona, Spain
| | - Javier Buesa
- Departament de Microbiologia, Universitat de València, Valencia, Spain
| | | | - Rafael Sanjuán
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Valencia, Spain; Departament de Genètica, Universitat de València, Valencia, Spain.
| |
Collapse
|
31
|
Tsao LC, Guo H, Jeffrey J, Hoxie JA, Su L. CCR5 interaction with HIV-1 Env contributes to Env-induced depletion of CD4 T cells in vitro and in vivo. Retrovirology 2016; 13:22. [PMID: 27026376 PMCID: PMC4812640 DOI: 10.1186/s12977-016-0255-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND CD4 T cell depletion during HIV-1 infection is associated with AIDS disease progression, and the HIV-1 Env protein plays an important role in the process. Together with CXCR4, CCR5 is one of the two co-receptors that interact with Env during virus entry, but the role of CCR5 in Env-induced pathogenesis is not clearly defined. We have investigated CD4 T cell depletion mechanisms caused by the Env of a highly pathogenic CXCR4/CCR5 dual-tropic HIV-1 isolate R3A. RESULTS We report here that R3A infection induced depletion of both infected and uninfected "bystander" CD4 T cells, and treatment with CCR5 antagonist TAK-779 inhibited R3A-induced bystander CD4 T cell depletion without affecting virus replication. To further define the role of Env-CCR5 interaction, we utilized an Env-mutant of R3A, termed R3A-5/6AA, which has lost CCR5 binding capability. Importantly, R3A-5/6AA replicated to the same level as wild type R3A by using CXCR4 for viral infection. We found the loss of CCR5 interaction resulted in a significant reduction of bystander CD4 T cells death during R3A-5/6AA infection, whereas stimulation of CCR5 with MIP1-β increased bystander pathogenesis induced by R3A-5/6AA. We confirmed our findings using a humanized mouse model, where we observed similarly reduced pathogenicity of the mutant R3A-5/6AA in various lymphoid organs in vivo. CONCLUSION We provide the first evidence that shows CCR5 interaction with a dual-tropic HIV-1 Env played a significant role in Env-induced depletion of CD4 T cells.
Collapse
Affiliation(s)
- Li-Chung Tsao
- Curriculum of Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Haitao Guo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jerry Jeffrey
- Curriculum of Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - James A Hoxie
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lishan Su
- Curriculum of Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
32
|
Guerra-Palomares SE, Hernandez-Sanchez PG, Esparza-Perez MA, Arguello JR, Noyola DE, Garcia-Sepulveda CA. Molecular Characterization of Mexican HIV-1 Vif Sequences. AIDS Res Hum Retroviruses 2016; 32:290-5. [PMID: 26529466 DOI: 10.1089/aid.2015.0290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The viral infectivity factor (Vif) is an HIV accessory protein that counteracts host antiviral proteins of the APOBEC3 family. Accumulating evidence highlights the pivotal role that accessory HIV proteins have on disease pathogenesis, a fact that has made them targets of interest for novel therapeutic and preventive strategies. Little is known about Vif sequence diversity outside of African or white populations. Mexico is home to Americas' third largest HIV-affected population and Mexican Hispanics represent an ever-increasing U.S. minority. This study provides a detailed analysis of the diversity seen in 77 Mexican Vif protein sequences. Phylogenetic analysis shows that most sequences cluster with HIV-1 subtype B, while less than 10% exhibit greater similarity to subtype D and A subtypes. Although most functional motifs are conserved among the Mexican sequences, substantial diversity was seen in some APOBEC binding sites, the nuclear localization inhibitory signal, and the CBFβ interaction sites.
Collapse
Affiliation(s)
| | | | | | | | - Daniel E. Noyola
- Departamento de Microbiología, Facultad de Medicina UASLP, San Luis Potosí, SLP, México
| | | |
Collapse
|
33
|
de Armas-Rillo L, Valera MS, Marrero-Hernández S, Valenzuela-Fernández A. Membrane dynamics associated with viral infection. Rev Med Virol 2016; 26:146-60. [PMID: 26817660 PMCID: PMC5066672 DOI: 10.1002/rmv.1872] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 12/15/2022]
Abstract
Viral replication and spreading are fundamental events in the viral life cycle, accounting for the assembly and egression of nascent virions, events that are directly associated with viral pathogenesis in target hosts. These processes occur in cellular compartments that are modified by specialized viral proteins, causing a rearrangement of different cell membranes in infected cells and affecting the ER, mitochondria, Golgi apparatus, vesicles and endosomes, as well as processes such as autophagic membrane flux. In fact, the activation or inhibition of membrane trafficking and other related activities are fundamental to ensure the adequate replication and spreading of certain viruses. In this review, data will be presented that support the key role of membrane dynamics in the viral cycle, especially in terms of the assembly, egression and infection processes. By defining how viruses orchestrate these events it will be possible to understand how they successfully complete their route of infection, establishing viral pathogenesis and provoking disease. © 2015 The Authors Reviews in Medical Virology Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Laura de Armas-Rillo
- Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Tenerife, Spain
| | - María-Soledad Valera
- Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Tenerife, Spain
| | - Sara Marrero-Hernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Tenerife, Spain
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Tenerife, Spain
| |
Collapse
|
34
|
Mahauad-Fernandez WD, Okeoma CM. The role of BST-2/Tetherin in host protection and disease manifestation. IMMUNITY INFLAMMATION AND DISEASE 2015; 4:4-23. [PMID: 27042298 PMCID: PMC4768070 DOI: 10.1002/iid3.92] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/07/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022]
Abstract
Host cells respond to viral infections by activating immune response genes that are not only involved in inflammation, but may also predispose cells to cancerous transformation. One such gene is BST‐2, a type II transmembrane protein with a unique topology that endows it tethering and signaling potential. Through this ability to tether and signal, BST‐2 regulates host response to viral infection either by inhibiting release of nascent viral particles or in some models inhibiting viral dissemination. However, despite its antiviral functions, BST‐2 is involved in disease manifestation, a function linked to the ability of BST‐2 to promote cell‐to‐cell interaction. Therefore, modulating BST‐2 expression and/or activity has the potential to influence course of disease.
Collapse
Affiliation(s)
- Wadie D Mahauad-Fernandez
- Department of MicrobiologyCarver College of MedicineUniversity of IowaIowa CityIA52242USA; Interdisciplinary Program in Molecular and Cellular BiologyUniversity of IowaIowa CityIA52242USA
| | - Chioma M Okeoma
- Department of MicrobiologyCarver College of MedicineUniversity of IowaIowa CityIA52242USA; Interdisciplinary Program in Molecular and Cellular BiologyUniversity of IowaIowa CityIA52242USA
| |
Collapse
|
35
|
HIV-1 Virion Production from Single Inducible Proviruses following T-Cell Activation Ex Vivo. J Virol 2015; 90:1673-6. [PMID: 26559835 DOI: 10.1128/jvi.02520-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/03/2015] [Indexed: 01/01/2023] Open
Abstract
Quantifying induced virion production from single proviruses is important for assessing the effects of HIV-1 latency reversal agents. Limiting dilution ex vivo cultures of resting CD4(+) T cells from 14 HIV-positive volunteers revealed that virion production after T-cell activation from individual proviruses varies by 10,000-fold to 100,000-fold. High-producing proviruses were associated with increases in cell-associated HIV-1 DNA levels, suggesting that reactivated proviruses proliferate. Single-cell analyses are needed to investigate differences in proviral expansion and virus production following latency reversal.
Collapse
|
36
|
Cuevas JM, Geller R, Garijo R, López-Aldeguer J, Sanjuán R. Extremely High Mutation Rate of HIV-1 In Vivo. PLoS Biol 2015; 13:e1002251. [PMID: 26375597 PMCID: PMC4574155 DOI: 10.1371/journal.pbio.1002251] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 08/10/2015] [Indexed: 11/18/2022] Open
Abstract
Rates of spontaneous mutation critically determine the genetic diversity and evolution of RNA viruses. Although these rates have been characterized in vitro and in cell culture models, they have seldom been determined in vivo for human viruses. Here, we use the intrapatient frequency of premature stop codons to quantify the HIV-1 genome-wide rate of spontaneous mutation in DNA sequences from peripheral blood mononuclear cells. This reveals an extremely high mutation rate of (4.1 ± 1.7) × 10−3 per base per cell, the highest reported for any biological entity. Sequencing of plasma-derived sequences yielded a mutation frequency 44 times lower, indicating that a large fraction of viral genomes are lethally mutated and fail to reach plasma. We show that the HIV-1 reverse transcriptase contributes only 2% of mutations, whereas 98% result from editing by host cytidine deaminases of the A3 family. Hypermutated viral sequences are less abundant in patients showing rapid disease progression compared to normal progressors, highlighting the antiviral role of A3 proteins. However, the amount of A3-mediated editing varies broadly, and we find that low-edited sequences are more abundant among rapid progressors, suggesting that suboptimal A3 activity might enhance HIV-1 genetic diversity and pathogenesis. The rate of spontaneous mutation of the HIV-1 genome within its human host is exceptionally high, is mostly driven by host cytidine deaminases, and probably plays a role in disease progression. The high levels of genetic diversity of the HIV-1 virus grant it the ability to escape the immune system, to rapidly evolve drug resistance, and to circumvent vaccination strategies. However, our knowledge of HIV-1 mutation rates has been largely restricted to in vitro and cell culture studies because of the inherent complexity of measuring these rates in vivo. Here, by analyzing the frequency of premature stop codons, we show that the HIV-1 mutation rate in vivo is two orders of magnitude higher than that predicted by in vitro studies, making it the highest reported mutation rate for any biological system. A large component of this rate is from host cellular cytidine deaminases, which induce mutations in the viral DNA as a defense mechanism. While the HIV-1 genome is hypermutated in blood cells, only a very small fraction of these mutations reach the plasma, indicating that many viruses are defective as a result of the extremely high mutation load. In addition, we find that the HIV-1 mutation rate tends to be higher in patients showing normal disease progression than in those undergoing rapid progression, emphasizing the negative impact on viral fitness of hypermutation by host cytidine deaminases. However, we also observe subpopulations of weakly-mutated viral genomes whose sequence diversity may influence viral pathogenesis. Our work highlights the fine balance for HIV-1 between enough mutation to evade host responses and too much mutation that can inactivate the virus.
Collapse
Affiliation(s)
- José M. Cuevas
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Valencia, Spain
| | - Ron Geller
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Valencia, Spain
| | - Raquel Garijo
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Valencia, Spain
| | - José López-Aldeguer
- Hospital Universitario La Fe, Valencia, Spain
- CoRIS and HIV Biobank, Spanish AIDS Research Network, Spain
| | - Rafael Sanjuán
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Valencia, Spain
- Departament de Genètica, Universitat de València, Valencia, Spain
- * E-mail:
| |
Collapse
|
37
|
Flores Saiffe Farías A, Jaime Herrera López E, Moreno Vázquez CJ, Li W, Prado Montes de Oca E. Predicting functional regulatory SNPs in the human antimicrobial peptide genes DEFB1 and CAMP in tuberculosis and HIV/AIDS. Comput Biol Chem 2015; 59 Pt A:117-25. [PMID: 26447748 DOI: 10.1016/j.compbiolchem.2015.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 01/04/2023]
Abstract
Single nucleotide polymorphisms (SNPs) in transcription factor binding sites (TFBSs) within gene promoter region or enhancers can modify the transcription rate of genes related to complex diseases. These SNPs can be called regulatory SNPs (rSNPs). Data compiled from recent projects, such as the 1000 Genomes Project and ENCODE, has revealed essential information used to perform in silico prediction of the molecular and biological repercussions of SNPs within TFBS. However, most of these studies are very limited, as they only analyze SNPs in coding regions or when applied to promoters, and do not integrate essential biological data like TFBSs, expression profiles, pathway analysis, homotypic redundancy (number of TFBSs for the same TF in a region), chromatin accessibility and others, which could lead to a more accurate prediction. Our aim was to integrate different data in a biologically coherent method to analyze the proximal promoter regions of two antimicrobial peptide genes, DEFB1 and CAMP, that are associated with tuberculosis (TB) and HIV/AIDS. We predicted SNPs within the promoter regions that are more likely to interact with transcription factors (TFs). We also assessed the impact of homotypic redundancy using a novel approach called the homotypic redundancy weight factor (HWF). Our results identified 10 SNPs, which putatively modify the binding affinity of 24 TFs previously identified as related to TB and HIV/AIDS expression profiles (e.g. KLF5, CEBPA and NFKB1 for TB; FOXP2, BRCA1, CEBPB, CREB1, EBF1 and ZNF354C for HIV/AIDS; and RUNX2, HIF1A, JUN/AP-1, NR4A2, EGR1 for both diseases). Validating with the OregAnno database and cell-specific functional/non functional SNPs from additional 13 genes, our algorithm performed 53% sensitivity and 84.6% specificity to detect functional rSNPs using the DNAseI-HUP database. We are proposing our algorithm as a novel in silico method to detect true functional rSNPs in antimicrobial peptide genes. With further improvement, this novel method could be applied to other promoters in order to design probes and to discover new drug targets for complex diseases.
Collapse
Affiliation(s)
- Adolfo Flores Saiffe Farías
- Personalized Medicine Laboratory (LAMPER), Medical and Pharmaceutical Biotechnology, Guadalajara Unit, Research Center of Technology and Design Assistance of Jalisco State, National Council of Science and Technology (CIATEJ AC, CONACYT), Av. Normalistas 800, Col. Colinas de la Normal, CP 44270 Guadalajara, Jalisco, Mexico.
| | - Enrique Jaime Herrera López
- Industrial Biotechnology, CIATEJ AC, Zapopan Unit, CONACYT, Camino Arenero 1227, Col. El Bajío del Arenal, CP 45019 Zapopan, Jalisco, Mexico.
| | - Cristopher Jorge Moreno Vázquez
- Personalized Medicine Laboratory (LAMPER), Medical and Pharmaceutical Biotechnology, Guadalajara Unit, Research Center of Technology and Design Assistance of Jalisco State, National Council of Science and Technology (CIATEJ AC, CONACYT), Av. Normalistas 800, Col. Colinas de la Normal, CP 44270 Guadalajara, Jalisco, Mexico.
| | - Wentian Li
- The Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, 350 Community Dr. Manhasset, NY 11030, USA.
| | - Ernesto Prado Montes de Oca
- Personalized Medicine Laboratory (LAMPER), Medical and Pharmaceutical Biotechnology, Guadalajara Unit, Research Center of Technology and Design Assistance of Jalisco State, National Council of Science and Technology (CIATEJ AC, CONACYT), Av. Normalistas 800, Col. Colinas de la Normal, CP 44270 Guadalajara, Jalisco, Mexico; Molecular Biology Laboratory, Biosafety Area, Medical and Pharmaceutical Biotechnology, Guadalajara Unit, CIATEJ AC, CONACYT, Av. Normalistas 800, Col. Colinas de la Normal, CP 44270 Guadalajara, Jalisco, Mexico.
| |
Collapse
|
38
|
Alteri C, Surdo M, Bellocchi MC, Saccomandi P, Continenza F, Armenia D, Parrotta L, Carioti L, Costa G, Fourati S, Di Santo F, Scutari R, Barbaliscia S, Fedele V, Carta S, Balestra E, Alcaro S, Marcelin AG, Calvez V, Ceccherini-Silberstein F, Artese A, Perno CF, Svicher V. Incomplete APOBEC3G/F Neutralization by HIV-1 Vif Mutants Facilitates the Genetic Evolution from CCR5 to CXCR4 Usage. Antimicrob Agents Chemother 2015; 59:4870-81. [PMID: 26055363 PMCID: PMC4505216 DOI: 10.1128/aac.00137-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/30/2015] [Indexed: 11/20/2022] Open
Abstract
Incomplete APOBEC3G/F neutralization by a defective HIV-1Vif protein can promote genetic diversification by inducing G-to-A mutations in the HIV-1 genome. The HIV-1 Env V3 loop, critical for coreceptor usage, contains several putative APOBEC3G/F target sites. Here, we determined if APOBEC3G/F, in the presence of Vif-defective HIV-1 virus, can induce G-to-A mutations at V3 positions critical to modulation of CXCR4 usage. Peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages (MDM) from 2 HIV-1-negative donors were infected with CCR5-using 81.A-VifWT virus (i.e., with wild-type [WT] Vif protein), 81.A-VifE45G, or 81.A-VifK22E (known to incompletely/partially neutralize APOBEC3G/F). The rate of G-toA mutations was zero or extremely low in 81.A-VifWT- and 81.A-VifE45G-infected PBMC from both donors. Conversely, G-to-A enrichment was detected in 81.A-VifK22E-infected PBMC (prevalence ranging from 2.18% at 7 days postinfection [dpi] to 3.07% at 21 dpi in donor 1 and from 10.49% at 7 dpi to 8.69% at 21 dpi in donor 2). A similar scenario was found in MDM. G-to-A mutations occurred at 8 V3 positions, resulting in nonsynonymous amino acid substitutions. Of them, G24E and E25K strongly correlated with phenotypically/genotypically defined CXCR4-using viruses (P = 0.04 and 5.5e-7, respectively) and increased the CXCR4 N-terminal binding affinity for V3 (WT, -40.1 kcal/mol; G24E, -510 kcal/mol; E25K, -522 kcal/mol). The analysis of paired V3 and Vif DNA sequences from 84 HIV-1-infected patients showed that the presence of a Vif-defective virus correlated with CXCR4 usage in proviral DNA (P = 0.04). In conclusion, incomplete APOBEC3G/F neutralization by a single Vif amino acid substitution seeds a CXCR4-using proviral reservoir. This can have implications for the success of CCR5 antagonist-based therapy, as well as for the risk of disease progression.
Collapse
Affiliation(s)
- Claudia Alteri
- University of Rome "Tor Vergata," Department of Experimental Medicine and Surgery, Rome, Italy
| | - Matteo Surdo
- University of Rome "Tor Vergata," Department of Experimental Medicine and Surgery, Rome, Italy
| | | | - Patrizia Saccomandi
- University of Rome "Tor Vergata," Department of Experimental Medicine and Surgery, Rome, Italy
| | | | - Daniele Armenia
- University of Rome "Tor Vergata," Department of Experimental Medicine and Surgery, Rome, Italy
| | - Lucia Parrotta
- Università Magna Graecia di Catanzaro, Dipartimento di Scienze della Salute, Campus Universitario, Catanzaro, Italy
| | - Luca Carioti
- University of Rome "Tor Vergata," Department of Experimental Medicine and Surgery, Rome, Italy
| | - Giosuè Costa
- Università Magna Graecia di Catanzaro, Dipartimento di Scienze della Salute, Campus Universitario, Catanzaro, Italy
| | - Slim Fourati
- Department of Virology, Hospital "Pitie Salpietrere," Paris, France
| | - Fabiola Di Santo
- University of Rome "Tor Vergata," Department of Experimental Medicine and Surgery, Rome, Italy
| | - Rossana Scutari
- University of Rome "Tor Vergata," Department of Experimental Medicine and Surgery, Rome, Italy
| | - Silvia Barbaliscia
- University of Rome "Tor Vergata," Department of Experimental Medicine and Surgery, Rome, Italy
| | | | | | - Emanuela Balestra
- University of Rome "Tor Vergata," Department of Experimental Medicine and Surgery, Rome, Italy
| | - Stefano Alcaro
- Università Magna Graecia di Catanzaro, Dipartimento di Scienze della Salute, Campus Universitario, Catanzaro, Italy
| | | | - Vincent Calvez
- Department of Virology, Hospital "Pitie Salpietrere," Paris, France
| | | | - Anna Artese
- Università Magna Graecia di Catanzaro, Dipartimento di Scienze della Salute, Campus Universitario, Catanzaro, Italy
| | - Carlo Federico Perno
- University of Rome "Tor Vergata," Department of Experimental Medicine and Surgery, Rome, Italy INMI L. Spallanzani, Rome, Italy
| | - Valentina Svicher
- University of Rome "Tor Vergata," Department of Experimental Medicine and Surgery, Rome, Italy
| |
Collapse
|
39
|
Arenaccio C, Manfredi F, Anticoli S, Chiozzini C, Federico M. Uncovering the role of defective HIV-1 in spreading viral infection. Future Virol 2015. [DOI: 10.2217/fvl.15.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Defective HIV-1 genomes populate blood cells of HIV-1 infected patients, especially during HAART treatment. They can express viral proteins which, if released, may induce bystander effects favoring viral spread. Here, we review recent literature regarding the effects of extracellular HIV-1 proteins which can act as effectors of transcriptionally active, defective HIV-1, including Gag p17, Env gp120, Vpr, Tat and Nef. It has been very recently described that, different to the other HIV products, the bystander effects of Nef can be mediated by exosomes, that is, nanovesicles constitutively released by all cell types. Exosomes from Nef-expressing cells induce cell activation and HIV-1 susceptibility in resting CD4+ T lymphocytes in a TNF-α-dependent way. This mechanism likely contributes to virus persistence in HAART-treated patients.
Collapse
Affiliation(s)
| | | | - Simona Anticoli
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | | | | |
Collapse
|
40
|
Farberov L, Herzig E, Modai S, Isakov O, Hizi A, Shomron N. MicroRNA-mediated regulation of p21 and TASK1 cellular restriction factors enhances HIV-1 infection. J Cell Sci 2015; 128:1607-16. [PMID: 25717002 PMCID: PMC4406127 DOI: 10.1242/jcs.167817] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/07/2015] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that play a central role in the regulation of gene expression by binding to target mRNAs. Several studies have revealed alterations in cellular miRNA profiles following HIV-1 infection, mostly for miRNAs involved in inhibiting viral infection. These miRNA expression modifications might also serve to block the innate HIV-1 inhibition mechanism. As a result, it is expected that during HIV-1 infection miRNAs target genes that hinder or prevent the progression of the HIV-1 replication cycle. One of the major sets of genes known to inhibit the progression of HIV-1 infection are cellular restriction factors. In this study, we identified a direct miRNA target gene that modulates viral spread in T-lymphocytes and HeLa-CCR5 cell lines. Following infection, let-7c, miR-34a or miR-124a were upregulated, and they targeted and downregulated p21 and TASK1 (also known as CDKN1A and KCNK3, respectively) cellular proteins. This eventually led to increased virion release and higher copy number of viral genome transcripts in infected cells. Conversely, by downregulating these miRNAs, we could suppress viral replication and spread. Our data suggest that HIV-1 exploits the host miRNA cellular systems in order to block the innate inhibition mechanism, allowing a more efficient infection process.
Collapse
Affiliation(s)
- Luba Farberov
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eytan Herzig
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shira Modai
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ofer Isakov
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Amnon Hizi
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Noam Shomron
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
41
|
Urquijo-Sánchez S, Taborda-Vanegas NA, Rugeles-López MT. Factores solubles con actividad antiviral: en búsqueda de nuevos blancos terapéuticos para la infección por el VIH-1. IATREIA 2014. [DOI: 10.17533/udea.iatreia.18039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Los mecanismos innatos antivirales han resultado de gran interés debido a su uso potencial para la prevención y tratamiento de la infección por el VIH. En particular, los factores solubles antivirales han sido objeto de múltiples investigaciones por su capacidad de inhibir diferentes pasos del ciclo replicativo viral y de potenciar la respuesta inmune del hospedero. Entre estos factores solubles se destacan TRIM-5α, APOBEC3G, SAMHD1, ELAFIN, SERPINA1 y SLPI, que actúan directamente sobre la partícula viral o la célula, o promueven la producción de moléculas involucradas en la respuesta inmune contra el virus. Algunos de ellos se han correlacionado con un bajo riesgo de adquirir la infección por el VIH o con una lenta progresión a sida. La exploración de los mecanismos antivirales de estas proteínas es requisito para el desarrollo de nuevas alternativas terapéuticas.
Collapse
|
42
|
Meijerink H, Indrati AR, van Crevel R, Joosten I, Koenen H, van der Ven AJAM. The number of CCR5 expressing CD4+ T lymphocytes is lower in HIV-infected long-term non-progressors with viral control compared to normal progressors: a cross-sectional study. BMC Infect Dis 2014; 14:683. [PMID: 25495598 PMCID: PMC4271479 DOI: 10.1186/s12879-014-0683-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 12/04/2014] [Indexed: 01/09/2023] Open
Abstract
Background The HIV co-receptors CXCR4 and CCR5 play an important role in HIV infection and replication. Therefore we hypothesize that long-term non-progressors (LTNP) with viral control have lower expression of CCR5 and CXCR4 on CD4+ cells, specifically on memory T-lymphocytes since they are the primary target cells of HIV. Methods In this cross-sectional study, we included five HIV-infected LTNP with viral control (CD4 > 750 cell/μl & HIV < 50 copies for ≥2 years), thirteen HIV-infected and seven HIV-uninfected individuals at Radboud UMC Nijmegen, the Netherlands. We determined the CCR5 and CXCR4 expression among CD4+ and CD8+ lymphocyte subsets; memory (CD45RO+), naïve (CD45RA+) cells and regulatory T-cells (CD4+CD25highFoxP3+). In addition, CCR5∆32 polymorphism is related with disease progression and was therefore determined using polymerase chain reaction. Results The percentage of CCR5-expressing CD4+ cells of LTNP was comparable with healthy controls; whereas HIV-infected individuals showed more CCR5-expressing cells. This was observed in memory and naïve CD4+ cells, but not in regulatory T-cells. The mean fluorescence intensity of CCR5-expressing CD4+ cells was similar in all groups. All groups had comparable percentages of CXCR4-expressing cells. The mean fluorescence intensity of CXCR4-expressing cells was significantly higher in HIV-infected normally progressors in both memory and naïve CD4+ cells, but not in CD8+ cells. The CCR5∆32 polymorphism was not related to group. Conclusions We show that HIV affects -directly or indirectly- the expression of CCR5 in CD4+ T-lymphocytes; yet this effect is not seen in LTNP with viral control. Avoiding upregulation of CCR5 could be an important method via which LTNP counteracts the effects of HIV and suppresses viral replication. Exploring how LTNP suppress the upregulation of CCR5 could be an important step for discovering new therapeutics. Electronic supplementary material The online version of this article (doi:10.1186/s12879-014-0683-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hinta Meijerink
- Department of Internal Medicine, Radboud University Medical Center, Route 456, PO Box 910, 6500 HB, Nijmegen, The Netherlands.
| | - Agnes R Indrati
- Health Research Unit, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin Hospital, Bandung, Indonesia.
| | - Reinout van Crevel
- Department of Internal Medicine, Radboud University Medical Center, Route 456, PO Box 910, 6500 HB, Nijmegen, The Netherlands.
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Hans Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Andre J A M van der Ven
- Department of Internal Medicine, Radboud University Medical Center, Route 456, PO Box 910, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|