1
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024; 9:170. [PMID: 38965243 PMCID: PMC11224386 DOI: 10.1038/s41392-024-01851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunqi Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuofan Zhai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jie Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
2
|
Costa GP, Mensurado S, Silva-Santos B. Therapeutic avenues for γδ T cells in cancer. J Immunother Cancer 2023; 11:e007955. [PMID: 38007241 PMCID: PMC10680012 DOI: 10.1136/jitc-2023-007955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2023] [Indexed: 11/27/2023] Open
Abstract
γδ T cells are regarded as promising effector lymphocytes for next-generation cancer immunotherapies. In spite of being relatively rare in human peripheral blood, γδ T cells are more abundant in epithelial tissues where many tumors develop, and have been shown to actively participate in anticancer immunity as cytotoxic cells or as "type 1" immune orchestrators. A major asset of γδ T cells for tackling advanced cancers is their independence from antigen presentation via the major histocompatibility complex, which clearly sets them apart from conventional αβ T cells. Here we discuss the main therapeutic strategies based on human γδ T cells. These include antibody-based bispecific engagers and adoptive cell therapies, either focused on the Vδ1+ or Vδ2+ γδ T-cell subsets, which can be expanded selectively and differentiated or engineered to maximize their antitumor functions. We review the preclinical data that supports each of the therapeutic strategies under development; and summarize the clinical trials being pursued towards establishing γδ T cell-based treatments for solid and hematological malignancies.
Collapse
Affiliation(s)
| | - Sofia Mensurado
- Instituto de Medicina Molecular João Lobo Antunes, Faculade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Bruno Silva-Santos
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
The Multifaceted MEP Pathway: Towards New Therapeutic Perspectives. Molecules 2023; 28:molecules28031403. [PMID: 36771066 PMCID: PMC9919496 DOI: 10.3390/molecules28031403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Isoprenoids, a diverse class of natural products, are present in all living organisms. Their two universal building blocks are synthesized via two independent pathways: the mevalonate pathway and the 2-C-methyl-ᴅ-erythritol 4-phosphate (MEP) pathway. The presence of the latter in pathogenic bacteria and its absence in humans make all its enzymes suitable targets for the development of novel antibacterial drugs. (E)-4-Hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP), the last intermediate of this pathway, is a natural ligand for the human Vγ9Vδ2 T cells and the most potent natural phosphoantigen known to date. Moreover, 5-hydroxypentane-2,3-dione, a metabolite produced by Escherichia coli 1-deoxy-ᴅ-xylulose 5-phosphate synthase (DXS), the first enzyme of the MEP pathway, structurally resembles (S)-4,5-dihydroxy-2,3-pentanedione, a signal molecule implied in bacterial cell communication. In this review, we shed light on the diversity of potential uses of the MEP pathway in antibacterial therapies, starting with an overview of the antibacterials developed for each of its enzymes. Then, we provide insight into HMBPP, its synthetic analogs, and their prodrugs. Finally, we discuss the potential contribution of the MEP pathway to quorum sensing mechanisms. The MEP pathway, providing simultaneously antibacterial drug targets and potent immunostimulants, coupled with its potential role in bacterial cell-cell communication, opens new therapeutic perspectives.
Collapse
|
4
|
The Role of γδ T Cells as a Line of Defense in Viral Infections after Allogeneic Stem Cell Transplantation: Opportunities and Challenges. Viruses 2022; 14:v14010117. [PMID: 35062321 PMCID: PMC8779492 DOI: 10.3390/v14010117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
In the complex interplay between inflammation and graft-versus-host disease (GVHD) after allogeneic stem cell transplantation (allo-HSCT), viral reactivations are often observed and cause substantial morbidity and mortality. As toxicity after allo-HSCT within the context of viral reactivations is mainly driven by αβ T cells, we describe that by delaying αβ T cell reconstitution through defined transplantation techniques, we can harvest the full potential of early reconstituting γδ T cells to control viral reactivations. We summarize evidence of how the γδ T cell repertoire is shaped by CMV and EBV reactivations after allo-HSCT, and their potential role in controlling the most important, but not all, viral reactivations. As most γδ T cells recognize their targets in an MHC-independent manner, γδ T cells not only have the potential to control viral reactivations but also to impact the underlying hematological malignancies. We also highlight the recently re-discovered ability to recognize classical HLA-molecules through a γδ T cell receptor, which also surprisingly do not associate with GVHD. Finally, we discuss the therapeutic potential of γδ T cells and their receptors within and outside the context of allo-HSCT, as well as the opportunities and challenges for developers and for payers.
Collapse
|
5
|
Rosso DA, Rosato M, Gómez FD, Álvarez RS, Shiromizu CM, Keitelman IA, Ibarra C, Amaral MM, Jancic CC. Human Glomerular Endothelial Cells Treated With Shiga Toxin Type 2 Activate γδ T Lymphocytes. Front Cell Infect Microbiol 2021; 11:765941. [PMID: 34900753 PMCID: PMC8656354 DOI: 10.3389/fcimb.2021.765941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/19/2021] [Indexed: 12/02/2022] Open
Abstract
The hemolytic uremic syndrome associated with diarrhea, a consequence of Shiga toxin (Stx)-producing Escherichia coli infection, is a common cause of pediatric acute renal failure in Argentina. Stx type 2a (Stx2a) causes direct damage to renal cells and induces local inflammatory responses that involve secretion of inflammatory mediators and the recruitment of innate immune cells. γδ T cells constitute a subset of T lymphocytes, which act as early sensors of cellular stress and infection. They can exert cytotoxicity against infected and transformed cells, and produce cytokines and chemokines. In this study, we investigated the activation of human peripheral γδ T cells in response to the incubation with Stx2a-stimulated human glomerular endothelial cells (HGEC) or their conditioned medium, by analyzing in γδ T lymphocytes, the expression of CD69, CD107a, and perforin, and the production of TNF-α and IFN-γ. In addition, we evaluated by confocal microscopy the contact between γδ T cells and HGEC. This analysis showed an augmentation in cellular interactions in the presence of Stx2a-stimulated HGEC compared to untreated HGEC. Furthermore, we observed an increase in cytokine production and CD107a expression, together with a decrease in intracellular perforin when γδ T cells were incubated with Stx2a-treated HGEC or their conditioned medium. Interestingly, the blocking of TNF-α by Etanercept reversed the changes in the parameters measured in γδ T cells incubated with Stx2a-treated HGEC supernatants. Altogether, our results suggest that soluble factors released by Stx2a-stimulated HGEC modulate the activation of γδ T cells, being TNF-α a key player during this process.
Collapse
Affiliation(s)
- David Antonio Rosso
- Instituto de Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina., Buenos Aires, Argentina
| | - Micaela Rosato
- Instituto de Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina., Buenos Aires, Argentina
| | - Fernando Daniel Gómez
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Romina Soledad Álvarez
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina Maiumi Shiromizu
- Instituto de Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina., Buenos Aires, Argentina
| | - Irene Angélica Keitelman
- Instituto de Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina., Buenos Aires, Argentina
| | - Cristina Ibarra
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Marta Amaral
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina Cristina Jancic
- Instituto de Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina., Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
6
|
Miyashita M, Shimizu T, Ashihara E, Ukimura O. Strategies to Improve the Antitumor Effect of γδ T Cell Immunotherapy for Clinical Application. Int J Mol Sci 2021; 22:8910. [PMID: 34445615 PMCID: PMC8396358 DOI: 10.3390/ijms22168910] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/18/2022] Open
Abstract
Human γδ T cells show potent cytotoxicity against various types of cancer cells in a major histocompatibility complex unrestricted manner. Phosphoantigens and nitrogen-containing bisphosphonates (N-bis) stimulate γδ T cells via interaction between the γδ T cell receptor (TCR) and butyrophilin subfamily 3 member A1 (BTN3A1) expressed on target cells. γδ T cell immunotherapy is classified as either in vivo or ex vivo according to the method of activation. Immunotherapy with activated γδ T cells is well tolerated; however, the clinical benefits are unsatisfactory. Therefore, the antitumor effects need to be increased. Administration of γδ T cells into local cavities might improve antitumor effects by increasing the effector-to-target cell ratio. Some anticancer and molecularly targeted agents increase the cytotoxicity of γδ T cells via mechanisms involving natural killer group 2 member D (NKG2D)-mediated recognition of target cells. Both the tumor microenvironment and cancer stem cells exert immunosuppressive effects via mechanisms that include inhibitory immune checkpoint molecules. Therefore, co-immunotherapy with γδ T cells plus immune checkpoint inhibitors is a strategy that may improve cytotoxicity. The use of a bispecific antibody and chimeric antigen receptor might be effective to overcome current therapeutic limitations. Such strategies should be tested in a clinical research setting.
Collapse
Affiliation(s)
- Masatsugu Miyashita
- Department of Urology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.S.); (O.U.)
- Department of Urology, Japanese Red Cross Kyoto Daini Hospital, Kyoto 602-8026, Japan
| | - Teruki Shimizu
- Department of Urology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.S.); (O.U.)
| | - Eishi Ashihara
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan;
| | - Osamu Ukimura
- Department of Urology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.S.); (O.U.)
| |
Collapse
|
7
|
Chen S, Li Z, Huang W, Wang Y, Fan S. Prognostic and Therapeutic Significance of BTN3A Proteins in Tumors. J Cancer 2021; 12:4505-4512. [PMID: 34149914 PMCID: PMC8210570 DOI: 10.7150/jca.57831] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
The Butyrophilin 3A (BTN3A) family is a type I transmembrane protein belonging to the immunoglobulin (Ig) superfamily. The family contains three members: BTN3A1, BTN3A2 and BTN3A3, which share 95% homology in the extracellular domain. The expression of BTN3A family members is different in different types of tumors, which plays an important role in tumor prognosis. Among them, there are many studies on tumor immunity of BTN3A1, which shows that it is essential for the activation of Vγ9Vδ2 T cells, while BTN3A3 is expected to become a potential therapeutic target for breast cancer. Recent studies have shown that the BTN3A family is closely related to the occurrence and development of tumors. Now the BTN3A family has become one of the research hotspots and is expected to become new tumor prediction and treatment targets.
Collapse
Affiliation(s)
- Sihan Chen
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.,College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Zhangyun Li
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Wenyi Huang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Yanyan Wang
- Department of Ultrasonic Medicine, Xuzhou First People's Hospital, Jiangsu, China
| | - Shaohua Fan
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| |
Collapse
|
8
|
Ruibal P, Voogd L, Joosten SA, Ottenhoff THM. The role of donor-unrestricted T-cells, innate lymphoid cells, and NK cells in anti-mycobacterial immunity. Immunol Rev 2021; 301:30-47. [PMID: 33529407 PMCID: PMC8154655 DOI: 10.1111/imr.12948] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Vaccination strategies against mycobacteria, focusing mostly on classical T‐ and B‐cells, have shown limited success, encouraging the addition of alternative targets. Classically restricted T‐cells recognize antigens presented via highly polymorphic HLA class Ia and class II molecules, while donor‐unrestricted T‐cells (DURTs), with few exceptions, recognize ligands via genetically conserved antigen presentation molecules. Consequently, DURTs can respond to the same ligands across diverse human populations. DURTs can be activated either through cognate TCR ligation or via bystander cytokine signaling. TCR‐driven antigen‐specific activation of DURTs occurs upon antigen presentation via non‐polymorphic molecules such as HLA‐E, CD1, MR1, and butyrophilin, leading to the activation of HLA‐E–restricted T‐cells, CD1‐restricted T‐cells, mucosal‐associated invariant T‐cells (MAITs), and TCRγδ T‐cells, respectively. NK cells and innate lymphoid cells (ILCs), which lack rearranged TCRs, are activated through other receptor‐triggering pathways, or can be engaged through bystander cytokines, produced, for example, by activated antigen‐specific T‐cells or phagocytes. NK cells can also develop trained immune memory and thus could represent cells of interest to mobilize by novel vaccines. In this review, we summarize the latest findings regarding the contributions of DURTs, NK cells, and ILCs in anti–M tuberculosis, M leprae, and non‐tuberculous mycobacterial immunity and explore possible ways in which they could be harnessed through vaccines and immunotherapies to improve protection against Mtb.
Collapse
Affiliation(s)
- Paula Ruibal
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda Voogd
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
9
|
Joalland N, Scotet E. Emerging Challenges of Preclinical Models of Anti-tumor Immunotherapeutic Strategies Utilizing Vγ9Vδ2 T Cells. Front Immunol 2020; 11:992. [PMID: 32528477 PMCID: PMC7256197 DOI: 10.3389/fimmu.2020.00992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/27/2020] [Indexed: 12/02/2022] Open
Abstract
Despite recent advances, the eradication of cancers still represents a challenge which justifies the exploration of additional therapeutic strategies such as immunotherapies, including adoptive cell transfers. Human peripheral Vγ9Vδ2 T cells, which constitute a major transitional immunity lymphocyte subset, represent attractive candidates because of their broad and efficient anti-tumor functions, as well as their lack of alloreactivity and easy handling. Vγ9Vδ2 T cells act like immune cell stress sensors that can, in a tightly controlled manner but through yet incompletely understood mechanisms, detect subtle changes of levels of phosphorylated metabolites of isoprenoid synthesis pathways. Consequently, various anti-tumor immunotherapeutic strategies have been proposed to enhance their reactivity and cytotoxicity, as well as to reduce the deleterious events. In this review, we expose these advances based on different strategies and their validation in preclinical models. Importantly, we next discuss advantages and limits of each approach, by highlighting the importance of the use of relevant preclinical model for evaluation of safety and efficacy. Finally, we propose novel perspectives and strategies that should be explored using these models for therapeutic improvements.
Collapse
Affiliation(s)
- Noémie Joalland
- Université de Nantes, INSERM, CNRS, CRCINA, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Emmanuel Scotet
- Université de Nantes, INSERM, CNRS, CRCINA, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
10
|
Girard P, Ponsard B, Charles J, Chaperot L, Aspord C. Potent Bidirectional Cross-Talk Between Plasmacytoid Dendritic Cells and γδT Cells Through BTN3A, Type I/II IFNs and Immune Checkpoints. Front Immunol 2020; 11:861. [PMID: 32435249 PMCID: PMC7218166 DOI: 10.3389/fimmu.2020.00861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Plasmacytoid DCs (pDCs) and γδT cells are both critical players in immunosurveillance against pathogens and cancer due to their ability to sense microbes and cell stress through recognition of pathogen-associated molecular patterns or altered metabolism [phosphoantigens (PAgs)]. Their unique features, high functional plasticity and ability to interact with many immune cell types allow them to bridge innate and adaptive immunity, initiating and orientating widely immune responses, hence contributing to protective and pathogenic immune responses. Yet, despite strategic and closed missions, potential interactions between pDCs and γδT cells are still unknown. Here we investigated whether there is interplay between pDCs and γδT cells and the underlying molecular mechanisms. Purified human pDCs and γδT cells were cocultured in presence of TLR-L, PAg, and zoledronate (Zol) to mimic both infectious and tumor settings. We demonstrated that TLR7/9L- or Zol-stimulated pDCs drive potent γδT-cell activation, Th1 cytokine secretion and cytotoxic activity. Conversely PAg-activated γδT cells trigger pDC phenotypic changes and functional activities. We provided evidence that pDCs and γδT cells cross-regulate each other through soluble factors and cell-cell contacts, especially type I/II IFNs and BTN3A. Such interplay could be modulated by blocking selective immune checkpoints. Our study highlighted crucial bidirectional interactions between these key potent immune players. The exploitation of pDC-γδT cells interplay represents a promising opportunity to design novel immunotherapeutic strategies and restore appropriate immune responses in cancers, infections and autoimmune diseases.
Collapse
Affiliation(s)
- Pauline Girard
- Etablissement Français du Sang Auvergne Rhone-Alpes, Research and Development Laboratory, Grenoble, France.,Université Grenoble Alpes, INSERM, CNRS, Team Immunobiology and Immunotherapy in Chronic Diseases, Institute for Advanced Biosciences, Grenoble, France
| | - Benedicte Ponsard
- Etablissement Français du Sang Auvergne Rhone-Alpes, Research and Development Laboratory, Grenoble, France.,Université Grenoble Alpes, INSERM, CNRS, Team Immunobiology and Immunotherapy in Chronic Diseases, Institute for Advanced Biosciences, Grenoble, France
| | - Julie Charles
- Université Grenoble Alpes, INSERM, CNRS, Team Immunobiology and Immunotherapy in Chronic Diseases, Institute for Advanced Biosciences, Grenoble, France.,Dermatology Department, Grenoble Alpes University Hospital, Grenoble, France
| | - Laurence Chaperot
- Etablissement Français du Sang Auvergne Rhone-Alpes, Research and Development Laboratory, Grenoble, France.,Université Grenoble Alpes, INSERM, CNRS, Team Immunobiology and Immunotherapy in Chronic Diseases, Institute for Advanced Biosciences, Grenoble, France
| | - Caroline Aspord
- Etablissement Français du Sang Auvergne Rhone-Alpes, Research and Development Laboratory, Grenoble, France.,Université Grenoble Alpes, INSERM, CNRS, Team Immunobiology and Immunotherapy in Chronic Diseases, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
11
|
Alpaca ( Vicugna pacos), the first nonprimate species with a phosphoantigen-reactive Vγ9Vδ2 T cell subset. Proc Natl Acad Sci U S A 2020; 117:6697-6707. [PMID: 32139608 DOI: 10.1073/pnas.1909474117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Vγ9Vδ2 T cells are a major γδ T cell population in the human blood expressing a characteristic Vγ9JP rearrangement paired with Vδ2. This cell subset is activated in a TCR-dependent and MHC-unrestricted fashion by so-called phosphoantigens (PAgs). PAgs can be microbial [(E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate, HMBPP] or endogenous (isopentenyl pyrophosphate, IPP) and PAg sensing depends on the expression of B7-like butyrophilin (BTN3A, CD277) molecules. IPP increases in some transformed or aminobisphosphonate-treated cells, rendering those cells a target for Vγ9Vδ2 T cells in immunotherapy. Yet, functional Vγ9Vδ2 T cells have only been described in humans and higher primates. Using a genome-based study, we showed in silico translatable genes encoding Vγ9, Vδ2, and BTN3 in a few nonprimate mammalian species. Here, with the help of new monoclonal antibodies, we directly identified a T cell population in the alpaca (Vicugna pacos), which responds to PAgs in a BTN3-dependent fashion and shows typical TRGV9- and TRDV2-like rearrangements. T cell receptor (TCR) transductants and BTN3-deficient human 293T cells reconstituted with alpaca or human BTN3 or alpaca/human BTN3 chimeras showed that alpaca Vγ9Vδ2 TCRs recognize PAg in the context of human and alpaca BTN3. Furthermore, alpaca BTN3 mediates PAg recognition much better than human BTN3A1 alone and this improved functionality mapped to the transmembrane/cytoplasmic part of alpaca BTN3. In summary, we found remarkable similarities but also instructive differences of PAg-recognition by human and alpaca, which help in better understanding the molecular mechanisms controlling the activation of this prominent population of γδ T cells.
Collapse
|
12
|
Sebestyen Z, Prinz I, Déchanet-Merville J, Silva-Santos B, Kuball J. Translating gammadelta (γδ) T cells and their receptors into cancer cell therapies. Nat Rev Drug Discov 2019; 19:169-184. [PMID: 31492944 DOI: 10.1038/s41573-019-0038-z] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2019] [Indexed: 01/14/2023]
Abstract
Clinical responses to checkpoint inhibitors used for cancer immunotherapy seemingly require the presence of αβT cells that recognize tumour neoantigens, and are therefore primarily restricted to tumours with high mutational load. Approaches that could address this limitation by engineering αβT cells, such as chimeric antigen receptor T (CAR T) cells, are being investigated intensively, but these approaches have other issues, such as a scarcity of appropriate targets for CAR T cells in solid tumours. Consequently, there is renewed interest among translational researchers and commercial partners in the therapeutic use of γδT cells and their receptors. Overall, γδT cells display potent cytotoxicity, which usually does not depend on tumour-associated (neo)antigens, towards a large array of haematological and solid tumours, while preserving normal tissues. However, the precise mechanisms of tumour-specific γδT cells, as well as the mechanisms for self-recognition, remain poorly understood. In this Review, we discuss the challenges and opportunities for the clinical implementation of cancer immunotherapies based on γδT cells and their receptors.
Collapse
Affiliation(s)
- Zsolt Sebestyen
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Centre for Individualized Infection Medicine (CiiM), Hannover, Germany
| | - Julie Déchanet-Merville
- ImmunoConcept, CNRS UMR 5164, Equipe Labelisee Ligue Contre le Cancer, University of Bordeaux, Bordeaux, France
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Jurgen Kuball
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands. .,Department of Haematology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
13
|
Joalland N, Lafrance L, Oullier T, Marionneau-Lambot S, Loussouarn D, Jarry U, Scotet E. Combined chemotherapy and allogeneic human Vγ9Vδ2 T lymphocyte-immunotherapies efficiently control the development of human epithelial ovarian cancer cells in vivo. Oncoimmunology 2019; 8:e1649971. [PMID: 31646097 PMCID: PMC6791416 DOI: 10.1080/2162402x.2019.1649971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/24/2022] Open
Abstract
Epithelial ovarian cancer (EOC) represents 5% of human gynecologic cancers in the world, is heterogeneous and highly invasive with a dismal prognosis (5 year-survival rate <35%). Diagnosis of EOC is frequently made at advanced stages and, despite aggressive treatments combining surgery and chemotherapy, fatal relapse rapidly occurs and is accompanied by a peritoneal carcinosis. In this context, novel therapeutical advances are urgently required. Adoptive transfer(s) of immune effector cells, including allogeneic human Vγ9Vδ2 T lymphocytes, represent attractive targets for efficiently and safely tracking tissue-invading tumor cells and controlling tumor dissemination in the organism. Our study describes the establishment of robust and physiological orthotopic model of human EOC in mouse, that includes surgical resection (ovariectomy) and chemotherapy, which are ineluctably accompanied by a fatal peritoneal carcinosis recurrence. Through a complementary set of in vitro and in vivo experiments, we provide here a preclinical proof of interest of the antitumor efficiency of adoptive transfers of allogeneic human Vγ9Vδ2 T lymphocytes against EOC, in association with surgical debulking and standard chemotherapies (i.e., taxanes and platinum salts). Moreover, our results indicate that chemo- and immunotherapies can be combined to improve the antitumor efficiency of immunotherapeutic lines. Altogether, these results further pave the way for next-generation antitumor immunotherapies, based on local administrations of human allogeneic human Vγ9Vδ2 T lymphocytes, in association with standard treatments.
Collapse
Affiliation(s)
- Noémie Joalland
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Laura Lafrance
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | | | | | - Delphine Loussouarn
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Centre Hospitalier-Universitaire (CHU) de Nantes, Nantes, France
| | - Ulrich Jarry
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Emmanuel Scotet
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
14
|
Oberg HH, Wesch D, Kalyan S, Kabelitz D. Regulatory Interactions Between Neutrophils, Tumor Cells and T Cells. Front Immunol 2019; 10:1690. [PMID: 31379875 PMCID: PMC6657370 DOI: 10.3389/fimmu.2019.01690] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/04/2019] [Indexed: 12/16/2022] Open
Abstract
Apart from their activity in combating infections, neutrophils play an important role in regulating the tumor microenvironment. Neutrophils can directly kill (antibody-coated) cancer cells, and support other immune anti-tumoral strategies. On the other hand, neutrophils can also exert pro-tumorigenic activities via the production of factors which promote cancer growth, angiogenesis and metastasis formation. The balance of anti- and pro-cancer activity is influenced by the particularly delicate interplay that exists between neutrophils and T lymphocytes. In murine models, it has been reported that γδ T cells are a major source of IL-17 that drives the recruitment and pro-tumorigenic differentiation of neutrophils. This, however, contrasts with the well-studied anti-tumor activity of γδ T cells in experimental models and the anti-tumor activity of human γδ T cells. In this article, we first review the reciprocal interactions between neutrophils, tumor cells and T lymphocytes with a special focus on their interplay with γδ T cells, followed by the presentation of our own recent results. We have previously shown that zoledronic acid (ZOL)-activated neutrophils inhibit γδ T-cell proliferation due to the production of reactive oxygen species, arginase-1 and serine proteases. We now demonstrate that killing of ductal pancreatic adenocarcinoma (PDAC) cells by freshly isolated resting human γδ T cells was reduced in the presence of neutrophils and even more pronounced so after activation of neutrophils with ZOL. In contrast, direct T-cell receptor-dependent activation by γδ T cell-specific pyrophosphate antigens or by bispecific antibodies enhanced the cytotoxic activity and cytokine/granzyme B production of resting human γδ T cells, thereby overriding the suppression by ZOL-activated neutrophils. Additionally, the coculture of purified neutrophils with autologous short-term expanded γδ T cells enhanced rather than inhibited γδ T-cell cytotoxicity against PDAC cells. Purified neutrophils alone also exerted a small but reproducible lysis of PDAC cells which was further enhanced in the presence of γδ T cells. The latter set-up was associated with improved granzyme B and IFN-γ release which was further increased in the presence of ZOL. Our present results demonstrate that the presence of neutrophils can enhance the killing capacity of activated γδ T cells. We discuss these results in the broader context of regulatory interactions between neutrophils and T lymphocytes.
Collapse
Affiliation(s)
- Hans-Heinrich Oberg
- Institute of Immunology, Christian-Albrechts-University of Kiel, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, Christian-Albrechts-University of Kiel, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Shirin Kalyan
- Clinical Research Development Laboratory, Department of Medicine, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University of Kiel, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
15
|
Gu S, Borowska MT, Boughter CT, Adams EJ. Butyrophilin3A proteins and Vγ9Vδ2 T cell activation. Semin Cell Dev Biol 2018; 84:65-74. [PMID: 29471037 PMCID: PMC6129423 DOI: 10.1016/j.semcdb.2018.02.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 12/22/2017] [Accepted: 02/08/2018] [Indexed: 02/07/2023]
Abstract
Despite playing critical roles in the immune response and having significant potential in immunotherapy, γδ T cells have garnered little of the limelight. One major reason for this paradox is that their antigen recognition mechanisms are largely unknown, limiting our understanding of their biology and our potential to modulate their activity. One of the best-studied γδ subsets is the human Vγ9Vδ2T cell population, which predominates in peripheral blood and can combat both microbial infections and cancers. Although it has been known for decades that Vγ9Vδ2T cells respond to the presence of small pyrophosphate-based metabolites, collectively named phosphoantigens (pAgs), derived from microbial sources or malignant cells, the molecular basis for this response has been unclear. A major breakthrough in this area came with the identification of the Butyrophilin 3A (BTN3A) proteins, members of the Butyrophilin/Butyrophilin-like protein family, as mediators between pAgs and Vγ9Vδ2T cells. In this article, we review the most recent studies regarding pAg activation of human Vγ9Vδ2T cells, mainly focusing on the role of BTN3A as the pAg sensing molecule, as well as its potential impact on downstream events of the activation process.
Collapse
Affiliation(s)
- Siyi Gu
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL 60637, USA
| | - Marta T Borowska
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL 60637, USA
| | | | - Erin J Adams
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA; Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
16
|
Shiromizu CM, Jancic CC. γδ T Lymphocytes: An Effector Cell in Autoimmunity and Infection. Front Immunol 2018; 9:2389. [PMID: 30386339 PMCID: PMC6198062 DOI: 10.3389/fimmu.2018.02389] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022] Open
Abstract
γδ T cells are non-conventional lymphocytes which show several properties of innate immune cells. They present a limited TCR repertoire and circulate as cells with a pre-activated phenotype thus being able to generate rapid immune responses. γδ T cells do not recognize classical peptide antigens, their TCRs are non-MHC restricted and they can respond to pathogen-associated molecular patterns and to cytokines in absence of TCR ligands. They also recognize self-molecules induced by stress, which indicate infection and cellular transformation. All these features let γδ T cells act as a first line of defense in sterile and non-sterile inflammation. γδ T cells represent 1–10% of circulating lymphocytes in the adult human peripheral blood, they are widely localized in non-lymphoid tissues and constitute the majority of immune cells in some epithelial surfaces, where they participate in the maintenance of the epithelial barriers. γδ T cells produce a wide range of cytokines that orchestrate the course of immune responses and also exert high cytotoxic activity against infected and transformed cells. In contrast to their beneficial role during infection, γδ T cells are also implicated in the development and progression of autoimmune diseases. Interestingly, several functions of γδ T cells are susceptible to modulation by interaction with other cells. In this review, we give an overview of the γδ T cell participation in infection and autoimmunity. We also revise the underlying mechanisms that modulate γδ T cell function that might provide tools to control pathological immune responses.
Collapse
Affiliation(s)
- Carolina Maiumi Shiromizu
- Laboratorio de Inmunidad Innata, Instituto de Medicina Experimental (IMEX) - CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Carolina Cristina Jancic
- Laboratorio de Inmunidad Innata, Instituto de Medicina Experimental (IMEX) - CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
17
|
Improving CLL Vγ9Vδ2-T-cell fitness for cellular therapy by ex vivo activation and ibrutinib. Blood 2018; 132:2260-2272. [PMID: 30213872 DOI: 10.1182/blood-2017-12-822569] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/01/2018] [Indexed: 12/27/2022] Open
Abstract
The efficacy of autologous (αβ) T-cell-based treatment strategies in chronic lymphocytic leukemia (CLL) has been modest. The Vγ9Vδ2-T cell subset consists of cytotoxic T lymphocytes with potent antilymphoma activity via a major histocompatibility complex-independent mechanism. We studied whether Vγ9Vδ2-T cells can be exploited as autologous effector lymphocytes in CLL. Healthy control Vγ9Vδ2-T cells were activated by and had potent cytolytic activity against CLL cells. However, CLL-derived Vγ9Vδ2-T cells proved dysfunctional with respect to effector cytokine production and degranulation, despite an increased frequency of the effector-type subset. Consequently, cytotoxicity against malignant B cells was hampered. A comparable dysfunctional phenotype was observed in healthy Vγ9Vδ2-T cells after coculture with CLL cells, indicating a leukemia-induced mechanism. Gene-expression profiling implicated alterations in synapse formation as a conceivable contributor to compromised Vγ9Vδ2-T-cell function in CLL patients. Dysfunction of Vγ9Vδ2-T cells was fully reversible upon activation with autologous monocyte-derived dendritic cells (moDCs). moDC activation resulted in efficient expansion and predominantly yielded Vγ9Vδ2-T cells with a memory phenotype. Furthermore, ibrutinib treatment promoted an antitumor T helper 1 (TH1) phenotype in Vγ9Vδ2-T cells, and we demonstrated binding of ibrutinib to IL-2-inducible kinase (ITK) in Vγ9Vδ2-T cells. Taken together, CLL-mediated dysfunction of autologous Vγ9Vδ2-T cells is fully reversible, resulting in potent cytotoxicity toward CLL cells. Our data support the potential use of Vγ9Vδ2-T cells as effector T cells in CLL immunotherapy and favor further exploration of combining Vγ9Vδ2-T-cell-based therapy with ibrutinib.
Collapse
|
18
|
Zhao Y, Lin L, Xiao Z, Li M, Wu X, Li W, Li X, Zhao Q, Wu Y, Zhang H, Yin J, Zhang L, Cho CH, Shen J. Protective Role of γδ T Cells in Different Pathogen Infections and Its Potential Clinical Application. J Immunol Res 2018; 2018:5081634. [PMID: 30116753 PMCID: PMC6079409 DOI: 10.1155/2018/5081634] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/10/2018] [Indexed: 12/24/2022] Open
Abstract
γδ T cells, a subgroup of T cells based on the γδ TCR, when compared with conventional T cells (αβ T cells), make up a very small proportion of T cells. However, its various subgroups are widely distributed in different parts of the human body and are attractive effectors for infectious disease immunity. γδ T cells are activated and expanded by nonpeptidic antigens (P-Ags), major histocompatibility complex (MHC) molecules, and lipids which are associated with different kinds of pathogen infections. Activation and proliferation of γδ T cells play a significant role in diverse infectious diseases induced by viruses, bacteria, and parasites and exert their potential effector function to effectively eliminate infection. It is well known that many types of infectious diseases are detrimental to human life and health and give rise to high incidence of illnesses and death rate all over the world. To date, there is no comprehensive understanding of the correlation between γδ T cells and infectious diseases. In this review, we will focus on the various subgroups of γδ T cells (mainly Vδ1 T cells and Vδ2 T cells) which can induce multiple immune responses or effective functions to fight against common pathogen infections, such as Mycobacterium tuberculosis, Listeria monocytogenes, influenza viruses, HIV, EBV, and HBV. Hopefully, the gamma-delta T cell study will provide a novel effective way to treat infectious diseases.
Collapse
Affiliation(s)
- Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ling Lin
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuanlin Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Hanyu Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianhua Yin
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Lingling Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
19
|
Riganti C, Castella B, Massaia M. ABCA1, apoA-I, and BTN3A1: A Legitimate Ménage à Trois in Dendritic Cells. Front Immunol 2018; 9:1246. [PMID: 29937767 PMCID: PMC6002486 DOI: 10.3389/fimmu.2018.01246] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022] Open
Abstract
Human Vγ9Vδ2 T cells have the capacity to detect supra-physiological concentrations of phosphoantigens (pAgs) generated by the mevalonate (Mev) pathway of mammalian cells under specific circumstances. Isopentenyl pyrophosphate (IPP) is the prototypic pAg recognized by Vγ9Vδ2 T cells. B-cell derived tumor cells (i.e., lymphoma and myeloma cells) and dendritic cells (DCs) are privileged targets of Vγ9Vδ2 T cells because they generate significant amounts of IPP which can be boosted with zoledronic acid (ZA). ZA is the most potent aminobisphosphonate (NBP) clinically available to inhibit osteoclast activation and a very potent inhibitor of farnesyl pyrophosphate synthase in the Mev pathway. ZA-treated DCs generate and release in the supernatants picomolar IPP concentrations which are sufficient to induce the activation of Vγ9Vδ2 T cells. We have recently shown that the ATP-binding cassette transporter A1 (ABCA1) plays a major role in the extracellular release of IPP from ZA-treated DCs. This novel ABCA1 function is fine-tuned by physical interactions with IPP, apolipoprotein A-I (apoA-I), and butyrophilin-3A1 (BTN3A1). The mechanisms by which soluble IPP induces Vγ9Vδ2 T-cell activation remain to be elucidated. It is possible that soluble IPP binds to BTN3A1, apoA-I, or other unknown molecules on the cell surface of bystander cells like monocytes, NK cells, Vγ9Vδ2 T cells, or any other cell locally present. Investigating this scenario may represent a unique opportunity to further characterize the role of BTN3A1 and other molecules in the recognition of soluble IPP by Vγ9Vδ2 T cells.
Collapse
Affiliation(s)
- Chiara Riganti
- Dipartimento di Oncologia, Università degli Studi di Torino, Turin, Italy
| | - Barbara Castella
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Ricerca in Biologia Molecolare (CIRBM), Università degli Studi di Torino, Turin, Italy
| | - Massimo Massaia
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Ricerca in Biologia Molecolare (CIRBM), Università degli Studi di Torino, Turin, Italy.,SC Ematologia, AO S. Croce e Carle, Cuneo, Italy
| |
Collapse
|
20
|
Varesano S, Zocchi MR, Poggi A. Zoledronate Triggers Vδ2 T Cells to Destroy and Kill Spheroids of Colon Carcinoma: Quantitative Image Analysis of Three-Dimensional Cultures. Front Immunol 2018; 9:998. [PMID: 29867975 PMCID: PMC5951939 DOI: 10.3389/fimmu.2018.00998] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/23/2018] [Indexed: 12/28/2022] Open
Abstract
New successful anti-cancer strategies are based on the stimulation of immune reaction against tumors: however, preclinical testing of such treatments is still a challenge. To improve the screening of anti-cancer drugs, three-dimensional (3D) culture systems, including spheroids, have been validated as preclinical models. We propose the spheroid 3D system to test anti-tumor drug-induced immune responses. We show that colorectal carcinoma (CRC) spheroids, generated with the epithelial growth factor (EGF), can be co-cultured with Vδ2 T cells to evaluate the anti-tumor activity of these effector lymphocytes. By computerized image analysis, the precise and unbiased measure of perimeters and areas of tumor spheroids is achievable, beside the calculation of their volume. CRC spheroid size is related to ATP content and cell number, as parameters for cell metabolism and proliferation; in turn, crystal violet staining can check the viability of cells inside the spheroids to detect tumor killing by Vδ2 T cells. In this 3D cultures, we tested (a) zoledronate that is known to activate Vδ2 T cells and (b) the therapeutic anti-EGF receptor humanized antibody cetuximab that can elicit the antibody-dependent cytotoxicity of tumor cells by effector lymphocytes. Zoledronate triggers Vδ2 T cells to kill and degrade CRC spheroids; we detected the T-cell receptor dependency of zoledronate effect, conceivably due to the recognition of phosphoantigens produced as a drug effect on target cell metabolism. In addition, cetuximab triggered Vδ2 T lymphocytes to exert the antibody-dependent cellular cytotoxicity of CRC spheroids. Finally, the system reveals differences in the sensitivity of CRC cell lines to the action of Vδ2 T lymphocytes and in the efficiency of anti-tumor effectors from distinct donors. A limitation of this model is the absence of cells, including fibroblasts, that compose tumor microenvironment and influence drug response. Nevertheless, the system can be improved by setting mixed spheroids, made of stromal and cancer cells. We conclude that this type of spheroid 3D culture is a feasible and reliable system to evaluate and measure anti-tumor drug-induced immune responses beside direct anti-cancer drug effect.
Collapse
Affiliation(s)
- Serena Varesano
- Molecular Oncology and Angiogenesis Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
21
|
Moulin M, Alguacil J, Gu S, Mehtougui A, Adams EJ, Peyrottes S, Champagne E. Vγ9Vδ2 T cell activation by strongly agonistic nucleotidic phosphoantigens. Cell Mol Life Sci 2017; 74:4353-4367. [PMID: 28669030 PMCID: PMC11107656 DOI: 10.1007/s00018-017-2583-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/14/2017] [Accepted: 06/26/2017] [Indexed: 12/21/2022]
Abstract
Human Vγ9Vδ2 T cells can sense through their TCR tumor cells producing the weak endogenous phosphorylated antigen isopentenyl pyrophosphate (IPP), or bacterially infected cells producing the strong agonist hydroxyl dimethylallyl pyrophosphate (HDMAPP). The recognition of the phosphoantigen is dependent on its binding to the intracellular B30.2 domain of butyrophilin BTN3A1. Most studies have focused on pyrophosphate phosphoantigens. As triphosphate nucleotide derivatives are naturally co-produced with IPP and HDMAPP, we analyzed their specific properties using synthetic nucleotides derived from HDMAPP. The adenylated, thymidylated and uridylated triphosphate derivatives were found to activate directly Vγ9Vδ2 cell lines as efficiently as HDMAPP in the absence of accessory cells. These antigens were inherently resistant to terminal phosphatases, but apyrase, when added during a direct stimulation of Vγ9Vδ2 cells, abrogated their stimulating activity, indicating that their activity required transformation into strong pyrophosphate agonists by a nucleotide pyrophosphatase activity which is present in serum. Tumor cells can be sensitized with nucleotide phosphoantigens in the presence of apyrase to become stimulatory, showing that this can occur before their hydrolysis into pyrophosphates. Whereas tumors sensitized with HDMAPP rapidly lost their stimulatory activity, sensitization with nucleotide derivatives, in particular with the thymidine derivative, induced long-lasting stimulating ability. Using isothermal titration calorimetry, binding of some nucleotide derivatives to BTN3A1 intracellular domain was found to occur with an affinity similar to that of IPP, but much lower than that of HDMAPP. Thus, nucleotide phosphoantigens are precursors of pyrophosphate antigens which can deliver strong agonists intracellularly resulting in prolonged and strengthened activity.
Collapse
MESH Headings
- Adenosine Triphosphate/analogs & derivatives
- Adenosine Triphosphate/pharmacology
- Antigens/pharmacology
- Antigens, CD/genetics
- Antigens, CD/immunology
- Butyrophilins/genetics
- Butyrophilins/immunology
- Dose-Response Relationship, Immunologic
- HeLa Cells
- Hemiterpenes/pharmacology
- Humans
- Interferon-gamma/biosynthesis
- Interferon-gamma/immunology
- K562 Cells
- Lymphocyte Activation/drug effects
- Lysosomal-Associated Membrane Protein 1/biosynthesis
- Lysosomal-Associated Membrane Protein 1/immunology
- Organophosphates/pharmacology
- Organophosphorus Compounds/pharmacology
- Primary Cell Culture
- Receptors, Antigen, T-Cell, gamma-delta/classification
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/immunology
Collapse
Affiliation(s)
- Morgane Moulin
- Centre de Physiopathologie de Toulouse Purpan, CPTP, INSERM U1043/CNRS UMR5282, 31024, Toulouse, France
- CNRS, UMR5282, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Javier Alguacil
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université Montpellier, ENSCR, Montpellier, France
| | - Siyi Gu
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Asmaa Mehtougui
- Centre de Physiopathologie de Toulouse Purpan, CPTP, INSERM U1043/CNRS UMR5282, 31024, Toulouse, France
- CNRS, UMR5282, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Erin J Adams
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL, USA
| | - Suzanne Peyrottes
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université Montpellier, ENSCR, Montpellier, France
| | - Eric Champagne
- Centre de Physiopathologie de Toulouse Purpan, CPTP, INSERM U1043/CNRS UMR5282, 31024, Toulouse, France.
- CNRS, UMR5282, Toulouse, France.
- Université Toulouse III Paul-Sabatier, Toulouse, France.
| |
Collapse
|
22
|
Abstract
In contrast to conventional T lymphocytes, which carry an αβ T-cell receptor and recognize antigens as peptides presented by major histocompatibility complex class I or class II molecules, human γδ T cells recognize different metabolites such as non-peptidic pyrophosphate molecules that are secreted by microbes or overproduced by tumor cells. Hence, γδ T cells play a role in immunosurveillance of infection and cellular transformation. Until recently, it has been unknown how the γδ T-cell receptor senses such pyrophosphates in the absence of known antigen-presenting molecules. Recent studies from several groups have identified a unique role of butyrophilin (BTN) protein family members in this process, notably of BTN3A1. BTNs are a large family of transmembrane proteins with diverse functions in lipid secretion and innate and adaptive immunity. Here we discuss current models of how BTN molecules regulate γδ T-cell activation. We also address the implications of these recent findings on the design of novel immunotherapeutic strategies based on the activation of γδ T cells.
Collapse
Affiliation(s)
- Dieter Kabelitz
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building 17, D-24105 Kiel, Germany
| | - Marcus Lettau
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building 17, D-24105 Kiel, Germany
| | - Ottmar Janssen
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building 17, D-24105 Kiel, Germany
| |
Collapse
|
23
|
Castella B, Kopecka J, Sciancalepore P, Mandili G, Foglietta M, Mitro N, Caruso D, Novelli F, Riganti C, Massaia M. The ATP-binding cassette transporter A1 regulates phosphoantigen release and Vγ9Vδ2 T cell activation by dendritic cells. Nat Commun 2017; 8:15663. [PMID: 28580927 PMCID: PMC5465356 DOI: 10.1038/ncomms15663] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 04/19/2017] [Indexed: 12/21/2022] Open
Abstract
Vγ9Vδ2 T cells are activated by phosphoantigens, such as isopentenyl pyrophosphate (IPP), which is generated in the mevalonate pathway of antigen-presenting cells. IPP is released in the extracellular microenvironment via unknown mechanisms. Here we show that the ATP-binding cassette transporter A1 (ABCA1) mediates extracellular IPP release from dendritic cells (DC) in cooperation with apolipoprotein A-I (apoA-I) and butyrophilin-3A1. IPP concentrations in the supernatants are sufficient to induce Vγ9Vδ2 T cell proliferation after DC mevalonate pathway inhibition with zoledronic acid (ZA). ZA treatment increases ABCA1 and apoA-I expression via IPP-dependent LXRα nuclear translocation and PI3K/Akt/mTOR pathway inhibition. These results close the mechanistic gap in our understanding of extracellular IPP release from DC and provide a framework to fine-tune Vγ9Vδ2 T cell activation via mevalonate and PI3K/Akt/mTOR pathway modulation. γδT cells are activated by phosphoantigens, and ABCA1 is involved in cholesterol transport. Here the authors link these ideas to show that ABCA1, apoA-I and BTN3A1 regulate extracellular phosphoantigen release by dendritic cells, and implicate ABCA1 in mevalonate-mediated activation of Vγ9Vδ2 T cells.
Collapse
Affiliation(s)
- Barbara Castella
- Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Università degli Studi di Torino, Via Nizza 52, Torino 10126, Italy.,Centro di Ricerca in Medicina Sperimentale (CeRMS), AOU Città della Salute e della Scienza di Torino, Via Santena 5, Torino 10126, Italy
| | - Joanna Kopecka
- Dipartimento di Oncologia, Università degli Studi di Torino, Via Santena 5/bis, Torino 10126, Italy
| | - Patrizia Sciancalepore
- Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Università degli Studi di Torino, Via Nizza 52, Torino 10126, Italy.,Centro di Ricerca in Medicina Sperimentale (CeRMS), AOU Città della Salute e della Scienza di Torino, Via Santena 5, Torino 10126, Italy
| | - Giorgia Mandili
- Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Università degli Studi di Torino, Via Nizza 52, Torino 10126, Italy.,Centro Interdipartimentale di Ricerca per le Biotecnologie Molecolari (CIRBM), Via Nizza 52, Torino 10126, Italy
| | - Myriam Foglietta
- Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Università degli Studi di Torino, Via Nizza 52, Torino 10126, Italy.,Centro di Ricerca in Medicina Sperimentale (CeRMS), AOU Città della Salute e della Scienza di Torino, Via Santena 5, Torino 10126, Italy
| | - Nico Mitro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, Milano 20133, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, Milano 20133, Italy
| | - Francesco Novelli
- Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Università degli Studi di Torino, Via Nizza 52, Torino 10126, Italy.,Centro Interdipartimentale di Ricerca per le Biotecnologie Molecolari (CIRBM), Via Nizza 52, Torino 10126, Italy
| | - Chiara Riganti
- Centro di Ricerca in Medicina Sperimentale (CeRMS), AOU Città della Salute e della Scienza di Torino, Via Santena 5, Torino 10126, Italy.,Dipartimento di Oncologia, Università degli Studi di Torino, Via Santena 5/bis, Torino 10126, Italy
| | - Massimo Massaia
- Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Università degli Studi di Torino, Via Nizza 52, Torino 10126, Italy.,Centro di Ricerca in Medicina Sperimentale (CeRMS), AOU Città della Salute e della Scienza di Torino, Via Santena 5, Torino 10126, Italy.,Centro Interdipartimentale di Ricerca per le Biotecnologie Molecolari (CIRBM), Via Nizza 52, Torino 10126, Italy.,SC. Ematologia, AO S. Croce e Carle, Via Michele Coppino 26, Cuneo 12100, Italy
| |
Collapse
|
24
|
Peigné CM, Léger A, Gesnel MC, Konczak F, Olive D, Bonneville M, Breathnach R, Scotet E. The Juxtamembrane Domain of Butyrophilin BTN3A1 Controls Phosphoantigen-Mediated Activation of Human Vγ9Vδ2 T Cells. THE JOURNAL OF IMMUNOLOGY 2017; 198:4228-4234. [DOI: 10.4049/jimmunol.1601910] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/30/2017] [Indexed: 12/25/2022]
|
25
|
Yang J, Jones MS, Ramos RI, Chan AA, Lee AF, Foshag LJ, Sieling PA, Faries MB, Lee DJ. Insights into Local Tumor Microenvironment Immune Factors Associated with Regression of Cutaneous Melanoma Metastases by Mycobacterium bovis Bacille Calmette-Guérin. Front Oncol 2017; 7:61. [PMID: 28424760 PMCID: PMC5380679 DOI: 10.3389/fonc.2017.00061] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/20/2017] [Indexed: 01/01/2023] Open
Abstract
Mycobacterium bovis bacille Calmette–Guérin (BCG) is listed as an intralesional (IL) therapeutic option for inoperable stage III in-transit melanoma in the National Comprehensive Cancer Network Guidelines. Although the mechanism is unknown, others have reported up to 50% regression of injected lesions, and 17% regression of uninjected lesions in immunocompetent patients after direct injection of BCG into metastatic melanoma lesions in the skin. BCG and other mycobacteria express ligands capable of stimulating the γ9δ2 T cells. Therefore, we hypothesized that γ9δ2 T cells play a role in promoting BCG-mediated antitumor immunity in patients treated with IL-BCG for in-transit cutaneous melanoma metastases. Indeed, we found γ9δ2 T cell infiltration in melanoma skin lesions during the course of IL-BCG treatment. Gene expression analysis revealed that BCG injection elicits the expression of a vast array of chemokines in tumor lesions, including strong expression of CXCL9, 10, and 11, a set of chemokines that attract T cells expressing the CXCR3 chemokine receptor. In corroboration with our hypothesis, approximately 85% of γδ T cells express high levels of CXCR3 on their surface. Importantly, the injected tumor lesions also express genes whose protein products are the antigenic ligands for γδ T cells (BTN3A1 and MICB), and the cytokines that are the typical products of activated γδ T cells. Interestingly, we also found that γδ T cells infiltrate the regressed lesions that did not receive BCG injections. Our study suggests that γ9δ2 T cells may contribute to melanoma regression induced by IL-BCG treatment.
Collapse
Affiliation(s)
- Junbao Yang
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Maris S Jones
- Division of Surgical Oncology, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Romela Irene Ramos
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Alfred A Chan
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA.,Division of Dermatology, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Agnes F Lee
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Leland J Foshag
- Melanoma Research Program, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Peter A Sieling
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA.,Translational Immunology, NantBioscience, Inc., Culver City, CA, USA
| | - Mark B Faries
- Melanoma Research Program, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Delphine J Lee
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA.,Division of Dermatology, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| |
Collapse
|
26
|
Abstract
Inflammation induced by toxins, micro-organisms, or autoimmunity may result in pathogenic fibrosis, leading to long-term tissue dysfunction, morbidity, and mortality. Immune cells play a role in both induction and resolution of fibrosis. γδ T cells are an important group of unconventional T cells characterized by their expression of non-major histocompatibility complex restricted clonotypic T cell receptors for non-peptide antigens. Accumulating evidence suggests that subsets of γδ T cells in experimentally induced fibrosis following bleomycin treatment, or infection with Bacillus subtilis, play pro-inflammatory roles that instigate fibrosis, whereas the same cells may also play a role in resolving fibrosis. These processes appear to be linked at least in part to the cytokines produced by the cells at various stages, with interleukin (IL)-17 playing a central role in the inflammatory phase driving fibrosis, but later secretion of IL-22, interferon γ, and CXCL10 preventing pathologic fibrosis. Moreover, γδ T cells appear to be involved, in an antigen-driven manner, in the prototypic human fibrotic disease, systemic sclerosis (SSc). In this paper we review in brief the scientific publications that have implicated γδ T cells in fibrotic diseases and their pro- and anti-fibrotic effects.
Collapse
Affiliation(s)
- Ilan Bank
- Department of Medicine, Maayenei Hayeshuah Medical Center, Bnei Brak, Israel; Rheumatology Unit, Autoimmunity Institute and Laboratory of Immunoregulation, Sheba Medical Center, Ramat Gan, Israel; and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
27
|
Nerdal PT, Peters C, Oberg HH, Zlatev H, Lettau M, Quabius ES, Sousa S, Gonnermann D, Auriola S, Olive D, Määttä J, Janssen O, Kabelitz D. Butyrophilin 3A/CD277-Dependent Activation of Human γδ T Cells: Accessory Cell Capacity of Distinct Leukocyte Populations. THE JOURNAL OF IMMUNOLOGY 2016; 197:3059-3068. [PMID: 27619996 DOI: 10.4049/jimmunol.1600913] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/18/2016] [Indexed: 01/07/2023]
Abstract
Human Vγ9Vδ2 T cells recognize in a butyrophilin 3A/CD277-dependent way microbial (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) or endogenous pyrophosphates (isopentenyl pyrophosphate [IPP]). Nitrogen-bisphosphonates such as zoledronic acid (ZOL) trigger selective γδ T cell activation because they stimulate IPP production in monocytes by inhibiting the mevalonate pathway downstream of IPP synthesis. We performed a comparative analysis of the capacity of purified monocytes, neutrophils, and CD4 T cells to serve as accessory cells for Vγ9Vδ2 T cell activation in response to three selective but mechanistically distinct stimuli (ZOL, HMBPP, agonistic anti-CD277 mAb). Only monocytes supported γδ T cell expansion in response to all three stimuli, whereas both neutrophils and CD4 T cells presented HMBPP but failed to induce γδ T cell expansion in the presence of ZOL or anti-CD277 mAb. Preincubation of accessory cells with the respective stimuli revealed potent γδ T cell-stimulating activity of ZOL- or anti-CD277 mAb-pretreated monocytes, but not neutrophils. In comparison with monocytes, ZOL-pretreated neutrophils produced little, if any, IPP and expressed much lower levels of farnesyl pyrophosphate synthase. Exogenous IL-18 enhanced the γδ T cell expansion with all three stimuli, remarkably also in response to CD4 T cells and neutrophils preincubated with anti-CD277 mAb or HMBPP. Our study uncovers unexpected differences between monocytes and neutrophils in their accessory function for human γδ T cells and underscores the important role of IL-18 in driving γδ T cell expansion. These results may have implications for the design of γδ T cell-based immunotherapeutic strategies.
Collapse
Affiliation(s)
- Patrik Theodor Nerdal
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Hristo Zlatev
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Marcus Lettau
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Elgar Susanne Quabius
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Sofia Sousa
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Daniel Gonnermann
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Seppo Auriola
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Daniel Olive
- Laboratoire d'Immunologie des Tumeurs, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, INSERM, U1068, F-13009 Marseille, France.,CNRS, UMR7258, F-13009 Marseille, France.,Institut Paoli-Calmettes, F-13009 Marseille, France.,Aix-Marseille University, UM 105, F-13284 Marseille, France; and
| | - Jorma Määttä
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland.,Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| | - Ottmar Janssen
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany;
| |
Collapse
|
28
|
Kilcollins AM, Li J, Hsiao CHC, Wiemer AJ. HMBPP Analog Prodrugs Bypass Energy-Dependent Uptake To Promote Efficient BTN3A1-Mediated Malignant Cell Lysis by Vγ9Vδ2 T Lymphocyte Effectors. THE JOURNAL OF IMMUNOLOGY 2016; 197:419-28. [PMID: 27271567 DOI: 10.4049/jimmunol.1501833] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 05/04/2016] [Indexed: 01/05/2023]
Abstract
Vγ9Vδ2 effector T cells lyse cells in response to phosphorus-containing small molecules, providing primates a unique route to remove infected or malignant cells. Yet, the triggering mechanisms remain ill defined. We examined lysis mediated by human Vγ9Vδ2 effector T cells in response to the naturally occurring (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) or a synthetic cell-permeable prodrug, bis (pivaloyloxymethyl) (E)-4-hydroxy-3-methyl-but-2-enyl phosphonate. CD27(+)/CD45RA(-) Th1-like effector cells killed K562 target cells through a mechanism that could be enhanced by either compound or TCR Ab and blocked by Src inhibition or butyrophilin 3 isoform A1 (BTN3A1) disruption. Pretreatment at 4 °: C decreased HMBPP-induced lysis but did not reduce lysis induced by bis (pivaloyloxymethyl) (E)-4-hydroxy-3-methyl-but-2-enyl phosphonate. Together, our results show that internalization of HMBPP into target cells is required for BTN3A1-dependent lysis by Vγ9Vδ2 effector T cells. The enhanced activity of the prodrug analog is due to its ability to bypass the pathways required for entry of HMBPP. These findings support an inside-out model of T cell triggering driven by small-molecule induction of BTN3A1.
Collapse
Affiliation(s)
- Ashley M Kilcollins
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269
| | - Jin Li
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269; and
| | | | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269; and Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
29
|
Wiemer AJ, Shippy RR, Kilcollins AM, Li J, Hsiao CHC, Barney RJ, Geng ML, Wiemer DF. Evaluation of a 7-Methoxycoumarin-3-carboxylic Acid Ester Derivative as a Fluorescent, Cell-Cleavable, Phosphonate Protecting Group. Chembiochem 2015; 17:52-5. [PMID: 26503489 DOI: 10.1002/cbic.201500484] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Indexed: 02/04/2023]
Abstract
Cell-cleavable protecting groups often enhance cellular delivery of species that are charged at physiological pH. Although several phosphonate protecting groups have achieved clinical success, it remains difficult to use these prodrugs in live cells to clarify biological mechanisms. Here, we present a strategy that uses a 7-methoxycoumarin-3-carboxylic acid ester as a fluorescent protecting group. This strategy was applied to synthesis of an (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) analogue to assess cellular uptake and human Vγ9Vδ2 T cell activation. The fluorescent ester displayed low cellular toxicity (IC50 >100 μm) and strong T cell activation (EC50 =0.018 μm) relative to the unprotected anion (EC50 =23 μm). The coumarin-derived analogue allowed no-wash analysis of biological deprotection, which revealed rapid internalization of the prodrug. These results demonstrate that fluorescent groups can be applied both as functional drug delivery tools and useful biological probes of drug uptake.
Collapse
Affiliation(s)
- Andrew J Wiemer
- Department of Pharmaceutical Sciences, Institute for Systems Genomics, University of Connecticut, 69 N. Eagleville Rd Unit 3092, Storrs, CT, 06269, USA
| | - Rebekah R Shippy
- Department of Chemistry, University of Iowa, E531 Chemistry Building, Iowa City, IA, 52242, USA
| | - Ashley M Kilcollins
- Department of Physiology and Neurobiology, University of Connecticut, 75 N. Eagleville Rd Unit 3156, Storrs, CT, 06269, USA
| | - Jin Li
- Department of Pharmaceutical Sciences, Institute for Systems Genomics, University of Connecticut, 69 N. Eagleville Rd Unit 3092, Storrs, CT, 06269, USA
| | - Chia-Hung Christine Hsiao
- Department of Pharmaceutical Sciences, Institute for Systems Genomics, University of Connecticut, 69 N. Eagleville Rd Unit 3092, Storrs, CT, 06269, USA
| | - Rocky J Barney
- Department of Chemistry, Western Wyoming Community College, 1204-A, Rock Springs, WY, 82901, USA
| | - M Lei Geng
- Department of Chemistry, Optical Science and Technology Center, University of Iowa, 330 IATL, Iowa City, IA, 52242, USA
| | - David F Wiemer
- Department of Chemistry, University of Iowa, E531 Chemistry Building, Iowa City, IA, 52242, USA.
| |
Collapse
|
30
|
Abstract
With the promise of T cell-based therapy for cancer finally becoming reality, this Review focuses on the less-studied γδ T cell lineage and its diverse responses to tumours. γδ T cells have well-established protective roles in cancer, largely on the basis of their potent cytotoxicity and interferon-γ production. Besides this, recent studies have revealed a series of tumour-promoting functions that are linked to interleukin-17-producing γδ T cells. Here, we integrate the current knowledge from both human and mouse studies to highlight the potential of γδ T cell modulation to improve cancer immunotherapy.
Collapse
|
31
|
Kabelitz D, Déchanet-Merville J. Editorial: "Recent Advances in Gamma/Delta T Cell Biology: New Ligands, New Functions, and New Translational Perspectives". Front Immunol 2015; 6:371. [PMID: 26257738 PMCID: PMC4508528 DOI: 10.3389/fimmu.2015.00371] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/06/2015] [Indexed: 01/12/2023] Open
Affiliation(s)
- Dieter Kabelitz
- Institute of Immunology, University of Kiel , Kiel , Germany
| | | |
Collapse
|
32
|
Pauza CD, Cairo C. Evolution and function of the TCR Vgamma9 chain repertoire: It's good to be public. Cell Immunol 2015; 296:22-30. [PMID: 25769734 PMCID: PMC4466227 DOI: 10.1016/j.cellimm.2015.02.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/11/2015] [Accepted: 02/17/2015] [Indexed: 01/17/2023]
Abstract
Lymphocytes expressing a T cell receptor (TCR) composed of Vgamma9 and Vdelta2 chains represent a minor fraction of human thymocytes. Extrathymic selection throughout post-natal life causes the proportion of cells with a Vgamma9-JP rearrangement to increase and elevates the capacity for responding to non-peptidic phosphoantigens. Extrathymic selection is so powerful that phosphoantigen-reactive cells comprise about 1 in 40 circulating memory T cells in healthy adults and the subset expands rapidly upon infection or in response to malignancy. Skewing of the gamma delta TCR repertoire is accompanied by selection for public gamma chain sequences such that many unrelated individuals overlap extensive in their circulating repertoire. This type of selection implies the presence of a monomorphic antigen-presenting molecule that is an object of current research but remains incompletely defined. While selection on a monomorphic presenting molecule may seem unusual, similar mechanisms shape the alpha beta T cell repertoire including the extreme examples of NKT or mucosal-associated invariant T cells (MAIT) and the less dramatic amplification of public Vbeta chain rearrangements driven by individual MHC molecules and associated with resistance to viral pathogens. Selecting and amplifying public T cell receptors whether alpha beta or gamma delta, are important steps in developing an anticipatory TCR repertoire. Cell clones expressing public TCR can accelerate the kinetics of response to pathogens and impact host survival.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Evolution, Molecular
- Humans
- Immunologic Memory/immunology
- Natural Killer T-Cells/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Sequence Homology
- T-Lymphocyte Subsets/immunology
- Thymocytes/immunology
Collapse
Affiliation(s)
- C David Pauza
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Cristiana Cairo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|