1
|
Zhang X, Liao J, Yang W, Li Q, Wang Z, Yu H, Wu X, Wang H, Sun S, Zhao X, Hu Z, Wang J. Plasma extracellular vesicle long RNA profiling identifies a predictive signature for immunochemotherapy efficacy in lung squamous cell carcinoma. Front Immunol 2024; 15:1421604. [PMID: 39161762 PMCID: PMC11331801 DOI: 10.3389/fimmu.2024.1421604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024] Open
Abstract
Introduction The introduction of Immune Checkpoint Inhibitors (ICIs) has marked a paradigm shift in treating Lung Squamous Cell Carcinoma (LUSC), emphasizing the urgent need for precise molecular biomarkers to reliably forecast therapeutic efficacy. This study aims to identify potential biomarkers for immunochemotherapy efficacy by focusing on plasma extracellular vesicle (EV)-derived long RNAs (exLRs). Methods We enrolled 78 advanced LUSC patients undergoing first-line immunochemotherapy. Plasma samples were collected, and exLR sequencing was conducted to establish baseline profiles. A retrospective analysis was performed on 42 patients to identify differentially expressed exLRs. Further validation of the top differentially expressed exLRs was conducted using quantitative reverse transcription PCR (qRT-PCR). Univariate Cox analysis was applied to determine the prognostic significance of these exLRs. Based on these findings, we developed a predictive signature (p-Signature). Results In the retrospective analysis of 42 patients, we identified 460 differentially expressed exLRs, with pathways related to leukocyte migration notably enriched among non-responders. Univariate Cox analysis revealed 45 exLRs with prognostic significance. The top 6 protein-coding exLRs were validated using qRT-PCR, identifying CXCL8, SSH3, and SDHAF1 as differentially expressed between responders and non-responders. The p-Signature, comprising these three exLRs, demonstrated high accuracy in distinguishing responders from non-responders, with an Area Under the Curve (AUC) of 0.904 in the retrospective cohort and 0.812 in the prospective cohort. Discussion This study highlighted the potential of plasma exLR profiles in predicting LUSC treatment efficacy. Intriguingly, lower p-Signature scores were associated with increased abundance of activated CD4+ and CD8+ T cells, indicating a more robust immune environment. These findings suggest that the p-Signature could serve as a valuable tool in guiding personalized and effective therapeutic strategies for LUSC.
Collapse
MESH Headings
- Humans
- Extracellular Vesicles/genetics
- Extracellular Vesicles/metabolism
- Lung Neoplasms/drug therapy
- Lung Neoplasms/blood
- Lung Neoplasms/genetics
- Lung Neoplasms/therapy
- Male
- Female
- Middle Aged
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Aged
- Retrospective Studies
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/blood
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/therapy
- Carcinoma, Squamous Cell/immunology
- RNA, Long Noncoding/blood
- RNA, Long Noncoding/genetics
- Prognosis
- Treatment Outcome
- Immunotherapy/methods
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Immune Checkpoint Inhibitors/therapeutic use
- Transcriptome
Collapse
Affiliation(s)
- Xin Zhang
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Thoracic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jiatao Liao
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenyue Yang
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Thoracic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qiaojuan Li
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen Wang
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui Yu
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Thoracic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xianghua Wu
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Thoracic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Huijie Wang
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Thoracic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Si Sun
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Thoracic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xinmin Zhao
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Thoracic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhihuang Hu
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Thoracic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jialei Wang
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Thoracic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
2
|
Hou Y, Huttenlocher A. Advancing chemokine research: the molecular function of CXCL8. J Clin Invest 2024; 134:e180984. [PMID: 38747289 PMCID: PMC11093595 DOI: 10.1172/jci180984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
CXCL8 and other chemokines have been implicated in tissue inflammation and are attractive candidates for therapeutic targeting to treat human disease.
Collapse
Affiliation(s)
- Yiran Hou
- Department of Medical Microbiology and Immunology and
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology and
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Li J, Xi J. Exploring Immune-Related Gene Profiling and Infiltration of Immune Cells in Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma. Genes (Basel) 2024; 15:121. [PMID: 38275602 PMCID: PMC10815177 DOI: 10.3390/genes15010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Cervical cancer is a widespread malignancy among women, leading to a substantial global health impact. Despite extensive research, our understanding of the basic molecules and pathogenic processes of cervical squamous cell carcinoma is still insufficient. This investigation aims to uncover immune-related genes linked to CESC and delineate their functions. Leveraging data from the GEO and ImmPort databases, a total of 22 immune-related genes were identified. Multiple tools, including DAVID, the human protein atlas, STRING, GeneMANIA, and TCGA, were employed to delve into the expression and roles of these immune genes in CESC, alongside their connections to the disease's pathological features. Through RT-PCR, the study confirmed notable disparities in CXCL8 and CXCL10 mRNA expression between CESC and normal cervical tissue. The TCGA dataset's immune-related information reinforced the association of CXCL8 and CXCL10 with immune infiltration in CESC. This research sheds light on the potential of CXCL8 and CXCL10 as promising therapeutic targets and essential prognostic factors for individuals diagnosed with CESC.
Collapse
Affiliation(s)
- Jialu Li
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou 225012, China;
| | - Juqun Xi
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou 225012, China;
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225009, China
| |
Collapse
|
4
|
Zhao N, Jiang A, Shang X, Zhao F, Wang R, Fu X, Ruan Z, Liang X, Tian T, Yao Y, Li C. Construction and Evaluation of Clinical Prediction Model for Immunotherapy-related Adverse Events and Clinical Benefit in Cancer Patients Receiving Immune Checkpoint Inhibitors Based on Serum Cytokine Levels. J Immunother 2023; 46:310-322. [PMID: 37335173 PMCID: PMC10473032 DOI: 10.1097/cji.0000000000000478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/27/2023] [Indexed: 06/21/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the therapeutic landscape of cancer therapy. This study aimed to develop novel risk classifiers to predict the risk of immune-related adverse events (irAEs) and the probability of clinical benefits. Patients with cancer who received ICIs from the First Affiliated Hospital of Xi 'an Jiaotong University from November 2020 to October 2022 were recruited and followed up. Logistic regression analyses were performed to identify independent predictive factors for irAEs and clinical response. Two nomograms were developed to predict the irAEs and clinical responses of these individuals, with a receiver operating characteristic curve to assess their predictive ability. Decision curve analysis was performed to estimate the clinical utility of the nomogram. This study included 583 patients with cancer. Among them, 111 (19.0%) developed irAEs. Duration of treatment (DOT)>3 cycles, hepatic-metastases, IL2>2.225 pg/mL, and IL8>7.39 pg/mL were correlated with higher irAEs risk. A total of 347 patients were included in the final efficacy analysis, with an overall clinical benefit rate of 39.7%. DOT>3 cycles, nonhepatic-metastases, and irAEs and IL8>7.39 pg/mL were independent predictive factors of clinical benefit. Ultimately, 2 nomograms were successfully established to predict the probability of irAEs and their clinical benefits. Ultimately, 2 nomograms were successfully established to predict the probability of irAEs and clinical benefits. The receiver operating characteristic curves yielded acceptable nomogram performance. Calibration curves and decision curve analysis supported the hypothesis that nomograms could provide more significant net clinical benefits to these patients. Specific baseline plasma cytokines were closely correlated with irAEs and clinical responses in these individuals.
Collapse
|
5
|
Ishimoto N, Park JH, Kawakami K, Tajiri M, Mizutani K, Akashi S, Tame JRH, Inoue A, Park SY. Structural basis of CXC chemokine receptor 1 ligand binding and activation. Nat Commun 2023; 14:4107. [PMID: 37433790 PMCID: PMC10336096 DOI: 10.1038/s41467-023-39799-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/29/2023] [Indexed: 07/13/2023] Open
Abstract
Neutrophil granulocytes play key roles in innate immunity and shaping adaptive immune responses. They are attracted by chemokines to sites of infection and tissue damage, where they kill and phagocytose bacteria. The chemokine CXCL8 (also known as interleukin-8, abbreviated IL-8) and its G-protein-coupled receptors CXCR1 and CXCR2 are crucial elements in this process, and also the development of many cancers. These GPCRs have therefore been the target of many drug development campaigns and structural studies. Here, we solve the structure of CXCR1 complexed with CXCL8 and cognate G-proteins using cryo-EM, showing the detailed interactions between the receptor, the chemokine and Gαi protein. Unlike the closely related CXCR2, CXCR1 strongly prefers to bind CXCL8 in its monomeric form. The model shows that steric clashes would form between dimeric CXCL8 and extracellular loop 2 (ECL2) of CXCR1. Consistently, transplanting ECL2 of CXCR2 onto CXCR1 abolishes the selectivity for the monomeric chemokine. Our model and functional analysis of various CXCR1 mutants will assist efforts in structure-based drug design targeting specific CXC chemokine receptor subtypes.
Collapse
Affiliation(s)
- Naito Ishimoto
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan
| | - Jae-Hyun Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Michiko Tajiri
- Structural Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan
| | - Kenji Mizutani
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan
| | - Satoko Akashi
- Structural Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan
| | - Jeremy R H Tame
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Sam-Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan.
| |
Collapse
|
6
|
Fu X, Wang Q, Du H, Hao H. CXCL8 and the peritoneal metastasis of ovarian and gastric cancer. Front Immunol 2023; 14:1159061. [PMID: 37377954 PMCID: PMC10291199 DOI: 10.3389/fimmu.2023.1159061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
CXCL8 is the most representative chemokine produced autocrine or paracrine by tumor cells, endothelial cells and lymphocytes. It can play a key role in normal tissues and tumors by activating PI3K-Akt, PLC, JAK-STAT, and other signaling pathways after combining with CXCR1/2. The incidence of peritoneal metastasis in ovarian and gastric cancer is extremely high. The structure of the peritoneum and various peritoneal-related cells supports the peritoneal metastasis of cancers, which readily produces a poor prognosis, low 5-year survival rate, and the death of patients. Studies show that CXCL8 is excessively secreted in a variety of cancers. Thus, this paper will further elaborate on the mechanism of CXCL8 and the peritoneal metastasis of ovarian and gastric cancer to provide a theoretical basis for the proposal of new methods for the prevention, diagnosis, and treatment of cancer peritoneal metastasis.
Collapse
|
7
|
Cambier S, Gouwy M, Proost P. The chemokines CXCL8 and CXCL12: molecular and functional properties, role in disease and efforts towards pharmacological intervention. Cell Mol Immunol 2023; 20:217-251. [PMID: 36725964 PMCID: PMC9890491 DOI: 10.1038/s41423-023-00974-6] [Citation(s) in RCA: 171] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/12/2022] [Indexed: 02/03/2023] Open
Abstract
Chemokines are an indispensable component of our immune system through the regulation of directional migration and activation of leukocytes. CXCL8 is the most potent human neutrophil-attracting chemokine and plays crucial roles in the response to infection and tissue injury. CXCL8 activity inherently depends on interaction with the human CXC chemokine receptors CXCR1 and CXCR2, the atypical chemokine receptor ACKR1, and glycosaminoglycans. Furthermore, (hetero)dimerization and tight regulation of transcription and translation, as well as post-translational modifications further fine-tune the spatial and temporal activity of CXCL8 in the context of inflammatory diseases and cancer. The CXCL8 interaction with receptors and glycosaminoglycans is therefore a promising target for therapy, as illustrated by multiple ongoing clinical trials. CXCL8-mediated neutrophil mobilization to blood is directly opposed by CXCL12, which retains leukocytes in bone marrow. CXCL12 is primarily a homeostatic chemokine that induces migration and activation of hematopoietic progenitor cells, endothelial cells, and several leukocytes through interaction with CXCR4, ACKR1, and ACKR3. Thereby, it is an essential player in the regulation of embryogenesis, hematopoiesis, and angiogenesis. However, CXCL12 can also exert inflammatory functions, as illustrated by its pivotal role in a growing list of pathologies and its synergy with CXCL8 and other chemokines to induce leukocyte chemotaxis. Here, we review the plethora of information on the CXCL8 structure, interaction with receptors and glycosaminoglycans, different levels of activity regulation, role in homeostasis and disease, and therapeutic prospects. Finally, we discuss recent research on CXCL12 biochemistry and biology and its role in pathology and pharmacology.
Collapse
Affiliation(s)
- Seppe Cambier
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
| |
Collapse
|
8
|
Brown B, Ojha V, Fricke I, Al-Sheboul SA, Imarogbe C, Gravier T, Green M, Peterson L, Koutsaroff IP, Demir A, Andrieu J, Leow CY, Leow CH. Innate and Adaptive Immunity during SARS-CoV-2 Infection: Biomolecular Cellular Markers and Mechanisms. Vaccines (Basel) 2023; 11:408. [PMID: 36851285 PMCID: PMC9962967 DOI: 10.3390/vaccines11020408] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
The coronavirus 2019 (COVID-19) pandemic was caused by a positive sense single-stranded RNA (ssRNA) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, other human coronaviruses (hCoVs) exist. Historical pandemics include smallpox and influenza, with efficacious therapeutics utilized to reduce overall disease burden through effectively targeting a competent host immune system response. The immune system is composed of primary/secondary lymphoid structures with initially eight types of immune cell types, and many other subtypes, traversing cell membranes utilizing cell signaling cascades that contribute towards clearance of pathogenic proteins. Other proteins discussed include cluster of differentiation (CD) markers, major histocompatibility complexes (MHC), pleiotropic interleukins (IL), and chemokines (CXC). The historical concepts of host immunity are the innate and adaptive immune systems. The adaptive immune system is represented by T cells, B cells, and antibodies. The innate immune system is represented by macrophages, neutrophils, dendritic cells, and the complement system. Other viruses can affect and regulate cell cycle progression for example, in cancers that include human papillomavirus (HPV: cervical carcinoma), Epstein-Barr virus (EBV: lymphoma), Hepatitis B and C (HB/HC: hepatocellular carcinoma) and human T cell Leukemia Virus-1 (T cell leukemia). Bacterial infections also increase the risk of developing cancer (e.g., Helicobacter pylori). Viral and bacterial factors can cause both morbidity and mortality alongside being transmitted within clinical and community settings through affecting a host immune response. Therefore, it is appropriate to contextualize advances in single cell sequencing in conjunction with other laboratory techniques allowing insights into immune cell characterization. These developments offer improved clarity and understanding that overlap with autoimmune conditions that could be affected by innate B cells (B1+ or marginal zone cells) or adaptive T cell responses to SARS-CoV-2 infection and other pathologies. Thus, this review starts with an introduction into host respiratory infection before examining invaluable cellular messenger proteins and then individual immune cell markers.
Collapse
Affiliation(s)
| | | | - Ingo Fricke
- Independent Immunologist and Researcher, 311995 Lamspringe, Germany
| | - Suhaila A Al-Sheboul
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
- Department of Medical Microbiology, International School of Medicine, Medipol University-Istanbul, Istanbul 34810, Turkey
| | | | - Tanya Gravier
- Independent Researcher, MPH, San Francisco, CA 94131, USA
| | | | | | | | - Ayça Demir
- Faculty of Medicine, Afyonkarahisar University, Istanbul 03030, Turkey
| | - Jonatane Andrieu
- Faculté de Médecine, Aix–Marseille University, 13005 Marseille, France
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM, Penang 11800, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine, (INFORMM), Universiti Sains Malaysia, USM, Penang 11800, Malaysia
| |
Collapse
|
9
|
Lunina NA, Safina DR. Intercellular Interactions in the Tumor Stroma and Their Role in Oncogenesis. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2022. [DOI: 10.3103/s0891416822040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
10
|
Herbal Medicine Hewei Jiangni Decoction Is Noninferior to Oral Omeprazole for the Treatment of Nonerosive Gastroesophageal Reflux Disease: A Randomized, Double-Blind, and Double-Dummy Controlled Trail. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9647003. [PMID: 36185085 PMCID: PMC9522514 DOI: 10.1155/2022/9647003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022]
Abstract
Objectives. Conventional approaches for patients with nonerosive gastroesophageal reflux disease (NERD) were not satisfactory. This study aimed to evaluate the effectiveness and mechanisms of Chinese herbal medicine Hewei Jiangni Decoction (HWJND) as a novel and promising regimen for NERD. Methods. A total of 128 patients with NERD were randomly assigned to the Treatment group and Control group. The patients from the Treatment group were administered HWJND (81 g) plus dummy omeprazole (20 mg) daily for 8 weeks, and the others were given dummy HWJND granules (81 g) plus omeprazole (20 mg). The clinical efficacy was assessed using the gastroesophageal reflux disease questionnaire (GERD-Q) scale, patient reported outcomes (PRO) scale, and short form health survey 36 (SF-36) scale at week 4. Moreover, its pharmacological and molecular mechanisms were elucidated based on network pharmacology and molecular docking. Results. Due to case shedding and other reasons, 109 patients, including 56 in the Treatment group and 53 in the Control group completed this study. Our results showed that HWJND significantly improved heartburn, regurgitation, epigastric pain, nausea, and sleep disturbance, which led to a significant reduction of GERD-Q scores in NERD patients. In addition, PRO scores of NERD patients with HWJND administration were improved, and sufficient relief of physical role, body pain, general health, social function, and mental health on the SF-36 scale was also observed in patients after HWJND treatment. We further showed that the curative effect of HWJND was close to that of omeprazole, except for the better improvement of general health and social function. What’s more, the main active ingredients of HWJND included quercetin, beta-sitosterol, naringenin, baicalein, and kaempferol were retrieved, and the protective effects of HWJND against NERD may be closely related to targets such as TNF, IL6, IL1B, MMP9, CXCL8, and EGFR, which were mainly enriched in IL-17 signaling pathway and TNF signaling pathway. Conclusion. Our findings demonstrate that HWJND is noninferior to oral omeprazole for the treatment of patients with NERD, plays a therapeutic role through multiple targets and diverse pathways, and holds promise for complementary and alternative therapy for the treatment of NERD. This trial is registered with http://www.chictr.org.cn, Chinese Clinical Trials Registry [ChiCTR2200055960].
Collapse
|
11
|
Wei X, Xue M, Kang C, Gao L, Zhang M, Ma C, Jia W, Zheng Y, Cao L, Chen P, Jiang S, Chu FF, Gao Q. Increased NOX1 and DUOX2 expression in the colonic mucosa of patients with chronic functional constipation. Medicine (Baltimore) 2022; 101:e30028. [PMID: 35960091 PMCID: PMC9371511 DOI: 10.1097/md.0000000000030028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
To determine whether oxidative stress and inflammation are associated with constipation by examining the expression of the main producers of reactive oxygen species, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, and pro-inflammatory cytokines in the colon of patients with chronic functional constipation. The colonic biopsies were collected from 32 patients with chronic functional constipation and 30 healthy subjects who underwent colonoscopy. Colonic mucosal histology was observed. Interleukin (IL)-1β, IL-6, IL-8 messenger RNA (mRNA), and 4 members of NADPH oxidase (NOX1, NOX2, DUOX2, and NOX4) protein and mRNA were assessed by immunohistochemistry, western blotting, and reverse transcription polymerase chain reaction. The tissues from both patients and healthy subjects showed normal histological structure without increase of inflammatory cells. NOX1 protein and mRNA levels were significantly increased compared to controls (P < .05). DUOX2 protein, but not mRNA, was increased by 2-fold compared to controls (P < .05). The levels of NOX2 and NOX4 protein and mRNA demonstrated no significant difference between patients and control subjects. The levels of IL-1β and IL-6 mRNA were significantly higher in constipation patients (P < .05), while IL-8 mRNA level was no different between the 2 groups. NADPH oxidase and pro-inflammatory cytokine might be involved in the pathogeneses of chronic functional constipation.
Collapse
Affiliation(s)
- Xiuqin Wei
- Department of Gastroenterology and Hepatology, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Mei Xue
- Department of Gastroenterology and Hepatology, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Chunbo Kang
- Department of Gastroenterology and Hepatology, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Lei Gao
- Center of Digestive Endoscopy, Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, China
| | - Mengqiao Zhang
- Department of Gastroenterology and Hepatology, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Chao Ma
- Department of Gastroenterology and Hepatology, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Wei Jia
- Department of Gastroenterology and Hepatology, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Yufeng Zheng
- Center of Digestive Endoscopy, Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, China
| | - Lei Cao
- Center of Digestive Endoscopy, Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, China
| | - Pan Chen
- Center of Digestive Endoscopy, Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, China
| | - Shujing Jiang
- Department of Acute Medicine, Queen Elizabeth Hospital, London, United Kingdom
| | - Fong-Fong Chu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California, United States
| | - Qiang Gao
- Department of Gastroenterology and Hepatology, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
- Center of Digestive Endoscopy, Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, China
- *Correspondence: Qiang Gao, Department of Gastroenterology and Hepatology, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, 15 Xixiazhuangnan Road, Shijingshan District, Beijing, 100144, China (e-mail: )
| |
Collapse
|
12
|
Li W, Chen P, Zhao Y, Cao M, Hu W, Pan L, Sun H, Huang D, Wu H, Song Z, Zhong H, Mou L, Luan S, Chen X, Gao H. Human IL-17 and TNF-α Additively or Synergistically Regulate the Expression of Proinflammatory Genes, Coagulation-Related Genes, and Tight Junction Genes in Porcine Aortic Endothelial Cells. Front Immunol 2022; 13:857311. [PMID: 35844613 PMCID: PMC9279740 DOI: 10.3389/fimmu.2022.857311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/30/2022] [Indexed: 11/18/2022] Open
Abstract
Immune rejection is the major limitation for porcine xenograft survival in primate recipients. Proinflammatory cytokines play important roles in immune rejection and have been found to mediate the pathological effects in various clinical and experimental transplantation trials. IL-17 and TNF-α play critical pathological roles in immune disorders, such as psoriasis and rheumatoid arthritis. However, the pathological roles of human IL-17 (hIL-17) and human TNF-α (hTNF-α) in xenotransplantation remain unclear. Here we found that hIL-17 and hTNF-α additively or synergistically regulate the expression of 697 genes in porcine aortic endothelial cells (PAECs). Overall, 415 genes were found to be synergistically regulated, while 282 genes were found to be additively regulated. Among these, 315 genes were upregulated and 382 genes were downregulated in PAECs. Furthermore, we found that hIL-17 and hTNF-α additively or synergistically induced the expression of various proinflammatory cytokines and chemokines (e.g., IL1α, IL6, and CXCL8) and decreased the expression of certain anti-inflammatory genes (e.g., IL10). Moreover, hIL-17 plus hTNF-α increased the expression of IL1R1 and IL6ST, receptors for IL1 and IL6, respectively, and decreased anti-inflammatory gene receptor expression (IL10R). hIL-17 and hTNF-α synergistically or additively induced CXCL8 and CCL2 expression and consequently promoted primary human neutrophil and human leukemia monocytic cell migration, respectively. In addition, hIL-17 and hTNF-α induced pro-coagulation gene (SERPINB2 and F3) expression and decreased anti-coagulation gene (TFPI, THBS1, and THBD) expression. Additionally, hIL-17 and hTNF-α synergistically decreased occludin expression and consequently promoted human antibody-mediated complement-dependent cytotoxicity. Interestingly, hTNF-α increased swine leukocyte antigen (SLA) class I expression; however, hIL-17 decreased TNF-α-mediated SLA-I upregulation. We concluded that hIL-17 and hTNF-α likely promote the inflammatory response, coagulation cascade, and xenoantibody-mediated cell injury. Thus, blockade of hIL-17 and hTNF-α together might be beneficial for xenograft survival in recipients.
Collapse
Affiliation(s)
- Weilong Li
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Pengfei Chen
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Yanli Zhao
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Mengtao Cao
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Wenjun Hu
- Department of Anesthesiology, The 305 Hospital of People's Liberation Army of China (PLA), Beijing, China
| | - Litao Pan
- Department of Acupuncture and Massage, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Huimin Sun
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Dongsheng Huang
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Hanxi Wu
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Zhuoheng Song
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Huanli Zhong
- Department of Medical Administration, People’s Hospital of Shenzhen Longhua Branch, Shenzhen, China
| | - Lisha Mou
- Department of Acupuncture and Massage, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Shaodong Luan
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Xiehui Chen
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Hanchao Gao
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| |
Collapse
|
13
|
Alfranca YL, García MEO, Rueda AG, Ballesteros PÁ, Rodríguez DR, Velasco MT. Blood Biomarkers of Response to Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer. J Clin Med 2022; 11:jcm11113245. [PMID: 35683629 PMCID: PMC9181575 DOI: 10.3390/jcm11113245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/27/2022] [Indexed: 01/27/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment landscape of non-small cell lung cancer (NSCLC), either used in monotherapy or in combination with chemotherapy. While some patients achieve durable responses, some will not get benefit from this treatment. Early identification of non- responder patients could avoid unnecessary treatment, potentially serious immune-related adverse events and reduce treatment costs. PD-L1 expression using immunohistochemistry is the only approved biomarker for the selection of patients that can benefit from immunotherapy. However, application of PD-L1 as a biomarker of treatment efficacy shows many deficiencies probably due to the complexity of the tumor microenvironment and the technical limitations of the samples. Thus, there is an urgent need to find other biomarkers, ideally blood biomarkers to help us to identify different subgroups of patients in a minimal invasive way. In this review, we summarize the emerging blood-based markers that could help to predict the response to ICIs in NSCLC.
Collapse
|
14
|
Weigel R, Schilling L, Krauss JK. The pathophysiology of chronic subdural hematoma revisited: emphasis on aging processes as key factor. GeroScience 2022; 44:1353-1371. [DOI: 10.1007/s11357-022-00570-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/07/2022] [Indexed: 12/24/2022] Open
|
15
|
Hassan MS, Cwidak N, Awasthi N, von Holzen U. Cytokine Interaction With Cancer-Associated Fibroblasts in Esophageal Cancer. Cancer Control 2022; 29:10732748221078470. [PMID: 35442094 PMCID: PMC9024076 DOI: 10.1177/10732748221078470] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Esophageal cancer (EC) is a highly aggressive cancer with poor outcomes under current treatment regimens. More recent findings suggest stroma elements, specifically cancer-associated fibroblasts (CAFs), play a role in disease occurrence and progression. Cancer-associated fibroblasts are largely the product of converted fibroblasts, but a variety of other local cell types including epithelial cells, endothelial cells, and mesenchymal cells have also been shown to transform to CAFs under the correct conditions. Cancer-associated fibroblasts primarily function in the communication between the tumor microenvironment and cancer cells via cytokine and chemokine secretions that accentuate immunosuppression and cancer growth. Cancer-associated fibroblasts also pose issues for EC treatment by contributing to resistance of current chemotherapeutics like cisplatin. Targeting this cell type directly proves difficult given the heterogeneity between CAFs subpopulations, but emerging research provides hope that treatment is on the horizon. This review aims to unravel some of the complexities surrounding CAFs’ impact on EC growth and therapy.
Collapse
Affiliation(s)
- Md Sazzad Hassan
- Department of Surgery, 158720Indiana University School of Medicine, South Bend, IN 46617, USA.,Harper Cancer Research Institute, South Bend, IN 46617, USA
| | - Nicholas Cwidak
- Department of Surgery, 158720Indiana University School of Medicine, South Bend, IN 46617, USA
| | - Niranjan Awasthi
- Department of Surgery, 158720Indiana University School of Medicine, South Bend, IN 46617, USA.,Harper Cancer Research Institute, South Bend, IN 46617, USA
| | - Urs von Holzen
- Department of Surgery, 158720Indiana University School of Medicine, South Bend, IN 46617, USA.,Harper Cancer Research Institute, South Bend, IN 46617, USA.,Goshen Center for Cancer Care, Goshen, Goshen, IN 46526, USA.,University of Basel, Basel, Switzerland
| |
Collapse
|
16
|
Rasool M, Natesan Pushparaj P, Karim S. Overexpression of CXCL8 gene in Saudi colon cancer patients. Saudi J Biol Sci 2021; 28:6045-6049. [PMID: 34764737 PMCID: PMC8568844 DOI: 10.1016/j.sjbs.2021.09.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 01/22/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of death in Saudi Arabia. CRC mostly affects older age groups, but now a days it also appears frequently at a young age. However, the complete genetic etiology of CRC remains unknown. To identify the genetic factors responsible for this cancer type and to search for biomarkers for early diagnosis and prevention, we collected sixteen CRC tumor tissue samples and six normal colon tissues and extracted mRNA and synthesized cDNA. We then performed microarray transcriptomic profiling of Saudi patients with colon cancer. Gene expression was analyzed using Partek Genomics Suite, and principal component analysis (PCA) was performed to separate the different clusters of colon cancer and healthy tissues. Distinct differences in gene expression profiles were observed between colon cancer and normal tissue samples. Subsequently, we validated gene expression using real-time PCR. We found that the C-X-C motif chemokine ligand 8 (CXCL8) gene was expressed most in CRC samples. CXCL8 expressed 25.6 folds more in CRC tissues than in healthy tissues. In conclusion, we found that CXCL8 is the chief biomarker gene that is expressed most in CRC and plays an important role in tumor progression and metastasis.
Collapse
Affiliation(s)
- Mahmood Rasool
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sajjad Karim
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
17
|
Wang Z, Hou Y, Yao Z, Zhan Y, Chen W, Liu Y. Expressivity of Interleukin-8 and Gastric Cancer Prognosis Susceptibility: A Systematic Review and Meta-Analysis. Dose Response 2021; 19:15593258211037127. [PMID: 34531708 PMCID: PMC8438942 DOI: 10.1177/15593258211037127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022] Open
Abstract
Background The relationship between interleukin-8 (IL-8) expression and the prognosis of gastric cancer (GC) patients has been reported, but the results are contradictory. Aim To investigate the effect of IL-8 expression on the prognosis of patients with GC. Method A comprehensive search strategy was used to search the PubMed, Web of Science and Cochrane Library databases. The total survival time was analysed using the RevMan 5.4 software. Through extensive search and meta-analysis of relevant studies, studies examining the relationship between IL-8 expression and prognosis in patients with GC were conducted to obtain more accurate estimates. Findings Eight studies (1843 patients) were included. The combined results of all the studies showed that high expression of IL-8 was a risk factor for poor prognosis in patients with GC (hazard ratio (HR): 2.08; 95% CI: 1.81–2.39). Sensitivity analysis suggested that the pooled HR was stable, and omitting a single study did not change the significance of the pooled HR. Funnel plots revealed no significant publication bias in the meta-analysis. Conclusion High IL-8 expression could be a negative prognostic biomarker for patients with GC.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Department of Nuclear Accident Medical Emergency, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuhan Hou
- Department of Nuclear Accident Medical Emergency, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhen Yao
- Department of Nuclear Accident Medical Emergency, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanyan Zhan
- Department of Nuclear Accident Medical Emergency, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenyue Chen
- Department of Nuclear Accident Medical Emergency, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yulong Liu
- Department of Nuclear Accident Medical Emergency, The Second Affiliated Hospital of Soochow University, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| |
Collapse
|
18
|
Hameed Y, Usman M, Liang S, Ejaz S. Novel diagnostic and prognostic biomarkers of colorectal cancer: Capable to overcome the heterogeneity-specific barrier and valid for global applications. PLoS One 2021; 16:e0256020. [PMID: 34473751 PMCID: PMC8412268 DOI: 10.1371/journal.pone.0256020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 07/28/2021] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION The heterogeneity-specific nature of the available colorectal cancer (CRC) biomarkers is significantly contributing to the cancer-associated high mortality rate worldwide. Hence, this study was initiated to investigate a system of novel CRC biomarkers that could commonly be employed to the CRC patients and helpful to overcome the heterogenetic-specific barrier. METHODS Initially, CRC-related hub genes were extracted through PubMed based literature mining. A protein-protein interaction (PPI) network of the extracted hub genes was constructed and analyzed to identify few more closely CRC-related hub genes (real hub genes). Later, a comprehensive bioinformatics approach was applied to uncover the diagnostic and prognostic role of the identified real hub genes in CRC patients of various clinicopathological features. RESULTS Out of 210 collected hub genes, in total 6 genes (CXCL12, CXCL8, AGT, GNB1, GNG4, and CXCL1) were identified as the real hub genes. We further revealed that all the six real hub genes were significantly dysregulated in colon adenocarcinoma (COAD) patients of various clinicopathological features including different races, cancer stages, genders, age groups, and body weights. Additionally, the dysregulation of real hub genes has shown different abnormal correlations with many other parameters including promoter methylation, overall survival (OS), genetic alterations and copy number variations (CNVs), and CD8+T immune cells level. Finally, we identified a potential miRNA and various chemotherapeutic drugs via miRNA, and real hub genes drug interaction network that could be used in the treatment of CRC by regulating the expression of real hub genes. CONCLUSION In conclusion, we have identified six real hub genes as potential biomarkers of CRC patients that could help to overcome the heterogenetic-specific barrier across different clinicopathological features.
Collapse
Affiliation(s)
- Yasir Hameed
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Usman
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Samina Ejaz
- Department of Biochemistry, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
19
|
Xu X, Pan M, Jin T. How Phagocytes Acquired the Capability of Hunting and Removing Pathogens From a Human Body: Lessons Learned From Chemotaxis and Phagocytosis of Dictyostelium discoideum (Review). Front Cell Dev Biol 2021; 9:724940. [PMID: 34490271 PMCID: PMC8417749 DOI: 10.3389/fcell.2021.724940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/15/2021] [Indexed: 12/01/2022] Open
Abstract
How phagocytes find invading microorganisms and eliminate pathogenic ones from human bodies is a fundamental question in the study of infectious diseases. About 2.5 billion years ago, eukaryotic unicellular organisms-protozoans-appeared and started to interact with various bacteria. Less than 1 billion years ago, multicellular animals-metazoans-appeared and acquired the ability to distinguish self from non-self and to remove harmful organisms from their bodies. Since then, animals have developed innate immunity in which specialized white-blood cells phagocytes- patrol the body to kill pathogenic bacteria. The social amoebae Dictyostelium discoideum are prototypical phagocytes that chase various bacteria via chemotaxis and consume them as food via phagocytosis. Studies of this genetically amendable organism have revealed evolutionarily conserved mechanisms underlying chemotaxis and phagocytosis and shed light on studies of phagocytes in mammals. In this review, we briefly summarize important studies that contribute to our current understanding of how phagocytes effectively find and kill pathogens via chemotaxis and phagocytosis.
Collapse
Affiliation(s)
| | | | - Tian Jin
- Chemotaxis Signal Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, United States
| |
Collapse
|
20
|
Metzemaekers M, Abouelasrar Salama S, Vandooren J, Mortier A, Janssens R, Vandendriessche S, Ganseman E, Martens E, Gouwy M, Neerinckx B, Verschueren P, De Somer L, Wouters C, Struyf S, Opdenakker G, Van Damme J, Proost P. From ELISA to Immunosorbent Tandem Mass Spectrometry Proteoform Analysis: The Example of CXCL8/Interleukin-8. Front Immunol 2021; 12:644725. [PMID: 33777041 PMCID: PMC7991300 DOI: 10.3389/fimmu.2021.644725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/12/2021] [Indexed: 11/15/2022] Open
Abstract
With ELISAs one detects the ensemble of immunoreactive molecules in biological samples. For biomolecules undergoing proteolysis for activation, potentiation or inhibition, other techniques are necessary to study biology. Here we develop methodology that combines immunosorbent sample preparation and nano-scale liquid chromatography—tandem mass spectrometry (nano-LC-MS/MS) for proteoform analysis (ISTAMPA) and apply this to the aglycosyl chemokine CXCL8. CXCL8, the most powerful human chemokine with neutrophil chemotactic and –activating properties, occurs in different NH2-terminal proteoforms due to its susceptibility to site-specific proteolytic modification. Specific proteoforms display up to 30-fold enhanced activity. The immunosorbent ion trap top-down mass spectrometry-based approach for proteoform analysis allows for simultaneous detection and quantification of full-length CXCL8(1-77), elongated CXCL8(-2-77) and all naturally occurring truncated CXCL8 forms in biological samples. For the first time we demonstrate site-specific proteolytic activation of CXCL8 in synovial fluids from patients with chronic joint inflammation and address the importance of sample collection and processing.
Collapse
Affiliation(s)
- Mieke Metzemaekers
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sara Abouelasrar Salama
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Anneleen Mortier
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Rik Janssens
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sofie Vandendriessche
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Eva Ganseman
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Erik Martens
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Barbara Neerinckx
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Patrick Verschueren
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lien De Somer
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Carine Wouters
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Wang F, Wang S, Zhou Q. The Resistance Mechanisms of Lung Cancer Immunotherapy. Front Oncol 2020; 10:568059. [PMID: 33194652 PMCID: PMC7606919 DOI: 10.3389/fonc.2020.568059] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022] Open
Abstract
Immunotherapy has revolutionized lung cancer treatment in the past decade. By reactivating the host’s immune system, immunotherapy significantly prolongs survival in some advanced lung cancer patients. However, resistance to immunotherapy is frequent, which manifests as a lack of initial response or clinical benefit to therapy (primary resistance) or tumor progression after the initial period of response (acquired resistance). Overcoming immunotherapy resistance is challenging owing to the complex and dynamic interplay among malignant cells and the defense system. This review aims to discuss the mechanisms that drive immunotherapy resistance and the innovative strategies implemented to overcome it in lung cancer.
Collapse
Affiliation(s)
- Fen Wang
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangdong Lung Cancer Institute, South China University of Technology, Guangzhou, China.,Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Department of Oncology, Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shubin Wang
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Department of Oncology, Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qing Zhou
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangdong Lung Cancer Institute, South China University of Technology, Guangzhou, China
| |
Collapse
|
22
|
Schalper KA, Carleton M, Zhou M, Chen T, Feng Y, Huang SP, Walsh AM, Baxi V, Pandya D, Baradet T, Locke D, Wu Q, Reilly TP, Phillips P, Nagineni V, Gianino N, Gu J, Zhao H, Perez-Gracia JL, Sanmamed MF, Melero I. Elevated serum interleukin-8 is associated with enhanced intratumor neutrophils and reduced clinical benefit of immune-checkpoint inhibitors. Nat Med 2020; 26:688-692. [PMID: 32405062 DOI: 10.1038/s41591-020-0856-x] [Citation(s) in RCA: 330] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 03/25/2020] [Indexed: 12/18/2022]
Abstract
Serum interleukin-8 (IL-8) levels and tumor neutrophil infiltration are associated with worse prognosis in advanced cancers. Here, using a large-scale retrospective analysis, we show that elevated baseline serum IL-8 levels are associated with poor outcome in patients (n = 1,344) with advanced cancers treated with nivolumab and/or ipilimumab, everolimus or docetaxel in phase 3 clinical trials, revealing the importance of assessing serum IL-8 levels in identifying unfavorable tumor immunobiology and as an independent biomarker in patients receiving immune-checkpoint inhibitors.
Collapse
Affiliation(s)
- Kurt A Schalper
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| | - Michael Carleton
- Department of Translational Medicine, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Ming Zhou
- Department of Global Biometric Sciences, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Tian Chen
- Department of Global Biometric Sciences, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Ye Feng
- Department of Global Biometric Sciences, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Shu-Pang Huang
- Department of Global Biometric Sciences, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Alice M Walsh
- Department of Translational Bioinformatics, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Vipul Baxi
- Department of Translational Bioinformatics, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Dimple Pandya
- Department of Research and Early Development, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Timothy Baradet
- Department of Translational Medicine, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Darren Locke
- Department of Translational Medicine, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Qiuyan Wu
- Department of Research and Early Development, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Timothy P Reilly
- Department of Research and Early Development, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Penny Phillips
- Department of Translational Medicine, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Venkata Nagineni
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Nicole Gianino
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Jianlei Gu
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT, USA
| | - Hongyu Zhao
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT, USA
| | - Jose Luis Perez-Gracia
- Oncology Department, Clinica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Miguel F Sanmamed
- Oncology Department, Clinica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Department of Immunology and Immunotherapy, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Ignacio Melero
- Oncology Department, Clinica Universidad de Navarra, Pamplona, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain. .,Department of Immunology and Immunotherapy, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
23
|
The Crucial Role of CXCL8 and Its Receptors in Colorectal Liver Metastasis. DISEASE MARKERS 2019; 2019:8023460. [PMID: 31827643 PMCID: PMC6886345 DOI: 10.1155/2019/8023460] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022]
Abstract
CXCL8 (also known as IL-8) can produce different biological effects by binding to its receptors: CXCR1, CXCR2, and the Duffy antigen receptor for chemokines (DARC). CXCL8 and its receptors are associated with the development of various tumor types, especially colorectal cancer and its liver metastases. In addition to promoting angiogenesis, proliferation, invasion, migration, and the survival of colorectal cancer (CRC) cells, CXCL8 and its receptors have also been known to induce the epithelial-mesenchymal transition (EMT) of CRC cells, to help them to escape host immunosurveillance as well as to enhance resistance to anoikis, which promotes the formation of circulating tumor cells (CTCs) and their colonization of distant organs. In this paper, we will review the established roles of CXCL8 signaling in CRC and discuss the possible strategies of targeting CXCL8 signaling for overcoming CRC drug resistance and cancer progression, including direct targeting of CXCL8/CXCR1/2 or indirect targeting through the inhibition of CXCL8-CXCR1/2 signaling.
Collapse
|
24
|
Zindel J, Kubes P. DAMPs, PAMPs, and LAMPs in Immunity and Sterile Inflammation. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2019; 15:493-518. [PMID: 31675482 DOI: 10.1146/annurev-pathmechdis-012419-032847] [Citation(s) in RCA: 464] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recognizing the importance of leukocyte trafficking in inflammation led to some therapeutic breakthroughs. However, many inflammatory pathologies remain without specific therapy. This review discusses leukocytes in the context of sterile inflammation, a process caused by sterile (non-microbial) molecules, comprising damage-associated molecular patterns (DAMPs). DAMPs bind specific receptors to activate inflammation and start a highly optimized sequence of immune cell recruitment of neutrophils and monocytes to initiate effective tissue repair. When DAMPs are cleared, the recruited leukocytes change from a proinflammatory to a reparative program, a switch that is locally supervised by invariant natural killer T cells. In addition, neutrophils exit the inflammatory site and reverse transmigrate back to the bloodstream. Inflammation persists when the program switch or reverse transmigration fails, or when the coordinated leukocyte effort cannot clear the immunostimulatory molecules. The latter causes inappropriate leukocyte activation, a driver of many pathologies associated with poor lifestyle choices. We discuss lifestyle-associated inflammatory diseases and their corresponding immunostimulatory lifestyle-associated molecular patterns (LAMPs) and distinguish them from DAMPs.
Collapse
Affiliation(s)
- Joel Zindel
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; .,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Department of Visceral Surgery and Medicine, Department for BioMedical Research, University of Bern, CH-3008 Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Paul Kubes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; .,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Department of Microbiology, Immunology & Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
25
|
Pigossi SC, Anovazzi G, Finoti LS, de Medeiros MC, de Souza-Moreira TM, Mayer MPA, Zanelli CF, Valentini SR, Rossa Junior C, Scarel-Caminaga RM. The ATC/TTC haplotype in the Interleukin 8 gene in response to Gram-negative bacteria: A pilot study. Arch Oral Biol 2019; 107:104508. [PMID: 31382162 DOI: 10.1016/j.archoralbio.2019.104508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 01/23/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the functionality of ATC/TTC (Hap-1) and ATT/TTC (Hap-2) Interleukin (IL) 8 gene haplotypes in the response of neutrophils to Gram-negative bacteria associated with periodontitis. DESIGN Neutrophils were isolated by gradient centrifugation from whole peripheral blood of systemically healthy individuals presenting the two IL8 gene haplotypes. Neutrophils were stimulated with P. gingivalis, A. actinomycetemcomitans and PMA/ionomycin. Cytokine gene expression (RT-qPCR) and migration/chemotaxis (boyden chamber assay) were compared according to the presence of Hap-1 or Hap-2 haplotypes. Protein production was also evaluted in the multiplex assay using the mixed population of leukocytes present in the whole blood from the same individuals. The influence of these two haplotypes on the IL8 promoter activity was assessed in gene-reporter experiments. RESULTS Hap-1 haplotype in neutrophils and leukocytes exacerbated the response to stimulation with Gram-negative bacteria, with higher levels of TNF-α (mRNA and protein), IL-1β, IL-2R and IFN-γ (protein) and with increased chemotaxis. Presence of the T allele at the rs4071 polymorphism (alias -251) was associated with increased activity of IL8 proximal promoter. CONCLUSIONS Neutrophils and leukocytes carrying the Hap-1 haplotype (ATC/TTC) in the IL8 gene present an enhanced response to stimulation with Gram-negative bacteria associated with periodontitis. Presence of the T allele (rs4073) in the IL8 proximal promoter increases transcription activity.
Collapse
Affiliation(s)
- Suzane C Pigossi
- Department of Oral Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP- São Paulo State University, São Paulo, Brazil; Department of Clinics and Surgery, School of Dentistry, Alfenas Federal University (UNIFAL-MG), Minas Gerais, Brazil
| | - Giovana Anovazzi
- Department of Oral Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP- São Paulo State University, São Paulo, Brazil
| | - Livia S Finoti
- Department of Oral Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP- São Paulo State University, São Paulo, Brazil
| | - Marcell C de Medeiros
- Department of Oral Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP- São Paulo State University, São Paulo, Brazil
| | - Tatiana Maria de Souza-Moreira
- Department of Biological Sciences, School of Pharmaceutical Sciences, UNESP- São Paulo State University, São Paulo, Brazil
| | - Marcia P A Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cleslei Fernando Zanelli
- Department of Biological Sciences, School of Pharmaceutical Sciences, UNESP- São Paulo State University, São Paulo, Brazil
| | - Sandro Roberto Valentini
- Department of Biological Sciences, School of Pharmaceutical Sciences, UNESP- São Paulo State University, São Paulo, Brazil
| | - Carlos Rossa Junior
- Department of Oral Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP- São Paulo State University, São Paulo, Brazil
| | - Raquel M Scarel-Caminaga
- Department of Morphology, School of Dentistry at Araraquara, UNESP- São Paulo State University, São Paulo, Brazil.
| |
Collapse
|
26
|
Kinjo T, Inoue H, Kusuda T, Fujiyoshi J, Ochiai M, Takahata Y, Honjo S, Koga Y, Hara T, Ohga S. Chemokine levels predict progressive liver disease in Down syndrome patients with transient abnormal myelopoiesis. Pediatr Neonatol 2019; 60:382-388. [PMID: 30314728 DOI: 10.1016/j.pedneo.2018.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 08/09/2018] [Accepted: 09/19/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Transient abnormal myelopoiesis (TAM) is a neonatal preleukemic syndrome that occurs exclusively in neonates with Down syndrome (DS). Most affected infants spontaneously resolve, although some patients culminate in hepatic failure despite the hematological remission. It is impossible to determine the patients who are at high risk of progressive liver disease and leukemic transformation. The objective is to search for biomarkers predicting the development of hepatic failure in DS infants with TAM. METHODS Among 60 newborn infants with DS consecutively admitted to our institutions from 2003 to 2016, 41 infants with or without TAM were enrolled for the study. Twenty-two TAM-patients were classified into "progression group" (n = 7) that required any therapy and "spontaneous resolution group" (n = 15). Serum concentrations of chemokines (CXCL8, CXCL9, CXCL10, CCL2 and CCL5) and transforming growth factor (TGF)-β1 were measured at diagnosis of TAM for assessing the outcome of progressive disease. RESULTS Three patients developed leukemia during the study period (median, 1147 days; range, 33-3753). Three died of hepatic failure. All patients in the progression group were preterm birth <37 weeks of gestational age and were earlier than those in the spontaneous resolution group (median, 34.7 vs. 37.0 weeks, p < 0.01). The leukocyte counts and CXCL8 and CCL2 levels at diagnosis in the progression group were higher than those in the spontaneous resolution group (leukocyte: median, 81.60 vs. 27.30 × 109/L, p = 0.01; CXCL8: 173.8 vs. 34.3 pg/ml, p < 0.01; CCL2: 790.3 vs. 209.8 pg/mL, p < 0.01). Multivariate analyses indicated that an increased CCL2 value was independently associated with the progression and CXCL8 with the death of liver failure, respectively (CCL2: standardized coefficient [sc], 0.43, p < 0.01; CXCL8: sc = -0.46, p = 0.02). CONCLUSION High levels of circulating CXCL8 and CCL2 at diagnosis of TAM may predict progressive hepatic failure in DS infants.
Collapse
Affiliation(s)
- Tadamune Kinjo
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Comprehensive Maternity and Perinatal Care Center, Kyushu University Hospital, Fukuoka, Japan; Fukuoka Children's Hospital, Fukuoka, Japan.
| | - Hirosuke Inoue
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Comprehensive Maternity and Perinatal Care Center, Kyushu University Hospital, Fukuoka, Japan
| | - Takeshi Kusuda
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Fukuoka Children's Hospital, Fukuoka, Japan
| | - Junko Fujiyoshi
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Comprehensive Maternity and Perinatal Care Center, Kyushu University Hospital, Fukuoka, Japan
| | - Masayuki Ochiai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Comprehensive Maternity and Perinatal Care Center, Kyushu University Hospital, Fukuoka, Japan
| | | | - Satoshi Honjo
- Department of Pediatrics, Fukuoka National Hospital, Fukuoka, Japan
| | - Yuhki Koga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiro Hara
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Fukuoka Children's Hospital, Fukuoka, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Comprehensive Maternity and Perinatal Care Center, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
27
|
Martins E, César-Neto J, Albuquerque-Souza E, Rebeis E, Holzhausen M, Pannuti C, Mayer M, Saraiva L. One-year follow-up of the immune profile in serum and selected sites of generalized and localized aggressive periodontitis. Cytokine 2019; 116:27-37. [DOI: 10.1016/j.cyto.2018.12.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 11/26/2018] [Accepted: 12/28/2018] [Indexed: 12/16/2022]
|
28
|
Uddin M, Watz H, Malmgren A, Pedersen F. NETopathic Inflammation in Chronic Obstructive Pulmonary Disease and Severe Asthma. Front Immunol 2019; 10:47. [PMID: 30804927 PMCID: PMC6370641 DOI: 10.3389/fimmu.2019.00047] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/09/2019] [Indexed: 01/13/2023] Open
Abstract
Neutrophils play a central role in innate immunity, inflammation, and resolution. Unresolving neutrophilia features as a disrupted inflammatory process in the airways of patients with chronic obstructive pulmonary disease (COPD) and severe asthma. The extent to which this may be linked to disease pathobiology remains obscure and could be further confounded by indication of glucocorticoids or concomitant respiratory infections. The formation of neutrophil extracellular traps (NETs) represents a specialized host defense mechanism that entrap and eliminate invading microbes. NETs are web-like scaffolds of extracellular DNA in complex with histones and neutrophil granular proteins, such as myeloperoxidase and neutrophil elastase. Distinct from apoptosis, NET formation is an active form of cell death that could be triggered by various microbial, inflammatory, and endogenous or exogenous stimuli. NETs are reportedly enriched in neutrophil-dominant refractory lung diseases, such as COPD and severe asthma. Evidence for a pathogenic role for respiratory viruses (e.g., Rhinovirus), bacteria (e.g., Staphylococcus aureus) and fungi (e.g., Aspergillus fumigatus) in NET induction is emerging. Dysregulation of this process may exert localized NET burden and contribute to NETopathic lung inflammation. Disentangling the role of NETs in human health and disease offer unique opportunities for therapeutic modulation. The chemokine CXCR2 receptor regulates neutrophil activation and migration, and small molecule CXCR2 antagonists (e.g., AZD5069, danirixin) have been developed to selectively block neutrophilic inflammatory pathways. NET-stabilizing agents using CXCR2 antagonists are being investigated in proof-of-concept studies in patients with COPD to provide mechanistic insights. Clinical validation of this type could lead to novel therapeutics for multiple CXCR2-related NETopathologies. In this Review, we discuss the emerging role of NETs in the clinicopathobiology of COPD and severe asthma and provide an outlook on how novel NET-stabilizing therapies via CXCR2 blockade could be leveraged to disrupt NETopathic inflammation in disease-specific phenotypes.
Collapse
Affiliation(s)
- Mohib Uddin
- Respiratory Global Medicines Development, AstraZeneca, Gothenburg, Sweden.,Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Henrik Watz
- Pulmonary Research Institute at LungenClinic, Großhansdorf, Germany.,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Großhansdorf, Germany
| | - Anna Malmgren
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Frauke Pedersen
- Pulmonary Research Institute at LungenClinic, Großhansdorf, Germany.,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Großhansdorf, Germany.,LungenClinic, Großhansdorf, Germany
| |
Collapse
|
29
|
Vacchini A, Mortier A, Proost P, Locati M, Metzemaekers M, Borroni EM. Differential Effects of Posttranslational Modifications of CXCL8/Interleukin-8 on CXCR1 and CXCR2 Internalization and Signaling Properties. Int J Mol Sci 2018; 19:E3768. [PMID: 30486423 PMCID: PMC6321254 DOI: 10.3390/ijms19123768] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 12/21/2022] Open
Abstract
CXCL8 or interleukin (IL)-8 directs neutrophil migration and activation through interaction with CXCR1 and CXCR2 that belong to the family of G protein-coupled receptors (GPCRs). Naturally occurring posttranslational modifications of the NH₂-terminal region of CXCL8 affect its biological activities, but the underlying molecular mechanisms are only partially understood. Here, we studied the implications of site-specific citrullination and truncation for the signaling potency of CXCL8. Native CXCL8(1-77), citrullinated [Cit5]CXCL8(1-77) and the major natural isoform CXCL8(6-77) were chemically synthesized and tested in internalization assays using human neutrophils. Citrullinated and truncated isoforms showed a moderately enhanced capacity to induce internalization of CXCR1 and CXCR2. Moreover, CXCL8-mediated activation of Gαi-dependent signaling through CXCR1 and CXCR2 was increased upon modification to [Cit5]CXCL8(1-77) or CXCL8(6-77). All CXCL8 variants promoted recruitment of β-arrestins 1 and 2 to CXCR1 and CXCR2. Compared to CXCL8(1-77), CXCL8(6-77) showed an enhanced potency to recruit β-arrestin 2 to both receptors, while for [Cit5]CXCL8(1-77) only the capacity to induce β-arrestin 2 recruitment to CXCR2 was increased. Both modifications had no biasing effect, i.e., did not alter the preference of CXCL8 to activate either Gαi-protein or β-arrestin-dependent signaling through its receptors. Our results support the concept that specific chemokine activities are fine-tuned by posttranslational modifications.
Collapse
Affiliation(s)
- Alessandro Vacchini
- Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano, Milan, Italy.
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via fratelli Cervi 93, I-20090 Segrate, Italy.
| | - Anneleen Mortier
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, B-3000 Leuven, Belgium.
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, B-3000 Leuven, Belgium.
| | - Massimo Locati
- Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano, Milan, Italy.
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via fratelli Cervi 93, I-20090 Segrate, Italy.
| | - Mieke Metzemaekers
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, B-3000 Leuven, Belgium.
| | - Elena Monica Borroni
- Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano, Milan, Italy.
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via fratelli Cervi 93, I-20090 Segrate, Italy.
| |
Collapse
|
30
|
Wang H, Jiang Y, Wang H, Luo Z, Wang Y, Guan X. IL-25 promotes Th2-type reactions and correlates with disease severity in the pathogenesis of oral lichen planus. Arch Oral Biol 2018; 98:115-121. [PMID: 30472360 DOI: 10.1016/j.archoralbio.2018.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
Abstract
OBJECTIVE The aim of the present study was to investigate the correlation between IL-25 expression and disease severity, and the potential immunoregulatory role of IL-25 expression in oral lichen planus (OLP). MATERIALS AND METHODS The oral mucosal tissue samples obtained from OLP patients and healthy controls (HCs) were analyzed for IL-25 expression by real-time quantitative PCR (qPCR) and immunohistochemistry. Recombinant IL-25 was used to stimulate OLP patient-derived CD4 + T cells, and then IL-4 secretion and mRNA expression were evaluated by ELISA and qPCR, respectively. The efficiency of the siRNA-mediated knockdown of IL-25R expression in oral keratinocytes was determined by qPCR and Western blotting. Human oral keratinocyte cells were cultured with the recombinant human cytokines IL-25, IL-17 A and IL-17 F. The production of associated cytokines by keratinocytes was determined by qPCR. Statistical analyses of quantitative data were performed using SPSS software. RESULTS The IL-25 and IL-4 mRNA levels were elevated and correlated significantly with each other in specific OLP subtype lesions compared to HCs, while the numbers of IL-25 positive cells were also increased in local OLP lesions as compared to HCs. In vitro culture with recombinant IL-25 could significantly promote CD4 + T cells from both subtypes of OLP to produce IL-4 mRNA and remarkably elevate supernatant IL-4 levels in reticular OLP CD4 + T cell cultures, which may be attributed to the elevated expression of IL-25R in local OLP lesions. Statistical analyses demonstrated that the simultaneously increased levels of IL-4, CXCL8 and CCL20 in keratinocytes were induced by IL-25 but not IL-17 A or IL-17 F. Decreasing IL-25R subunit expression by siRNA-mediated knockdown significantly blocked the expression of all cytokine-produced inflammatory mediators in oral keratinocytes. CONCLUSIONS In OLP lesions, IL-25 can function to mediate the Th2 response in specific disease subtypes, which may be an important cause of OLP disease chronicity and persistent inflammation.
Collapse
Affiliation(s)
- Hui Wang
- Department of Oral Medicine, School of Stomatology, Capital Medical University, Beijing, China; State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Yuchen Jiang
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Hongning Wang
- Department of Orthodontics, Yantai Stomatological Hospital, Yantai, Shandong Province, China
| | - Zhenhua Luo
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Yuanyuan Wang
- Department of Oral Medicine, School of Stomatology, Capital Medical University, Beijing, China
| | - Xiaobing Guan
- Department of Oral Medicine, School of Stomatology, Capital Medical University, Beijing, China.
| |
Collapse
|
31
|
Saxena A, Lopes F, McKay DM. Reduced intestinal epithelial mitochondrial function enhances in vitro interleukin-8 production in response to commensal Escherichia coli. Inflamm Res 2018; 67:829-837. [PMID: 30030553 DOI: 10.1007/s00011-018-1172-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/06/2018] [Accepted: 07/17/2018] [Indexed: 12/30/2022] Open
Abstract
Uncoupling of oxidative phosphorylation in epithelial mitochondria results in decreased epithelial barrier function as characterized by increased internalization of non-invasive Escherichia coli and their translocation across the epithelium. We hypothesized that the increased burden of intracellular commensal bacteria would activate the enterocyte, with the potential to promote inflammation. Treatment of human colon-derived epithelial cell lines in vitro with dinitrophenol (DNP) and commensal E. coli (strains F18, HB101) provoked increased production of interleukin (IL-8), which was not observed with conditioned medium from the bacteria, lipopolysaccharide or inert beads. The IL-8 response was inhibited by co-treatment with cytochalasin-D (blocks F-actin rearrangement), chloroquine (blocks phagosome acidification) and a MyD88 inhibitor (blocks TLR signaling), consistent with TLR-signaling mediating IL-8 synthesis subsequent to bacterial internalization. Use of the mitochondria-targeted antioxidant, mitoTEMPO, or U0126 to block ERK1/2 MAPK signalling inhibited DNP+E. coli-evoked IL-8 production. Mutations in the NOD2 (the intracellular sensor of bacteria) or ATG16L1 (autophagy protein) genes are susceptibility traits for Crohn's, and epithelia lacking either protein displayed enhanced IL-8 production in comparison to wild-type cells when exposed to DNP + E coli. Thus, metabolic stress perturbs the normal epithelial-bacterial interaction resulting in increased IL-8 production due to uptake of bacteria into the enterocyte: this potentially pro-inflammatory event is enhanced in cells lacking NOD2 or ATG16L1 that favor increased survival of bacteria within the enterocyte. We speculate that by increasing epithelial permeability and IL-8 production, reduced mitochondria function in the enteric epithelium would contribute to the initiation, pathophysiology, and reactivation of inflammatory disease in the gut.
Collapse
Affiliation(s)
- Alpana Saxena
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 1877 HSC, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Fernando Lopes
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 1877 HSC, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Derek M McKay
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 1877 HSC, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
32
|
Le Page A, Lamoureux J, Bourgade K, Frost EH, Pawelec G, Witkowski JM, Larbi A, Dupuis G, Fülöp T. Polymorphonuclear Neutrophil Functions are Differentially Altered in Amnestic Mild Cognitive Impairment and Mild Alzheimer's Disease Patients. J Alzheimers Dis 2018; 60:23-42. [PMID: 28777750 DOI: 10.3233/jad-170124] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The mechanisms of neurodegeneration in Alzheimer's disease (AD) remain under investigation. Alterations in the blood-brain barrier facilitate exchange of inflammatory mediators and immune cells between the brain and the periphery in AD. Here, we report analysis of phenotype and functions of polymorphonuclear neutrophils (PMN) in peripheral blood from patients with amnestic mild cognitive impairment (aMCI, n = 13), patients with mild AD (mAD, n = 15), and healthy elderly controls (n = 13). Results showed an increased expression of CD177 in mAD but not in healthy or aMCI patients. IL-8 stimulated increased expression of the CD11b integrin in PMN of healthy subjects in vitro but PMN of aMCI and mAD patients failed to respond. CD14 and CD16 expression was lower in PMN of mAD but not in aMCI individuals relative to controls. Only PMN of aMCI subjects expressed lower levels of CD88. Phagocytosis toward opsonized E. coli was differentially impaired in PMN of aMCI and mAD subjects whereas the capacity to ingest Dextran particles was absent only in mAD subjects. Killing activity was severely impaired in aMCI and mAD subjects whereas free radical production was only impaired in mAD patients. Inflammatory cytokine (TNFα, IL-6, IL-1β, IL-12p70) and chemokine (MIP-1α, MIP-1β, IL-8) production in response to LPS stimulation was very low in aMCI and nearly absent in mAD subjects. TLR2 expression was low only in aMCI. Our data showed a differentially altered capacity of PMN of aMCI and mAD subjects to respond to pathological aggression that may impact impaired responses associated with AD development.
Collapse
Affiliation(s)
- Aurélie Le Page
- Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Julie Lamoureux
- Graduate Program in Physiology-Biophysics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Karine Bourgade
- Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Eric H Frost
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Graham Pawelec
- Department of Internal Medicine II, Center for Medical Research University of Tübingen, Tübingen, Germany.,Health Sciences North Research Institute, Sudbury, ON, Canada
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A-Star), 8A Biomedical Grove, Immunos, Singapore
| | - Gilles Dupuis
- Department of Biochemistry, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Tamàs Fülöp
- Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
33
|
Park SH, Berkamp S, Radoicic J, De Angelis AA, Opella SJ. Interaction of Monomeric Interleukin-8 with CXCR1 Mapped by Proton-Detected Fast MAS Solid-State NMR. Biophys J 2018; 113:2695-2705. [PMID: 29262362 DOI: 10.1016/j.bpj.2017.09.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/17/2017] [Accepted: 09/21/2017] [Indexed: 12/01/2022] Open
Abstract
The human chemokine interleukin-8 (IL-8; CXCL8) is a key mediator of innate immune and inflammatory responses. This small, soluble protein triggers a host of biological effects upon binding and activating CXCR1, a G protein-coupled receptor, located in the cell membrane of neutrophils. Here, we describe 1H-detected magic angle spinning solid-state NMR studies of monomeric IL-8 (1-66) bound to full-length and truncated constructs of CXCR1 in phospholipid bilayers under physiological conditions. Cross-polarization experiments demonstrate that most backbone amide sites of IL-8 (1-66) are immobilized and that their chemical shifts are perturbed upon binding to CXCR1, demonstrating that the dynamics and environments of chemokine residues are affected by interactions with the chemokine receptor. Comparisons of spectra of IL-8 (1-66) bound to full-length CXCR1 (1-350) and to N-terminal truncated construct NT-CXCR1 (39-350) identify specific chemokine residues involved in interactions with binding sites associated with N-terminal residues (binding site-I) and extracellular loop and helical residues (binding site-II) of the receptor. Intermolecular paramagnetic relaxation enhancement broadening of IL-8 (1-66) signals results from interactions of the chemokine with CXCR1 (1-350) containing Mn2+ chelated to an unnatural amino acid assists in the characterization of the receptor-bound form of the chemokine.
Collapse
Affiliation(s)
- Sang Ho Park
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Sabrina Berkamp
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Jasmina Radoicic
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Anna A De Angelis
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Stanley J Opella
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California.
| |
Collapse
|
34
|
Berkamp S, Park SH, De Angelis AA, Marassi FM, Opella SJ. Structure of monomeric Interleukin-8 and its interactions with the N-terminal Binding Site-I of CXCR1 by solution NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2017; 69:111-121. [PMID: 29143165 PMCID: PMC5869024 DOI: 10.1007/s10858-017-0128-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
The structure of monomeric human chemokine IL-8 (residues 1-66) was determined in aqueous solution by NMR spectroscopy. The structure of the monomer is similar to that of each subunit in the dimeric full-length protein (residues 1-72), with the main differences being the location of the N-loop (residues 10-22) relative to the C-terminal α-helix and the position of the side chain of phenylalanine 65 near the truncated dimerization interface (residues 67-72). NMR was used to analyze the interactions of monomeric IL-8 (1-66) with ND-CXCR1 (residues 1-38), a soluble polypeptide corresponding to the N-terminal portion of the ligand binding site (Binding Site-I) of the chemokine receptor CXCR1 in aqueous solution, and with 1TM-CXCR1 (residues 1-72), a membrane-associated polypeptide that includes the same N-terminal portion of the binding site, the first trans-membrane helix, and the first intracellular loop of the receptor in nanodiscs. The presence of neither the first transmembrane helix of the receptor nor the lipid bilayer significantly affected the interactions of IL-8 with Binding Site-I of CXCR1.
Collapse
Affiliation(s)
- Sabrina Berkamp
- Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, San Diego, CA, 92093-0307, USA
| | - Sang Ho Park
- Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, San Diego, CA, 92093-0307, USA
| | - Anna A De Angelis
- Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, San Diego, CA, 92093-0307, USA
| | - Francesca M Marassi
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, San Diego, CA, 92037, USA
| | - Stanley J Opella
- Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, San Diego, CA, 92093-0307, USA.
| |
Collapse
|
35
|
Ulrich-Merzenich G, Hartbrod F, Kelber O, Müller J, Koptina A, Zeitler H. Salicylate-based phytopharmaceuticals induce adaptive cytokine and chemokine network responses in human fibroblast cultures. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 34:202-211. [PMID: 28899503 DOI: 10.1016/j.phymed.2017.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/21/2017] [Accepted: 08/01/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Cytokines and chemokines (CC) play a central role in immunoregulatory and inflammatory processes. Neutralising antibodies for single proinflammatory cytokines have developed into a powerful, though expensive and not always curative therapeutic strategy for severe diseases. Considering the redundancy of CC functions, network (N) rather than single target approaches are essential. Phytopharmaceuticals, common adjuvant therapies, are known modulators of a broad spectrum of CCs, but as complex mixtures with multiple targets they have not been systematically investigated. We investigated the effect of clinically established salicylate-based phytopharmaceuticals alone or in combination on CCNs under non-inflammatory and inflammatory conditions, using fibroblasts being a major source of cytokines in connective tissue diseases. METHODS Synchronised human skin fibroblasts (HSKF) were treated for 6 h with standardised fluid plant extracts (E) of Populus tremula L. [end concentration: 0.06%, 0.1%], Solidago virgaurea L. [0.02%, 0.1%], Fraxinus excelsior L. [0.02%, 0.1%], an established combination of the three extracts-STW1 [0.05, 0.1%] and acetyl salicylic acid (ASA) [30 µg/ml], individually or in the presence of lipopolysaccharides (LPS) [10 µg/ml]. Cell lysates were profiled for 23 cytokines. Supernatants were investigated for IL-6 and IL-8 release (ELISA). Total RNA was isolated for gene-expression profiling. RESULTS Under non-inflammatory conditions P. tremula E and ASA increased cellular proteins (P) IL-8 and IL-10; S. virgaurea E modulated IL-1α, IL-10, IL-15 and Groα (P). F. excelsior decreased IL-1α and IL-15 (P). The combination of the three extracts (STW1) modulated IL-1α, IL-3 and TNF-ß (P). LPS stimulation increased cellular IL-8, Groα, MCP-1 and RANTES (P) and increased the secretion of IL-6 and IL-8 into the medium. Under these inflammatory conditions F. excelsior reduced GMCSF, GCSF and RANTES. STW1 reduced IL-1α, IL-8, Groα, and MCP-1(P). Secretion of IL-8 and IL-6 was reduced by STW1 and ASA. Gene expression profiles supported non-additive CCN profiles. CONCLUSION Salicylate based phytopharmaceuticals provoke cellular pro-and anti-inflammatory CCN responses under non-stress conditions, which adapt to anti-inflammatory responses after LPS-stimulation. CCN-profiles of the single extracts are not additives in combination. A simultaneous activation of cellular pro- and anti-inflammatory cytokines might heighten the immunological reactivity status of a cell.
Collapse
Affiliation(s)
- Gudrun Ulrich-Merzenich
- Medical Clinic III, University Clinic Centre, Friedrich Wilhelms-University Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany.
| | - Frederik Hartbrod
- Medical Clinic III, University Clinic Centre, Friedrich Wilhelms-University Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Olaf Kelber
- Innovation and Development, Phytomedicine Supply and Development Centre, Bayer Consumer Health Care, Steigerwald Arzneimittel GmbH, Havelstraße 5, 64295 Darmstadt, Germany
| | - Jürgen Müller
- Innovation and Development, Phytomedicine Supply and Development Centre, Bayer Consumer Health Care, Steigerwald Arzneimittel GmbH, Havelstraße 5, 64295 Darmstadt, Germany
| | - Anna Koptina
- Medical Clinic III, University Clinic Centre, Friedrich Wilhelms-University Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany; Volga State University of Technology, Ploshchad Lenina 3, Yoshkar-Ola, Republic of Mari El, 424000, Russian Federation
| | - Heike Zeitler
- Medical Clinic I, University Clinic Centre, Friedrich-Wilhelms-University Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| |
Collapse
|
36
|
The clinical and prognostic value of CXCL8 in cervical carcinoma patients: immunohistochemical analysis. Biosci Rep 2017; 37:BSR20171021. [PMID: 28883082 PMCID: PMC5629562 DOI: 10.1042/bsr20171021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 01/08/2023] Open
Abstract
Cysteine-X-cysteine ligand 8 (CXCL8) was originally discovered as a proinflammatory chemokine. Recently, CXCL8 has been shown to act as an oncogene in several types of human cancers. However, the clinical and prognostic significance of CXCL8 in cervical cancer is poorly understood. In our study, we found that CXCL8 was highly expressed in cervical cancer tissues compared with normal cervical tissues in microarray datasets (GSE9750 and GSE7803). CXCL8 mRNA and protein expressions were increased in cervical cancer tissues and cell lines compared with normal cervical tissues and cervical epithelial cell lines. CXCL8 protein expression was significantly correlated with clinical stage, distant metastasis, histological type, and histological grade. CXCL8 high expression was a poor independent prognostic parameter for cervical cancer patients. In conclusion, CXCL8 is highly expressed in cervical cancer tissues and cell lines, and correlated with malignant status and prognosis in cervical cancer patients.
Collapse
|
37
|
Torán JL, Aguilar S, López JA, Torroja C, Quintana JA, Santiago C, Abad JL, Gomes-Alves P, Gonzalez A, Bernal JA, Jiménez-Borreguero LJ, Alves PM, R-Borlado L, Vázquez J, Bernad A. CXCL6 is an important paracrine factor in the pro-angiogenic human cardiac progenitor-like cell secretome. Sci Rep 2017; 7:12490. [PMID: 28970523 PMCID: PMC5624898 DOI: 10.1038/s41598-017-11976-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 08/29/2017] [Indexed: 12/22/2022] Open
Abstract
Studies in recent years have established that the principal effects in cardiac cell therapy are associated with paracrine/autocrine factors. We combined several complementary techniques to define human cardiac progenitor cell (CPC) secretome constituted by 914 proteins/genes; 51% of these are associated with the exosomal compartment. To define the set of proteins specifically or highly differentially secreted by CPC, we compared human mesenchymal stem cells and dermal fibroblasts; the study defined a group of growth factors, cytokines and chemokines expressed at high to medium levels by CPC. Among them, IL-1, GROa (CXCL1), CXCL6 (GCP2) and IL-8 are examples whose expression was confirmed by most techniques used. ELISA showed that CXCL6 is significantly overexpressed in CPC conditioned medium (CM) (18- to 26-fold) and western blot confirmed expression of its receptors CXCR1 and CXCR2. Addition of anti-CXCL6 completely abolished migration in CPC-CM compared with anti-CXCR2, which promoted partial inhibition, and anti-CXCR1, which was inefficient. Anti-CXCL6 also significantly inhibited CPC CM angiogenic activity. In vivo evaluation also supported a relevant role for angiogenesis. Altogether, these results suggest a notable angiogenic potential in CPC-CM and identify CXCL6 as an important paracrine factor for CPC that signals mainly through CXCR2.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/pharmacology
- Cell Movement
- Chemokine CXCL1/genetics
- Chemokine CXCL1/metabolism
- Chemokine CXCL6/antagonists & inhibitors
- Chemokine CXCL6/genetics
- Chemokine CXCL6/metabolism
- Culture Media, Conditioned/chemistry
- Culture Media, Conditioned/metabolism
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Gene Expression Regulation
- Human Umbilical Vein Endothelial Cells/cytology
- Human Umbilical Vein Endothelial Cells/drug effects
- Human Umbilical Vein Endothelial Cells/metabolism
- Humans
- Interleukin-1/genetics
- Interleukin-1/metabolism
- Interleukin-8/genetics
- Interleukin-8/metabolism
- Male
- Mesenchymal Stem Cells/cytology
- Mesenchymal Stem Cells/drug effects
- Mesenchymal Stem Cells/metabolism
- Mice
- Mice, Inbred C57BL
- Myocardium/cytology
- Myocardium/metabolism
- Neovascularization, Physiologic/genetics
- Paracrine Communication/genetics
- Proteome/genetics
- Proteome/metabolism
- Receptors, Interleukin-8A/antagonists & inhibitors
- Receptors, Interleukin-8A/genetics
- Receptors, Interleukin-8A/metabolism
- Receptors, Interleukin-8B/antagonists & inhibitors
- Receptors, Interleukin-8B/genetics
- Receptors, Interleukin-8B/metabolism
- Signal Transduction
- Stem Cells/cytology
- Stem Cells/drug effects
- Stem Cells/metabolism
Collapse
Affiliation(s)
- José Luis Torán
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Cardiovascular Development and Repair Department, Spanish National Cardiovascular Research Center (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Susana Aguilar
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Cardiovascular Development and Repair Department, Spanish National Cardiovascular Research Center (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Juan Antonio López
- Cardiovascular Proteomics Laboratory, Spanish National Cardiovascular Research Center (CNIC), Melchor Fernaández Almagro 3, 28029, Madrid, Spain
| | - Carlos Torroja
- Bioinformatics Unit, Spanish National Cardiovascular Research Center (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Juan Antonio Quintana
- Cardiovascular Development and Repair Department, Spanish National Cardiovascular Research Center (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- Cell and Developmental Biology, Spanish National Cardiovascular Research Center (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Cesar Santiago
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - José Luis Abad
- Coretherapix SLU, Santiago Grisolia 2, 28769, Tres Cantos, Madrid, Spain
| | - Patricia Gomes-Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - Andrés Gonzalez
- Myocardial pathophysiology, Spanish National Cardiovascular Research Center (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Juan Antonio Bernal
- Myocardial pathophysiology, Spanish National Cardiovascular Research Center (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Luis Jesús Jiménez-Borreguero
- Cell and Developmental Biology, Spanish National Cardiovascular Research Center (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- Hospital de la Princesa, Diego de León 62, 28006, Madrid, Spain
| | - Paula Marques Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - Luis R-Borlado
- Coretherapix SLU, Santiago Grisolia 2, 28769, Tres Cantos, Madrid, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Spanish National Cardiovascular Research Center (CNIC), Melchor Fernaández Almagro 3, 28029, Madrid, Spain
| | - Antonio Bernad
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain.
- Cardiovascular Development and Repair Department, Spanish National Cardiovascular Research Center (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| |
Collapse
|
38
|
Glycosaminoglycan Interactions with Chemokines Add Complexity to a Complex System. Pharmaceuticals (Basel) 2017; 10:ph10030070. [PMID: 28792472 PMCID: PMC5620614 DOI: 10.3390/ph10030070] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 12/12/2022] Open
Abstract
Chemokines have two types of interactions that function cooperatively to control cell migration. Chemokine receptors on migrating cells integrate signals initiated upon chemokine binding to promote cell movement. Interactions with glycosaminoglycans (GAGs) localize chemokines on and near cell surfaces and the extracellular matrix to provide direction to the cell movement. The matrix of interacting chemokine–receptor partners has been known for some time, precise signaling and trafficking properties of many chemokine–receptor pairs have been characterized, and recent structural information has revealed atomic level detail on chemokine–receptor recognition and activation. However, precise knowledge of the interactions of chemokines with GAGs has lagged far behind such that a single paradigm of GAG presentation on surfaces is generally applied to all chemokines. This review summarizes accumulating evidence which suggests that there is a great deal of diversity and specificity in these interactions, that GAG interactions help fine-tune the function of chemokines, and that GAGs have other roles in chemokine biology beyond localization and surface presentation. This suggests that chemokine–GAG interactions add complexity to the already complex functions of the receptors and ligands.
Collapse
|
39
|
Interleukin-31 and thymic stromal lymphopoietin expression in plasma and lymph node from Hodgkin lymphoma patients. Oncotarget 2017; 8:85263-85275. [PMID: 29156718 PMCID: PMC5689608 DOI: 10.18632/oncotarget.19665] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/21/2017] [Indexed: 12/22/2022] Open
Abstract
Hodgkin Lymphoma (HL) is a tumor of B-cell origin characterized by Hodgkin and Reed-Stenberg (H/RS) cells embedded in an inflammatory tissue where numerous cytokines/chemokines contribute to shape the microenvironment, leading to the typical clinical symptoms. We investigated: i) the expression of Interleukin-IL-31 (IL-31) and Thymic Stromal Lymphopoietin (TSLP), two Th2-related cytokines with tumor-promoting and pruritogenic functions, and of the respective receptors in HL invaded lymph nodes by flow cytometry, and ii) the potential association of IL-31/TSLP plasma concentrations with clinical characteristics by ELISA. H/RS cells and the major immune cell types infiltrating HL lymph nodes expressed intracytoplasmic and surface IL-31/TSLP, and their receptors. A subgroup of patients showing at diagnosis elevated IL-31 and TSLP plasma levels had an International Prognostic Score>2, indicative of high risk of relapse, and a subsequent positive interim PET-scan, indicative of insufficient response to chemotherapy. No correlation was found between IL-31/TSLP plasma levels and overall or event-free survival. In conclusion, IL-31/TSLP and their receptors are expressed in HL cells and in immune cells infiltrating affected lymph nodes, where both cytokines may contribute to local immune suppression. The clinical impact of IL-31 and TSLP plasma levels has to be further defined in larger patient cohorts.
Collapse
|
40
|
Glycosaminoglycans Regulate CXCR3 Ligands at Distinct Levels: Protection against Processing by Dipeptidyl Peptidase IV/CD26 and Interference with Receptor Signaling. Int J Mol Sci 2017; 18:ijms18071513. [PMID: 28703769 PMCID: PMC5536003 DOI: 10.3390/ijms18071513] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022] Open
Abstract
CXC chemokine ligand (CXCL)9, CXCL10 and CXCL11 direct chemotaxis of mainly T cells and NK cells through activation of their common CXC chemokine receptor (CXCR)3. They are inactivated upon NH2-terminal cleavage by dipeptidyl peptidase IV/CD26. In the present study, we found that different glycosaminoglycans (GAGs) protect the CXCR3 ligands against proteolytic processing by CD26 without directly affecting the enzymatic activity of CD26. In addition, GAGs were shown to interfere with chemokine-induced CXCR3 signaling. The observation that heparan sulfate did not, and heparin only moderately, altered CXCL10-induced T cell chemotaxis in vitro may be explained by a combination of protection against proteolytic inactivation and altered receptor interaction as observed in calcium assays. No effect of CD26 inhibition was found on CXCL10-induced chemotaxis in vitro. However, treatment of mice with the CD26 inhibitor sitagliptin resulted in an enhanced CXCL10-induced lymphocyte influx into the joint. This study reveals a dual role for GAGs in modulating the biological activity of CXCR3 ligands. GAGs protect the chemokines from proteolytic cleavage but also directly interfere with chemokine–CXCR3 signaling. These data support the hypothesis that both GAGs and CD26 affect the in vivo chemokine function.
Collapse
|
41
|
Metzemaekers M, Van Damme J, Mortier A, Proost P. Regulation of Chemokine Activity - A Focus on the Role of Dipeptidyl Peptidase IV/CD26. Front Immunol 2016; 7:483. [PMID: 27891127 PMCID: PMC5104965 DOI: 10.3389/fimmu.2016.00483] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022] Open
Abstract
Chemokines are small, chemotactic proteins that play a crucial role in leukocyte migration and are, therefore, essential for proper functioning of the immune system. Chemokines exert their chemotactic effect by activation of chemokine receptors, which are G protein-coupled receptors (GPCRs), and interaction with glycosaminoglycans (GAGs). Furthermore, the exact chemokine function is modulated at the level of posttranslational modifications. Among the different types of posttranslational modifications that were found to occur in vitro and in vivo, i.e., proteolysis, citrullination, glycosylation, and nitration, NH2-terminal proteolysis of chemokines has been described most intensively. Since the NH2-terminal chemokine domain mediates receptor interaction, NH2-terminal modification by limited proteolysis or amino acid side chain modification can drastically affect their biological activity. An enzyme that has been shown to provoke NH2-terminal proteolysis of various chemokines is dipeptidyl peptidase IV or CD26. This multifunctional protein is a serine protease that preferably cleaves dipeptides from the NH2-terminal region of peptides and proteins with a proline or alanine residue in the penultimate position. Various chemokines possess such a proline or alanine residue, and CD26-truncated forms of these chemokines have been identified in cell culture supernatant as well as in body fluids. The effects of CD26-mediated proteolysis in the context of chemokines turned out to be highly complex. Depending on the chemokine ligand, loss of these two NH2-terminal amino acids can result in either an increased or a decreased biological activity, enhanced receptor specificity, inactivation of the chemokine ligand, or generation of receptor antagonists. Since chemokines direct leukocyte migration in homeostatic as well as pathophysiologic conditions, CD26-mediated proteolytic processing of these chemotactic proteins may have significant consequences for appropriate functioning of the immune system. After introducing the chemokine family together with the GPCRs and GAGs, as main interaction partners of chemokines, and discussing the different forms of posttranslational modifications, this review will focus on the intriguing relationship of chemokines with the serine protease CD26.
Collapse
Affiliation(s)
- Mieke Metzemaekers
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven , Leuven , Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven , Leuven , Belgium
| | - Anneleen Mortier
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven , Leuven , Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven , Leuven , Belgium
| |
Collapse
|
42
|
Zhang Y, Liu H, Yao J, Huang Y, Qin S, Sun Z, Xu Y, Wan S, Cheng H, Li C, Zhang X, Ke Y. Manipulating the air-filled zebrafish swim bladder as a neutrophilic inflammation model for acute lung injury. Cell Death Dis 2016; 7:e2470. [PMID: 27831560 PMCID: PMC5260887 DOI: 10.1038/cddis.2016.365] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 12/11/2022]
Abstract
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS), are life-threatening diseases that are associated with high mortality rates due to treatment limitations. Neutrophils play key roles in the pathogenesis of ALI/ARDS by promoting the inflammation and injury of the alveolar microenvironment. To date, in vivo functional approaches have been limited by the inaccessibility to the alveolar sacs, which are located at the anatomical terminal of the respiratory duct in mammals. We are the first to characterize the swim bladder of the zebrafish larva, which is similar to the mammalian lung, as a real-time in vivo model for examining pulmonary neutrophil infiltration during ALI. We observed that the delivery of exogenous materials, including lipopolysaccharide (LPS), Poly IC and silica nanoparticles, by microinjection triggered significant time- and dose-dependent neutrophil recruitment into the swim bladder. Neutrophils infiltrated the LPS-injected swim bladder through the blood capillaries around the pneumatic duct or a site near the pronephric duct. An increase in the post-LPS inflammatory cytokine mRNA levels coincided with the in vivo neutrophil aggregation in the swim bladder. Microscopic examinations of the LPS-injected swim bladders further revealed in situ injuries, including epithelial distortion, endoplasmic reticulum swelling and mitochondrial injuries. Inhibitor screening assays with this model showed a reduction in neutrophil migration into the LPS-injected swim bladder in response to Shp2 inhibition. Moreover, the pharmacological suppression and targeted disruption of Shp2 in myeloid cells alleviated pulmonary inflammation in the LPS-induced ALI mouse model. Additionally, we used this model to assess pneumonia-induced neutrophil recruitment by microinjecting bronchoalveolar lavage fluid from patients into swim bladders; this injection enhanced neutrophil aggregation relative to the control. In conclusion, our findings highlight the swim bladder as a promising and powerful model for mechanistic and drug screening studies of alveolar injuries.
Collapse
Affiliation(s)
- Yuefei Zhang
- Research Center of Molecular Medicine, Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Hongcui Liu
- Hunter Biotechnology Corporation, Hangzhou 310053, China
| | - Junlin Yao
- Research Center of Molecular Medicine, Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yanfeng Huang
- Hunter Biotechnology Corporation, Hangzhou 310053, China
| | - Shenlu Qin
- Research Center of Molecular Medicine, Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Zheng Sun
- Research Center of Molecular Medicine, Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yingchun Xu
- Department of Pulmonology, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Shu Wan
- Department of Neurosurgery, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Hongqiang Cheng
- Research Center of Molecular Medicine, Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Chunqi Li
- Hunter Biotechnology Corporation, Hangzhou 310053, China
| | - Xue Zhang
- Research Center of Molecular Medicine, Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Yuehai Ke
- Research Center of Molecular Medicine, Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| |
Collapse
|
43
|
Atalay A, Arıkan S, Ozturk O, Öncü M, Tasli ML, Duygulu S, Atalay EO. The IL-8 Gene Polymorphisms in Behçet's Disease Observed in Denizli Province of Turkey. Immunol Invest 2016; 45:298-311. [PMID: 27101127 DOI: 10.3109/08820139.2016.1153652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Behçet's disease is a multisystemic inflammatory disorder as a triad of symptoms including recurrent oral and genital aphthous ulceration and uveitis with unknown pathogenesis. IL-8, a proinflammatory cytokine, has been found increased in the active stage of BD. DNA samples were obtained from 88 patients with BD and 112 healthy control subjects in Denizli province of Turkey. All genotyping experiments of SNPs in IL-8 gene were performed using polymerase chain reaction-restriction fragment polymorphism. We found that IL-8 -845 T > C and -738 T > A sites are non-polymorphic. There were no differences in the polymorphisms of IL-8 +396 G/T, +781 C/T, and +1633 C/T sites except IL-8 -251 T > A in between patients and healthy controls. Analysis of IL-8 polymorphisms indicates that the distribution of frequencies seems to be associated with -251 T > A and gender, -251 T > A and erythema nodosum, -251 T > A and ocular involvement, +781 C > T and erythema nodosum, +396 G > T and pathergy positivity, and +1633 C > T and papulopustular lesion. We demonstrated that the frequencies of IL-8 haplotypes were significantly different with BD patients than control group. We found that the distribution of IL-8 haplotypes was significantly different with genital ulcers, ocular involvement, positive pathergy test, erythema nodosum, papulopustular lesions, and arthritis with BD patients than healthy control individuals. Our study suggests that IL-8 gene polymorphisms may affect susceptibility to BD and increase the risk of developing disease. In order to confirm and assess the association of IL-8 and other cytokine gene polymorphisms in the pathophysiology of BD, large cohort studies are needed.
Collapse
Affiliation(s)
- Ayfer Atalay
- a Department of Biophysics, Faculty of Medicine , Pamukkale University , Denizli , Turkey
| | - Sanem Arıkan
- a Department of Biophysics, Faculty of Medicine , Pamukkale University , Denizli , Turkey
| | - Onur Ozturk
- b Department of Biophysics, Medical Faculty , Inonu University , Malatya , Turkey
| | - Mustafa Öncü
- c Department of Dermatology, Faculty of Medicine , Pamukkale University , Denizli , Turkey
| | - Mehmet Levent Tasli
- c Department of Dermatology, Faculty of Medicine , Pamukkale University , Denizli , Turkey
| | - Seniz Duygulu
- c Department of Dermatology, Faculty of Medicine , Pamukkale University , Denizli , Turkey
| | - Erol Omer Atalay
- a Department of Biophysics, Faculty of Medicine , Pamukkale University , Denizli , Turkey
| |
Collapse
|
44
|
Yan Z, Liu J, Xie L, Liu X, Zeng Y. Role of heparan sulfate in mediating CXCL8-induced endothelial cell migration. PeerJ 2016; 4:e1669. [PMID: 26870616 PMCID: PMC4748698 DOI: 10.7717/peerj.1669] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/18/2016] [Indexed: 02/05/2023] Open
Abstract
CXCL8 (Interleukin-8, IL-8) plays an important role in angiogenesis and wound healing by prompting endothelial cell migration. It has been suggested that heparan sulfate (HS) could provide binding sites on endothelial cells to retain and activate highly diffusible cytokines and inflammatory chemokines. In the present study, we aimed to test the hypothesis that HS is essential for enhancement of endothelial cell migration by CXCL8, and to explore the underlying mechanism by detecting the changes in expression and activity of Rho GTPases and in the organization of actin cytoskeleton after enzymatic removal of HS on human umbilical vein endothelial cells (HUVECs) by using heparinase III. Our results revealed that the wound healing induced by CXCL8 was greatly attenuated by removal of HS. The CXCL8-upregulated Rho GTPases including Cdc42, Rac1, and RhoA, and CXCL8-increased Rac1/Rho activity were suppressed by removal of HS. The polymerization and polarization of actin cytoskeleton, and the increasing of stress fibers induced by CXCL8 were also abolished by heparinase III. Taken together, our results demonstrated an essential role of HS in mediating CXCL8-induced endothelial cell migration, and highlighted the biological importance of the interaction between CXCL8 and heparan sulfate in wound healing.
Collapse
Affiliation(s)
- Zhiping Yan
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, Sichuan University, China
| | - Jingxia Liu
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, Sichuan University, China
| | - Linshen Xie
- West China School of Public Health, No. 4 West China Hospital, Sichuan University, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, Sichuan University, China
| | - Ye Zeng
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, Sichuan University, China
| |
Collapse
|
45
|
Michael BD, Griffiths MJ, Granerod J, Brown D, Davies NWS, Borrow R, Solomon T. Characteristic Cytokine and Chemokine Profiles in Encephalitis of Infectious, Immune-Mediated, and Unknown Aetiology. PLoS One 2016; 11:e0146288. [PMID: 26808276 PMCID: PMC4726626 DOI: 10.1371/journal.pone.0146288] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/15/2015] [Indexed: 01/20/2023] Open
Abstract
Background Encephalitis is parenchymal brain inflammation due to infectious or immune-mediated processes. However, in 15–60% the cause remains unknown. This study aimed to determine if the cytokine/chemokine-mediated host response can distinguish infectious from immune-mediated cases, and whether this may give a clue to aetiology in those of unknown cause. Methods We measured 38 mediators in serum and cerebrospinal fluid (CSF) of patients from the Health Protection Agency Encephalitis Study. Of serum from 78 patients, 38 had infectious, 20 immune-mediated, and 20 unknown aetiology. Of CSF from 37 patients, 20 had infectious, nine immune-mediated and eight unknown aetiology. Results Heat-map analysis of CSF mediator interactions was different for infectious and immune-mediated cases, and that of the unknown aetiology group was similar to the infectious pattern. Higher myeloperoxidase (MPO) concentrations were found in infectious than immune-mediated cases, in serum and CSF (p = 0.01 and p = 0.006). Serum MPO was also higher in unknown than immune-mediated cases (p = 0.03). Multivariate analysis selected serum MPO; classifying 31 (91%) as infectious (p = 0.008) and 17 (85%) as unknown (p = 0.009) as opposed to immune-mediated. CSF data also selected MPO classifying 11 (85%) as infectious as opposed to immune-mediated (p = 0.036). CSF neutrophils were detected in eight (62%) infective and one (14%) immune-mediated cases (p = 0.004); CSF MPO correlated with neutrophils (p<0.0001). Conclusions Mediator profiles of infectious aetiology differed from immune-mediated encephalitis; and those of unknown cause were similar to infectious cases, raising the hypothesis of a possible undiagnosed infectious cause. Particularly, neutrophils and MPO merit further investigation.
Collapse
MESH Headings
- Adult
- Bacterial Infections/blood
- Bacterial Infections/cerebrospinal fluid
- Biomarkers
- Cell Adhesion Molecules/blood
- Cell Adhesion Molecules/cerebrospinal fluid
- Chemokines/cerebrospinal fluid
- Chemokines/classification
- Cytokines/blood
- Cytokines/cerebrospinal fluid
- Diagnosis, Differential
- Encephalitis/blood
- Encephalitis/cerebrospinal fluid
- Encephalitis/etiology
- Encephalitis/immunology
- Encephalitis, Viral/blood
- Encephalitis, Viral/cerebrospinal fluid
- Encephalitis, Viral/diagnosis
- England/epidemiology
- Female
- Humans
- Infectious Encephalitis/blood
- Infectious Encephalitis/cerebrospinal fluid
- Infectious Encephalitis/diagnosis
- Leukocyte Count
- Male
- Multicenter Studies as Topic
- Mycoses/blood
- Mycoses/cerebrospinal fluid
- Mycoses/diagnosis
- Paraneoplastic Syndromes, Nervous System/blood
- Paraneoplastic Syndromes, Nervous System/cerebrospinal fluid
- Paraneoplastic Syndromes, Nervous System/diagnosis
- Peroxidase/blood
- Peroxidase/cerebrospinal fluid
- Retrospective Studies
- Toxoplasmosis, Cerebral/blood
- Toxoplasmosis, Cerebral/cerebrospinal fluid
- Toxoplasmosis, Cerebral/diagnosis
Collapse
Affiliation(s)
- Benedict D. Michael
- The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
- The Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| | - Michael J. Griffiths
- The Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, United Kingdom
- Alder Hey Children’s NHS Foundation Trust, Liverpool, United Kingdom
| | | | - David Brown
- Public Health England, London, United Kingdom
- Influenza and measles laboratory, IOC, Fiocruz, Rio de Janeiro, Brazil
| | | | - Ray Borrow
- Vaccine Evaluation Unit, Public Health England, Manchester, United Kingdom
| | - Tom Solomon
- The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
- The Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
46
|
Moser B. Editorial: History of Chemoattractant Research. Front Immunol 2015; 6:548. [PMID: 26579123 PMCID: PMC4620702 DOI: 10.3389/fimmu.2015.00548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/13/2015] [Indexed: 11/21/2022] Open
Affiliation(s)
- Bernhard Moser
- Institute of Infection and Immunity, Cardiff University School of Medicine, College of Biomedical and Life Sciences, Cardiff University , Cardiff , UK
| |
Collapse
|